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Abstract

Creating effective and reliable task-oriented di-
alog systems (ToDSs) is challenging, not only
because of the complex structure of these sys-
tems, but also due to the scarcity of training
data, especially when several modules need to
be trained separately, each one with its own in-
put/output training examples. Data augmenta-
tion (DA), whereby synthetic training examples
are added to the training data, has been success-
ful in other NLP systems, but has not been ex-
plored as extensively in ToDSs. We empirically
evaluate the effectiveness of DA methods in an
end-to-end ToDS setting, where a single sys-
tem is trained to handle all processing stages,
from user inputs to system outputs. We experi-
ment with two ToDSs (UBAR, GALAXY) on
two datasets (MultiWOZ, KVRET). We con-
sider three types of DA methods (word-level,
sentence-level, dialog-level), comparing eight
DA methods that have shown promising results
in ToDSs and other NLP systems. We show
that all DA methods considered are beneficial,
and we highlight the best ones, also providing
advice to practitioners. We also introduce a
more challenging few-shot cross-domain ToDS
setting, reaching similar conclusions.

1 Introduction

Task-oriented dialog systems (ToDSs) aim to un-
derstand and fulfil a user’s goal in a particular ap-
plication domain (e.g., booking tickets, restaurant
reservations) through natural language conversa-
tion (Bang et al., 2023; Zhao et al., 2022). They
traditionally include several modules to handle a
variety of processing stages. A natural language un-
derstanding (NLU) module typically extracts struc-
tured information from each user’s utterance, usu-
ally in the form of slot-value pairs (e.g., for desti-
nation, travel date). A dialog state tracker (DST)
keeps track of the information that has been re-
vealed about the user’s goal (dialog state) through-
out the conversation. A policy optimizer (PO) de-

cides the system’s next action (e.g., request infor-
mation for a particular unfilled slot of the dialog
state, or recommend a restaurant). A natural lan-
guage generation (NLG) module realises commu-
nication actions of the system in natural language.
In spoken conversations, automatic speech recog-
nition (ASR) and text-to-speech (TTS) modules
are also included (Oesterreich et al., 2023), though
here we consider only written conversations.

When the modules of a ToDS are trained sep-
arately, large volumes of annotated training data
are needed, since each module requires its own in-
put/output training examples. In end-to-end ToDSs
(Wen et al., 2017; Lei et al., 2018), a single sys-
tem is jointly trained to handle all (or most) of the
processing stages, reducing (or at least harmonis-
ing) the kinds of annotated training data required,
since each training example can be used by all
(or most) of the modules (Deriu et al., 2021). Re-
cent Transformer-based end-to-end ToDSs (Ham
et al., 2020; Peng et al., 2021; Sun et al., 2022) aim
to reduce the necessary training data further, by
leveraging pre-training on unlabelled data. How-
ever, the best performance is still obtained by
fine-tuning on domain-specific annotated training
datasets (Hudeček and Dusek, 2023), which are
costly to obtain, especially when moving to a new
domain (e.g., from booking airline tickets to re-
serving restaurants). LLMs that promise adequate
results in few- or even zero-shot settings (Radford
et al., 2019; Brown et al., 2020) have been under-
explored in ToDSs, and work along this direction
has focused mostly on the DST module, with con-
tradicting results (Hudeček and Dusek, 2023; Hu
et al., 2022). Thus cost-effective methods to obtain
or augment training sets for ToDSs are needed.

We experiment with data augmentation (DA),
which adds synthetic training examples to an ex-
isting annotated (possibly small) training set. DA
methods have shown promising results in various
NLP tasks, e.g., text classification, text generation,
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question answering (Feng et al., 2021; Shorten
et al., 2021; Pappas et al., 2022), but have not been
systematically compared in end-to-end ToDSs (Sec-
tion 6). We simulate the case where the available
annotated training set is limited, which is often
the case with real-life ToDS applications, espe-
cially when moving to new application domains.
We experiment with two end-to-end pre-trained
Transformer-based TODSs, namely UBAR (Yang
et al., 2021) and GALAXY (He et al., 2022b), and
two English textual conversational datasets, Multi-
WOZ 2.0 (Budzianowski et al., 2018) and KVRET
(Eric et al., 2017). We vary both the size of the
initial annotated training set (e.g., 2%, 10%, 25%
of MultiWOZ’s training set) and the expansion fac-
tor (generating one, two, or four synthetic exam-
ples from each original one, i.e., x2, x3, x5 ex-
pansion). We also introduce a more challenging
few-shot cross-domain setting: in each iteration, we
select a single domain as the target one, we remove
from the training set all but 20 (few-shot) dialogs
of the target domain, we generate synthetic training
dialogs from the 20 dialogs, and evaluate only on
test dialogs from the left-out target domain.1

We compare eight DA methods that have shown
promising results in ToDSs (mostly when train-
ing individual modules) and other NLP systems.
The DA methods we consider are of three types.
Word-level augmentation methods replace words
of the original training examples by similar words,
e.g., words that have similar word embeddings or
words suggested by models that predict masked
words. Sentence-level augmentation includes para-
phrasing sentences of the original training data via
back-translation (translating to another language
and back), invoking systems trained specifically to
perform paraphrasing, or by prompting Large Lan-
guage Models (LLM); we also include in this type
methods that rotate (swap) parts of the dependency
tree of the original sentence. Finally, dialog-level
augmentation methods exploit dialog-specific an-
notations of the original training examples (e.g., di-
alog states), which are available in ToDS datasets.

Our contributions are: (1) We conduct a system-
atic comparison of DA methods in an end-to-end
ToDS setting, the largest (in terms of DA methods)
comparison to date in this setting. (2) We show that
substantial performance gains can be obtained with
DA methods, even when using pre-trained models,

1For example, the domains of MultiWOZ are: train, taxi,
hotel, restaurant, hospital, police and attraction.

and we offer concrete advice to ToDS practitioners
(Section 5). (3) We introduce and utilise a new
few-shot cross-domain evaluation setting for DA
approaches in ToDS, where we show that DA meth-
ods again boost performance.

2 Data Augmentation Methods

2.1 Word-level Augmentation

Word-level DA methods replace words of the origi-
nal training examples by similar words, e.g., words
with similar word embeddings or words suggested
by models that predict masked words (Wei and Zou,
2019; Wang and Yang, 2015). We experiment with
word substitutions using either Word2Vec (Mikolov
et al., 2013) or RoBERTa (Liu et al., 2019). Apart
from boosting performance, word-level DA can
generate more synthetic instances per original one,
compared to other DA types considered.

2.1.1 Word2Vec-based Word Substitution
We employ Google’s 300-dimensional embeddings,
created using Word2Vec.2 We exclude stop-words
or delexicalised tokens (special tokens replacing
slot values) as candidates for DA. For every word in
each dialog utterance, we find the 10 most similar
ones in terms of cosine similarity of word embed-
dings. Preliminary testing showed that this may
actually deteriorate performance, as some word
replacements create dialog states and system ac-
tions inconsistent with the original ones, in agree-
ment with Mi et al. (2021), who note that swapping
certain words may change the original semantics.
Instead, for every experiment, we train the ToDS
with the original training data (the percentage avail-
able per experiment). For every word position, we
test every candidate substitution from the pool of
10 most similar ones selecting at random, by pass-
ing the augmented sentence to that model. If the
model’s prediction (in terms of dialog state and
system action) is different than the original one,
the augmentation is discarded and the next word
replacement from the pool is considered.

2.1.2 LM-based Word Substitution
Masking a word and using a language model (LM)
to predict the masked token is a more advanced
case of word substitution, previously used in numer-
ous cases (Pantelidou et al., 2022; Kobayashi, 2018;
Mi et al., 2021). We leverage the large version
of an out-of-the-box RoBERTa (Liu et al., 2019).

2Available via Gensim (Rehurek and Sojka, 2010).
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The list of candidate substitutions now comprises
words that the LM deemed more likely, otherwise
the method remains as in Word2Vec-based substitu-
tion, including the requirement that the dialog state
and system action must remain the same.

2.2 Sentence-level Augmentation

Sentence-level augmentation includes paraphrasing
(via back-translation, with systems trained specif-
ically to perform paraphrasing, or by prompting
LLMs) and fragment rotation (which moves parts
of the dependency tree). These methods cannot
generate as many synthetic training instances as
word-level substitution, but their synthetic utter-
ances are semantically closer to the original ones.

2.2.1 Back-translation

Back-translation has been used in many NLP tasks
(Kumar et al., 2019; Huang et al., 2021; Federmann
et al., 2019). It translates a piece of text (an utter-
ance in our case) to a different (pivot) language
and back to the original one. We use French as the
pivot language and the Google translate API.3 As
explained by Ding et al. (2022), it is important to
retain the original names of entities, such as attrac-
tion names and addresses. Special tokens used for
delexicalisation also face the same issue. To avoid
wrongly back-translating these special tokens, we
apply back-translation to each utterance only after
delexicalising and replacing the special tokens with
special numbers (preceded by ’#’), which remain
unchanged during translation. The special tokens
are relexicalized after DA.

2.2.2 PEGASUS Paraphrasing

The utilisation of LMs for paraphrasing was bene-
ficial in the ToDS work of Gao et al. (2020), Hou
et al. (2018), and Quan and Xiong (2019). Follow-
ing Sharma et al. (2022), we leverage an instance
of the Transformer-based PEGASUS (Zhang et al.,
2020a), fine-tuned for paraphrasing.4 We set PE-
GASUS to generate up to two paraphrased utter-
ances, and randomly select one, an approach that
allows us the generate multiple synthetic dialogs
per training instance.5 For each synthetic utterance,
we check whether the delexicalisable tokens are
preserved. If not, the augmentation is not applied.

3More languages could be used to generate more data.
4huggingface.co/tuner007/PEGASUS_paraphrase
5More paraphrases can be generated, but most of them tend

to be of lower quality and may lead to wrong dialog states.

2.2.3 Fragment Rotation
Cropping or rotating/flipping images is a popular
label preserving DA approach in Computer Vision
(Krizhevsky et al., 2017; Engstrom et al., 2019).
An NLP analog of rotation was proposed by Şahin
and Steedman (2018) and has also been tested in a
ToDS setting (Louvan and Magnini, 2020, 2021).
The main idea is to rotate (swap) in the depen-
dency tree of a sentence, fragments (such as sub-
jects/objects) around the root (usually a verb). We
leverage Stanford’s dependency parser (Qi et al.,
2020) to generate annotations for MultiWOZ 2.0,
consistent with the Universal Dependencies 2.1
(Nivre et al., 2020) in Şahin and Steedman’s work.
We then employ their method to generate synthetic
utterances.6 This may generate multiple outputs
per original training instance, from which we sam-
ple uniformly. This method is a better fit for more
free word-order languages, but both in Louvan and
Magnini (2020) and in our experiments, it leads to
substantial improvements in English too.

2.2.4 LLM Paraphrasing
LLMs have shown impressive results in tasks they
have not encountered during training (Brown et al.,
2020; Ouyang et al., 2022). Here we leverage Chat-
GPT, GPT-3.5-turbo specifically, and prompt it to
generate augmented data via paraphrasing. We
limit ourselves to two synthetic utterances to min-
imise the LLM’s usage cost, randomly selecting
one of the two, provided it includes all of the to-
kens that will be delexicalised. As a prompt we use
a simple instruction and no in-context learning.7

2.3 Dialog-level Augmentation

Dialog-level DA methods exploit dialog-specific
annotations that ToD datasets include (e.g., dialog
states, system actions). These methods can gen-
erate more synthetic data than sentence-level DA
methods, but fewer than word-level ones. Also, the
dialog-level DA methods considered here assume
that dialog turns (user utterance–system response
pairs) that have the same dialog state convey the
same information, which is not always the case;
hence, they may produce erroneous data.

2.3.1 Dialog Tree
The first dialog-level DA method we test was orig-
inally proposed by Aksu et al. (2022). Based on

6https://github.com/gozdesahin/
crop-rotate-augment

7More information can be found in Appendix A.
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their approach, we create a tree structure contain-
ing dialogs that can be formed by combining the
turns of the available training data in three steps.
The first step is the creation of turn templates. Each
template comprises a delexicalised turn, along with
the current delexicalised dialog state (Cds) and the
delexicalised dialog states of the previous (Pds)
and next (Nds) turns of the dialog they originate
from. If a template refers to the first dialog turn, its
Pds is “Root”. If a template refers to the last turn,
its Nds is “Leaf”. Let the set of templates created
in the first step be T = {r, t1, ..., tn}, where r is a
special root template used in the second step.

In the second step, templates are linked in a tree
structure under a certain condition. A template
tj can be linked with a template ti as its child
node, only if ti’s Nds matches tj’s Cds and tj’s
Pds matches ti’s Cds (see Fig. 7 of Appendix D
for an example). All templates t that appear at the
beginning of a dialog are automatically assigned as
children of the special root template r. The third
step is surface realisation, where delexicalised slots
are filled with slot values.

As the time complexity of this method increases
exponentially in the number of dialogs, we sample
only 50 dialogs from the original training set in
the first step. We then create the tree and generate
a new synthetic dialog by starting from the root
and randomly selecting a child recursively until
we reach a leaf. We then repeat, sampling again
50 dialogs (with replacement) from the original
training set and generating another synthetic dialog.

2.3.2 Act-Response Substitution
Multi-Action Data Augmentation (MADA) is an-
other DA approach based on dialog state matching,
proposed by Zhang et al. (2020b). For every turn,
they identify all other turns (of the original training
dialogs) that have the same delexicalised dialog
state and extract the system actions associated with
the identified turns. They then train their ToDS
using the original and extracted system actions per
turn. Normally, a ToDS would encounter a sin-
gle system action in each instance and Zhang et al.
(2020b) observe that some system actions are more
likely to be the ground truth actions, compared to
others that may be correct as well. Instead, through
MADA, the model encounters a more balanced set
of system actions, helping it generate diverse re-
sponses during inference. In our case, along with
valid system actions, we also store the correspond-
ing system responses per turn, following the same

principle. Then, for each dialog turn we replace the
original system action and response by sampling
from the set created by the process discussed.

3 Experimental Setup

In all experiments, we use three different randomly
sampled training subsets (e.g., 3 different 10% sub-
sets) and report averages.

3.1 Main Experiments
MultiWOZ: For our main experiments, we use
MultiWOZ, an English human-to-human conversa-
tional dataset produced by a Wizard-of-Oz experi-
ment, which has been used extensively in previous
work (Wu et al., 2019; Heck et al., 2020; Zhao et al.,
2021; Kulhánek et al., 2021; Wu et al., 2023). Mul-
tiWOZ 2.0, the most commonly used version that
we also use, includes dialogs spanning 7 domains.
It includes 10,438 dialogs in total, of which 1,000
are reserved for validation and another 1,000 for
testing. Most dialogs fall into two or more domains
making it a challenging benchmark. Of the tasks
supported by MultiWOZ 2.0 (e.g., DST, intent clas-
sification, action-to-response generation) we select
the response generation (RG) task, which UBAR
and GALAXY can handle end-to-end.

Evaluation measures: Following Budzianowski
et al. (2018), we mainly report Score values for
MutiWOZ. We also present Inform, Success, and
BLEU results in the appendix. Inform is the per-
centage of dialogs where the system provided a
correct recommendation based on the user’s con-
straints (e.g., cheap hotel). Success is the percent-
age of dialogs where the system satisfied the user’s
constraints (Inform = 100%) and provided all the
requested information (Budzianowski et al., 2018;
Nekvinda and Dušek, 2021). BLEU (Papineni et al.,
2002) measures the word n-gram similarity be-
tween the system and the gold response. Finally,
Score = 1

2(Inform + Success) + BLEU.

UBAR: For the MultiWOZ experiments, we use
UBAR (Yang et al., 2021), a GPT2-based ToDS
(Radford et al., 2019) that remains competitive
as shown in recent studies (Nekvinda and Dušek,
2021; Sun et al., 2022), and is also easier (and
much less expensive) to use compared to larger
LLMs. UBAR is also based on the framework used
by MADA (Zhang et al., 2020b), thus facilitating
experimenting with dialog-level DA methods.

MultiWOZ with all DA methods: In a first set of
experiments, we reduce the size of the MultiWOZ
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training set to 850 dialogs (∼10% of the training
set) and produce an extra synthetic dialog from
each original one, doubling (×2 ) the training set.

MultiWOZ with best three DA methods: In a
second set of experiments, we consider only the
best three DA methods of the previous experiments,
but we now consider generating one, two, or four
synthetic dialogs from each original dialog (×2,
×3, ×5), using only ∼2% (170), ∼10% (850), or
∼25% (2,125) of the MultiWOZ training dialogs.

Few-shot cross-domain experiments: Finally, we
test the best three DA methods of the first set of ex-
periments, now in a few-shot, cross-domain setting
for the restaurant, hotel and attraction domains of
MultiWOZ. As in the first set of experiments, we
use 10% of the MultiWOZ training dialogs. Addi-
tionally, in three iterations, we leave one domain
out of the training set apart from 20 (few-shot) di-
alogs, and we use only test (and validation) dialogs
that include the left-out domain. We generate four
synthetic dialogs for each few-shot dialog (x5) in
these experiments, which was the augmentation
size that worked best in the second set of experi-
ments when there were very few training instances.

3.2 Additional Experiments

To ensure that our previous findings are not dataset-
and model-specific, we repeat them using KVRET
(Eric et al., 2017) and GALAXY (He et al., 2022b).

KVRET is also an English multi-domain dataset,
the domains being weather, navigation, schedule.
It includes 2,424 dialogs, with 302 being reserved
for validation and 304 for testing. Contrary to Mul-
tiWOZ, each dialog belongs in a single domain.

Evaluation measures: Following He et al.
(2022b), for KVRET we report Score (calculated
using the same formula as in MultiWOZ), with
slight modifications. Match is reported, which is
equivalent to the Inform of MultiWOZ. Moreover,
Lei et al. (2018) argues that the original Success
rate favours recall, as a dialog would be considered
successful if the model responded with every pos-
sible recommendation. Hence Success F1 is used
to balance precision and recall instead of Success.

GALAXY is a more recent ToDS, pretrained using
UniLM (Dong et al., 2019), currently among the
best ToDSs on KVRET (He et al., 2022a).

Experiments: We conduct similar experiments
on KVRET as on MultiWOZ. The initial training
sets (before DA) include ∼5% (120), ∼10% (250),

∼25% (600) dialogs from KVRET’s training set.
We select the three best performing DA approaches
on the 5% subset and conduct the same experiments
using the 10% and 25% subsets, generating one,
two, or four synthetic instances from each original
one (x2, x3, x5). KVRET has an average dialog
length of 2.5 turns, contrary to MultiWOZ’s 13.68.
We exclude the two dialog-level DA methods from
the KVRET experiments, since they had the worst
performance in the first set of experiments on Mul-
tiWOZ. As each dialog belongs in a single domain,
our cross-domain evaluation setting is also not ap-
plicable to KVRET.

4 Experimental Results and Analysis

4.1 Results of the Main Experiments
MultiWOZ with all DA methods: The results
of the first set of experiments (all 8 DA methods,
10% of MultiWOZ’s training set, x2 expansion) are
presented in Table 1. All DA methods lead to a
substantial performance boost. The three highest
scores are obtained with Word2Vec substitution,
PEGASUS paraphrasing and fragment rotation, im-
proving UBAR without DA (“10% training set”)
by about 9 points. Surprisingly, fragment rotation
is among the best DA method, even though En-
glish is not particularly free word-order (Section
2.2.3). The worst results come from the dialog-
level DA methods, presumably because matching
delexicalised dialog states introduces noise (Aksu
et al., 2022).

MultiWOZ with best three DA methods: The
results of the second set of experiments (best 3 DA
methods, 2%, 10%, 25% of original training set,
expansion by x2, x3, x5) are shown in Fig. 1. For
each original training set size (horizontal axis), we
show the Score (vertical axis) of each DA method
(curves). To save space, we show scores using the
best (per DA method and training set size) expan-
sion size (x2, x3, x5). As expected, DA methods
are more beneficial when the original annotated
training set is limited (e.g. 2%, 10%), with much
smaller improvements when more annotated data
are available (25%). Also, when the original train-
ing set is very limited (2%), x5 expansion leads to
the best results, but when the original training set
is larger (10%, 25%), more conservative (x3 and
x2, respectively) expansion is better, presumably
because it becomes more important to avoid adding
multiple variants of the same original training in-
stance. Overall, the three best DA methods lead to
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very similar performance boosts, in agreement with
the results of the previous experiments (Table 1).
Few-shot cross-domain experiments: The results
of these experiments are shown in Fig. 2. All
DA methods led to substantial improvements in
all three few-shot domains, increasing the Score by
up to 8, 9 and 10 points for the attraction, hotel and
restaurant domains, respectively. Contrary to pre-
vious experiments, here PEGASUS paraphrasing
was more effective overall compared to the other
two DA methods.8

DA Type DA Method Score

No DA
Full training set 105.1
10% training set 75.88

Word-level
Word2Vec replace 84.69
RoBERTa replace 80.11

Sentence-level

Back-translation (FR) 81.31
PEGASUS 83.16
Fragment rotation 84.59
LLM paraphrase 81.48

Dialog-level
Dialog Tree 79.94
Act-Response 80.78

Table 1: MultiWOZ Score, for all 8 DA methods,
using 10% of the original training dialogs, producing a
single synthetic dialog from each original one (x2).

Figure 1: MultiWOZ Score, for the 3 best DA methods
of Table 1, using 2%, 10%, 25% of the original training
dialogs. We report in brackets the expansion size (x2,
x3, x5) that led to the best Score.

4.2 Results of the Additional Experiments
KVRET with all DA methods: GALAXY’s re-
sults with all 6 applicable (to KVRET) DA meth-
ods, using 5% of KVRET’s training dialogs, and x2
expansion are reported in Table 2. Word2Vec sub-
stitution and fragment rotation remain among the

8More detailed results of the main and additional experi-
ments can be found in Appendix B.

Figure 2: MultiWOZ Score, for the 3 best DA meth-
ods of Table 1, in the few-shot cross-domain setting
(domains: attraction, hotel, restaurant).

top performers, with the LLM-based paraphrasing
marginally overtaking PEGASUS paraphrasing.

KVRET with best three DA methods: Figure 3
shows results obtained with the best three DA meth-
ods of the previous experiment, now using 5%,
10%, 25% of KVRET’s training set, and x2, x3, x5
expansion. Interestingly, DA (any method) man-
ages to improve performance only when 5% of
KVRET’s training set is used.9 Although KVRET
is smaller than MultiWOZ (2,424 dialogs in total
vs. 10,438) and one would expect DA methods to
be more useful in KVRET, it is also much easier
than MultiWOZ, because each dialog concerns a
single domain. This is evident by the fact that
GALAXY with only 25% of the KVRET training
set and no DA (Fig. 3, rightmost result of the red
dashed line) is almost as good as GALAXY trained
on the entire KVRET training set, again with no
DA (horizontal dotted line). Even with only 10%
of KVRET’s training set, GALAXY with no DA
(red dashed line) obtains a Score of 92.16, leaving
very little scope for improvement. When using 5%
of the original training set, where there is much
larger scope for improvement (Fig. 3, left), all DA
methods substantially improve performance, and
the best DA method (fragment rotation) improves
performance by approx. 9 points (Table 2). The
results of Figures 1 and 3 also indicate that there is
no universal threshold of initial annotated training
instances, below which DA is beneficial; the thresh-
old depends on the difficulty of the particular task
(e.g., whether dialogs are single- or multi-domain).
Instead, one should examine performance; when
it is very low (e.g., with 2% of MultiWOZ or 5%

9This is also why we select the best three DA methods
using 5% of KVRET’s training set in the previous experiment.
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of KVRET), DA methods are definitely worth con-
sidering, otherwise when performance is already
very high (e.g., exceeding 90 Score when using
10% or 25% of KVRET), applying DA is probably
pointless. In all cases, generating more than one
or two synthetic examples per original one (more
than x2 or x3 expansion) is not beneficial.

DA Type DA Method Score

No DA
Full training data 102.5
5% training data 73.27

Word-level
Word2Vec replace 81.44
RoBERTa replace 80.67

Sentence-level

Back-translation (FR) 77.83
PEGASUS 75.78
Fragment rotation 82.76
LLM paraphrase 82.04

Table 2: KVRET Score, for 6 applicable DA methods,
using 5% of original training dialogs, producing a single
synthetic dialog from each original one (x2).

Figure 3: KVRET Score, for the 3 best DA methods of
Table 2, using 5%, 10%, 25% of the original training
dialogs. We report in brackets the expansion size (x2,
x3, x5) that led to the best Score.

4.3 Response and Error Analysis
In MultiWOZ dialogs the domain may change from
utterance to utterance making the benchmark much
more challenging, compared to KVRET. Using DA
approaches have proven beneficial in terms of the
overall Score, but this is not always the case with
the underlying metrics Success and BLEU score
that concern the generated response as seen in Fig-
ures 3 - 23. To gain a better view of the effec-
tiveness of the DA methods tested, we present an
error rate per domain category based on Success.
To do so, we calculate the percentage of unsuc-
cessful dialogs (Success = 0) per dialog category
in the test set. Consider for example the case of

using 25% data of the training set for DA lever-
aging the Word2Vec approach. A comparison of
this approach when using x2 and x5 the amount
of data is depicted in Figure 4. Additional com-
parisons for the case of PEGASUS and fragment
rotations are presented in Appendix C. In the fig-
ure, “tx”, “at”, “re”, “ho” and “tr” refer to the taxi,
attraction, restaurant, hotel, and train domains
respectively. Multiple domains in each category de-
note domain switches. It comes as no surprise that
the more domain switches a dialog contains, the
more errors the model makes. Using x5 the amount
of training data seems to amplify this behaviour;
an observation that could be attributed to the ad-
ditional noise introduced mostly in terms of the
synthetically generated responses. Thus, generat-
ing more than a single synthetic dialog (especially
in the x5 case) may not prove as beneficial for all
cases (e.g. when 25% of the MultiWOZ dialogs
are available). Overall, of the three best perform-
ing methods, Word2Vec and PEGASUS seem to
perform similarly, making more errors is the same
dialog categories (mostly the ones including the
restaurant and hotel domains). On the other hand
fragment rotation straggles more mostly with di-
alogs involving the attraction domain. One should
keep in mind that, regardless of applying DA or
not, many errors made by the model are also to
be blamed to the automatic evaluation as during
inference the user’s utterance remains static and is
always in accordance with the ground truth system
response, thus potentially confusing the model.

After careful, manual examination of system re-
sponses on a small sample of the test set across
all experimental cases, the responses themselves
are fluent and informative. Generally, it is very
difficult to deduce which DA method was used to
train the model that generated the response. The
small differences in scores could be justified by
this conclusion, especially when comparing two
methods that perform DA at the same level (e.g.
the sentence-level PEGASUS and fragment rota-
tion methods). Even when generating multiple syn-
thetic dialogs per training instance (e.g. x5 DA
level), the responses remain fluent even though
some DA methods may alter the structure of the
sentence (e.g. Figure 13). Using fragment rotation
to generate four synthetic dialogs is an exception to
the above observation, as in few cases the resulting
responses may also feature rotated fragments of the
respective dependency trees. An example of a dia-
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Figure 4: Error rates per MultiWOZ domain category
using the Word2Vec DA method and having 25% of
the training data available. The upper and lower figures
depict error rates when generating a single (x2) and four
(x5) synthetic dialogs per instance respectively.

log and its corresponding response per DA method
is depicted in Figure 17 of Appendix D. Moreover,
a comparison of the models’ outputs when generat-
ing a single and four synthetic dialogs per training
instance is depicted in Figure 18.

5 Advice to ToDS Practitioners

Based on our experiments, we provide the follow-
ing advice to ToDS practitioners. (1) Although DA
methods are currently not widely used in ToDS
(Section 6), they can lead to very substantial gains
when annotated training examples are scarce, even
when using pre-trained end-to-end models. How-
ever, data scarcity depends on the difficulty of the
task (e.g., whether the dialogues are single- or
multi-domain), it cannot be judged using a univer-
sal threshold of initial annotated training instances,
and is best assessed using performance scores. (2)
Although all DA methods considered led to sub-
stantial improvements, dialog-state DA methods
(at least the ones we considered) should be the last
choices, as they led to a smaller performance boost
and they also require dialog-specific annotations
(e.g., dialog states) that are difficult to obtain in
practice. (3) Among the other DA methods consid-

ered, the best overall performers were Word2Vec-
based word substitution (Section 2.1.1), rotating
parts of the dependency tree (Section 2.2.3), and
paraphrasing the utterances by invoking paraphras-
ing models or prompting LLMs (Sections 2.2.2,
2.2.4). We recommend using any of these methods,
provided that the resources they require are avail-
able; e.g., rotation requires a dependency parser for
the target language, prompting requires an LLM
supporting the target language and adds the cost of
invoking an LLM. (4) Generating more than two
synthetic instances per original one is worth con-
sidering only when the original annotated training
instances are very scarce (e.g., when using only 2%
of MultiWOZ’s multi-domain training set).

6 Related Work

DA has been applied to a wide range of tasks
from Computer Vision (Krizhevsky et al., 2017;
Engstrom et al., 2019) to Speech Processing (Ko
et al., 2015) and NLP (Kumar et al., 2019; Huang
et al., 2021; Wei and Zou, 2019; Kobayashi, 2018).

For NLP specifically, Pappas et al. (2022) carried
out one of the most extensive comparisons of DA
methods, in the context of biomedical QA, includ-
ing Word2Vec-based word replacement (but with-
out our semantics preserving test), LM-based word
replacement, and back-translation. Word2Vec-
based replacement was the most effective of the
three methods, with back-translation and LM-based
word replacement having similar performance.

Whitehouse et al. (2023) and Sahu et al. (2022)
prompt off-the-self LLMs to produce synthetic data
in cross-lingual commonsense reasoning and in-
tent classification, respectively. Mehri et al. (2022)
also leverage an LLM to produce synthetic data
for intent classification, slot filling, and next action
prediction in a zero-shot ToDS setting, showing im-
provements in performance. By contrast, Hudeček
and Dusek (2023) reported that relying on LLMs
to directly generate belief states and system actions
was not beneficial, compared to a fine-tuned model.

Zhang et al. (2020b) propose the MADA (Multi-
Action Data Augmentation) framework that we
modified in order to include both the system ac-
tions and responses as explained in Section 2.3.2.
Aksu et al. (2022) also capitalise on dialog states to
produce a tree of possible dialogs (Section 2.3.1).
Both of these approaches proved beneficial in our
work. Similar to the approach of Aksu et al. (2022),
Gritta et al. (2021) also capitalise on a graph struc-
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ture, linking dialog states across all dialogs. In
a similar spirit, Qiu et al. (2022) propose cluster-
ing dialog turns based on their dialog states. The
extracted cluster structure forms the base for an
augmentation approach similar to MADA.

Louvan and Magnini (2020, 2021), inspired by
Şahin and Steedman (2018), introduce an NLP ver-
sion of image cropping and rotation, based on per-
mutations of sentence fragments (Section 2.2.3).
To improve performance on out-of-scope (OOS)
dialog utterances (not represented in the training
set, e.g., pertaining to new domains), Chen and Yu
(2021) augment their training set by mixing OOS
utterances with the ones found in their training set.
Yin et al. (2020) use Reinforcement Learning to
find the optimal (in terms of context) text span
replacements (instead of word replacements).

Paraphrasing as a form of DA was also used
by Hou et al. (2018) and Gao et al. (2020) for
slot-tagging (subpart of DST) and RG; they im-
plemented their own paraphrasing model based
on RNNs. Similarly, Axman et al. (2023) train
a BART model (Lewis et al., 2020) for paraphras-
ing in an end-to-end ToD setting. Mi et al. (2021),
also employ DA in a ToDS setting, by substituting
masked tokens of the input using an LM (much
as in Section 2.1.1). Song et al. (2021) augment
their dataset by replacing slot-values with randomly
generated strings to simulate references to out-of-
vocabulary (OOV) words, a simple yet effective ap-
proach for models that learn to copy words from in-
put to output by incorporating the copy-mechanism
(Gu et al., 2016). Huang et al. (2022) randomly
change the letter order of slot-values to improve the
robustness of their ToDS. Improving robustness is
also the main goal of Li et al. (2021), who generate
turns with replaced slot-values not encountered in
the training set.

The closest previous work is that of Quan and
Xiong (2019). They experiment with four DA meth-
ods in an end-to-end ToDS setting, including stop-
word removal, paraphrasing, back-translation, syn-
onym substitution (and their combination). We
compare more (eight) DA methods, of three dif-
ferent types (word-level, sentence-level, dialog-
level), while Quan and Xiong consider fewer (four)
methods of the word-level and sentence-level types
only. Furthermore, we also experiment with a more
challenging dataset containing dialogs that may
belong (the same dialog) in multiple domains (Mul-
tiWOZ), whereas Quan and Xiong use the single-

domain Camrest676 (Wen et al., 2017), and (like
us) KVRET, which covers three domains, but each
dialog pertains to a single domain. Contrary to
the work of Quan and Xiong, we also experiment
with several sizes of initial annotated training set
(e.g., 2%, 10%, 25% in MultiWOZ) and different
expansions (x2, x3, x5), and we also introduce a
new few-shot cross domain setting (Section 3.1).

7 Conclusions and Future Work

We performed the largest to date (in terms
of methods and types) empirical comparison
of DA methods in the context of end-to-end
ToDSs, using two pre-trained Transformer ToDSs
(UBAR, GALAXY) and two datasets (MultiWOZ,
KVRET). We varied both the size of the initial
annotated training set (e.g., 2%, 10%, 25% of Mul-
tiWOZ’s training set) and the expansion factor (gen-
erating one, two, or four synthetic instances from
each original one). We also introduced a new, more
challenging few-shot cross-domain evaluation set-
ting. We showed that substantial performance gains
can be obtained with DA methods, even when us-
ing pre-trained end-to-end models, and we offered
concrete advice to ToDS practitioners regarding
when to use DA, which DA methods to prefer, and
with which expansion factors (Section 5).

In future work, we plan to explore combinations
of DA methods, to check if the synthetic training
instances they produce are complementary. We
also plan to investigate how well DA methods per-
form in low-resource languages (e.g., languages for
which LLMs or reliable dependency parsers may
not be available). Finally, we aim to measure the
costs (computational, monetary) of DA methods.

8 Limitations

A major limitation of our work is based on the
nature of the datasets. Most of our DA methods
rely on dialog annotations to ensure that they pre-
serve the original semantics of the dialogs (Subsec-
tion 2.1.1) or to directly generate synthetic dialogs
(Subsection 2.3.1). Many ToD datasets lack such
detailed annotation, as is the case with the second
track of DSTC 11 (Soltau et al., 2023).10 In real
world scenarios such annotations are even harder
to come by, even though there is a plethora of struc-
tured dialogs covering a wide range of topics. In

10The dataset can be found at https://github.com/
amazon-science/dstc11-track2-intent-induction.
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such cases, DA approaches that rely on the anno-
tations of dialogs are not guaranteed to perform
as well or at all on their own, compared to the
experiments presented.

Another limitation of our work is the lack of de-
tailed tuning/finetuning, in favour of a wider range
of DA methods. Taking LLM-based paraphrasing
as an example (Subsection 2.2.4), although we do
experiment (up to a point) with different prompts
during preliminary testing, a more detailed prompt
tuning may have led to better results. In the same
manner, for the case of PEGASUS paraphrasing
(Subsection 2.2.2) or RoBERTa-based word substi-
tution (Subsection 2.1.2), further specialised pre-
training on other similar ToD datasets could have
led to improved performance as shown by Wu et al.
(2020). Similarly we avoid tuning the hyperparame-
ters (e.g., learning rate, context window etc.) of the
models used (UBAR and GALAXY). After all, the
purpose of our work was not to achieve SOTA per-
formance, but to compare DA methods and show
their benefits under a common task (end-to-end).

Finally, we only take into account DA methods
that can be applied regardless of the ToDS used.
ToDSs such as the ones proposed by Gao et al.
(2020) and Zhang et al. (2020b) consider online
DA methods, that were not covered in our work.
We recognise the advantages of such methods but
opt not to include them as they are ToDS specific
(they are build around a specific ToDS). Instead
we experiment with offline DA methods that are
architecture-free and have proven beneficial in ToD
and NLP in general.

9 Ethical considerations

Implementing the DA methods and training the
ToDS proposed in the settings mentioned in Sec-
tion 3, requires a lot of GPU processing (excluding
dialog-level DA and fragment rotation). Leaving
aside the cost that comes as a result of the methods’
execution, such GPU usage also has environmental
impact in the form of CO2 emissions. We hope
to alleviate this effect by offering advice to ToDS
practitioners (Section 5) and guiding them in choos-
ing the best fit (in terms of DA methods) for their
task, in order to avoid such costly experimentation
in the future.
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Appendix

A LLM prompting

We initially construct a simplistic template prompt,
without giving any in-context example paraphrases,
that has the following form : "Paraphrase the fol-
lowing sentence twice. Maintain as much infor-
mation as possible intact. The sentence to para-
phrase is : {} ". The "{}" symbol denotes the
placeholder for the utterance (not delexicalised) to
be paraphrased. More elaborate templates were
also tested (e.g. providing the LLM with the dia-
log history), such as "Your job is to augment the
given utterance from a dialog between a user and
an assistant. You will be given the dialog history
as context. The user’s utterances start with USER
:, while the assistant’s utterances with ASSISTANT
:. Here is the dialog up to this point : {1} . Para-
phrase the following sentence twice. Maintain as
much information as possible intact. The sentence
to paraphrase is : {2}", where "{1}" and "{2}"
denote the placeholders for the dialog history and
current utterance respectively. During preliminary
testing such templates did not provide a significant
improvement, and as a result we opted for the more
cost-efficient approach.

B More Detailed Results

In this section we present the detailed results of
all the experiments conducted, including the addi-
tional metrics that accompany each dataset. For
MultiWOZ, we include the Inform and Success
score along with BLEU score, as explained in Sub-
sections 3.1. Similarly for the case of KVRET the
Match, Success F1 and BLEU scores are reported.
For each case, we first present the performance on
the initial experiments where we select the 3 best
performing DA methods followed by the results of
these there methods in various other settings. From
the results, we observe that the additional metrics
reported tend to follow the trends of the main met-
ric (Score), especially BLEU and Success.
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DA type DA Method Inform Success BLEU Score

No DA
Full training set 95.40 80.70 17.00 105.1
10% training set 76.37 53.73 10.83 75.88

Word-level
Word2Vec replace 83.57 61.70 12.06 84.69
RoBERTa replace 81.57 55.70 11.48 80.11

Sentence-level

back-translation (FR) 80.97 58.83 11.41 81.31
PEGASUS paraphrase 83.33 60.87 11.06 83.16
Fragment rotation 83.17 61.37 12.33 84.59
LLM paraphrase 78.87 58.70 12.70 81.48

Dialog-level
Dialog Tree 78.83 57.23 11.90 79.94
Act-Response substitution 79.33 58.90 11.66 80.78

Table 3: MultiWOZ metrics, for all 8 DA methods, using 10% of the original training dialogs, producing a single
synthetic dialog from each original one (x2).

DA Method Inform Success BLEU Score
10% training set 76.37 53.73 10.83 75.88
Word2Vec replace 83.60 58.33 11.42 82.39
PEGASUS paraphrase 82.37 58.83 10.50 81.10
Fragment rotation 80.87 58.93 11.52 81.42

Table 4: MultiWOZ metrics, for the top 3 DA methods, using 10% of the original training dialogs, producing
two synthetic dialogs from each original one (x3).

DA Method Inform Success BLEU Score
10% training set 76.37 53.73 10.83 75.88
Word2Vec replace 83.67 54.67 10.45 79.62
PEGASUS paraphrase 82.93 58.07 9.73 80.23
Fragment rotation 81.73 57.47 10.10 79.70

Table 5: MultiWOZ metrics, for the top 3 DA methods, using 10% of the original training dialogs, producing
four synthetic dialogs from each original one (x5).

DA Method Inform Success BLEU Score
25% training set 88.00 69.73 13.65 92.52
Word2Vec replace 89.42 70.40 13.51 93.41
PEGASUS paraphrase 88.90 69.27 13.08 92.17
Fragment rotation 87.57 69.93 13.91 92.66

Table 6: MultiWOZ metrics, for the top 3 DA methods, using 25% of the original training dialogs, producing a
single synthetic dialog from each original one (x2).

DA Method Inform Success BLEU Score
25% training set 88.00 69.73 13.65 92.52
Word2Vec replace 89.77 70.33 13.13 93.18
PEGASUS paraphrase 89.00 71.03 12.37 92.38
Fragment rotation 88.17 69.60 13.18 92.06

Table 7: MultiWOZ metrics, for the top 3 DA methods, using 25% of the original training dialogs, producing
two synthetic dialogs from each original one (x3).
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DA Method Inform Success BLEU Score
25% training set 88.00 69.73 13.65 92.52
Word2Vec replace 88.73 66.97 12.78 90.63
PEGASUS paraphrase 88.20 66.13 10.92 88.08
Fragment rotation 88.37 67.63 11.67 89.67

Table 8: MultiWOZ metrics, for the top 3 DA methods, using 25% of the original training dialogs, producing
four synthetic dialogs from each original one (x5).

DA Method Inform Success BLEU Score
2% training set 37.20 15.60 5.62 32.02
Word2Vec replace 57.87 7.13 1.95 34.45
PEGASUS paraphrase 73.33 14.20 2.82 46.59
Fragment rotation 62.40 12.10 3.23 40.53

Table 9: MultiWOZ metrics, for the top 3 DA methods, using 2% of the original training dialogs, producing a
single synthetic dialog from each original one (x2).

DA Method Inform Success BLEU Score
2% training set 37.20 15.60 5.62 32.02
Word2Vec replace 73.93 29.93 6.27 58.20
PEGASUS paraphrase 73.50 34.50 7.13 61.13
Fragment rotation 70.37 32.43 7.14 58.54

Table 10: MultiWOZ metrics, for the top 3 DA methods, using 2% of the original training dialogs, producing
two synthetic dialogs from each original one (x3).

DA Method Inform Success BLEU Score
2% training set 37.20 15.60 5.62 32.02
Word2Vec replace 75.17 37.03 7.38 63.48
PEGASUS paraphrase 75.50 41.70 7.60 66.20
Fragment rotation 71.83 39.03 7.25 62.68

Table 11: MultiWOZ metrics, for the top 3 DA methods, using 2% of the original training dialogs, producing
four synthetic dialogs from each original one (x5).

DA Method Inform Success BLEU Score
10% training set 28.37 13.72 8.61 29.65
Word2Vec replace 33.16 17.17 8.63 33.80
PEGASUS paraphrase 38.30 19.53 8.64 37.56
Fragment rotation 33.25 17.93 8.90 34.49

Table 12: MultiWOZ metrics, for the top 3 DA methods, using 10% of the original training dialogs, producing
four synthetic dialogs from each original one (x5) and leaving out the attraction domain.

DA Method Inform Success BLEU Score
10% training set 32.15 17.43 7.62 32.41
Word2Vec replace 36.21 22.17 7.77 36.95
PEGASUS paraphrase 40.69 26.06 7.97 41.35
Fragment rotation 37.06 24.62 8.26 39.10

Table 13: MultiWOZ metrics, for the top 3 DA methods, using 10% of the original training dialogs, producing
four synthetic dialogs from each original one (x5) and leaving out the hotel domain.
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DA Method Inform Success BLEU Score
10% training set 28.37 13.65 7.17 28.19
Word2Vec replace 33.41 16.55 7.78 32.76
PEGASUS paraphrase 34.55 19.60 8.51 35.59
Fragment rotation 37.61 22.20 8.55 38.45

Table 14: MultiWOZ metrics, for the top 3 DA methods, using 10% of the original training dialogs, producing
four synthetic dialogs from each original one (x5) and leaving out the restaurant domain.

DA Type DA Method Match Success F1 BLEU Score

No DA
Full training set 81.58 81.67 20.86 102.48
5% training set 58.68 64.99 11.44 73.27

Word-level
Word2Vec replace 61.75 73.62 13.76 81.44
RoBERTa replace 61.05 73.75 13.27 80.67

Sentence-level

back-translation (FR) 60.00 72.39 11.64 77.83
PEGASUS paraphrase 56.49 69.81 12.63 75.78
Fragment rotation 64.04 73.71 13.89 82.76
LLM paraphrase 64.74 72.57 13.39 82.04

Table 15: KVRET metrics, for all 6 DA methods, using 5% of the original training dialogs, producing a single
synthetic dialog from each original one (x2).

DA Method Match Success F1 BLEU Score
5% training set 58.68 64.99 11.44 73.27
Word2Vec replace 54.74 75.41 12.83 77.91
Fragment rotation 56.05 74.98 11.93 77.44
LLM paraphrase 57.89 71.87 10.82 75.70

Table 16: KVRET metrics, for the top 3 DA methods, using 5% of the original training dialogs, producing two
synthetic dialogs from each original one (x3).

DA Method Match Success F1 BLEU Score
5% training set 58.68 64.99 11.44 73.27
Word2Vec replace 56.05 74.25 9.58 74.73
Fragment rotation 57.11 67.00 10.37 72.42
LLM paraphrase 53.16 74.10 11.35 74.97

Table 17: KVRET metrics, for the top 3 DA methods, using 5% of the original training dialogs, producing four
synthetic dialogs from each original one (x5).

DA Method Match Success F1 BLEU Score
10% training set 74.21 76.69 16.70 92.16
Word2Vec replace 68.42 79.00 15.84 89.55
Fragment rotation 73.94 78.28 15.40 91.51
LLM paraphrase 74.47 77.42 15.96 91.91

Table 18: KVRET metrics, for the top 3 DA methods, using 10% of the original training dialogs, producing a
single synthetic dialog from each original one (x2).

7232



DA Method Match Success F1 BLEU Score
10% training set 74.21 76.69 16.70 92.16
Word2Vec replace 71.84 76.10 13.66 87.63
Fragment rotation 72.90 77.93 13.82 89.22
LLM paraphrase 73.94 79.48 13.81 90.53

Table 19: KVRET metrics, for the top 3 DA methods, using 10% of the original training dialogs, producing two
synthetic dialogs from each original one (x3).

DA Method Match Success F1 BLEU Score
10% training set 74.21 76.69 16.70 92.16
Word2Vec replace 69.73 77.16 13.37 86.81
Fragment rotation 71.58 77.17 13.79 88.16
LLM paraphrase 72.10 75.20 11.41 85.06

Table 20: KVRET metrics, for the top 3 DA methods, using 10% of the original training dialogs, producing four
synthetic dialogs from each original one (x5).

DA Method Match Success F1 BLEU Score
25% training set 78.94 80.25 18.79 98.38
Word2Vec replace 78.95 79.61 18.32 97.61
Fragment rotation 77.11 78.16 18.09 95.72
LLM paraphrase 80.00 80.38 16.54 96.72

Table 21: KVRET metrics, for the top 3 DA methods, using 25% of the original training dialogs, producing a
single synthetic dialog from each original one (x2).

DA Method Match Success F1 BLEU Score
25% training set 78.94 80.25 18.79 98.38
Word2Vec replace 76.31 80.63 17.75 96.22
Fragment rotation 78.42 79.77 16.95 96.04
LLM paraphrase 78.69 78.94 16.34 95.15

Table 22: KVRET metrics, for the top 3 DA methods, using 25% of the original training dialogs, producing two
synthetic dialogs from each original one (x3).

DA Method Match Success F1 BLEU Score
25% training set 78.94 80.25 18.79 98.38
Word2Vec replace 75.53 78.14 14.91 91.75
Fragment rotation 76.58 78.68 15.19 92.81
LLM paraphrase 80.53 79.22 13.84 93.72

Table 23: KVRET metrics, for the top 3 DA methods, using 25% of the original training dialogs, producing four
synthetic dialogs from each original one (x5).
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C Additional error comparisons

Figure 5: Error rates per MultiWOZ domain category
using the PEGASUS DA method and having 25% of
the training data available. The upper and lower figure
depict error rates when generating a single (x2) and four
(x5) synthetic dialogs per instance respectively.

Figure 6: Error rates per MultiWOZ domain category
using the fragment rotation DA method and having 25%
of the training data available. The upper and lower
figure depict error rates when generating a single (x2)
and four (x5) synthetic dialogs per instance respectively.

We follow the same procedure of Section 4.3
for the cases of PEGASUS and fragment rotation.
Once again, we count the number of unsuccess-
ful dialogs Success = 0 (i.e. the ToDS did not
provide all the requested information or a valid rec-
ommendation), and divide by the number of dialogs
belonging to each category, for the case where 25%
of the training dialogs of MultiWOZ was used. We
focus on Success as it features greater variance
compared to BLEU and Inform, which generally re-
mains unaffected. As was the case with Word2Vec,
DA using PEGASUS or fragment rotation to gener-
ate more that one synthetic dialog reduces the over-
all Success. Interestingly there are a few instances
where using multiple synthetic dialogs managed to
increase the performance on specific, stand-alone
domain categories such as “tx, ho, re” for PEGA-
SUS and “at, tr” for fragment rotation, but such
results may vary from case to case.

D Examples of synthetic and generated
dialogs

In this section we present an example (Fig. 7)
of the template matching performed by the dia-
log tree DA method (Subsection 2.3.1). In this
case the Cds of the first turn of pmul3825 matches
the Pds of mul0665’s second turn. Similarly,
pmul3825’s Nds matches mul0665’s Cds, thus
setting mul0665’s turn as the continuation of
pmul3825. Repeating the process until reaching a
“Leaf” node (turn), creates a new synthetic dialog.

Figures 9-16 depict a single delexicalised dialog
(woz20572) after applying each of the DA meth-
ods, for the case of MultiWOZ. An example of the
same dialog, that UBAR is trained on, without any
DA is depicted in Figure 8.

Figure 7: Two templates (from MultiWOZ dialogs
pmul3825 and mul0665) are linked as they satisfy the
dialog state conditions (shown in green and purple).
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Figure 8: Dialog woz20572 of MultiWOZ, as used by Yang et al. (2021) for training UBAR, without any DA
applied.

Figure 9: A synthetic dialog derived from woz20572 of MultiWOZ after applying our word substitution process
via Word2Vec.
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Figure 10: A synthetic dialog derived from woz20572 of MultiWOZ after applying our word substitution process
using RoBERTa.

Figure 11: A synthetic dialog derived from woz20572 of MultiWOZ after applying back-translation.

Figure 12: A synthetic dialog derived from woz20572 of MultiWOZ after paraphrasing using PEGASUS.
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Figure 13: A synthetic dialog derived from woz20572 of MultiWOZ after applying fragment rotation.

Figure 14: A synthetic dialog derived from woz20572 of MultiWOZ after paraphrasing using the GPT-3.5-turbo
LLM.

Figure 15: A synthetic dialog derived from woz20572 of MultiWOZ after applying our modified MADA approach.
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Figure 16: A synthetic dialog derived from the combination of woz20572 and pmul4652 of MultiWOZ using the
dialog tree approach.
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Figure 17: Dialog sng01386 of MultiWOZ along with the generated responses using all the DA methods described.
The models where trained using 10% of the training data and the augmentation level is x2. “GT” stands for ground
truth while “BT” for back-translation.
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Figure 18: Dialog sng01386 of MultiWOZ along with the generated responses using the 3 best performing DA
methods and 10% of the available training dialogs. The figure depicts 2 responses per model (for x2 and x5 the
amount of training data). “GT” stands for ground truth.
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