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Abstract

Current fact verification methods generally fol-
low the two-stage training paradigm: evidence
retrieval and claim verification. While existing
works focus on developing sophisticated claim
verification modules, the fundamental impor-
tance of evidence retrieval is largely ignored.
Existing approaches usually adopt the heuris-
tic semantic similarity-based retrieval strategy,
resulting in the task-irrelevant evidence and
undesirable performance. In this paper, we con-
centrate on evidence retrieval and propose a
Retrieval-Augmented Verification framework
RAV, consisting of two major modules: the
hybrid evidence retrieval and the joint fact veri-
fication. Hybrid evidence retrieval module in-
corporates an efficient retriever for preliminary
pruning of candidate evidence, succeeded by a
ranker that generates more precise sorting re-
sults. Under this end-to-end training paradigm,
gradients from the claim verification can be
back-propagated to enhance evidence selection.
Experimental results on FEVER dataset demon-
strate the superiority of RAV.

1 Introduction

Fact verification endeavors to locate and incorpo-
rate credible evidence to autonomously assess the
veracity of the target textual statements (Thorne
et al., 2018). Existing works (Zhou et al., 2019;
Liu et al., 2020; Wu et al., 2021) generally adhere
to a two-stage learning paradigm: evidence re-
trieval to identify a set of key evidential sentences
from a large corpus, and claim verification which
determines the authenticity of a claim based on the
semantic interactions between the claim and the
retrieved evidence (Guo et al., 2022b). Consider-
able effort has been devoted to the claim verifica-
tion stage (Zhong et al., 2020; Zou et al., 2023;
Wu et al., 2021). However, solely advancing the
claim verification might not be the panacea. The
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Figure 1: The illustration of two FEVER cases.

efficacy of verification is significantly contingent
upon the quality of retrieved evidence (Hu et al.,
2023). If the refereed evidence fails to provide ac-
curate knowledge relevant to the claim, it would be
intractable to achieve the correct decisions.

Despite the significance of evidence retrieval, ex-
isting models (Zhou et al., 2019; Si et al., 2021)
generally utilize a trivial retrieval strategy. All
candidates are embedded into low-dimensional em-
beddings alongside the target claim. Subsequently,
the k-nearest neighbor (KNN) search is employed
to identify the top-k evidence based on their cosine
similarity to the claim. However, such KNN-based
strategies suffer from two limitations. Firstly, evi-
dence that is most semantically similar to the claim
may not be the most desirable for claim verification.
Figure 1 illustrates two example claims along with
their top-4 evidence retrieved by existing methods.
Although semantically similar, most top candidates
fail to provide clues to verify the statement in the
claim. For example, while the first and second evi-
dence of Case 1 exhibits a high degree of semantic
correlation with the claim, they lack the pivotal
evidence of “aired”. Thus, simply selecting evi-
dence based on heuristic semantic similarity may
not be the optimal solution (Zhao et al., 2023). Sec-
ondly, evidence retrieval is independent from the
claim verification, resulting in a separated training
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paradigm. The training signals from the verifica-
tion loss cannot guide the update of text encoder
used in the evidence retrieval. Thus, the embed-
dings utilized for evidence retrieval may be task-
irrelevant, resulting in undesirable performance.

In this paper, we concentrate on the crucial yet
often overlooked evidence retrieval stage, with the
goal of introducing a novel end-to-end training
paradigm. Gradients from the claim verification
could be back-propagated to the evidence retrieval
stage to enhance evidence selection. In this manner,
retrieved evidence is ensured to be task-relevant
rather than merely similar to the claim. A straight-
forward strategy involves concatenating the claim
with each candidate evidence and feeding them into
a scoring neural network to obtain a closeness score.
However, this method suffers from low efficiency
due to its computational complexity of O(m ∗ n),
where m and n denote the number of claims and
candidate evidence, respectively. Given that the
number of candidate evidence n is comparatively
large, this complexity becomes impractical.

To address the aforementioned challenges, we
propose a novel Retrieval-Augmented Verification
framework, dubbed RAV. RAV consists of two
major modules: the hybrid evidence retrieval and
the joint fact verification. The hybrid evidence re-
trieval involves a retriever for preliminary filtering
of candidate evidence, followed by a ranker for
more precise sorting of the remaining evidence.
The retriever is implemented as a bi-encoder (Guo
et al., 2022a), wherein the claim and evidence are
processed by separate encoders. With the infer-
ence time complexity of O(m+ n), the retriever’s
efficiency can be further optimized using Approxi-
mate Nearest Neighbor techniques, making it well-
suited for large-scale retrieval tasks. The ranker
is implemented as a cross-encoder (Zhang et al.,
2021), which offers higher precision by consider-
ing semantics from both the claim and evidence
sides. In the joint fact verification module, the sig-
nals derived from the fact verification loss can be
back-propagated to guide the updates of both the
retriever and ranker. RAV can be easily adapted to
existing fact verification models with minor mod-
ifications and boost the verification performance,
demonstrating its generality and superiority.

2 Related Works

The mainstream paradigm of fact-checking is
"retrieve-then-verify", and most of the existing

methods focus on the claim verification phase. As
for claim verification, current researches primarily
adopt three distinct methodologies: sequence infer-
ence, graph reasoning, and knowledge-enhanced
approaches. For sequence inference, early works
concatenate all pieces of evidence for feature analy-
sis (Nie et al., 2019). However, most current efforts
adopt a nuanced strategy that integrates each ev-
idence with the claim (Wu et al., 2021; Si et al.,
2021; Kruengkrai et al., 2021), generating seman-
tically enhanced claim-evidence pairs to facilitate
deep interactions. For graph-based fact verifica-
tion, the interplay among pieces of evidence is
achieved via the mechanism of information dis-
semination across graph structures (Yang et al.,
2020; Shi et al., 2021; Wang et al., 2022). Depend-
ing on the granularity of node attributes, evidence
graph can be delineated into sentence-level, token-
level, and multi-level. Furthermore, in recent years,
some works achieve the augmentation of evidence
information through the integration of text descrip-
tion (Yan et al., 2024; Zhao et al., 2022) or external
knowledge (Zou et al., 2023; Kim et al., 2023),
thereby effectively improving the precision of fact
verification.

Despite the substantial advancements achieved
in the phase of claim verification, the majority of ex-
isting studies fail to optimize the evidence retrieval
module during the training process A pre-trained
classifier is utilized to reassess evidence from opti-
mized retriever in ReRead (Hu et al., 2023), under-
going fine-tuning through joint training (Li et al.,
2017). However, this approach needs manually an-
notated gold evidence for supervisory information
and fails to address the efficiency optimization in
large-scale retrieval (Yin and Roth, 2018; Zhang
et al., 2023; Li et al., 2019).

Evidence Retrieval provides a data foundation
for claim verification to ensure the accuracy of veri-
fication results. Existing methods are mostly KNN-
based, which can be subdivided into evidence re-
trieval based on feature engineering (Chakrabarty
et al., 2018), neural ranking (Subramanian and Lee,
2020; Aly and Vlachos, 2022), and pre-trained
models (Liu et al., 2020). These strategies depend
on specific heuristic techniques, yet the evidence
thus gathered may not benefit the process of claim
verification well. GERE (Chen et al., 2022b) intro-
duces a generative evidence retrieval mechanism to
reduce computational resource consumption, but it
remains an independent retrieval process. Hence,
it can be concluded that there remains an absence
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Figure 2: Framework of the proposed RAV model.

of a genuinely universal, end-to-end framework.

3 Methodology

As depicted in Figure 2, the proposed RAV com-
prises two phases: hybrid evidence retrieval and
joint fact verification. Given a claim c and n pieces
of candidate evidence E = {e1, e2, . . . , en}, the
hybrid evidence retrieval selects the top q pieces of
evidence (q ≪ n), while the fact verification stage
endeavors to categorize the claim.

3.1 Hybrid Evidence Retrieval
Retriever. Due to the considerable quantity of
candidate evidence, retriever is designed to effi-
ciently filter out irrelevant candidates and recall
valuable evidence. As illustrated in the left seg-
ment of Figure 2, retriever is implemented as a
bi-encoder model (Zhang et al., 2021). Retriever
comprises two distinct encoders: one dedicated to
encoding the input claim and the other tasked with
encoding the candidate evidence. The deliberate
separation of encoding processes for claim and evi-
dence yields a notable reduction in inference times,
rendering it well-suited for real-time applications
and large-scale endeavors.

Given the input claim c and the candidate evi-
dence set E = {ei}, the feed-forward process of
retriever is formally defined as:

hc = Encoderc(c), hei = Encodere(ei),

in which Encoderc and Encodere denote the en-
coder for claim and evidence, respectively. The
pairwise cosine similarity is further calculated as:

Ŝn = {ŝ1, · · · , ŝn} = {cos(hc, he1), · · · , cos(hc, hen)},

where ŝi denotes the cosine similarity between the
claim c and the evidence ei. Then, p evidence with

the highest similarity ŝi is selected as the output
of retriever Ê = {ê1, ê2, . . . , êp}. The relevance
distribution of evidence in Ê is defined as: Ŝp =
{ŝ1, ŝ2, . . . , ŝp}.
Ranker. Following the efficient reduction of candi-
date evidence number from n to p by the retriever,
the ranker aims to meticulously select q evidence
pieces from the remaining pool with q < p ≪ n.
Ranker aims to identify and prioritize the most per-
tinent evidence from the subset generated by the
retriever. To capture the semantic correlations be-
tween claims and evidence effectively, the ranker
is implemented as a cross-encoder (Zhang et al.,
2021). As illustrated in Figure 2, the ranker takes
both the claim and the evidence as input, generat-
ing a joint representation. Although more compu-
tationally intensive, the cross-encoder framework
enables the ranker to make informed decisions by
considering the holistic context from both sides.

Based on the claim c and remained evidence Ê,
the forward process of ranker is as follows:

h̃j = Encoderr(c : êj), s̃j =
exp(h̃j)∑

êi∈Ê exp(h̃i)
,

in which ":" denotes the concatenation, and s̃j
serves as the criteria for selecting the top q evi-
dence. For evidence in Ê, the ranker calculates its
selection probability as S̃ = {s̃1, s̃2, . . . , s̃p}.
Joint Optimization. The separation of the retriever
and ranker renders the gradient intractable for back-
propagation to the retriever. Here we utilize the
KL-divergence between the relevance distribution
Ŝ and the selection probability distribution S̃ as a
supervisory signal to optimize the retriever:

Lkl = DKL(S̃ ∥ Ŝ) =
p∑

i=1

ŝi ln

(
ŝi
s̃i

)
.
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By leveraging KL-divergence, the discrepancy be-
tween the output distributions of the retriever and
the ranker is minimized, facilitating the integration
of knowledge from ranker to update retriever.

3.2 Joint Fact Verification
RAV is a universal framework capable of integrat-
ing various claim verification models. Here the
popular graph-based model GEAR (Zhou et al.,
2019) is taken as an example. Following the ar-
chitectural principles of GEAR, a fully-connected
evidence graph is constructed, where each node cor-
responds to an individual piece of evidence. The
claim is concatenated with each retrieved evidence,
forming the evidence representation. Following
the graph-based message-passing and pooling op-
erations, the combined representation of the claim
and evidence is obtained, which is then fed into a
classifier to derive the final decision. To utilize the
verification module to provide supervisory signals
for original unlabeled evidence retrieval, the ranker
and classifier are jointly optimized as:

Lv = −(y log(y∗) + (1− y) log(1− y∗)),

where y ∈ {0, 1, 2} denotes the truth label of each
claim, and y∗ is the predicted label.

3.3 Model Training Paradigm
To improve overall efficiency, we introduce asyn-
chronous parameter updates within the hybrid evi-
dence retrieval framework. The training batches are
partitioned into distinct iterations for optimized pro-
cessing. Within each iteration, retriever parameters
are fixed, and joint training between the ranker and
classifier is conducted based on Lv. Subsequently,
in the final step of each iteration, parameters of
both the ranker and classifier are fixed, and asyn-
chronous optimization using Lkl is implemented
for the retriever. The detailed training process is
outlined in Algorithm 1 provided in Appendix A.

4 Experiments

4.1 Experimental Setup
Datasets. We evaluate our proposals on the
large scale dataset FEVER (Thorne et al., 2018),
which consists of 185,455 annotated claims with
5,416,537 Wikipedia documents.
Evaluation Metrics. Following previous works,
we use Label Accuracy (LA) and FEVER score
as the evaluation metrics for claim verifica-
tion (Hanselowski et al., 2018; Zhou et al., 2019;

Dev Test

Models LA FEVER LA FEVER

BERT Concat 73.67 68.89 71.01 65.64
BERT Concat+ GERE 74.41 70.25 71.83 66.40
BERT Concat+ RAV 75.88 72.48 72.23 68.34

GAT 76.13 71.04 72.03 67.56
GAT+ GERE 77.09 72.36 72.81 69.40
GAT+ RAV 79.36 74.79 76.63 73.47

GEAR 74.84 70.69 71.60 67.10
GEAR+ GERE 75.96 71.88 72.52 68.34
GEAR+ RAV 80.89 74.93 79.91 74.19

KGAT 78.29 76.11 74.07 70.38
KGAT+ GERE 79.44 77.38 75.24 71.17
KGAT+ RAV 81.48 78.53 80.23 76.45

Table 1: Performance on claim verification.

Dev Test

Models P R F1 P R F1

TF-IDF - - 17.20 11.28 47.87 18.26
ESIM 24.08 86.72 37.69 23.51 84.66 36.80
BERT 27.29 94.37 42.34 25.21 87.47 39.14
XLNet 26.60 87.33 40.79 25.55 85.34 39.33
RoBERTa 26.67 87.64 40.90 25.63 85.57 39.45

RAV 39.47 87.89 54.48 39.20 87.77 54.20

Table 2: Performance on evidence retrieval.

Chen et al., 2022a). Besides, giving gold evidence,
Precision, Recall and F1 are used to evaluate evi-
dence retrieval results (Chen et al., 2022c).

Please refer to the Appendix B for the detailed
implementation details due to the limited pages.

4.2 Performance on Claim Verification

We select GERE (Chen et al., 2022c) as the primary
baseline, an advanced generative evidence retrieval
method. In line with GERE, we incorporate several
established fact verification models as base models:
BERT Concat (Zhou et al., 2019), GAT (Liu et al.,
2020), KGAT (Liu et al., 2020), and GEAR (Zhou
et al., 2019). As illustrated in Table 1, our frame-
work demonstrates superior performance compared
to GERE. Moreover, the application of our hybrid
joint framework to existing claim verification mod-
els effectively enhances their overall performance,
underscoring the superiority of our framework.

4.3 Performance on Evidence Retrieval

Following previous works (Chen et al., 2022c),
we select several representative evidence retrieval
methods as baselines, including TF-IDF (Thorne
et al., 2018), ESIM (Hanselowski et al., 2018),
BERT (Liu et al., 2020), XLNet (Zhong et al.,
2020) and RoBERTa (Zhong et al., 2020). As
depicted in Table 2, RAV demonstrates superior
performance compared to nearly all baseline meth-
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Dev Test

Models LA FEVER LA FEVER

GEAR 74.84 70.69 71.60 67.10
-w/o Ranker 75.43 71.63 73.83 68.92
-w/o Retriever 79.37 74.44 77.36 72.42

GEAR + RAV 80.89 74.93 79.91 74.19

Table 3: Performance of ablation study.
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Figure 3: Hyperparameter sensitivity analysis.

ods. While KGAT exhibits a marginally higher
recall rate, RAV surpasses it significantly in terms
of precision and F1 score.

4.4 Ablation Study

We design ablation studies to verify the effective-
ness of core modules by removing the ranker and
retriever, respectively. As shown in Table 3, our
model outperforms both -w/o Retriever and -w/o
Ranker variations, indicating that both the asyn-
chronous updating mechanism of the retriever su-
pervised by the ranker and the joint training frame-
work between the ranker and classifier contribute
to the efficacy of fact verification. Comparatively,
-w/o Retriever achieves superior performance over
-w/o Ranker, indicating that the cross-encoder is
particularly advantageous for the verification task.

4.5 Hyperparameter Sensitivity Analysis

The hyperparameters p and q dictate the number
of evidence retrieved by the retriever and ranker,
respectively. As depicted in Figure 3, excessively
large or small values lead to the performance de-
cline. Retaining an excessive number of evidence
instances may introduce unnecessary noise, while
preserving too few pieces of evidence risks filtering
out crucial information.

4.6 Efficiency Study

The bi-encoder excels in rapid data processing,
while the cross-encoder trades off some efficiency
for improved accuracy. Consequently, variation
models employing the bi-encoder (-w/o Ranker)

Figure 4: Cases Studies.

are expected to be more efficient than -w/o Re-
triever. As anticipated, under identical settings, the
training and inference time is 92.2, 54.2 and 65.5
minutes for -w/o Retriever, -w/o Ranker, and RAV,
respectively, validating this theoretical hypothesis.

4.7 Case Study

Compared to KNN-based method, our proposed
evidence retrieval approach can extract implicit
evidence. As shown in Figure 4, the expres-
sions "sound-based" and "audio" are synony-
mous. KNN-based method struggles to capture
such features, whereas our approach benefits from
a joint training process, enabling it to explicitly
assign a higher selection probability to the ev-
idence that are more favorable for claim verifi-
cation. Similarly, in case 2, the key evidence
is inferred through the statements "Hickam has
written Josh Thurlow." and "Josh Thurlow
is a historical fiction novel.". KNN-based
method also fails to capture these nuanced evi-
dence.

5 Conclusion

In this paper, we delves into the critical issue of
evidence retrieval and puts forth a joint fact veri-
fication framework featuring hybrid evidence re-
trieval. Experimental results show that integrating
RAV with established claim verification models
markedly boosts overall performance.
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Limitations

Initially, there is potential for our model to realize
improvements in efficiency. The utilization of bi-
encoders coupled with approximated nearest neigh-
bor searching (ANN) techniques has the capacity to
enhance retrieval efficiency for a broader candidate
set. Additionally, in this study, we refrained from
making further enhancements to the claim verifi-
cation module, choosing instead to integrate the
existing models into our framework. The incorpo-
ration of a more sophisticated evidence reasoning
approach holds the promise of generating enhanced
supervisory signals for the evidence retrieval pro-
cess, thus potentially elevating the model’s overall
efficacy to a certain extent.
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A Algorithm

Algorithm 1 Training Process of RAV

1: Input: Claim c and candidate evidence E =
{e1, e2, . . . , en}.

2: Output: Predicted label y∗.
3: steps← t
4: for i in range(t) do
5: if i ≤ t− 1 then
6: {Ranker.train() and Retriever.eval()}

Ê ← {ê1, ê2, . . . , êp}
Ẽ ← {ẽ1, ẽ2, . . . , ẽq}
y∗ ← Ranker(c, Ẽ)
Llabel ← CrossEntropy(y, y∗)
Ranker parameters update.

7: end if
8: if i == t− 1 then
9: {Ranker.train() and Retriever.eval()}

Ŝ ← {ŝ1, ŝ2, . . . , ŝp}
S̃ ← {s̃1, s̃2, . . . , s̃p}
Lkl ← DKL(Ŝ ∥ S̃)
Ranker parameters update.

10: end if
11: end for
12: Return: y∗

Algorithm 1 describes the training process of
RAV in one iteration. For simplification, Ranker
represents the joint model of ranker and classi-
fier, and there are t training steps in each itera-
tion. At each step, Ranker will be jointly optimized
with the retriever parameters fixed. Ê and Ẽ rep-
resent the evidence set retrieved by retriever and
ranker, respectively. Afterwards, with the claim c
and evidence Ẽ as input, the classifier generates
the predicted label y∗ through evidence reasoning.
The cross entropy loss serves as the optimization
objective of both ranker and classifier by back-
propagating gradients to the two stages. In addition,
to enhance the overall efficiency, the retriever will
be asynchronous updated only at the last step. The
KL-divergence between the relevance distribution
Ŝ and the selection probability distribution S̃ is
utilized as the supervisory signal to optimize the
retriever.

B Implementation details

In the data preprocessing stage, we adopt the en-
tity linking approach (Hanselowski et al., 2018) to
select 20 related documents for each claim. Fur-
thermore, we use the modified ESIM model (Chen
et al., 2017) to generate 30 candidate evidence from
the selected documents.
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