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Abstract

Temporal knowledge graph question answer-
ing (TKGQA) poses a significant challenge
task, due to the temporal constraints hidden
in questions and the answers sought from dy-
namic structured knowledge. Although large
language models (LLMs) have made consid-
erable progress in their reasoning ability over
structured data, their application to the TKGQA
task is a relatively unexplored area. This pa-
per first proposes a novel generative temporal
knowledge graph question answering frame-
work, GenTKGQA, which guides LLMs to an-
swer temporal questions through two phases:
Subgraph Retrieval and Answer Generation.
First, we exploit LLM’s intrinsic knowledge to
mine temporal constraints and structural links
in the questions without extra training, thus
narrowing down the subgraph search space in
both temporal and structural dimensions. Next,
we design virtual knowledge indicators to fuse
the graph neural network signals of the sub-
graph and the text representations of the LLM
in a non-shallow way, which helps the open-
source LLM deeply understand the temporal
order and structural dependencies among the
retrieved facts through instruction tuning. Ex-
perimental results on two widely used datasets
demonstrate the superiority of our model.

1 Introduction

Real-world knowledge is frequently updated rather
than static (Erxleben et al., 2014; Boschee et al.,
2015), e.g., (Obama, hold_position, President) is
merely valid only for a certain period [2009, 2016].
Hence, the temporal knowledge graph (TKG) is
proposed as a database for storing dynamic struc-
tured facts associated with timestamps, denoted as
(subject, relation, object, timestamp). Temporal
knowledge graph question answering (TKGQA)
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Q1: When Daniele Amerini played in Modena F.C.?

Facts: [Daniele Amerini, member of sports team, Modena F.C., 2005, 2006]                        
[Daniele Amerini, member of sports team, Modena F.C., 2008, 2009]

I'm sorry, but I don't have any information.  

Q1: When Daniele Amerini played in Modena F.C.?

Q2: When Mark Burke was playing his final game?

Facts: [Mark Burke, member of sports team, Luton Town F.C., 1994, 1994]
[Mark Burke, member of sports team, Port Vale F.C., 1994, 1995] 
[Mark Burke, member of sports team, Wanderers F.C., 1991, 1994]

Mark Burke played his final game for Luton Town F.C. in 1994. 

1995.

Daniele Amerini played for Modena F.C. in 
2005, 2006, 2008, and 2009.  

GenT
KGQA

Simple Question

Complex Question

Figure 1: Examples of the responses of LLM and Gen-
TKGQA to the simple and complex temporal questions.

aims to answer a natural question with explicit or
implicit temporal constraints based on the TKG,
e.g., "Who held the position of president (in 2017)
or (after Obama)?". Due to the temporal con-
straints hidden in questions and the answers sought
from dynamic structured knowledge, TKGQA is
one of the most challenging QA tasks.

Recently, large language models (LLMs) have
shown strong competitiveness in various fields (Fei
et al., 2023; Ye et al., 2023). Some researchers
explore the reasoning capability of LLMs for struc-
tured knowledge based on KGQA tasks (Baek et al.,
2023; Kim et al., 2023), and some works exam-
ine the temporal reasoning capabilities of LLMs
through time-sensitive QA tasks (Chen et al., 2021;
Tan et al., 2023). Intuitively, LLMs have the abil-
ity to deal with temporal structured knowledge.
Based on the above findings, we attempt to utilize
LLMs for the TKGQA task and summarize the
following two challenges: 1) Question-relevant
Subgraph Retrieval. A common practice to en-
hance the LLM’s domain-specific reasoning ca-
pability is to input query-relevant information as
additional knowledge into the LLMs (Hu et al.,
2023). As shown in Figure 1, ChatGPT 1 can-
not answer temporal questions directly, but it can

1https://openai.com/blog/chatgpt
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answer simple questions when the relevant facts
are provided. However, finding facts relevant to
the problem is a struggle due to the large search
space with both structural and temporal dimensions.
For example, for the complex temporal question
"Who held the position of president after Obama?",
the structural link hold position between the en-
tities and the temporal constraints after 2016 in
the problem are unknown, so directly finding all
relevant facts about the given entities Obama and
President is bound to introduce too much noise
information. How to accurately retrieve relevant
facts from a two-dimensional space is the first chal-
lenge. 2) Complex-type Question Reasoning. Re-
cent works about LLM-based KG reasoning mostly
input structured knowledge in the natural text form
into the task prompt and reason about the answers
in a training-free manner (Yang et al., 2024). How-
ever, these approaches fuse subgraph information
with the LLM in a shallow way, which limits the
inference performance on the complex question
type. As illustrated in Figure 1, ChatGPT cannot
understand the chronological order of the relevant
facts and answers incorrectly on the complex ques-
tion type "final". How subgraph information can
be integrated into LLM representations in a non-
superficial way to simulate structured reasoning
remains an open question.

Hence, we propose GenTKGQA, a novel genera-
tive temporal knowledge graph question answering
framework consisting of two phases, subgraph re-
trieval and answer generation, which is used to
address the above two challenges, respectively. At
the first phase, we find that the structural and tem-
poral scope of the subgraph is determined by the
relation links and the temporal constraints in the
question, respectively. Therefore, we use a divide-
and-conquer strategy to reduce the subgraph search
space by decomposing the complex subgraph re-
trieval problem into two subtasks, namely, relation
ranking and time mining. Then, we utilize the
LLM’s internal knowledge to mine structural con-
nections between entities and time constraints in
the problem without extra training. We only need
to input few-shot examples into the prompt to ac-
complish subgraph retrieval of the entire data. At
the second phase, we fine-tune the open-source
LLM with instruction tuning to incorporate struc-
tural and temporal information of the subgraph in a
non-shallow way. Recent works illustrate that fus-
ing graph neural network (GNN) representations
and language text representations can enhance the

ability of LMs to perceive graph structure (Zhang
et al., 2022b). Thus, we design three novel virtual
knowledge indicators to bridge the links between
pre-trained GNN signals of the temporal subgraph
and text representations of the LLM, which guides
the LLMs in deeply understanding the graph struc-
ture and improves their reasoning ability for com-
plex temporal questions. Overall, our contribution
can be summarized in the following four points:

1) We present a novel two-stage generative
framework for the TKGQA task, which explores
LLM’s temporal reasoning capabilities in the con-
text of dynamic structured knowledge.

2) We motivate the LLM’s intrinsic knowledge
to mine the temporal constraints and structural con-
nections in the questions without extra training,
which reduces the subgraph search space from both
structural and temporal dimensions.

3) We design virtual knowledge indicators to
fuse the GNN signals and text representations in
a non-shallow way, which helps the open-source
LLMs improve their reasoning on the complex
question type through instruction tuning.

4) Experiment results on two widely used
datasets show that GenTKGQA as a genera-
tive model performs consistently better than
embedding-based methods on the Hits@1 metric.

2 Related Work

2.1 TKGQA Methods

Temporal knowledge graph question answering
(TKGQA) task aims to answer complex questions
in the natural language format using entities and
timestamps from the given TKG (Jia et al., 2018,
2021; Chen et al., 2023b). Existing mainstream
methods employ TKG embeddings to represent
the entities, relations and timestamps, and use the
scoring function to select the entity or time with
the highest relevance as the answer (Saxena et al.,
2021). However, single embedding methods have
difficulty handling complex reasoning problems
with implicit time constraints. Therefore, recent
methods try to incorporate other modules to im-
prove the model performance on complex problems.
Specifically, TSQA (Shang et al., 2022) proposes a
contrastive approach to enhance the model’s time
sensitivity. TempoQR (Mavromatis et al., 2022)
designs three modules, namely context, entity and
time-aware information, to enhance the incorpo-
ration of the TKG into questions. Besides, some
approaches propose to solve the TKGQA task with
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problem-relevant subgraph reasoning (Chen et al.,
2022; Liu et al., 2023b; Sharma et al., 2023). De-
spite the effectiveness of these approaches, few
studies have explored how LLMs can address the
TKGQA task.

2.2 LMs for Temporal Question Answering
Language models (LMs) have exhibited strong per-
formance on the question answering task (Raffel
et al., 2020). In recent years, some researchers
have explored the temporal reasoning capabilities
of LMs and propose several typical time-sensitive
QA datasets. They focus on temporal question
answering either within a closed-book setting to
assess models’ internal memorization of temporal
facts (Liska et al., 2022; Dhingra et al., 2022), or
within an open-book setting to evaluate models’
temporal understanding and reasoning capability
over unstructured texts (Zhang and Choi, 2021;
Chen et al., 2021; Tan et al., 2023). In the context
of the latter setting, some works propose to use
the graph structure extracted from text to assist the
model in determining the temporal order between
events (Mathur et al., 2022; Su et al., 2023; Yang
et al., 2023; Xiong et al., 2024), which is similar
but fundamentally different from our work. These
approaches aim to answer temporal questions based
on the known natural text context. In contrast, our
model focuses on structured temporal knowledge
as auxiliary information that needs to be retrieved
by the model.

2.3 LMs for KG Question Answering
How to combine LMs and KG for question answer-
ing has become a hot issue. Some works attempt to
enhance question representation and relation match-
ing with PLMs in the multi-hop KGQA task (Sax-
ena et al., 2020; Zhang et al., 2022a; Jiang et al.,
2023b), but there is no interaction between the LM
and KG representations. Other works try to use
one modality to ground the other, i.e., using the
encoded representation of a linked KG to augment
the text representation (Lin et al., 2019; Yang et al.,
2019), or using the text representation of the PLM
to enhance the graph reasoning model (Feng et al.,
2020a). The most recent approaches enable deep
integration of the two modalities by jointly updat-
ing the GNN and LM representations (Yasunaga
et al., 2021; Zhang et al., 2022b).

However, the emergence of large language mod-
els (LLMs) has changed how LMs handle the
KGQA task, which is divided into two main ap-

proaches: training-free and fine-tuning (Yang et al.,
2024). Recent works attempt to append query-
relevant facts as the input prompt for LLMs and
make inferences without extra training (Baek et al.,
2023; Wu et al., 2023; Jiang et al., 2023a; Kim et al.,
2023; Li et al., 2024). Fine-tuning the full param-
eters of the LLM can be cost-prohibitive. Hence,
KPE (Zhao et al., 2023) enables knowledge integra-
tion by freezing PLM parameters and introducing
trainable parameter adapters. ChatKBQA (Luo
et al., 2023) employs the LoRA (Hu et al., 2022)
technique to fine-tune open-source LLMs, achiev-
ing the logical query form generation. Besides,
KoPA (Zhang et al., 2023) incorporates the KG
embeddings into the LLMs with a prefix adapter,
aiming to achieve structrual-aware reasoning in the
LLMs. Applying LLMs to the temporal KGQA
task remains an unexplored area.

3 Preliminaries

TKGQA. A temporal knowledge graph (TKG)
G := (E ,R, T ,F) is a multi-relational, directed
graph with timestamped edges between entities,
where E , R and T represent the sets of entities, rela-
tions and timestamps, respectively. Each fact in the
G can be represented as a quadruple (s, r, o, t) ∈ F ,
corresponding to entity s/o ∈ E , relation type
r ∈ R and timestamp t ∈ T . Given a natural
language question q, TKGQA aims to extract enti-
ties s/o or timestamps t that correctly answer the
question q.

ICL and IT. Applying LLM to the TKGQA task,
the goal is to generate the answer A based on the
input text sequence S and the LLM M. S con-
sists of several parts: the instruction prompt I,
the task-specific input prompt Q, and the auxil-
iary demonstration prompt D. In-context Learning
(ICL) method is an efficient approach to employ
LLMs to solve downstream tasks without extra
training, the input sequence of ICL can be denoted
as S = I : D : Q, where : means to concatenate
the different prompts. Meanwhile instruction tun-
ing (IT) aims to fine-tune LLMs to follow human
instructions and accomplish the distinct tasks in the
instruction prompt, the input sequence of IT can be
denoted as S = I : Q : A.

4 Method

We apply the LLMs processing TKGQA task in
a two-phase process, i.e., an ICL-based subgraph
retrieval phase and an IT-based answer generation
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phase. At the first stage, we utilize internal knowl-
edge of LLM for unlabeled subgraph retrieval. At
the second stage, we incorporate external knowl-
edge for structure-aware temporal inference.

4.1 Subgraph Retrieval

We split the complex subgraph retrieval problem
into a relation ranking subtask in the structural di-
mension and a time mining subtask in the temporal
dimension. With such a strategy, we only need to
provide a small number of samples to complete the
subgraph retrieval.

4.1.1 Relation Ranking
We aim to determine the structural scope of the
subgraph Gsub,i by retrieving the corresponding
relations from the candidate relation set Ri for each
question qi. Recent work has shown that LLMs can
better handle the information extraction task as re-
ranking agents (Sun et al., 2023). Therefore, we
feed the question qi and the candidate set Ri to the
LLM to obtain the top k relations Ri,k relevant to
the question. Relations in Ri are linearized, i.e.,
[employer, member_of_sports_team, ..., ]), and the
retrievd relations can bridge the entities identified
within the questions. The specific relation ranking
prompt is shown in Appendix C.

4.1.2 Time Mining
We find that natural questions contain temporal
constraints, either explicit or implicit, and we can
easily determine the range of relevant facts in the
temporal dimension by using explicit temporal con-
straints such as "in 2008", "at the year of 2012",
etc. How to capture implicit temporal constraints
is the key to improving the efficiency of search-
ing for relevant facts. For example, for the com-
plex temporal question "Who held the position
of president after Obama?", the implicit tempo-
ral restriction is known to be (after 2016) based
on the temporal validity (2009, 2016) of the fact
(Obama, hold_position, President). We design spe-
cific prompt templates based on different answer
types as well as consider the temporal validity of
the facts in the questions (given entities and re-
lations matched in the Section 4.1.1) to get the
temporal constraints. The details of the templates
are shown in Appendix C.

Through the above process, we narrow down the
search space of subgraphs and use relevant facts
under structural and temporal constraints as addi-
tional knowledge to assist the LLM inference.

4.2 Answer Generation

In this section, we will discuss how to incorporate
the knowledge retrieved in the previous section 4.1
into the LLM. Previous fundamental approaches
to incorporate KG structural information focus on
adding the knowledge to the input prompt in the
text form, i.e., (subject, relation, object). How-
ever, incorporating query-relevant facts into LLMs
in text form is not a good choice. Because such
shallow interactions do not enable the model to
understand the structural dependencies and tempo-
ral order between facts, leading to weak temporal
reasoning in the complex problem type.

Recent works show that language models can en-
hance their ability to perceive graph structures by
incorporating knowledge representations expressed
by graph neural networks (GNN) (Zhang et al.,
2022b). Inspired by this, we first extract the struc-
tural and temporal information of entities and rela-
tions with pre-trained temporal GNN embeddings.
Then, we bridge the links between GNN and text
representations through pre-designed virtual knowl-
edge indicators. At last, we fine-tune the open-
source LLM to deeply understand the temporal
order and structural dependencies of the retrieved
query-relevant facts.

4.2.1 Temporal GNN

Given the retrieved temporal subgraph Gsub,z of
question qz , we first initialise entity, relation and
time representations in Gsub,z using the TKG em-
bedding method (Lacroix et al., 2020). Then, to
fully explore the structural information among en-
tities and relations of the temporal subgraph, we
propose a temporal graph neural network (T-GNN),
which is a variant of graph attention networks
(Velickovic et al., 2018). The important distinction
between them is that T-GNN captures the correla-
tion scores of neighbouring nodes by incorporating
temporal embeddings. Therefore, T-GNN com-
putes message mij between entities ei and ej as
follows:

mij = Wm(e
(l−1)
i + rij + tij), (1)

where e(l−1)
i is the entity representation of ei at the

l-1 layer, rij and tij are the embeddings of the re-
lation and timestamp connecting ei and ej . Wm is
a linear transformation. Next, the node representa-
tion e

(l)
j is calculated via message passing between
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Stage 1: Subgraph Retrieval Stage 2: Answer Generation

(World War II, 
Occurrence, Time, 
1939, 1945)

Time 
Mining

Relation 
Ranking

Instruction:
Answer the questions based on evidence ...
Question: Who was the first president of ...
Relevant Facts:  (Harry S. Truman, President, ...)

Large Language Model

...
[ Instruct token ][ Virtual Knowledge Indicators ]

[ SUB ] [ REL ] [ OBJ ] [ Token1] [ Tokenm]

T-GNN Layer

Instruction Template

Pre-trained Embedding  
Layer

Adapter  Layer

Local

h[SUB] h[REL] h[OBJ] h1 hm...
Question

Temporal 
constraints

after 1945

   Top k 
relations

President

 (Richard Milhous Nixon, President, the United States, 1969, 1974)
 (Harry S. Truman, President, the United States, 1945, 1953)

Relevant Facts

TKG

t1

t3

t2

Harry S. Truman
Response

 Frozen
 Tuned

Large Language Model

Who was the first president of the 
United States after World War II?

Relation 
Candidates

Figure 2: The overall architecture of our proposed GenTKGQA can be divided into two stages, subgraph retrieval
and answer generation. Given a temporal question, we mark the entities provided, the implied time constraints and
the links between the entities with underline, blue font and orange font, respectively.

neighbors on the Gsub,z:

e
(l)
j =

∑

i∈Nj

αijmij , (2)

here Nj represents the neighbor entities of the arbi-
trary node ej , and αij denotes the attention values
with e

(l−1)
i as query and mij as key:

αij =
exp (uij)∑

w∈Nj
exp (uwj)

, (3)

uij = fn((Wqe
(l−1)
i )⊤ (Wkmij)), (4)

Wq,Wk are linear transformations, fn is the
RELU activation function. Through the above pro-
cess, we obtain the entity representation ej with
subgraph structural and temporal information. Fol-
lowing embedding-based TKGQA methods, we
use the link prediction task to pre-train the graph
neural network representations. Specifically, for
each fact (s, r, o, t) in the TKG, we generate a
query (s, r, [mask], t) or ([mask], r, o, t) by mask-
ing the object or subject entity. Then, we obtain the
mask embedding e

(l)
[mask] through Eq.(2), and feed

it into the multi-layer perceptron (MLP) decoder
to maximize the probability of the missing entity o
and s through the cross-entropy loss function:

p (e) = Softmax(e(l)[mask]w + b), (5)

L = −
∑

(s,r,o,t)∈G
log p(ot) + log p(st). (6)

4.2.2 Virtual Knowledge Indicators
We design three knowledge indicators to link graph
signals and input prompt text, namely [SUB],
[REL] and [OBJ], correspond to the virtual tokens
of the head entities, relations and tail entities in
the subgraph, respectively. We then try to incorpo-
rate structural and temporal information from the
subgraph into the indicator representations. Specifi-
cally, we use the Local operator to get the structure
representations hs of entities and relationships in
the subgraph, respectively:

hs
[SUB] = Local(e[SUB]), (7)

here e[SUB] represents pre-trained T-GNN embed-
dings of all subject entities in the subgraph, Local
indicates the max or mean pooling operator. Be-
sides, we leverage the time embeddings to enhance
the indicator representations with temporal infor-
mation.

hst
[SUB] = hs

[SUB] + tmin + tmax, (8)

where tmin and tmax denote the embeddings for
the minimum and maximum values of time in the
subgraph, respectively. The intuition follows BERT
that use position embeddings for tokens (Devlin
et al., 2019). Here, time embeddings can be seen as
entity positions in the time dimension. The relation
and object indicators are the same as subject. At
last, we employ a simple linear layer Wp to project
them into the textual representation space of the
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LLM. The final input prompt sequence S = V :
I : Q : A, V represent virtual indicator tokens.
Details of the instruction template can be found in
the Appendix C. The optimization objective of the
LLM M can be formulated as:

A = argmax
A

PM (A | V, I,Q,A) . (9)

5 Experiments

We design experiments to answer the following
questions:

Q1.How does GenTKGQA perform on the TKG
question answering task? (Section 5.2)

Q2.How do the two stages contribute to the
model performance respectively? (Section 5.3)

Q3.How does GenTKGQA perform under
changes in hyper-parameters? (Section 5.4)

Q4.How does GenTKGQA outperform Chat-
GPT in answering complex temporal questions?
(Section 5.5)

5.1 Datasets, Metrics and Baselines
CronQuestions (Saxena et al., 2021) is a tem-
poral QA dataset, which contains 410K unique
question-answer pairs, including annotated entities
and timestamps, with 350k for training and 30k for
validation and testing. The dataset can be catego-
rized into simple reasoning (Simple Entity and Sim-
ple Time) and complex reasoning (Before/After,
First/Last, and Time Join) based on temporal con-
straints. The TimeQuestions dataset (Sharma et al.,
2023) has 13.5k manually edited questions and is
divided into three parts: training, validation, and
testing, containing 7k, 3.2k, and 3.2k questions, re-
spectively. The questions are categorized into four
types: Explicit, Implicit, Temporal and Ordinal.
Following previous studies, we use two popular
evaluation metrics, Hits@1 and Hits@10. More in-
formation about datasets and metrics can be found
in Appendix A.

We compare four types of baselines: 1) KG
embedding-based models including EaE (Feng
et al., 2020b) and EmbedKGQA (Saxena et al.,
2020); 2) TKG embedding-based models includ-
ing CronKGQA (Saxena et al., 2021), EntityQR
(Mavromatis et al., 2022), TMA (Liu et al., 2023a),
TSQA (Shang et al., 2022) and TempoQR (Mavro-
matis et al., 2022); and 3) Language models, in-
cluding BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and ChatGPT. For another TimeQues-
tions dataset, we use CronKGQA, TempoQR and

TwiRGCN (Sharma et al., 2023) for comparison.
The implementation details of the baselines are
described in Appendix B.

5.2 Main Results
Table 1 reports the performance of all methods
on the CronQuestions dataset for various question
types. We can observe that GenTKGQA consis-
tently outperforms the baselines in terms of "Over-
all" performance, and achieves significant improve-
ments of 11.3% in the "Complex" question type
and 9.6% in the "Time" answer type on the Hits@1
metric over the second best method. Especially,
our model achieves nearly 100% for the "Simple"
question type. The possible reason is that simple
questions usually involve single facts, GenTKGQA
can easily retrieve the relevant facts containing the
answer and infer the correct answer through in-
struction tuning technique.

Furthermore, compared to KG embedding meth-
ods, temporal KG embedding methods show signif-
icant results on various metrics, thanks to the fact
that the temporal information of the TKG is taken
into account in the question representation. This is
also why KG embedding methods are particularly
ineffective for the "Time" answer type. However,
most TKG embedding methods treat the QA task
as a link prediction, which works for the "Simple"
question type containing a single fact compared to
the "Complex" question type.

We find that PLMs (BERT, RoBERTa) and
LLMs (ChatGPT) have the lowest performance on
the TKGQA task without TKG information. This
suggests that language models (LM), whether en-
coded or generated, with a large or small number
of parameters, have difficulty answering temporal
questions without any relevant context. w/ tkg in-
dicates that LMs use entity/time embeddings or
relevant facts from the TKG. Obviously, LMs w/
tkg have significantly better performance, which
suggests that the language models have some de-
gree of temporal reasoning capability when rele-
vant TKG information is provided, validating the
importance of the subgraph retrieval phase. It is
worth noting that ChatGPT w/ tkg still performs
weakly in reasoning about complex problem types
when providing the facts retrieved in the first stage
by GenTKGQA, while our model achieves the best
results. This demonstrates the effectiveness of in-
teracting GNN and LM representations in dealing
with complex temporal problems. The above find-
ings demonstrate the adequacy of our two motiva-
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Model
Hits@1 Hits@10

Overall Question Type Answer Type Overall Question Type Answer Type
Complex Simple Entity Time Complex Simple Entity Time

EmbedKGQA 0.288 0.286 0.290 0.411 0.057 0.672 0.632 0.725 0.850 0.341
EaE 0.288 0.257 0.329 0.318 0.231 0.678 0.623 0.753 0.668 0.698
CronKGQA 0.647 0.392 0.987 0.699 0.549 0.884 0.802 0.990 0.898 0.857
EntityQR 0.745 0.562 0.990 0.831 0.585 0.944 0.906 0.993 0.962 0.910
TMA 0.784 0.632 0.987 0.792 0.743 0.943 0.904 0.995 0.947 0.936
TSQA 0.831 0.713 0.987 0.829 0.836 0.980 0.968 0.997 0.981 0.978
TempoQR 0.918 0.864 0.990 0.926 0.903 0.978 0.967 0.993 0.980 0.974
BERT w/o tkg 0.071 0.086 0.052 0.077 0.06 0.213 0.205 0.225 0.192 0.253
RoBERTa w/o tkg 0.07 0.086 0.05 0.082 0.048 0.202 0.192 0.215 0.186 0.231
ChatGPT w/o tkg 0.151 0.144 0.160 0.134 0.182 0.308 0.308 0.307 0.257 0.402
BERT w/ tkg 0.243 0.239 0.249 0.277 0.179 0.620 0.598 0.649 0.628 0.604
RoBERTa w/ tkg 0.225 0.217 0.237 0.251 0.177 0.585 0.542 0.644 0.583 0.591
ChatGPT w/ tkg 0.754 0.579 0.987 0.689 0.873 0.852 0.746 0.992 0.808 0.933
GenTKGQA 0.978 0.962 0.999 0.967 0.990 0.983 0.971 0.999 0.974 0.994

Table 1: Performance comparison of different models on CronQuestions. The best and second best results are
marked in bold and underlined, respectively. w/o tkg indicates that LMs answer the questions directly without using
TKG information, and w/ tkg indicates that LMs answer the questions with TKG background knowledge.

Model Overall Explicit Implicit Temporal Ordinal

CronKGQA 0.462 0.466 0.445 0.511 0.369
TempoQR 0.416 0.465 0.360 0.400 0.349
TwiRGCN(average) 0.605 0.602 0.586 0.641 0.518
TwiRGCN(interval) 0.603 0.599 0.603 0.646 0.494
GenTKGQA 0.584 0.596 0.611 0.563 0.578

Table 2: Hits@1 for different models on TimeQuestions.

tions for solving complex temporal problems with
LLMs. A possible reason for the poor improvement
of our model’s Hits@10 metric for the "Entity" type
is that the LMs provide irrelevant responses when
asked to generate multiple answers.

As shown in Table 2, GenTKGQA still achieves
surprising results on the TimeQuestions dataset,
especially improving on the "Implicit" and "Ordi-
nal" question types by 1.3% and 11.6%, respec-
tively. Both question types have implied time con-
straints, similar to the "Complex" question type on
the CronQuestions dataset. Overall, compared to
the baseline methods, GenTKGQA achieves sig-
nificant results on the complex question type with
different datasets, validating the motivation of our
work and the effectiveness of the proposed model.
Last but not least, GenTKGQA, as a generative QA
model, achieves better results than most traditional
extractive QA methods.

5.3 Ablation Study

As shown in Table 3, to verify each module’s im-
portance, we conduct ablation experiments on the
CronQuestions dataset.

w/o SR means that we directly perform problem

Model
Hits@1

Overall Question Type Answer Type
Complex Simple Entity Time

GenTKGQA 0.978 0.962 0.999 0.967 0.990
w/o SR 0.119 0.140 0.090 0.127 0.103
w/o SR inference 0.475 0.381 0.601 0.294 0.812
w/ SR random 0.766 0.613 0.970 0.661 0.961
w/o T-GNN 0.935 0.914 0.965 0.920 0.963
w/o VKI 0.843 0.824 0.870 0.831 0.867

Table 3: Ablation study results on CronQuestions.

inference without using relevant subgraph infor-
mation in the model training and inference phases,
while w/o SR inference means that we do not pro-
vide subgraphs only at the inference. We can ob-
serve a sharp decrease in model effectiveness due
to the lack of use of subgraph information, which
is consistent with the other LMs (Section 5.2). This
result shows that current LMs are weak in dealing
directly with temporal reasoning problems, validat-
ing the importance of the subgraph retrieval mod-
ule. The w/o SR inference result indicates that Gen-
TKGQA remembers part of the structured knowl-
edge during the training phase and improves the
temporal inference performance without providing
subgraph information. w/ SR random denotes the
random selection of relevant facts involving entities
in the question, and the drop in results proves the
validity of our first-stage approach.

w/o T-GNN indicates that we directly use the
temporal embeddings (Lacroix et al., 2020) to rep-
resent entities and relations of subgraphs. The
slight decrease in the results indicates that the T-
GNN is able to perceive the structural information
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Type Question/ Response
Retrieved Graph ChatGPT w/ tkg GenTKGQA

Simple

dean in 1997 was the person?

Entity

[Xavier Darcos, position held, dean, 1995, 1998] [ Katarzyna Olbrycht, José Miguel Pérez García, [ Xavier Darcos, Zinaida Belykh,
[Zinaida Belykh, position held, dean, 1988, 1998] Jiří Zlatuška, Xavier Darcos, José Miguel Pérez García, Jiří Zlatuška,

[José Miguel Pérez García, position held, dean, 1990, 1998] Zinaida Belykh, Andrei Fursenko, Katarzyna Olbrycht, Catalina Enseñat Enseñat,
[Jiří Zlatuška, position held, dean, 1994, 1998] Anatoly Torkunov, Alexander Konovalov, Catalina Enseñat Enseñat, Marcel Berger,

[Katarzyna Olbrycht, position held, dean, 1981, 1998] Anatoly Vichnyakov, Anatoly Vishnevsky] Miguel Beltrán Lloris, Miklós Réthelyi]

Simple
When Daniele Amerini played in Modena F.C.?

Time
[Daniele Amerini, member of sports team, Modena F.C., 2005, 2006] [2005, 2006, [2005, 2006,
[Daniele Amerini, member of sports team, Modena F.C., 2008, 2009] 2008, 2009] 2008, 2009]

Before/

Who held the position of Sociétaire of the

After

Comédie-Française before Catherine Hiegel?
[François Jules, position held, Comédie-Française, 1850, 1894]
[Jean Martinelli, position held, Comédie-Française, 1930, 1950] [Lise Delamare] [Yvonne Gaudeau]

[Yvonne Gaudeau, position held, Comédie-Française, 1950, 1986]
[Lise Delamare, position held, Comédie-Française, 1951, 1967]

First/

When Mark Burke was playing his final game?

Last

[Mark Burke, member of sports team, Luton Town F.C., 1994, 1994]
[Mark Burke, member of sports team, Port Vale F.C., 1994, 1995] [1994] [1995]

[Mark Burke, member of sports team, Wanderers F.C., 1991, 1994]
[Mark Burke, member of sports team, Darlington F.C., 1990, 1990]

Time

Who was Iowa Governor in Greater German Reich

Join

during the World War II?
[Bourke B. H., position held, Governor of Iowa, 1943, 1945] [George A. W.] [George A. W.,
[George A. W., position held, Governor of Iowa, 1939, 1943] Bourke B. H.]
[Robert D. B., position held, Governor of Iowa, 1945, 1949]

Table 4: Comparison of responses to five different question types between our GenTKGQA and ChatGPT w/ tkg.
Marked in blue is the correct answer.
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Figure 3: Parameter sensitivity on our GenTKGQA.

of the TKG. w/o VKI means that we try to remove
the virtual knowledge indicators from the input
prompt. Model performance degradation shows
that indicators can bridge the gap between distinct
representations.

5.4 Sensitivity Analysis

Impact of training data size. We explore the im-
pact of different training data sizes to reason about
complex temporal questions. As shown in Figure
3(a), by comparing the Hits@1 metric of several
methods for the complex question type, our method
consistently outperforms others as the training data
expands. In particular, at 20% of the training data,
our model outperforms the second best model by
32%, demonstrating that our model has strong in-
ference ability in the case of few-shot samples due
to its intrinsic knowledge.

Impact of the number of relevant facts. We
report the performance changes on the CronQues-

tions dataset by varying the number of retrieved
facts n in Figure 3(b). It can be seen that the model
performs poorly with a small number of relevant
facts (n=3), and there is a slight increase in per-
formance at n=10. Fewer facts do not provide suf-
ficient context knowledge, while more facts may
introduce noise. Taking this into consideration, we
set the hyper-parameter n to 10.

5.5 Qualitative Results

We provide specific examples for each question
type to compare the answer results of ChatGPT
and ChatGPT w/ tkg. Table 4 includes the graphs
retrieved by our method, along with the answer
results for five different question types.

When providing relevant facts retrieved by Gen-
TKGQA as background knowledge, ChatGPT per-
forms competitively in the simple question type,
correctly answering questions with entity or time
as the answer. However, it has difficulty answer-
ing complex types of questions. For example, in
the "Before/After" and "First/Last" question types,
ChatGPT struggles to understand the temporal or-
der of the relevant facts and gives incorrect answers.
Besides, in the case of the "Time Join" question
type, some of the correct answers are missing from
the generated responses because ChatGPT does not
fully understand the implicit time in the question.
On the contrary, GenTKGQA performs well in
both simple and complex question types due to the
fact that we use a deep manner to incorporate sub-

6726



graph information into the LLM. However, similar
to other LLMs, GenTKGQA randomly generates
some irrelevant answers when generating multiple
answers, e.g., in the "Simple Entity" question type.

6 Conclusion

We propose a novel generative framework, Gen-
TKGQA, which guides the LLM in a two-stage
manner to handle temporal question answering on
TKG. Specifically, at the subgraph retrieval phase,
we exploit the LLM’s intrinsic knowledge to mine
the temporal constraints and structural links in the
temporal questions, which reduces the search space
of the subgraphs in both temporal and structural
dimensions. We employ the in-context learning ap-
proach to complete subgraph retrieval for the entire
dataset with a small number of samples. In order to
improve the inference performance of the LLM on
complex question types, at the answer generation
phase, we present the instruction tuning technique
to make the open-source LLM truly understand the
temporal order and structural dependencies among
retrieved facts. Most significantly, we design novel
virtual knowledge indicators to establish a bridge
between subgraph neural information and text rep-
resentations. Experimental results show that our
framework can effectively utilize the LLM to solve
the complex question type of TKGQA task and
validate the adequacy of our motivation.

Limitations

Although the complex temporal question on the
CronQuestions dataset involves multiple facts, the
inter-entity connection in each fact is single-hop,
so the hyper-parameter k of our model is set to 1
to achieve the best results. In fact, the vast ma-
jority of current TKGQA datasets involve facts
that are single-hop. So, in the future, we will ex-
plore more datasets to solve inference for multi-hop
complex temporal problems over TKG. In addi-
tion, we use the in-context learning approach to
prompt the ChatGPT baseline to answer the ques-
tions, saving the labor cost of checking whether
the answers are correct. However, the design of
different templates may result in incomplete con-
sistency with the manual results, but this does not
affect the conclusions of this paper. Because the
results provided by other works similarly show the
poor performance of ChatGPT’s temporal question
answering (Tan et al., 2023; Chen et al., 2023a).

Ethics Statement

This work presents a novel two-stage framework
for the temporal knowledge graph question answer-
ing task using large language models. Our experi-
ments use the publicly available datasets and lan-
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QA task. The language models are used to gener-
ate answers to temporal questions with entities or
timestamps, which does not involve toxic content.
This paper uses the above dataset and models with
their initial intention. We believe that this work is
consistent with ACL’s ethics policy and presents
no potential risk.
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Category Train Dev Test

Simple Entity 90,651 7,745 7,812
Simple Time 61,471 5,197 5,046
Before/After 23,869 1,982 2,151
First/Last 118,556 11,198 11,159
Time Join 55,453 3,878 3,832

Simple Reasoning 152,122 12,942 12,858
Complex Reasoning 197,878 17,058 17,142

Entity Answer 225,672 19,362 19,524
Time Answer 124,328 10,638 10,476

Total 350,000 30,000 30,000

Table 5: Dataset Statistics of CronQuestions.

Category Train Dev Test

Explicit 2,725 1,302 1,312
Implicit 660 296 297
Temporal 2,810 1,177 1,163
Ordinal 976 587 593

Total 7,171 3,362 3,365

Table 6: Dataset Statistics of TimeQuestions2.

A Dataset Statistics and Metrics

We use the CronQuestions and TimeQuestions
dataset in our experiments. TimeQuestions was
first proposed by Jia et al. (2021), but it provides
only static knowledge graphs with temporal at-
tributes, not strictly temporal knowledge graphs.
Later, Sharma et al. (2023) expanded this dataset
by preprocessing all the contained facts into the
temporal knowledge graph format of (subject entity,
relationship, object entity, [start time, end time])
and restricting all times to years. Dataset statistics
are described in Table 5 and 6, respectively.

Following previous studies, we leverage
two popular evaluation metrics, Hits@1
and Hits@10. Specifically, Hits@K =

1
|Test|

∑
q∈ Test ind(rank(q) ≤ K), where rank(q)

denotes the ranking of the answer to question q
obtained by the model in the candidate list. ind
is 1 if the inequality holds and is 0 otherwise,
K = 1, 10.

2The actual number of questions in the training, validation
and test set is 6,970, 3,236 and 3,237, respectively. The total
number exceeds the number of questions as some questions
belong to multiple categories.

B Baselines and Implementation Details

We use the OpenAI-API3 (gpt-3.5-turbo-06134) for
all ChatGPT-related experiments, including subse-
quent ChatGPT baselines.

In the subgraph retrieval phase, we use Chat-
GPT to mine temporal constraints and structural
links between entities and add 5 samples to the
in-context learning prompt templates, which are
presented as Table 7 and 8. We set k=1 for the
top-k relations. In the answer generation phase,
following (Lacroix et al., 2020), we select the di-
mension of entity/relation/time embeddings to 512.
For T-GNN, the layer l is set to 1, the linear trans-
formations Wq, Wk and Wm are 512×512, and
the m and b of the MLP layer are 512×|E|. We
use the open-source Llama 2-7B (Touvron et al.,
2023) for instruction tuning and select up to n=10
relevant facts as additional knowledge. The linear
projection layer Wp is 512×4096. We fine-tune
Llama 2-7B using LoRA (Hu et al., 2022) with
rank 64. The number of epochs is set to 4 and
the learning rate is 3e-4. We use the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a fixed
batch size of 8. We conduct all the experiments
with NVIDIA A100 GPUs, and the results of each
experiment are averaged over three runs. We will
release the source code upon acceptance.

We compare our model with the following base-
lines:

EmbedKGQA (Saxena et al., 2020): Times-
tamps are ignored during pre-training and random
time embeddings are used during the QA task.

EaE (Feng et al., 2020b): In the experiment, we
follow use TKG embeddings to enhance the ques-
tion representation, and then predict the answer
probabilities via dot-product.

CronKGQA (Saxena et al., 2021): CronKGQA
is the TKGQA embedding-based method that first
uses a LM model to get question embeddings and
then utilize a TKG embedding-based scoring func-
tion for answer prediction.

EntityQR and TempoQR (Mavromatis et al.,
2022): Based on EaE, EntityQR utilizes a TKG
embedding-based scoring function for answer pre-
diction. TempoQR utilizes a TKG embedding-
based scoring function for answer prediction and
fuse additional temporal information.

3https://platform.openai.com/docs/
api-reference

4https://platform.openai.com/docs/models/
gpt-3-5-turbo
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TMA (Liu et al., 2023a): TMA improves QA
performance through enhanced fact retrieval and
adaptive fusion network.

TSQA (Shang et al., 2022): TSQA presents a
contrastive learning module that improves sensitiv-
ity to time relation words.

TwiRGCN (Sharma et al., 2023): TwiRGCN is
a method for processing TKGQA tasks with the
relational graph convolutional network (RGCN).

BERT and RoBERTa (Devlin et al., 2019; Liu
et al., 2019): For w/o tkg, following CronKGQA
(Saxena et al., 2021), we add a prediction head on
top of the [CLS] token of the final layer, and then
do a softmax over it to predict the answer probabil-
ities. For w/ tkg, following TempoQR (Mavromatis
et al., 2022), we generate their LM-based question
embedding and concatenate it with the annotated
entity and time embeddings, followed by a learn-
able projection. The resulted embedding is scored
against all entities and timestamps via dot-product.

ChatGPT: To ensure that the output format
meets the expected requirements, we use the in-
context learning approach to motivate ChatGPT to
answer the questions and provide 5 examples in
the prompt template. The specific templates are
presented in Table 10 of Appendix C. w/o tkg and
w/ tkg differ in whether or not question-relevant
facts are provided in the input prompts, which are
retrieved in the first stage by our proposed Gen-
TKGQA framework.

C Prompt Template

The prompts for relation ranking and time mining
can be found in Table 7 and Table 8, respectively.
The template used for instruction tuning is shown in
Table 9. The ChatGPT baseline prompt is presented
in Table 10.
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Relation Ranking Prompt

l will give you a list of words.
Find the {k} words from the list that are most semantically related to the given sentence.
If there are no semantically related words, pick out any {k} words.

Examples)

Sentence A: When was the first time Martin Taylor played for The Hatters?
Words List: [‘member of sports team’, ‘position held’, ‘award received’, ‘spouse’, ‘employer’]
Top {k} Answers: [‘member of sports team’]

. . .

Sentence E: Which was awarded to Daniel Walther in 1980?
Words List: [‘member of sports team’, ‘position held’, ‘award received’, ‘spouse’, ‘employer’]
Top {k} Answers: [‘award received’]

Now let’s find the top {k} words.
Sentence: {sentence}
Words List: {relation_list}
Top {k} Answer:

Table 7: Relation Ranking Prompt. This prompt is used to extract structural links between entities in the question.

Time Mining Prompt

I will give you a natural language question with a temporal constraint.
Answer the temporal constraint involved in the question based on the knowledge context and the question type.
Answer only in "before", "after", "between and" format.

Examples)

Question A: Who held Governor of Connecticut position after Lowell P. Weicker?
Knowledge Context: [‘Lowell P. Weicker’, ‘position held’, ‘Governor of Connecticut’, ‘1991’, ‘1995’]
Question Type: after
Response: after 1995

. . .

Question E: Who’s the player who played in AC Reggiana with Daniele Magliocchetti?
Knowledge Context: [‘Daniele Magliocchetti’, ‘member of sports team’, ‘A.C. Reggiana’, ‘2012’, ‘2014’]
Question Type: time_join
Response: between 2012 and 2014

Next, let’s answer the time constraints involved in the following question.
Question: {question}
Knowledge Context: {context}
Question Type: {type}
Response:

Table 8: Time Mining Prompt. This prompt is used to find the time constraints involved in the complex question.
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Instruction Tuning Template

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

Instruction:
Answer the questions based on evidence.
Each evidence is in the form of [head, relation, tail, start_time, end_time]
and it means ‘head relation is tail between start_time and end_time’.
You must list the 10 most relevant answers.

Input:
Question: {question}
Evidence set: {evidence_set}

Response:{answer}

Table 9: This is the template for instruction tuning.
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ChatGPT w/ tkg

Answer the questions based on evidence.
Each evidence is in the form of [head, relation, tail, start_time, end_time]
and it means ‘head relation is tail between start_time and end_time’.
You must list the 10 most relevant answers separated by ‘\t’.

Examples)

Question A: Who was the Member of the House of Representatives in 1990?
Evidence set: [[‘Simon Crean’, ‘position held’, ‘Member of the House of Representatives’, ‘1990’, ‘2013’],. . . ]
Answer: Simon Crean\tJohn Dawkins\t. . .

. . .

Question E: With whom did Steve Haslam play on the Sheffield Wednesday F.C.?
Evidence set: [[‘Ola Tidman’, ‘member of sports team’, ‘Sheffield Wednesday F.C.’, ‘2003’, ‘2005’], . . . ]
Answer: Ola Tidman\tChris Marsden\t. . .

Now let’s answer the Question based on the Evidence set.
Please do not say there is no evdience, you must list the 10 most relevant answers separated by ‘\t’.
Question: {question}
Evidence set: {evidence_set}
Answer:

ChatGPT w/o tkg
Answer the questions directly.
You must answer the 10 most relevant answers separated by ‘\t’.

Examples)

Question A: Who was the Member of the House of Representatives in 1990?
Answer: Simon Crean\tJohn Dawkins\t. . .

. . .

Question E: With whom did Steve Haslam play on the Sheffield Wednesday F.C.?
Answer: Ola Tidman\tChris Marsden\t. . .

Now let’s answer the Question, you must answer the 10 most relevant answers separated by ‘\t’.
Question: {question}
Answer:

Table 10: ChatGPT Baseline Prompt.
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