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Abstract

Despite the ubiquity of large language models
(LLMs) in AI research, the question of em-
bodiment in LLMs remains underexplored, dis-
tinguishing them from embodied systems in
robotics where sensory perception directly in-
forms physical action. Our investigation navi-
gates the intriguing terrain of whether LLMs,
despite their non-embodied nature, effectively
capture implicit human intuitions about fun-
damental, spatial building blocks of language.
We employ insights from spatial cognitive foun-
dations developed through early sensorimotor
experiences, guiding our exploration through
the reproduction of three psycholinguistic ex-
periments. Surprisingly, correlations between
model outputs and human responses emerge,
revealing adaptability without a tangible con-
nection to embodied experiences. Notable dis-
tinctions include polarized language model re-
sponses and reduced correlations in vision lan-
guage models. This research contributes to
a nuanced understanding of the interplay be-
tween language, spatial experiences, and the
computations made by large language models.1

1 Introduction

Large language models (LLMs) excel in varied
NLP tasks like text generation, sentiment analysis,
or summarization. Nonetheless, an underexplored
facet in the study of LLMs pertains to the con-
cept of embodiment. Unlike embodied systems in
robotics, where the physical form plays a central
role in shaping the system’s abilities, LLMs lack a
direct connection between sensory perception and
physical action. Within this context, we investigate
the extent to which LLMs, despite their lack of di-
rect embodiment, might capture the implicit, often
sensory-derived, conceptual structures that underlie
human language and cognition. In our analysis, we

∗ Both authors contributed equally.
1Project site: https://cisnlp.github.io/

Spatial_Schemas/

Figure 1: Overview of the three experiments

make use of image schema theory, which provides
a set of spatio-temporal cognitive building blocks
that are learned in early infancy based on reoccur-
ring sensorimotor experiences (Lakoff and John-
son, 2008; Barsalou, 2008; Johnson, 2013). For
example, the image schema SUPPORT is learned
by observing and experiencing objects like tables
or chairs supporting other objects. According to
theory, the same image schema is reused to struc-
ture our language and thought, even in regard to
abstract topics. For instance, when talking about
emotional support, we say to support a friend.

Given that LLMs lack grounding, our research
centers around a fundamental question: Can
LLMs encode people’s intuitions about the image
schematic basis of words and phrases? In the sub-
sequent sections, we present the rationale behind
our inquiry and the methodologies for investigating
the intricate relationship between language, embod-
iment, and the core aspects of human cognition. In
summary, we make the following contributions:

• We use LLMs and vision language models
(VLMs) to reproduce three psycholinguistics
experiments (Fig. 1) that connect language
to humans’ spatial intuitions
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• We find that, in many instances, the answers
of the largest models and of human partici-
pants show moderate to strong correlations
even though the model’s language use is not
grounded in an embodied or enacted sense

• Crucial differences to human answers remain:
the output of small and base models often
shows low correlations, LLMs tend to give
polarized responses (selecting either 1 or 7
on a scale), and VLMs show lowest correla-
tions with open-source VLMs showing none.

2 Background

2.1 Image Schemas in Cognition & Language

Image schemas, rooted in cognitive linguistics and
embodied cognition, have emerged as a founda-
tional concept in our understanding of human lan-
guage and cognition. These dynamic mental struc-
tures, originally proposed by Lakoff and Johnson
(2008), serve as the cognitive building blocks for
our conceptualization of the world. Image schemas
are pre-linguistic and perceptual in nature, provid-
ing a fundamental means for humans to ground
abstract concepts in concrete sensory and motor
experiences (Johnson, 2013; Barsalou, 2008). This
grounding is pivotal in comprehending and com-
municating complex ideas, as it bridges the gap
between sensorimotor experiences and the vast ar-
ray of abstract concepts that are integral to human
thought and language. The centrality of image
schemas in cognitive processes underscores their
profound influence on language, from shaping our
metaphors and linguistic expressions to facilitat-
ing our ability to reason, plan, and understand the
world (Di Paolo et al., 2018; Hampe, 2005). An
example of an image schema is VERTICALITY. We
can physically experience the image schema VER-
TICALITY by standing upright or seeing one object
positioned above another. In turn, these learned
schemas can help us comprehend and communi-
cate abstract concepts such as complex emotions (I
feel down) or power dynamics (she ranks high).

Evidence for image schemas is provided by vari-
ous psycholinguistic studies (Mandler, 1992; Gibbs
et al., 1994; Boroditsky, 2000; Richardson et al.,
2001; Gibbs, 2005). For example, Richardson et al.
(2001) has participants pick one of four arrows
(↑, ↓,←,→) that best represent a concrete or ab-
stract action on horizontal or vertical dimension
(e.g. concrete, horizontal: pushed / abstract, ver-

tical: obeyed). The results indicate a common
correlation that points towards underlying schemas
in language. But how are these schematic intuitions
represented by computational models of language?

2.2 Image Schemas in Language Models

LLMs are trained on vast amounts of text and code
in order to construct a model of language that can
be used for a variety of NLP tasks without having
been specifically trained on these tasks (Radford
et al., 2019). The ability of these emergent proper-
ties scales with the size of these models (Wei et al.,
2022). Moreover, VLMs, e.g. GPT-4 (OpenAI,
2023), are trained on images, text and code. Yet,
neither LLMs nor VLMs are embodied systems in
the sense that they never connect “perception to
action directly” (Brooks, 1991). This leads to the
symbol grounding problem, as posed by Harnad
(1990), questioning whether symbols can derive
meaning just from other symbols alone (as would
be the case for text-based LLMs) or whether they
would need to be connected in a bottom-up fash-
ion to sensory representations. To this day, such
questions are being critically discussed in the NLP
community (Bender and Koller, 2020). Research
with embodied computational systems (e.g. robots)
often works with the implicit premise (or challenge)
that a system’s physical form contributes to its tech-
nical capabilities, its affordances (Brohan et al.,
2023). One way to look at the effect of embodi-
ment in LLMs is provided by Wicke (2023), who
shows that the degree of perceived embodiment
of an action word can have a positive effect on an
LLM’s capability to interpret figurative language.

3 Related Work

3.1 Human Behavioral Experiments with
Large Language Models

Using LLMs as human stand-in participants for
psychology experiments has recently gained atten-
tion (Futrell et al., 2019; Linzen and Baroni, 2021;
Dillion et al., 2023; Harding et al., 2023; Aher et al.,
2023). Such use can be motivated by wanting to
generate initial hypotheses for an experiment, pilot
a new design, and gain insight into human cogni-
tion based on the assumption that LLMs trained on
a large amount of human-generated text will pro-
duce similar output to that of human participants
(Dillion et al., 2023). For instance, Dillion et al.
(2023), who propose such a use, report a high corre-
lation of 0.95 between human answers and GPT-3.5
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answers on moral judgment tasks. At the same time,
they acknowledge that current LLMs are bad at
capturing variation and diversity present in human
responses and are biased towards responses of peo-
ple from certain countries, economic backgrounds,
genders, etc. Harding et al. (2023) critique the
use of LLMs to replace human participants and
question the informativeness of the LLM’s output.

Another motivation to simulate psychological
experiments with LLMs is to gain insights not into
human cognition but into the capabilities of lan-
guage models themselves. Reproducing various ex-
periments with LLMs, one can compare the LLM
output with how humans behaved in the real exper-
iment, thereby establishing the “human-likeness”
of the model’s text generations. The usefulness of
such experiments has also been suggested with re-
spect to psycholinguistics, where experiments can
show what properties of language can be success-
fully processed, reproduced, or generated by LLMs
(Houghton et al., 2023).

A survey by (Linzen and Baroni, 2021) presents
studies of neural networks’ syntactic abilities and
their broader implications for linguistic theory.
Dentella et al. (2023), for example, show that
LLMs fail at distinguishing grammatical and un-
grammatical sentences in a similar way to peo-
ple. Futrell et al. (2019) test four neural network
language models on artificial sentences with syn-
tactically complex structures (subordinate clauses
and the Garden Path effect) to analyze their syn-
tactic representations. Their findings indicate that
LSTMs trained on large datasets represent syntactic
states comparably to an RNNG trained on a small
dataset, while an LSTM trained on a small dataset
performs poorly or only weakly. Other studies find
that on many psychology tasks, the LLM output is
comparable to human answers, even showing simi-
lar cognitive biases (Hagendorff et al., 2022; Das-
gupta et al., 2022). Hagendorff et al. (2022) show
that these cognitive biases tend to vanish when
experimenting with the most recent models, such
as ChatGPT and GPT-4. Aher et al. (2023) ex-
tend the idea of repeating prominent experiments
with LLMs. Specifically, they not only look at a
single output of an LLM given some experiment
prompt but try to simulate different demograph-
ics by prompting the model multiple times with
different personas attached to each prompt. Gener-
ally, one needs to be aware that the same or similar
experiments might have been in the training data.

3.2 NLP for Image Schemas

LLMs have only sparingly been used for image
schema-related tasks. Initial research on the
computational processing of image schemas was
restricted to spectral cluster analysis (Gromann
and Hedblom, 2017), whereas more recent
work (Wachowiak et al., 2022; Wachowiak and
Gromann, 2022) uses the language model XLM-
RoBERTa (Conneau et al., 2020). Wachowiak and
Gromann (2022) show that language models can
be fine-tuned to classify sentences based on eight
image schema classes, with an accuracy between
57% and 80% depending on the language of the
data. Although their model requires first seeing
more than 1,000 correctly annotated samples, these
results indicate that, in principle, it is possible
for a neural model trained only on text to pick up
the pattern indicating a specific image schema
in natural language. However, in contrast to the
experiments in our work, the language samples
they use are manually collated or created by
experts. The psycho-linguistic experiments that
build the foundation for the present work take a
different approach, letting multiple people annotate
phrases based on intuitions and felt relatedness.
Accordingly, the expert-annotated image schemas
are annotated with a single discrete label per
sample, while the psycho-linguistic experiments
inspiring this study lead to fine-grained annotations
using ordinal scales for five different image
schemas per phrase. Kamath et al. (2023) test
various VLMs for whether they can correctly
classify simple spatial configurations, such as A
being left, right, under, or over B. Thus, they test
for image schematic relations in their original
physical form rather than the abstract extensions.
They find models to perform poorly on the task,
with the best model only achieving an accuracy
of 60%, while humans achieve 99%, one of the
reasons being that prepositions occur infrequently
and in an ambiguous manner in the training
data. Similar work by Jassim et al. (2023) shows
shortcomings of VLMs’ understanding of spatial
configurations and intuitive physics when given
different visual inputs of simulated spatial scenes.

From the corpus of related works delving into
psycholinguistic studies probing spatial schema
intuitions, we selected three experiments for com-
parison, each exhibiting variations in word class
and context. Experiment 1 (Gibbs et al., 1994)
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Model Model Model API Open
Type Name Size Endpoint Source

LLM GPT-3base 175b davinci-003 -
LLM GPT-3inst N/A text-davinci-003 -
LLM GPT-4 N/A gpt-4-0613 -
LLM LLaMA-2-13b 13b Llama-2-13b-chat-hf ✓
LLM LLaMA-2-70b 70b Llama-2-70b-chat-hf ✓
VLM GPT-4vision N/A gpt-4-vision-preview -
VLM IDEFICS-80bbase 80b idefics-80b ✓
VLM IDEFICS-80binst 80b idefics-80b-instruct ✓

Table 1: Models selected for experiments. LLM: large
language model, VLM: vision–language model.

showcases a verb (stand) within context, Experi-
ment 2 (Beitel et al., 2001) features a preposition
(on) within context, and Experiment 3 (Richardson
et al., 2001) employs different verbs without con-
text (see Fig. 1). Our rationale for excluding other
studies stemmed from their failure to offer suffi-
cient variation or to provide access to their original
questionnaire. Moreover, the chosen experiments
span a spectrum of distinct spatial schemas.

4 Method

This section provides an overview of the general
model and prompt selection, while following sub-
sections detail the setup for individual experiments.

Model Selection. We recreate the experiments
using closed and open-source language models.
The open-source LLaMA-2 instruction-tuned
models (Touvron et al., 2023) are chosen in
two sizes2: LLaMA-2-13b and LLaMA-2-70b.
The closed source models include: GPT-3
base (davinci-002), GPT-3.5 instruction-
tuned (text-davinci-003) and GPT-4
(gpt-4-0613). Instruction-tuned versions
have been chosen over base models because
instruction-tuned models tend to perform better
(Touvron et al., 2023). This difference can
be observed across all of our experiments in
varying degrees. For the third experiment, we
include three VLMs: the two open-source models
IDEFICS-80b (Laurençon et al., 2023) in base and
instruction-tuned variants, as well as the GPT-4
Vision model (gpt-4-vision-preview).

Prompt Selection. Regarding their format, we
keep the prompts as close to each original experi-
ment as possible. Given the information provided
in each paper, we reuse the wording of the image

2Results of further experiments with non-instruct LLaMA
models and their 7b version are included in the repository.

schema definitions and the items being evaluated.
Besides these, we write our own instructive sen-
tence that prompts the LLM to rate each item since
the original instructions given to the human par-
ticipants are unfortunately not provided in any of
the papers. As suggested by Aher et al. (2023), we
optimize the instructive sentences by choosing a
sentence that maximizes the fraction of valid model
answers for each task. In experiments 1 and 2, valid
answers consist of the numbers 1 to 7, while in ex-
periment 3, the valid answers consist of the four
possible directions. Given a set of valid answers V
and a prompt k, the validity score is computed as:

∑
a∈V p (a∣k) (1)

This way of finding a prompt allows us to get valid
answers by only looking at their form but not at
their content. Thus, we adopt this method that
prevents overfitting caused by prompt-engineering.

Recreating a prompt that closely mirrors the ap-
proach of the original paper would involve con-
solidating all the stimuli into a single list and in-
structing the models to rate each stimulus in com-
bination with each image schema. We tried con-
ditions in which the model had to rate all stimuli
for all image schemas and all stimuli for a single
schema. Additionally, we tried averaging multi-
ple of those runs based on different stimuli orders.
However, all preliminary experiments revealed that
this comprehensive prompt yielded impractical or
even unmeaningful responses. Frequently, models
redundantly reproduced identical outputs for each
item in the list. Consequently, we opted to refine
our approach by providing the models with a single
stimulus per input prompt.

Evaluation. To evaluate how well the models can
predict the human participant’s judgment, we com-
pute the Spearman correlation coefficient (Spear-
man, 1904) between the human and the LLM rat-
ings for each image schema per experiment. For
interpretation, we use the labels weak, moderate
(>0.4) and strong (>0.7), common in psychology
literature (Akoglu, 2018). In each of the three inde-
pendent experiments, we addressed the challenge
of multiple testing by employing the Benjamini-
Hochberg correction for False Discovery Rate
(FDR) (Benjamini and Hochberg, 1995). This cor-
rection was applied to account for the evaluation
of multiple correlations within each experiment,
ensuring a controlled rate of false positives and bol-

6105



stering the statistical reliability of our findings. We
use the statsmodels python package (Seabold and
Perktold, 2010) to evaluate the corrected p-values.
All reported p-values are corrected and marked
with * for p < 0.05 as statistically significant.

4.1 Experiment 1 - Gibbs et al. (1994)

The Original Experiment. Firstly, we reproduce
experiments by Gibbs et al. (1994), testing people’s
intuitions about the image schemas that underlie
various uses of the verb to stand. Given 32 phrases
and the definitions of five relevant image schemas,
they asked 27 participants to rate the relatedness
between each image schema and each phrase on
a Likert scale from 1 (“not at all related”) to 7
(“very strongly related”). The image schemas used
in this experiment are: BALANCE, VERTICALITY,
CENTER–PERIPHERY, RESISTANCE, and LINK-
AGE. Participants have to rate the relatedness of all
32 phrases to a single image schema before moving
to the next (we refer to this data as Gibbsstand). Be-
fore giving the rating for a particular image schema,
the schema is introduced with a short definition.
For instance, VERTICALITY is introduced as re-
ferring “to the sense of an extension along an up–
down orientation”. The order in which the image
schemas have to be rated is counterbalanced using
five different orders overall. Additionally, Gibbs
et al. repeat the experiment using the same 32
phrases but with stand being replaced by a word
with a synonymous meaning (we refer to this data
as Gibbssyn). For example, “to stand the test of
time” is substituted by “to pass the test of time”.

The LLM Experiment. To extract ratings from
an LLM, we retrieve the most likely answer gener-
ated, i.e. the answer received with a temperature
of 0 in the OpenAI API or a top_k of 1 with Hug-
gingFace. Alternatively, one could consider the
probability for each valid answer, the numbers be-
tween 1 and 7, and compute the sum of each num-
ber weighted by their likelihood, normalized by the
sum of all seven numbers’ likelihoods. While this
takes the LLM’s uncertainty into account, it also
requires seven times the amount of compute com-
pared to simply taking the top answer. As results
only varied minimally, we chose the cost-effective
methodology of selecting only the top answer.

Prompting. For experimenting, we started with
a basic input text as close as possible to the original
experiment, for example:

Consider the notion of VERTICALITY. Vertical-
ity refers to the sense of an extension along an
up–down orientation. How strongly is the phrase
“stand at attention” related to this notion on a scale
from 1 (not at all related) to 7 (very strongly re-
lated)?

The different image schema definitions used in
these prompts can be found in Appendix A1. Given
such a text as the start of the input, we try to find a
way to end the prompt so that the model’s output
probabilities for the next token converge towards
100% when summed for all valid 7 numbers. This
final bit of the prompt depends on the model. Our
prompt ending choices are described in Section 5.1,
and all used phrases are listed in the Appendix A3.

4.2 Experiment 2 - Beitel et al. (2001)
The Original Experiment. Beitel et al. (2001)
repeat the experimental paradigm established by
Gibbs et al. (1994), however, with a new set of
phrases, all containing the preposition on. Given
the focus on the word on instead of to stand, they
also select a different set of image schemas that
are more relevant in this case, namely: SUPPORT,
PRESSURE, CONSTRAINT, COVERING, VISIBIL-
ITY. Instead of having access to a general defini-
tion of each image schema, the participants can
now check an example sentence for which five
introduction statements explain how each image
schema relates to it. For example, the experiment
introduces SUPPORT by saying, “In the case of the
use of “on” in the “the book is on the desk”: the
SUPPORT relation refers to the desk supporting the
book”. A list of introductions for all five image
schemas is available in the Appendix Table A2.

The LLM Experiment. Given its identical struc-
ture, the experiment is conducted in the same man-
ner as with the data from Gibbs et al. (1994).

4.3 Experiment 3 - Richardson et al. (2001)
The Original Experiment. Richardson et al.
(2001) provide experimental evidence for image
schemas via two different experiments. The first
experiment presents human participants with lists
of 30 verbs ranked by concreteness (based on the
MRC psycholinguistic database (Coltheart, 1981)).
The verbs are represented using an agent-patient
relation through a circle-square depiction, e.g. ◯
offended ◻. Distinguished by abstractness versus
concreteness of the verbs, those verbs were further
divided into three groups based on their primary
direction: horizontal, vertical and neutral. This
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Figure 2: Target images form the original study by
Richardson et al. (2001). Each participant was asked to
match 30 verbs to one of the images (A-D).

resulted in a 2x3 factor design of concreteness by
directionality. The task for each participant was to
choose one of four images that best represents the
action. The images use the same circle-square rela-
tion, but with an arrow representing the directional-
ity on the horizontal and vertical axis (←,→, ↑, ↓).
The choice of images is depicted in Figure 2. As
an example, for the horizontal, concrete item ◯
offended ◻ the participant needs to select one of
the A-D images (Fig. 2). It is important to note that
Richardson et al. (2001) analyse the results with re-
spect to the primary direction (horizontal/vertical).
The second experiment by Richardson et al. (2001)
requires participants to draw a schematic represen-
tation of items from the first experiment. Since we
do not include visual generation, we do reproduce
the second experiment in the presented work.

The LLM Experiment. The original experiment
involved the use of four visual depictions (see
Fig.2) alongside a list of verbs. In this setup, par-
ticipants were exposed to all the images and words
simultaneously. The word presentation order was
randomised, and the images were labeled A-D. To
replicate the experiment, which necessitates a vi-
sual input, we also employ VLMs. In order to
enable comparisons with our selected (text-only)
LLMs, we design a tripartite experimentation.

In the first phase, we opted to translate the visual
depictions into textual representations of the under-
lying schemas, specifically the words up, down,
left, and right. For the second phase, we con-
ducted the experiment again, but this time with
pseudo-visual renderings using Unicode arrows
(↑, ↓, ←, →). In the final phase, we turned to a
limited selection of VLMs to rerun the experiment
with textual and visual input, showing the actual
images from Fig. 2. This tripartite approach allows
us to investigate the impact of visual input on lan-
guage models, compare it to text-only models, and
explore the utility of different forms of visual and
textual representations across three conditions.

Importantly, we compare the model responses

with the results from the Richardson et al. (2001)
experiment. Initially, our experiments included
the analysis of left, right, up and down deci-
sions, which require an additional encoding of the
agent-patient relation through a circle-square de-
piction. This encoding diffused any correlations
and we identified that a restrictions to primary di-
rections (horizontal/vertical) by grouping up/down
and left/right options in the analysis yields a better
reflection of the the models correlations, since it
does not require an agent-patient encoding.

Prompting. Detailed lists of prompts for each
condition can be found in Appendix Table A5. We
observed a significant influence on the model’s re-
sponse based on the order in which the four options
were presented, whether as concept words, Uni-
code arrows or images. This is in-line with findings
by Pezeshkpour and Hruschka (2023). Regardless
of different option orders (e.g., ↑, ↓, ←, →), the
model most often favoured the first option (e.g., ↑)
as a default answer for most items. To mitigate this
effect and to acquire a distribution for each verb,
we conducted all 24 possible permutations of the
choices per word (4! permutations of 30 verbs).

VLMs require a label attached to each image,
which allows them to formulate a choice, e.g. “Im-
age A”. We observed that labels with an implicit
(alphabetical or numerical) order, e.g. A, B, C or
1, 2, 3, introduce a selection bias. Hence, we use
arbitrary labels (VMBR, WJZX, XQHL, YGPK).

Lastly, the GPT-4 models are a commercial prod-
uct that include safety guardrails in their system
prompt in order to avoid hate speech, abuse or
disinformation. Often, GPT-4 models would tend
to refuse to answer subjective questions. Conse-
quently, we modified instructions for GPT-4 in or-
der to force subjective model answers (Fig. A5).

5 Results

5.1 Experiment 1 — Gibbs et al. (1994)

Prompt Selection. Depending on the chosen
model, different prompt endings worked well in
making the respective LLM generate valid answers,
that is, a number between 1 and 7. After consider-
ing the output probabilities over a subset of 15 input
samples, we ended up using either prompt ending
“Only answer with the score:” or “I choose the
number”. In each case, the chosen prompt ending
guarantees that more than 99% of the probability
mass is allocated to the valid answers. For GPT-4,

6107



Exp. Image Schema LLaMA-2 GPT Avg.

13b-chat 70b-chat GPT-3base GPT-3inst GPT-4

Gibbsstand

VERTICALITY 0.26 0.41* N/A 0.53* 0.69* 0.47

BALANCE 0.27 0.38 -0.05 0.37 0.49* 0.29

CENTER–PERIPHERY 0.20 0.36 N/A 0.82* 0.56* 0.49

LINKAGE 0.24 -0.06 N/A 0.46* 0.61* 0.31

RESISTANCE 0.41* 0.48* N/A 0.71* 0.82* 0.60

Avg. 0.28 0.31 N/A 0.58 0.63

Gibbssyn

VERTICALITY 0.22 0.57* N/A 0.49* 0.70* 0.49

BALANCE 0.36 0.50* 0.17 0.50* 0.54* 0.41

CENTER–PERIPHERY 0.22 0.32 0.16 0.67* 0.67* 0.41

LINKAGE 0.61* 0.32 N/A 0.61* 0.24 0.45

RESISTANCE 0.30 0.54* N/A 0.61* 0.77* 0.56

Avg. 0.34 0.45 N/A 0.61 0.58

Beitelon

SUPPORT 0.19 0.32 N/A 0.48* 0.62* 0.40

PRESSURE 0.37* 0.72* N/A 0.79* 0.37* 0.56

CONSTRAINT 0.49* 0.37* N/A 0.60* 0.47* 0.48

COVERING -0.15 0.41* N/A 0.46* 0.68* 0.35

VISIBILITY 0.24 0.38* N/A 0.69* 0.62* 0.48

Avg. 0.23 0.44 N/A 0.60 0.55

Table 2: Spearman correlation: model answers and human answers. * for p < 0.05, bold = highest correlation

the log-probabilities are not accessible through the
API, which is why we reused the prompt ending
chosen for davinci-003. Based on the 15 tested
samples, we also assessed whether the models are
very sensitive to these scores in relation to the num-
ber they output. Fortunately, we found that the
scores are relatively stable and, on average, differ
only around half a point on the 7-point scale.

Answer Correlations. First, we compare the two
evaluation methods presented in Section 4.3, i.e.,
simply extracting the most likely answer or comput-
ing the average of all valid answers based on their
likelihood. Using davinci-003, we find that, on av-
erage, the thereby extracted answers are only 0.39
points apart. Thus, we decided to use the simpler
method of using the most likely answer when pre-
senting the results from hereinafter since it has the
advantage of incurring fewer computational costs.

Table 2 shows the Spearman correlations be-
tween human and model answers for the five differ-
ent image schemas. For 70% of the image schemas,

GPT-4 generates the answers most similar to those
of human participants, with GPT-3inst generating
the most similar answers for the remaining 30%.
On average, GPT-4 shows a correlation of 0.61,
which can be interpreted as moderate. In compari-
son, the LLaMA-2 models produce answers that are
more dissimilar to those of humans, as indicated by
some moderate correlations and many correlations
that are not statistically significant. The 13b vari-
ant achieves an average correlation of 0.31, and the
70b variant of 0.38. These lower correlations can
be partly attributed to the fact that the LLaMA-2
models tend to answer with either 4 or 7, largely ig-
noring other options on the scale. The only model
that is trained without reinforcement learning from
human feedback, GPT-3base, fails to generate in-
sightful answers, nearly always generating a 4.

Despite GPT-4 showing the highest correlations,
it still generates some answers strongly deviating
from human spatial intuitions. For example, GPT-
4 fails to relate a sense of VERTICALITY to the
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phrase “the barometer stands at 30 inches” (scoring
it 1 compared to the participant average of 4.71) or
BALANCE to the phrase “the clock stands on the
mantle” (1 compared to 4.46). Generally, it can be
observed that many of the outliers are caused when
the model gives too low ratings, i.e., 1 or 2.

5.2 Experiment 2 — Beitel et al. (2001)

Results are similar to the previous experiment, with
the answers of GPT-4 and GPT-3instruct showing the
highest similarity to those of human participants,
ranging between correlations of 0.4 and 0.8.

5.3 Experiment 3 — Richardson et al. (2001)

Prompt Selection. In contrast to the previous
experiments, the model output is not an ordinal
measure (1-7), but a nominal classification. Anal-
ogously, we use a subset of input samples along
with various different prompt endings to identify
that the chosen prompt ending guarantees that a
high probability mass is allocated to the labels.

Notable results can be reported for text and vi-
sion prompting. For text-based models, the addi-
tion of quotation marks around the label (e.g. 'up')
increases the probability of the model to choose a
valid label if prompted with a quote at the end. In
general, using a “Question:” and “Answer:” struc-
ture improves label likelihood. For VLMs we can-
not obtain the log-probabilities, therefore we follow
the examples provided by the model developers3.

Results of Primary Directionality. For all mod-
els and all conditions, we summarise the Spear-
man correlations in Table 3 (detailed results for
all choices are listed in the Appendix Tab. A6).
We can observe strong correlations (> 0.7) in the
textual and pseudo-visual conditions, but not in
the visual one. In the textual condition, all mod-
els show a significant correlation with the human
choices with respect to their choice of a primary
directionality (horizontal/vertical). Here, GPT-3inst
shows a strong correlation of 0.72. Correlations for
pseudo-visual conditions are higher except for one
outlier: GPT-3base, which has mostly selected the ↑
for all items irrespective of the order of choices (i.e.
order of arrows in the prompt). On the contrary,
GPT-4 has the highest correlation across all models
and conditions for the pseudo-visual task with 0.82
(horizontal) and 0.83 (vertical). In the visual con-
dition, both open-source versions of IDEFICS do

3https://huggingface.co/docs/
transformers/main/en/tasks/idefics

not show any correlation with the human responses.
GPT-4vision achieves a significant, but moderate
correlation with 0.57 (horizontal) and 0.56 (verti-
cal). On average, correlations between model and
human answers are higher in the pseudo-visual con-
dition despite the outlier of the GPT-3base model.

6 Discussion

We explored if LLMs capture human intuitions
about image schematic basis in language through
three psycholinguistic experiments comparing
LLMs and VLMs. Model responses often correlate
with people’s, especially in larger models, although
discrepancies exist for certain image schemas. Nev-
ertheless, the models reflect spatial primitive intu-
itions, potentially stemming from their ability to
model words, their contextual use, and their re-
lation to schema definitions. Another possibility
is that the original experiment papers, serving as
training data, might contribute to the models’ re-
production of observed patterns, although parsing
the original papers’ results effectively is unlikely.

At the same time, one might wonder why, in
some cases, the model answers are so far apart
from human answers. Besides the explanation of
the lack of embodied experience, one aspect to
consider is that the LLMs only had access to one
item at a time when rating stimuli. Thus, models
are unable to rate items relative to each other — a
strategy a human participant is likely to adopt. For
instance, given the two stimuli “stand in awe” and
“the clock stands on the mantle” separately, GPT-4
gives scores of 2 and 1 for the image schema BAL-
ANCE. People, on the other hand, tend to relate
BALANCE much more strongly to a clock stand-
ing on a mantle. This intuition is captured when
prompting the model with both stimuli at once, thus
allowing the model to provide relative scores; in
this case, the model provides a score of 2 for the
first phrase but a score of 4 for the clock on the
mantel, thus being much closer to human scores.
However, prompting the model to provide all an-
swers at once is currently not feasible, as described
in Section 4. This missing comparison between
items is also reflected in the fact that the models
tend to use the extremes of the scale, i.e., rating
items with 1 or 7. Another possible answer for the
differences is related to the partially small partic-
ipant pool used in the original experiments. The
three experiments recruited 27, 24, and 173 partic-
ipants. Therefore, the originally recorded human
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TEXT Llama-2-13bchat Llama-2-70bchat GPT-3base GPT-3inst GPT-4 Avg.

HORIZ. / VERT. 0.53* / 0.54* 0.59* / 0.59* 0.68* / 0.68* 0.72* / 0.72* 0.58* / 0.58* 0.57 / 0.59

PSEUDO-VISUAL Llama-2-13bchat Llama-2-70bchat GPT-3base GPT-3inst GPT-4 Avg.

HORIZ. / VERT. 0.68* / 0.79* 0.51* / 0.51* 0.17 / 0.16 0.68* / 0.68* 0.82* / 0.83* 0.61 / 0.66

Avg. 0.61 / 0.67 0.55 / 0.55 0.43 / 0.42 0.70 / 0.70 0.70 / 0.71

VISUAL IDEFICS-80bbase IDEFICS-80binst GPT-4vision Avg.

HORIZ. / VERT. 0.00 / 0.00 -0.01 / -0.01 0.57* / 0.56* 0.19 / 0.18

Table 3: Spearman correlation: model answers and human answers. * for p < 0.05, bold = highest correlation

Figure 3: Distribution of image schema choice for items “bombed” and “lifted” by humans (bold) and GPT-4 (light).

answers might not be very robust, and future exper-
iments should rerun similar setups not only with
novel stimuli but also with larger participant pools
to enable a more robust data set for comparison.

The overall weakest correlations are observed
for VLMs, particularly with open-source model
IDEFICS, displaying meaningless responses. For
instance, IDEFICS-80binst consistently selects the
left-arrow image, disregarding the item, image or-
der, or randomized labels. This failure is attributed
to VLMs being trained on natural images, unsuit-
able for interpreting the highly abstract line draw-
ings. Even GPT-4vision, despite showing moder-
ate correlations (0.56-0.57), occasionally provides
random answers, deviating from human consen-
sus (see Fig. 3). This discrepancy raises questions
about the models’ alignment with human intuitions.

7 Conclusion

This exploratory study is the first of its kind to re-
produce psycholinguistic experiments in order to
explore spatial schema intuitions. Moreover, it pro-
vides evidence that LLMs are able to reflect those
intuitions in different tasks and setups. The results
also point out that despite the duo-modality, VLMs
do not encode the spatial understanding as effec-
tively as their textual origins. Future research aims
to assess models using novel, collected stimuli, en-
suring no prior exposure during training. Our cur-

rent findings provide a foundation for formulating
precise, testable hypotheses in subsequent experi-
ments. Additionally, we would like to extend this
line of research to include a multilingual analysis.
In conclusion, our study not only sheds light on the
disparities between LLMs and human cognition but
also paves the way for new research perspectives
in understanding and refining language models. By
providing empirical evidence of these disparities,
we advocate for a deeper exploration into the limi-
tations of current models and the development of
novel approaches to bridge the gap between artifi-
cial intelligence and human intelligence.

8 Limitations

While our investigation into the applications of pro-
prietary models, such as GPT-3 and GPT-4, offers
valuable insights, it is essential to acknowledge the
inherent limitations associated with their use. The
opaque nature of the underlying mechanisms in
proprietary models poses a significant limitation.
The understanding is constrained by the lack of
detailed information on the architectural intricacies,
leaving us to make assumptions based on analogies
to open-source models. It is crucial to recognize
that variations in architecture, data, and parameters
between proprietary and open-source models
impact the generalizability of our findings.
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Furthermore, the original experiments have a
limited demographic, which we hereby report:
(Gibbs et al., 1994) with 27 undergraduate students,
U.S. university, native English speakers. (Beitel
et al., 2001) with 24 undergraduate students, U.S.
university, native English speakers. (Richardson
et al., 2001) with 173 undergraduate students, U.S.
university, no further information is provided.

Additionally, our reliance on psycholinguistic
data introduces notable limitations. Firstly, the
temporal aspect of the data is a concern, given its
age range of 30 to 23 years. Language evolves over
time, and the potential disparities between our data
and contemporary linguistic trends may affect the
applicability of our results. Therefore, we plan to
replicate the studies to gauge temporal robustness.
Moreover, we acknowledge that the reproduced
studies solely feature the English language and
multilingual analysis is subject of future work.

Secondly, the incorporation of original papers
into the training data of proprietary models, partic-
ularly the LLM and VLM, poses challenges. This
integration may introduce biases, potentially influ-
encing the outcomes of our experiments. Yet, the
original papers’ results are presented in formats
that are unlikely to have undergone parsing dur-
ing the training procedures, especially within the
context of the VLM, yet this remains hard to prove.

9 Considerations and Impact of the Work

Environmental Impact Overall, text generations
with the OpenAI API cost 25.85$. Text generations
with LLaMA models were run on two clusters. In
those experiments, we utilized 8 NVIDIA RTX
A6000 (48GB) GPUs for a 4-hour runtime, each
with a power consumption of 300 W, resulting in an
estimated total power consumption of 9.6 kWh and
a CO2 emission of approximately 3.984 kg. Addi-
tionally, we used 2 NVIDIA A100 (40GB) GPUs
for a 39-hour runtime, also consuming 300 W each,
contributing to a combined total power consump-
tion of 33 kWh and a CO2 emission of ~13.7 kg.
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Appendix

Image Schema Definition/Introduction

BALANCE Consider the notion of BALANCE. Balance refers to your sense of symmetry or
stability relative to some point within your body.

VERTICALITY Consider the notion of VERTICALITY. Verticality refers to the sense of an
extension along an up–down orientation.

CENTER–PERIPHERY Consider the notion of CENTER–PERIPHERY. Center–periphery refers to the
experience of some objects or events as central while surrounding objects and
events are peripheral or to the outside.

RESISTANCE Consider the notion of RESISTANCE. Resistance refers to the experience of
your body opposing some external force.

LINKAGE Consider the notion of LINKAGE. Linkage refers to the perception of a connec-
tion between objects or events.

Table A1: Image schema definitions provided in the prompts (Experiment 1)

Image Schema Definition/Introduction

SUPPORT In the case of the use of “on” in “the book is on the desk”: the SUPPORT relation
refers to the desk supporting the book.

PRESSURE In the case of the use of “on” in “the book is on the desk”: the PRESSURE relation
refers to the book exerting some pressure on the desk.

CONSTRAINT In the case of the use of “on” in “the book is on the desk”: the CONSTRAINT relation
refers to the desk constraining the possible motions of the book.

COVERING In the case of the use of “on” in “the book is on the desk”: the COVERING relation
refers to the book concealing the part of the desk that is under the book.

VISIBILITY In the case of the use of “on” in “the book is on the desk”: the VISIBILITY relation
refers to the book being visible on the desk.

Table A2: Image schema definitions provided in the prompts (Experiment 2)

6114



Stimuli with stand (Experiment 1) Stimuli with synonym (Experiment 1) Stimuli with on (Experiment 2)

stand at attention be at attention The family depends on the father
stand out in several sports be distinguished in several sports There is a physician on call
to stand firm to hold firm All books are on sale
don’t stand for such treatment don’t allow such treatment The band is on tour
to stand the test of time to pass the test of time The boat is on course
united we stand united we are strong The bus is on schedule
we stand on 30 years of experience we are backed up by 30 years experience Jeff is on time
let the issue stand let the issue remain as is Sam is on his way home
let the mixture stand leave the mixture undisturbed She puts the blame on my actions
get stood up for a date have a date with someone who didn’t show up He pulled a gun on me
he stands six-foot nine he measures six-foot nine Pat has been on sick leave
the clock stands on the mantle the clock is on the mantle There is a parade on Sunday
one-night stand one-night fling The program will be broadcast on CBS
to stand to profit to be in the position to make a profit Joan works on the committee
to stand in someone else’s shoes to be in someone else’s shoes Linda is very knowledgeable on this subject
on the witness stand on the witness platform The factory workers are on strike for a second day
stand in awe be in aw These cold nights are very hard on the homeless
the police told them to stand back the police told them to get back They ordered a court martial to be held on him
stand by your man support your man Pam is on a diet
the engine can’t stand the constant wear the engine can’t endure the constant wear The dog is on the leash
stand on shaky ground to be on shaky ground She is on the pill
to stand accused to be accused The ship is on the anchor
the house stands in the clearing the house is in the clearing The lunch is on George
the barometer stands at 30 inches the barometer is at 30 inches He lives on a pension
as the matter now stands as the matter now exists The boss is on my neck
the part stands for the whole the part represents the whole There are fifty nurses on the hospital staff
it stands to reason it conforms with reason There is ten cent interest on the dollar
they did nothing but stand around they did nothing but hang around The vase is on the table
to stand against great odds to face great odds The fish is on the surface
a standing ovation a roaring ovation The fly is on the ceiling
the boss always stands over me the boss always hovers over me She has a beautiful ring on her finger
he stands committed he remains committed The house rests on the foundation

They hung a picture on the wall
I have a cut on my finger
I have a rash on my back
The actor is on stage
He resides on the continent

Table A3: Items the LLMs had to rate in experiments 1 and 2

Action words (Experiment 3)

fled, pointed at, pulled, pushed, walked, hunted, impacted, perched, showed, smashed, bombed, flew,
floated, lifted, sank, argued with, gave to, offended, rushed, warned, owned, regretted, rested, tempted,
wanted, hoped, increased, obeyed, respected, succeeded

Table A4: List of action words from (Richardson et al., 2001). These words are used for Experiment 3.
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Condition Prompt

TEXTUAL Given the concepts: [DIRECTION WORDS]. For the concept that best repre-
sents the event '[ACTION WORD]', I would choose '

PSEUDO-VISUAL Given the event '[ACTION WORD]', which of the following arrows best repre-
sents this event: [UNICODE ARROWS]. A research participant would choose
the arrow:

VISUAL [Instruction: You are shown four images. Select one of the four images to answer
the question.]
Image [IMAGE LABEL]:[IMAGE]
Image [IMAGE LABEL]:[IMAGE]
Image [IMAGE LABEL]:[IMAGE]
Image [IMAGE LABEL]:[IMAGE]
Question: Which is the best image to describe the event '[ACTION WORD]'?
Answer: For '[ACTION WORD]' it is Image

GPT-4CHAT [TEXTUAL or PSEUDO-VISUAL PROMPT] You are a participant in a research
experiment. Even if the answer is subjective, provide it. Do not say it is subjective.

Table A5: Prompts of the three different modality-conditions used in Experiment 3. DIRECTION WORDS: 'up',
'down', 'left', 'right'. UNICODE ARROWS: ↑, ↓, ←, →. IMAGE LABEL: VMBR, WJZX, XQHL, YGPK. IMAGE
see Fig. 1 (without letter labels).

Condition Image Schema LLaMA-2 GPT Avg.

13b-chat 70b-chat GPT-3base GPT-3inst GPT-4

TEXTUAL

UP 0.49 0.66 0.67 0.63 0.66 0.62
DOWN 0.21 0.23 0.34 0.31 0.33 0.28
LEFT -0.12 0.25 0.23 0.37 0.24 0.24
RIGHT 0.57 0.56 0.53 0.56 0.41 0.53

PSEUDO-VISUAL

↑ 0.44 0.61 -0.09 0.49 0.70 0.43↓ 0.44 0.14 0.31 0.42 0.49 0.36← 0.18 0.29 0.03 0.31 0.18 0.20→ 0.31 0.43 N/A 0.56 0.69 0.50

Table A6: Spearman correlation between model answers and human answers. bold = highest correlation
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Image IDEFICS GPT Avg.

80b 80b-inst GPT-4

VISUAL

0.12 0.10 0.51 0.24

-0.12 0.01 0.27 0.05

-0.23 0.02 0.11 -0.03

0.49 0.30 0.53 0.44

Table A7: Spearman correlation between model answers and human answers. bold = highest correlation
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