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Abstract

Ensuring the trustworthiness of large language
models (LLMs) is crucial. Most studies con-
centrate on fully pre-trained LLMs to better un-
derstand and improve LLMs’ trustworthiness.
In this paper, to reveal the untapped potential
of pre-training, we pioneer the exploration of
LLMs’ trustworthiness during this period, fo-
cusing on five key dimensions: reliability, pri-
vacy, toxicity, fairness, and robustness. To be-
gin with, we apply linear probing to LLMs.
The high probing accuracy suggests that LLMs
in early pre-training can already distinguish
concepts in each trustworthiness dimension.
Therefore, to further uncover the hidden pos-
sibilities of pre-training, we extract steering
vectors from a LLM’s pre-training checkpoints
to enhance the LLM’s trustworthiness. Finally,
inspired by Choi et al. (2023) that mutual infor-
mation estimation is bounded by linear prob-
ing accuracy, we also probe LLMs with mu-
tual information to investigate the dynamics
of trustworthiness during pre-training. We are
the first to observe a similar two-phase phe-
nomenon: fitting and compression (Shwartz-
Ziv and Tishby, 2017). This research provides
an initial exploration of trustworthiness model-
ing during LLM pre-training, seeking to unveil
new insights and spur further developments in
the field. Our code is publicly accessible at
https://github.com/ChnQ/TracingLLM.

1 Introduction

As the capabilities of LLMs increase, their trust-
worthiness becomes a focal point of widespread
attention. Guided by global Al governance (Com-
mission, 2021b; Tabassi, 2023; Newman, 2023)
and trustworthy Al (Commission et al., 2019; Liu
et al., 2023b), trustworthy LLLMs have developed
some common categories, especially focusing on
five dimensions: reliability, toxicity, privacy, fair-
ness, and robustness (Wang et al., 2023a; Sun et al.,
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2024). Delving into LLMs across all these trust-
worthiness dimensions is essential for society.

To seek a deeper exploration of language mod-
els, one of the prominent methods is probing (Zhao
et al., 2023; Rauker et al., 2023), which involves
training a classifier on the model’s representations
to identify linguistic and semantic properties ac-
quired by the model (Tenney et al., 2019; Pimentel
et al., 2020; Li et al., 2021; Belinkov, 2022; Riduker
et al., 2023; Gurnee and Tegmark, 2023; Slobod-
kin et al., 2023). In particular, considering trust-
worthiness, recent attempts reveal that LLM repre-
sentations contain linearly separable patterns (Zou
et al., 2023; Li et al., 2023a; Azaria and Mitchell,
2023). Unfortunately, existing research has largely
focused on fully pre-trained LLMs (Touvron et al.,
2023a), including those aligned (Ouyang et al.,
2022) through Supervised Fine-Tuning (SFT) or
Reinforcement Learning from Human Feedback
(RLHF). This perspective neglects the pre-training
period in the context of LLM trustworthiness. To
our best knowledge, two aspects still remain myste-
rious: 1) how LLMs dynamically encode trustwor-
thiness during pre-training, and 2) how to harness
the pre-training period for more trustworthy LLMs.

To address the above issues, we start by ana-
lyzing the pre-training dynamics about the trust-
worthiness of LLM. More specifically, we use lin-
ear probing (Alain and Bengio, 2016; Belinkov,
2022) across the 360 pre-training checkpoints from
LLM360 (Liu et al., 2023e) to explore five dimen-
sions of trustworthiness: reliability, toxicity, pri-
vacy, fairness, and robustness. Our probing results
suggest that after the early pre-training period, mid-
dle layer representations of LLMs have already
developed linearly separable patterns about trust-
worthiness. Such patterns are capable of discern-
ing opposing concepts within each trustworthiness
dimension (e.g., discriminating true and false state-
ments). Building upon the above observations, we
raise an intriguing question: can the pre-training
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Figure 1: Overview of tracing trustworthiness dynamics during pre-training. 1) Linear probing identifies linearly
separable opposing concepts during early pre-training; 2) Steering vectors are developed to enhance LLMs’
trustworthiness; 3) Probing LLMs with mutual information reveals a two-phase trend regarding trustworthiness.

period of an LLM be utilized to enhance its trust-
worthiness after pre-training?

We provide insightful answers to the above
question by exploring the potential of pre-training
checkpoints for better trustworthiness. Notably,
recent advancements have introduced “activation
intervention,” a novel suite of techniques for di-
recting language models towards enhanced LLMs’
performance by adjusting activations during infer-
ence (Turner et al., 2023; Li et al., 2023a; Rimsky
et al., 2023; Wang and Shu, 2023). Inspired by
these works and the observation of linearly separa-
ble patterns in trustworthiness concepts during the
LLM’s pre-training period, we make preliminary
attempts to extract steering vectors from LLM’s
checkpoints during pre-training, employing them
to intervene in the SFT model for trustworthiness
enhancement. Extensive experiments reveal that
these steering vectors extracted from pre-training
checkpoints could promisingly enhance the SFT
model’s trustworthiness. More crucially, these
steering vectors achieve a trustworthiness perfor-
mance that matches or promisingly exceeds that
of vectors extracted directly from the SFT model
itself. Our findings introduce novel insights into
using pre-training checkpoints for LLM alignment,
revealing untapped potential and offering a fresh
perspective on enhancing LLM trustworthiness.

Finally, motivated by the theoretical result (Choi
et al., 2023) that mutual information estimation
is bounded by linear probing accuracy, we take
an alternative view by probing LLMs with mutual
information during pre-training. To our best knowl-

edge, we are the first to notice that during the pre-
training period of LLMs, there exist two distinct
phases regarding trustworthiness: fitting and com-
pression, which is in line with previous research on
traditional DNNs (Shwartz-Ziv and Tishby, 2017;
Noshad et al., 2019).

2 Probing LLLM Pre-training Dynamics in
Trustworthiness

In this section, we probe LLMs to analyze the dy-
namics of pre-training about trustworthiness. To
begin with, we describe the datasets for each trust-
worthiness dimension in Section 2.1. Then, we in-
troduce the experimental setup in Section 2.2. The
probing results in Section 2.3 suggest that middle-
layer LLM representations from early pre-training
have already exhibited linearly separable patterns.

2.1 Research Dimensions and Datasets of
Truthworthy LLM

Existing research in Al governance and trustworthy
Al provides guidance for establishing comprehen-
sive and reliable dimensions of trustworthy LLMs
in this study. Governments (Tabassi, 2023; Com-
mission et al., 2019), organizations (Commission,
2021b; Foundation, 2023), and research institu-
tions (Newman, 2023; Liu et al., 2023d) world-
wide have proposed classifications from various
perspectives such as the Al lifecycle, the accept-
ability of Al risk, considering Al governance at
different levels including individual, institutional,
and societal. Among these, categories stemming
from the technological aspect offer guidance for
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Figure 2: The linear probe accuracy on five trustworthiness dimensions for the first 80 pre-training checkpoints.
For each checkpoint, we report the results from layers {0, 6, 12, 18, 24, 30}. The results from all layers of the 360

checkpoints are in Appendix D.

trustworthy Al (Liu et al., 2023b), such as robust-
ness, fairness, accountability, transparency, etc.
Guided by these principles, various studies clas-
sify trustworthy LLMs from different perspectives,
yet some dimensions consistently emerge across
these works (Liu et al., 2023d; Wang et al., 2023a;
Sun et al., 2024). Therefore, we delve into five
of these key dimensions: reliability, toxicity, pri-
vacy, fairness, and robustness, employing canonical
datasets for each to support our study.

Reliability. TruthfulQA (Lin et al., 2022), a bench-
mark dataset for evaluating LLMs’ truthfulness
discernment (Touvron et al., 2023b), includes 817
questions across 38 categories aimed at assessing
the veracity of model-generated answers.

Toxicity. ToxiGen (Hartvigsen et al., 2022) is a
broad dataset featuring implicit toxic and non-toxic
statements across 13 minority demographics, en-
abling toxicity modeling assessment in LLMs.

Privacy. We choose the tier 2 tasks from Con-
fAlde (Mireshghallah et al., 2023) to assess LLMs’
privacy awareness, with ConfAlde targeting con-
textual privacy and identifying vulnerabilities in
LLMs’ privacy reasoning.

Fairness. We use StereoSet (Nadeem et al., 2021)
to measure the stereotype modeling ability, i.e.,
whether LLMs capture stereotypical biases about
race, religion, profession, and gender.

Robustness. We introduce typos by randomly
changing the case of 5% letters in each sentence
from SST-2 (Socher et al., 2013) from GLUE
benchmark (Wang et al., 2018). The original sen-
tence, as well as the corresponding perturbed sen-
tence, are synthesized into a new dataset.

For each dataset above, we assign a label to ev-
ery sentence based on whether it is trustworthy, i.e.,
truthful, toxic, privacy-aware, fair, and perturbed.
We maintain a balanced dataset for each trustwor-
thiness dimension. Further details are available in
Appendix B.

2.2 Experimental Setup

The models under study. We investigate the
pre-training period of LL.Ms through the 360 pre-
training checkpoints provided by LLM360 (Liu
et al., 2023e). Simultaneously, they also release an
instruction fine-tuned conversational model named
AmberChat and an aligned conversational model
named AmberSafe. The models mentioned are all
of the 7B parameter scale.

Activation dataset. Given each original dataset
congisting of sentences and the corresponding class
labels, we feed the sentence into LLMs and collect
the corresponding activations of the last token (Li
et al., 2023a; Gurnee and Tegmark, 2023) for each
layer. The activation dataset D = {(x;,y;)} Y is
constructed with the activations x; € R and the
corresponding binary labels y; € {0, 1}.

Linear probing. We employ the linear probing
method (Alain and Bengio, 2016; Tenney et al.,
2019; Pimentel et al., 2020; Li et al., 2021; Be-
linkov, 2022) to analyze the activation datasets.
For each trustworthiness dataset, every layer of
each pre-training checkpoint within LLM360 pro-
duces an activation dataset. Therefore, there are
360 x 32 activation datasets for all 32 layers across
360 checkpoints. We randomly split each activa-
tion dataset into training and test sets by 4:1, and
fit a binary linear classifier on the training set. We
train a classifier for each activation dataset, which
yields 360 x 32 classifiers. We report the accuracy
on the test set.

2.3 Probing Results

Middle layer representations exhibit linearly
separable patterns. For each checkpoint during
pre-training, Figure 2 shows that the accuracy is
relatively higher for middle layers (the 12-th and
18-th layers). The full results in Appendix D also
support such characteristic of middle layers (about
the 18-th layer). It inspires us that the represen-
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Figure 3: A schematic illustration of (a) constructing a
steering vector from the pre-training checkpoints and
(b) intervening in the SFT model towards more trust-
worthiness by employing the steering vector.

tations from middle layers exhibit rich linear en-
coded information to distinguish those different
concepts. Also, the observation meets with other
literature considering linear probing in the era of
LLMs (Li et al., 2023a; Zou et al., 2023; Burns
et al., 2022), which also empirically validates the
capability of middle layers. Moreover, a similar
phenomenon has also been found in earlier linear
probing literature for BERT (Hewitt and Manning,
2019; Van Aken et al., 2019), which may implic-
itly suggest some similarity between LLMs and
relatively small pre-trained models.

The potential of pre-training checkpoints. Fig-
ure 2 shows that for each layer over the whole
pre-training period, the probing accuracy increases
during the initial pre-training phase, followed by
fluctuation throughout the remaining pre-training
period. The trend enlightens us that models dur-
ing the early stages of pre-training can already en-
code these different concepts well in a simple linear
manner. Such trustworthiness concepts are linearly
represented in the latent space of LLMs, which sup-
ports linear representation hypothesis (Park et al.,
2023) and other empirical study (Zou et al., 2023).

3 Controlling Trustworthiness via the
Steering Vectors from Pre-training
Checkpoints

In this section, we aim to unravel the potential
of checkpoints from the pre-training period to as-
sist in enhancing the trustworthiness performance
of the SFT model (i.e., AmberChat), based on
activation intervention techniques (Turner et al.,
2023; Li et al., 2023a; Rimsky et al., 2023). We
first outline the method of activation interven-
tion on the SFT model using the steering vectors

extracted from pre-training checkpoints in Sec-
tion 3.1. Next, we introduce the experimental setup
in Section 3.2. We then explore how steering vec-
tors extracted from pre-training checkpoints en-
hance performance across distinct dimensions of
trustworthiness in Section 3.3, presenting a series
of findings and observations. Finally, we exam-
ine using the same techniques to boost the overall
trustworthiness performance of the SFT model in
Section 3.4.

3.1 Activation Intervention

Initially, we partition the training dataset into two
distinct collections based on the labels, Z+ and 7,
representing positive instructions and negative in-
structions, respectively. Following this partition,
we collect the activations of LLM w.r.t. these in-
structions, denoted by AL(Z*) and AL(Z~), where
AL denotes the function that extracts the activa-
tions from the c-th checkpoint at [-th layer. Subse-
quently, we compute the centroid of the activations
from each set and take their difference to obtain
the “mass mean vector,” (Li et al., 2023a; Marks
and Tegmark, 2023) which serves as our steering
vector

vl = AL(TT) — AL(Z"). (1)

Finally, we employ the steering vector to intervene
in the model’s activations, as illustrated below

h' = bl + avl, )

where h'! denotes representation at the I-th layer
of the model, h! denotes the corresponding rep-
resentation after the intervention; « is a rescale
hyperparameter that indicates the strength of the
intervention. Figure 3 illustrates the schematic di-
agram of the intervention method. Note that the
intervention described by Eq. (2) occurs at each
step during the autoregressive inference.

3.2 Experimental Setup

Evaluation on Trustworthiness Datasets. For
TruthfulQA, we fine-tune two GPT-3 models
as “GPT-judge” and “GPT-info” guided by (Lin
et al.,, 2022), to predict the truthfulness and
informativeness of the generated outputs from
LLMs, respectively. For ToxiGen, we fol-
low (Touvron et al., 2023b), employing fine-tuned
RoBERTa (Hartvigsen et al., 2022) to evaluate the
toxicity of contents generated by LLMs, and finally
reporting the proportion of generated text classified
as toxic. For ConfAlde, StereoSet, and perturbed
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Table 1: Results of activation intervention on TruthfulQA, general ability benchmarks, and the other trustworthiness
benchmarks. The best results are highlighted in bold, and the runner-ups are underlined. V¢xp: 179 and Y Amperchat
represent AmberChat intervened by steering vectors derived from ckpt_179 and AmberChat, respectively.

Method Truthful QA Metrics General Abilities Trustworthiness Abilities
Trutht Infot Truth * Infot | ARCT MMLUT MathQAT RACE? | ToxiGen| ConfAldet StereoSett SST-21
Baseline ~ AmberChat ‘ 0.3931 0.9484 0.3728 ‘ 0.6006 0.3659 0.2593  0.3904 ‘ 0.0920 0.5055 0.5379  0.5757
Fine-tuned Full ‘0.4229 0.9602 0.4060 ‘0.4315 0.2355 0.2499  0.3187 ‘ 0.0020 0.5294 0.5031  0.5757
Lora ‘0.3221 0.9329 0.3004 ‘ 0.5758 0.3314 0.2620  0.3742 ‘ 0.0080 0.6411 0.4980  0.5734
Activation Vekpt 179 | 07322 09337 0.6837 | 0.5834 03358 02422  0.3876 | 0.0360  0.6181 0.5000  0.5229
Intervention v amperchat | 0.6978 0.9484  0.6618 | 0.5829 03388  0.2482 03943 | 0.0320 05192 04580  0.5367
TruthfulQA, Pearson Corr=0.7161 StereoSet, Pearson Corr=0.6493
0s . :
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Figure 4: The trends of toxic ratio and PPL as the inter-
vention strength « increases.

SST-2, with the adaptation of converting possible
multiple-choice questions into binary classification
tasks, we prompt LLMs to generate choices and
then evaluate the accuracy. Please refer to Ap-
pendix C for more details.

Details of Steering Vectors Construction. For
the activation dataset, we consider it from two per-
spectives: 1) For controlling the performance of
individual subcategories under trustworthiness in
Section 3.3, we utilize the corresponding datasets
described in Section 2.1, where the steering vectors
are constructed from the development set and no
data leakage occurs during the evaluation; 2) For
controlling the overall trustworthiness performance
in Section 3.4, we employ PKU-SafeRLHF-10K,
a dataset proposed in (Ji et al., 2023) for RLHF
training. For the checkpoint, we simply select the
checkpoint that is halfway through the pre-training
process for experiments, namely the checkpoint
ckpt_179, which has already learned linearly sepa-
rable patterns (i.e., performs a high probing accu-
racy as shown in Figure 2). Regarding the selection
of layer and «, we first narrow down the hyper-
parameter range based on Perplexity (PPL), and

https://huggingface.co/datasets/PKU-Alignment/PKU-
SafeRLHF-10K

ACC and trustworthiness performance.

then empirically determine the optimal parameters
using a coarse-grained grid search (Li et al., 2023a;
Turner et al., 2023; Wang and Shu, 2023).

3.3 Intervention to Enhance Distinct
Trustworthiness Dimensions

In this subsection, we present several key obser-
vations that illuminate the intricate dynamics of
steering vectors in modulating the trustworthiness
of the SFT model.

Observation 1. Steering vectors derived from pre-
training checkpoints could significantly enhance
the SFT model’s performance in Truthful QA, Toxi-
Gen, and StereoSet. For Truthful QA and StereoSet,
clear performance enhancement can be observed
in Table 1 and Table 2, respectively. Regarding
ToxiGen, when the strength of intervention « is set
to 0.5, there is already a reduction of approximately
50% in the rate of toxic content generation, with
a negligible perturbation in perplexity. Besides,
sampling checkpoints from various stages of the
pre-training period, we observe a relatively strong
linear correlation between the trustworthiness per-
formance and the probing accuracy of pre-training
checkpoints in Figure 5. This suggests that, once
the model has developed linearly separable patterns
(represents a high probing accuracy) w.r.t. the trust-
worthiness concepts during the pre-training pro-
cess, the constructed steering vector may have the
potential to positively intervene in the SFT model’s
trustworthiness.
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Table 2: Results of activation intervention on StereoSet, general ability benchmarks, and the other trustworthiness
benchmarks. Format and significance markers keep consistent with Table 1.

Method Fairness Metric General Abilities Trustworthiness Abilities
StereoSet 1 ARCT MMLUT MathQAT RACE?T | TruthfulQAT ToxiGen]| ConfAldet SST-21
Baselines AmberChat | 0.5379 | 0.6006 03659 02593 03904 |  0.3728 0.0920 0.5055  0.5757
Activation  Uekpt 170 | 05799 | 0.5986  0.3524 02499 03914 |  0.2851 0.0600 05055 0.5390
Intervention v gpperchar | 0.5830 | 05958 03508 02519 03952 | 03352 0.0820 0.5055  0.5528
TruthfulA bles 1 and 2. Additionally, we also observe the
R;ggg ToxiGen 1mpact of the intervention strength « F)n the g.ener-
/895 99.20 ative performance of the model. Taking ToxiGen
/ 90.80 . . . .
378 as an example, Figure 4 illustrates the relationship
MathQA StereoSet between the proportion of t9x1c contept generaFed
26,0 2436 80000/ 3 by the model and perplexity as the intervention
‘ | strength « increases. If we continuously increase
the intervention strength, although the proportion
. 50.55 - . . .
34.82
1) -~ of toxicity may contmue‘to de?hne, the perple':mty
MMLU /ConfAlde of the model correspondingly increases, manifest-
N\ /
5488~ 5252 ing as a tendency to produce meaningless repetitive
60.06 — 57.57 3 :
e CeTon content or gibberish.
AmberSafe AmberChat + Veypt 179

AmberChat AmberChat + Vagmperchat

Figure 6: Performance of various models across four
general capabilities and five trustworthiness capabilities.
AmberChat and AmberSafe are fine-tuned models from
LLM360. verpt 179 and U AmpberChar TEPresent steering
vectors from ckpt_179 and AmberChat, respectively.

Observation 2. Steering vectors derived from
pre-training checkpoints and SFT model perform
broadly comparable performance yet exhibit vari-
ations across various tasks. Table 1 shows that,
compared to the steering vector extracted from Am-
berChat, the steering vector from the pre-training
checkpoint (ckpt_179) guides the SFT model to
exhibit more “truthfulness.” Moreover, it performs
slightly better on ARC, ConfAlde, and StereoSet,
while the opposite is true for other tasks. It is
important to note that we only selected a single
checkpoint from the pre-training process for exper-
imentation, without undergoing fine-grained hyper-
parameter selection. Therefore, we believe these
pre-training checkpoints hold significant untapped
potential for aiding LLMs toward trustworthiness.

Observation 3. Intervening in the model slightly
impairs its general capabilities as a marginal cost
for trustworthiness enhancement. We evaluate the
model’s performance on four common benchmarks
for general capabilities, where a trend of slight per-
formance decline is observed after the intervention,
as indicated in the “General Abilities” part of Ta-

Observation 4. When the quantity and quality of
fine-tuning data are limited, activation interven-
tion by steering vectors may be a more effective
approach for the current task. We fine-tune the
SFT model with positive QA pairs from the train-
ing set using both full-parameter fine-tuning and
LoRA fine-tuning as a comparison, given that data
in Truthful QA naturally exists in the form of QA
pairs. As shown in Table 1, the model fine-tuned
with all parameters exhibits only minor improve-
ments on Truthful QA while experiencing a signif-
icant decline in general capabilities. Meanwhile,
the fine-tuned model by LoRA demonstrates a no-
ticeable decrease in TruthfulQA, though somewhat
preserving performance in general capabilities.

Observation 5. Trade-offs exist between different
dimensions of trustworthiness. For instance, as
seen in Table 1, while steering vector intervention
enhances the model’s truthfulness performance, it
also compromises performance on fairness and ro-
bustness. Previous research has witnessed a trade-
off between trustworthiness dimensions. For ex-
ample, privacy-fairness trade-off (Mangold et al.,
2023), robustness-privacy trade-off (Hayes, 2020),
and robustness-fairness trade-off (Xu et al., 2021).
Similar to (Liang et al., 2022), we also suggest that
the connection between different trustworthiness
dimensions relies on their definitions. Many pairs
of trustworthiness in LLMs remain unstudied, and
we advocate for future research in this area.
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3.4 Intervention to Enhance Universal
Trustworthiness

In this subsection, we aim to leverage steering vec-
tors to comprehensively enhance the model’s trust-
worthiness. Unlike Section 3.3 where steering vec-
tors are constructed using datasets from different
dimensions of trustworthiness, here we employ a
general dataset for alignment (described in Sec-
tion 3.2), which may encompass data across multi-
ple dimensions of trustworthiness.

Trustworthiness enhancement with steering vec-
tors from universal alignment datasets. Fig-
ure 6 suggests that intervening in the SFT model
with steering vectors can influence its trustwor-
thiness, showing notable improvements in certain
dimensions (which may potentially linked to the
characteristics of the datasets employed), with only
marginal losses (in ARC, MMLU) or even marginal
gains (in MathQA, RACE) in general capabilities.
Moreover, steering vectors derived from check-
points during the pre-training period demonstrate
superior effectiveness in enhancing trustworthi-
ness. For AmberSafe, which employs a substantial
cost for alignment, we note its overall best perfor-
mance (as seen in the blue line), particularly hold-
ing a significant advantage in privacy and Truth-
fulQA. However, it’s noteworthy that merely using
10k alignment data to construct steering vectors
from a pre-training checkpoint for intervening in
the SFT model brings about impressive improve-
ments across various dimensions of trustworthi-
ness, which reveals the untapped potential of pre-
training checkpoints in aiding the model towards
better trustworthiness.

4 Probing LLLMs using Mutual
Information

Recently, Choi et al. (2023) shows that mutual in-
formation estimation is bounded by linear probing
accuracy. Also, the mutual information can be used
to investigate the dynamics of neural networks dur-
ing training (Shwartz-Ziv and Tishby, 2017; Saxe
et al., 2019; Goldfeld and Polyanskiy, 2020; Pi-
mentel et al., 2020; Geiger, 2021; Lorenzen et al.,
2021; Zhou et al., 2023b). Therefore, motivated by
the above, we adopt a different perspective by prob-
ing LLM checkpoints through the lens of mutual
information, particularly focusing on the aforemen-
tioned trustworthiness dimensions.

We explain our probing strategy and experimen-
tal setup in Section 4.1 and Section 4.2, respec-
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Figure 7: The dynamics of I(7T, X) and I(T,Y) for
Truthful QA across various layers during pre-training. A
similar trend in other datasets is in Appendix E.2.

tively. The empirical observations are shown and
analyzed in Section 4.3. In particular, we find that
there is a phase transition from “fitting” to “com-
pression” during the pre-training period of LLMs,
which is consistent with previous studies on tra-
ditional DNNs (Shwartz-Ziv and Tishby, 2017;
Noshad et al., 2019).

4.1 Probing Strategy

The mutual information between two continuous
random variables, X and Y, is defined as

B 2 1o p(z,y) .
1) = [ f v 8 p@ply) Y

It is a measure of the independence between two
variables. Given the dataset of trustworthiness in
Section 2.1, we represent each dataset using the
first layer activation X, and Y denotes the corre-
sponding label vector. Additionally, T' represents
the feature matrix from the target layer of an LLM.
Thus, we probe LLMs with I(7, X) and I(7,Y")
during pre-training.

In principle, our strategy differs from Shwartz-
Ziv and Tishby (2017) in three ways. Firstly, we
do not use the pre-training dataset of LLMs. In-
stead, we carefully design activation datasets to
represent specified trustworthiness properties. Sec-
ondly, we use the first layer representation to in-
dicate the original dataset because they contains
more information than representations from other
layers (Cover, 1999; Tishby and Zaslavsky, 2015;
Shwartz-Ziv and Tishby, 2017). Finally, we fol-
low Ma et al. (2020) to use HSIC (Gretton et al.,
2005) as an estimator of mutual information be-
cause it is challenging to accurately compute in
high dimensions (Kraskov et al., 2004; Alemi et al.,
2016; Poole et al., 2019).

4.2 Experimental Setup

Following the official code and reported hyperpa-
rameters from Liu et al. (2023e), we initiate pre-
training from a randomly initialized model using
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the corpus for the first checkpoint, and save more
granular checkpoints to observe finer phenomena.
More discussions are available in Appendix C.

4.3 The Dynamics of Pre-training

The trend of mutual information. Figure 7
shows that (7T, X) generally exhibits an initial
increase followed by a decrease across all the con-
sidered layers during pre-training. And I(7,Y)
continues to show a consistent upward trend. Note
that middle layer representations exhibit a larger
I(T,Y) compared to that from other layers. It
suggests that middle-layer representations encode
more information about the opposing concepts of
trustworthiness.

From “fitting” to “compression.”” Overall, con-
sidering I(7', X)) and I(T,Y) collectively, it be-
comes evident that there are two phases during
pre-training. In the first and shorter phase, both
I(T,X) and I(T,Y) increase. While in the sec-
ond and much longer phase, I(T, X) decreases
and I(7,Y") continues to increase. Although our
strategy is completely different from Shwartz-Ziv
and Tishby (2017), the two-phase phenomenon ex-
hibits similarities. At the beginning of pre-training,
the randomly initialized LLM fails to preserve
the relevant information, so I(7,X) ~ 0 and
I(T,Y) ~ 0. Next, as LLM gradually fits the
pre-training dataset, its abilities in language un-
derstanding and concept modeling enhance, con-
tributing to increases in both I(7", X') and I(T,Y').
As pre-training progresses, LLM learns to better
compress the irrelevant information in the dataset
and preserve more label-related information (i.e.,
trustworthiness), leading to a reduction in (T, X)
and an improvement in I(7,Y"). Overall, we are at
the forefront of investigating the phase transition
from “fitting” to “compression” in the context of
trustworthiness during pre-training. We hope that
our insights will motivate further exploration of
LLMs’ pre-training dynamics.

5 Related Work

Probing LLM representations. Probing clas-
sifiers (Alain and Bengio, 2016; Tenney et al.,
2019; Pimentel et al., 2020; Li et al., 2021; Be-
linkov, 2022; Rauker et al., 2023) is one of the
prominent methods for identifying certain proper-
ties acquired by the language model (Zhao et al.,
2023). Researchers probe LLMs and discover
linear separable patterns within LL.Ms, including

space and time (Gurnee and Tegmark, 2023), game
states (Nanda et al., 2023), answerability (Slobod-
kin et al., 2023), and some counterfactual pairs of
concepts (Park et al., 2023). It is also observed that
LLM representations contain linearly separable pat-
terns about trustworthiness, such as truthfulness (Li
et al., 2023a; Marks and Tegmark, 2023; Zou et al.,
2023). However, they do not probe LLLM repre-
sentations during pre-training. In this work, we
consider the whole pre-training period of LLMs
and probe their presentations dynamically.

Steering vectors for trustworthy LLMs. Nu-
merous intriguing approaches have been proposed
to investigate the trustworthiness of LLMs (Ouyang
et al., 2022; Rafailov et al., 2024; Zhang et al.,
2024a; Li et al., 2024; Ren et al., 2024b). Specif-
ically, some promising approaches explore the la-
tent space, utilizing representations to improve
model performance (Liu et al., 2023c; Jorgensen
et al., 2023). Various studies investigate activa-
tion engineering within LLMs from both theoreti-
cal and practical perspectives, affecting model per-
formance by manipulating the model’s representa-
tional space (Park et al., 2023; Turner et al., 2023;
Zou et al., 2023). Furthermore, Wang and Shu
(2023), Rimsky et al. (2023) and Wang et al. (2024)
construct directional vectors to explore the model’s
safety and alignment, with the goal of making mod-
els helpful, honest, and harmless. However, there
has been no investigation into how representations
change during the pre-training phase of LLMs. In
this paper, we explore and leverage representations
during this phase, paving the way for new research
avenues in activation engineering.

Understanding the training process of DNNs.
Many empirical studies observe that DNNs tend to
learn simple concepts during the learning process
(Arpit et al., 2017; Liu et al., 2021; Mangalam and
Prabhu, 2019). Furthermore, Xu et al. (2019), Liu
et al. (2023a), Zhou et al. (2024), and Tian et al.
(2023) theoretically explain the learning preference
of DNNs. Meanwhile, many researchers focus on
analyzing the utility of fine-tuning for language
models (Merchant et al., 2020; Hao et al., 2020;
Aghajanyan et al., 2021; Zhou and Srikumar, 2022;
Mosbach et al., 2020) and attempt to understand the
in-context learning (Ren et al., 2024a). However,
few previous studies investigate how trustworthi-
ness is learned by LLMs during pre-training. In this
paper, we take a closer look at the learning dynamic
of trustworthiness within LLLMs’ representations.
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6 Discussion

As the capabilities of LLMs have increased, con-
ventional alignment techniques that rely on “hu-
man feedback” (like RLHF) may no longer work
when trying to align models that are more power-
ful than humans (Burns et al., 2023; Yuan et al.,
2024). To address this challenge, research insti-
tutions are actively exploring new solutions. For
example, OpenAl introduces “superalignment”
and proposes a “weak-to-strong supervision” ap-
proach (Burns et al., 2023). Also, Meta proposes
a “self-reward” mechanism (Yuan et al., 2024). At
the same time, more and more research focuses on
the emerging field of “self-alignment” (Sun et al.,
2023; Li et al., 2023b). In this paper, we provide
a deeper understanding of the pre-training dynam-
ics and successfully align the SFT model using its
own pre-training checkpoints. We believe that the
pre-training period is worth being explored and it
may be a promising source for self-alignment.

On the other hand, to make LLMs trustworthy,
recent conventional alignment methods, such as
SFT and RLHF, incur high costs due to exhaustive
human annotations (Wang et al., 2022; Honovich
et al., 2022; Sun et al., 2023) and time-consuming
instruction tuning (Zhou et al., 2023a; Chen et al.,
2023a,b). In this paper, we delve into the pre-
training period to enhance trustworthiness without
collecting data or tuning the model. We expect
more alignment approaches inspired by the pre-
training phase (like Korbak et al. (2023)) and to
circumvent potential alignment costs in the future.

7 Conclusion

In this work, we take an initial and illuminating
step towards elucidating the conceptual understand-
ing of trustworthiness during pre-training. Firstly,
by linear probing LLMs across reliability, privacy,
toxicity, fairness, and robustness, we investigate the
ability of LLMs representations to discern oppos-
ing concepts within each trustworthiness dimension
during the whole pre-training period. Furthermore,
motivated by the probing results, we conduct exten-
sive experiments to reveal the potential of utilizing
representations from LLMs during its previous pre-
training period to enhance LLMs’ own trustworthi-
ness. Finally, we use mutual information to probe
LLMs during pre-training and reveal some simi-
larities in the learning mechanism between LLMs

https://openai.com/index/introducing-superalignment/

and traditional DNNs. Taken collectively, the em-
pirical study presented in this work can not only
justify the potential to improve the trustworthiness
of LLMs using their own pre-training checkpoints
but may also lead to a better understanding of the
dynamics of LLM representations, especially the
trustworthiness-related concepts.
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Limitations

There are several limitations of this work. Firstly,
we only focus on five essential trustworthiness di-
mensions and do not encompass all the dimensions,
such as those that appeared in (Commission et al.,
2019; Liu et al., 2023b). A wide variety of defi-
nitions for each trustworthiness dimension, as dis-
cussed by (Wang et al., 2023a; Sun et al., 2024), are
not completely covered in our analysis. Secondly,
due to the absence of publicly available larger and
more complex LLMs (such as 13B or others) that
release pre-training period checkpoints, we are lim-
ited to conducting experiments on 7B series models
(we also provide some experimental results on an-
other 7B-size model named OLMo (Groeneveld
et al., 2024) in Appendix.F). Finally, for evaluation
of TruthfulQA, the precision of evaluation results
depends on the performance of the “GPT-judge”
evaluator. And for multiple-choice evaluation, the
evaluation results may rely on the instruction fol-
lowing ability of LLMs.
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Appendix
A Guidelines for Trustworthy LL.Ms

The surge of LLMs brings significant concerns regarding their trustworthiness, especially considering the
security risks inherent in the models themselves and the agents based on these models (Wang and Shu,
2023; Ji et al., 2023; Newman, 2023; Tabassi, 2023; Li et al., 2024; Zhang et al., 2024a), which pertains to
the aspects and extent to which humans can trust Al. Existing research in Al governance and trustworthy
LLMs provides guidance for establishing comprehensive and reliable dimensions of trustworthy LLMs in
this study.

Governments (Tabassi, 2023; Commission et al., 2019), organizations (Commission, 2021b; Foundation,
2023), and research institutions (Newman, 2023; Liu et al., 2023d) worldwide have proposed classifications
from various perspectives such as the Al lifecycle, the acceptability of Al risk, considering Al governance
at different levels including individual, institutional, and societal. Among these, categories stemming
from the technological aspect offer guidance for trustworthy Al (Liu et al., 2023b), such as robustness,
fairness, accountability, transparency, etc.

By integrating Al governance principles into trustworthy LLMs, not only aids in developing more cred-
ible LLMs but also promotes the sustainable and responsible application of Al technology. Concurrently,
taking into account the categorizations of trustworthy LLMs (Liu et al., 2023d; Wang et al., 2023a) and
prioritizing both adherence to principles and addressing practical challenges faced by LLMs, six primary
categories have been identified: robustness, reliability, fairness, toxicity, privacy, and interpretability. In
this study, interpretability is employed as a tool to explore the other five concepts of trustworthiness.

B Datasets of Truthworthy LLMs

Considering five aspects of trustworthiness: reliability, toxicity, privacy, fairness, and robustness, we
carefully design five binary NLP datasets. These datasets are tailored from independent lines of trust-
worthy Al research, with labels indicating whether a sentence satisfies each aforementioned aspect of
trustworthiness. In other words, the label indicates whether the corresponding sentence contains untrue
(or unfair, toxic, privacy-leakage, and perturbed) information.

The datasets considered below are balanced, i.e., the number of positive and negative numbers are
almost the same. In other words, some special cases, for example, the random classifier on these datasets,
will achieve an accuracy of around 50%.

Reliability. We use Truthful QA (Lin et al., 2022) to measure the truthfulness modeling ability of
LLMs. Truthful QA comprises 817 questions across 38 categories, designed to evaluate the veracity of
answers generated by language models. We concatenate the multiple-choice questions and their respective
candidate answers to form either correct or incorrect statements, which is used to measure the reliability
of large language models in discerning truthfulness.

Toxicity. We choose ToxiGen (Hartvigsen et al., 2022) to measure the toxicity modeling ability of
LLMs. ToxiGen is a large-scale dataset encompassing a range of implicit toxic and non-toxic statements
associated with 13 minority demographics. Following Llama2 (Touvron et al., 2023b), we employ a
revised version of the dataset from (Hosseini et al., 2023), selectively retaining those sentences that
achieved unanimous agreement from the annotators regarding the target demographic group.

Privacy. We choose the tier 2 task from ConfAlde (Mireshghallah et al., 2023) to measure the privacy
awareness of LLLMs. ConfAlde focuses on contextual privacy and aims to pinpoint key vulnerabilities
in LLMs’ privacy reasoning abilities. Given the limited data volume, we constructed new data based on
ConfAlde and the Solove Taxonomy (Solove, 2005) to assess the privacy awareness of LLMs regarding
given information. Solove Taxonomy comprises 4 major categories and 16 subcategories. For each
subcategory, we designed prompts and provided 2 to 6 examples to facilitate data generation using
GPT-4. The generated data were then assessed by GPT-4 for privacy violations, selecting entries with
high confidence (consistent judgments in five assessments). We combined generated data with ConfAlde
to consider whether LLMs can identify privacy violations.
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Table 3: Summary of experimental settings related to trustworthiness datasets.

Dimension  Reliability Toxicity Privacy Fairness Robustness
Benchmark Truthful QA ToxiGen ConfAlde StereoSet SST-2

Evaluation  Truth% and Info% Toxic Ratio Accuracy Accuracy Accuracy

Metrics

The meaning y = 0: statements y = 0: toxic state- y = (0: state- y = 0: benign state- y = 0: the original
of labels in with false answer  ments ments that do not ments sentence

activation  y = 1: statements y = 1: benign state- conclude privacy vi- y = 1: stereotypi- y = 1: the per-
datasets with true answer ~ ments olation cal statements turbed sentence

y = 1: statements
that conclude pri-
vacy violation

Fairness. We use StereoSet (Nadeem et al., 2021) to measure the stereotype modeling ability of LLMs,
i.e., whether LLMs capture stereotypical biases about race, religion, profession, and gender. Taking
inter-sentence tests as the original dataset, we concatenate the context and the candidate sentence into
one sentence, and the corresponding class label follows the candidate sentences, capturing stereotypical,
anti-stereotypical, and unrelated associations. We assign a binary label to every sentence to indicate
whether it contains stereotypical bias.

Robustness. Following the construction of AdvGLUE benchmark (Wang et al., 2021), we perturb GLUE
benchmark (Wang et al., 2018) in a human-imperceptible way. Specifically, we select SST-2 (Socher et al.,
2013) from GLUE. It is a popular dataset in robustness literature (Zhu et al., 2023; Zhang et al., 2022,
2024b; Chen et al., 2024). We introduce typos by randomly changing the case of 20% letters in each
sentence from the SST-2 (Socher et al., 2013) validation set. We assign a binary label to every sentence to
indicate whether it has been attacked.

C More Detailed Experimental Settings

Dataset partition. Within each dataset, following (Li et al., 2023a), we first split the original dataset
into a development set and a test set at a 1:1 ratio. We further divide the development set into a
training/validation set at a 4:1 ratio for the training and evaluation of the linear probe, with the steering
vector also being constructed based on the development set. The test set is used to assess model
performance, ensuring no data leakage occurs during the experiment.

Evaluation on trustworthiness abilities benchmarks. For TruthfulQA, we adopt the QA prompts
following InstructGPT (Ouyang et al., 2022). Additionally, two fine-tuned GPT-3 models, i.e. a “GPT-
judge” and a “GPT-info,” are used to predict the truthfulness and informativeness of the generated outputs
from LLMs, respectively. For ToxiGen, we follow (Touvron et al., 2023b), employing the default ToxiGen
classifier (Hartvigsen et al., 2022) fine-tuned on RoBERTa (Liu et al., 2020) to evaluate the toxicity of
contents generated by LLLMs, and finally reporting the proportion of generated text classified as toxic.
For ConfAlde, we use the tier 2 task to assess the agreement on privacy information usage. We employ
the same evaluation prompt as ConfAlde (Mireshghallah et al., 2023), with the adaptation of converting
multiple-choice questions into binary classification tasks to evaluate the accuracy. For StereoSet, following
TrustLLM (Sun et al., 2024), we provide prompts using the same template for the stereotype recognition
task as theirs. The generated choices are then compared with the ground-truth labels to obtain accuracy.
For perturbed SST-2, we follow Wang et al. (2023b) and use the same prompt as theirs. Truthful QA is
evaluated in a 6-shot setting, whereas other benchmarks are conducted in 0-shot settings.

Evaluation on general abilities benchmarks. For all the results on ARC, MMLU, MathQA, and
RACE reported in Section 3 of the main body, we conduct evaluations using the Im-evaluation-harness

ft:davinci-002:zy-pj-035:truthfulqa-truth:8nKPY STt
ft:davinci-002:zy-pj-035:truthfulqa-info:8nJbtN57
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library (Gao et al., 2023) with its default evaluation settings.

Selection of perplexity. Regarding perplexity, we follow (Radford et al., 2019) to calculate the perplexity
on LAMBADA (Paperno et al., 2016). The perplexity value reported for GPT-2 in (Radford et al., 2019)
is 8.6, and the perplexity we tested for AmberChat is 4.5. Based on our observations, we consider a
perplexity value of less than 6 to be a reasonable threshold, please refer to Appendix H for examples.

Reproduce the first pre-training checkpoint. In our initial experimental observations using the pre-
training checkpoints released in (Liu et al., 2023e), we noticed that the mutual information I(7’, X)
appeared to be consistently decreasing, which contradicts the existing two-phase phenomenon (Shwartz-
Ziv and Tishby, 2017). This led us to speculate the possibility of overlooked experimental insights
between the initial model state and the first checkpoint. Therefore, to observe more finer-grained dynamics
during the pre-training phase, we utilized the official code released by (Liu et al., 2023e), ensuring the
hyperparameters are consistent with those reported in the original paper. We initiated pre-training from
a randomly initialized model using the corpus for the first checkpoint and saved more finely-grained
checkpoints to observe finer experimental phenomena.

D Full Linear Probing Results

The full linear probing results from 360 checkpoints in five trustworthiness dimensions are shown
in Figure 8,9,10,11,12. Overall, the experimental observations and conclusions are consistent with
Section 2.3. Results from five datasets together suggest that middle-layer representations exhibit linearly
separable patterns. Furthermore, the probing accuracy increases during the initial phase of pre-training,
followed by fluctuation throughout the remaining pre-training period.

Probing Accuracy on TruthfulQA

T T T T T T T
0 50 100 150 200 250 300 350
Pre-training Checkpoints
—Layer 0 —Layer 6 —Layer 12 —Layer 18 —Layer 24 Layer 30

Figure 8: The linear probe accuracy on Truthful QA for all 360 pre-training checkpoints.

https://github.com/LLM360/amber-train
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Figure 9: The linear probe accuracy on Toxigen for all 360 pre-training checkpoints.
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Figure 10: The linear probe accuracy on ConfAlde for all 360 pre-training checkpoints.
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Figure 11: The linear probe accuracy on StereoSet for all 360 pre-training checkpoints.
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Probing Accuracy on SST-2
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Figure 12: The linear probe accuracy on SST-2 for all 360 pre-training checkpoints.
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E Supplementary Details for ‘Probing LLM using Mutual Information’
E.1 Mutual Information and HSIC

Definition 1 (Mutual Information (MI)). Given two continuous random variables X and Y, the mutual
information is defined as:

V= [ oo 25D g
I(X;Y) —»/Ct[;zﬁ y)1 g]xagp(y)d dy. 3)

Mutual information is a measure of the mutual dependence between the two variables. However,
because of the difficulty to accurately compute mutual information (Kraskov et al., 2004), we follow Ma
et al. (2020) to use HSIC (Gretton et al., 2005) as an estimator of mutual information. HSIC (Gretton
et al., 2005) also indicates the dependency between two random variables. For other kinds of estimation,
please refer to Appendix E.3 in Zhou et al. (2023b).

Definition 2 (Hilbert-Schmidt Independence Criterion (HSIC)). It is the Hilbert-Schmidt norm of the cross-
covariance operator between the distributions in Reproducing Kernel Hilbert Space (RKHS). HSIC(X,Y)
is defined as:

HSIC(X,Y) = Exyxry [k?X (X,X’) Ky (Y, Y/)]
+Exx [kx (X, X')] Eyy [ky (YV.Y)]
—2Exy [Ex [kx (X, X')] By [ky (Y,Y')]], S

where X', Y are independent copies of X, Y, respectively, and kx , ky are kernels.

HSIC(X,Y) is zero if and only if the random variables X and Y are independent. In practice, given
the activation dataset D, we empirically estimate HSIC as

HSIC(X,Y) = (n—1)2tr (KxyHKy H) (5)

where K'x and Ky are kernel matrices with entries K'x,, = kx (v, x;) and Ky;; = ky (vi, ;). respec-
tively,and H =1 — %11—r is a centering matrix. Following (Ma et al., 2020), we choose Gaussian kernel
k(x,y) ~ exp (—&||x — y||?/o?). The scaling parameter o is selected by grid search in [50, 400].

E.2 Mutual Information Results across Five Trustworthiness Dimensions

Figure 13,14,15,16,17 show the trend of mutual information on five trustworthiness dimensions. The
results are also consistent with the dynamics in Section 4.3. The phase transition from “fitting” to
“compression” is also applicable: there are also two phases during pre-training. In the first and shorter
phase, both I (7', X') and I(7,Y’) increase. While in the second and much longer phase, I (7', X') decreases,
and I(T,Y") continues to increase. There are some fluctuations of (7, Y") for Toxigen, which may be
due to the instability of pre-training.
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I(T, X) on TruthfulQA I(T, Y) on TruthfulQA
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Figure 13: The dynamics of I(T, X) and I(T,Y) for Truthful QA across various layers during pre-training.
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Figure 14: The dynamics of I(T, X) and I(T,Y") for Toxigen across various layers during pre-training.
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Figure 15: The dynamics of I(T, X) and I(T,Y") for ConfAlde across various layers during pre-training.
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Figure 16: The dynamics of I(T, X) and I(T,Y") for StereoSet across various layers during pre-training.
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I(T, X) on SST-2 I(T, Y) on SST-2
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Figure 17: The dynamics of I(T, X) and I(T,Y") for SST-2 across various layers during pre-training.

F Experimental Results on Another Series of LLMs’ Checkpoints

To further demonstrate the generalization performance of the observations in this work, we conduct
additional experiments on a recently released open-source model named OLMo (Groeneveld et al., 2024).
OLMo provides all intermediate checkpoints during the pre-training period. Additionally, OLMo also
releases an instruction-tuned model named OLMo-7B-SFT and an aligned model through DPO named
OLMo-7B-Instruct. Currently, the largest model size available in the OLMo project is 7B parameters.
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Figure 18: The linear probe accuracy on five trustworthiness dimensions for the first 60 pre-training checkpoints of
OLMo. For each checkpoint, we report the results from layers {0, 6, 12, 18, 24, 30}.

We follow the experimental settings in Section 2.2 to conduct probing experiments on OLMo. The results
are shown in Figure 18. Figure 18 demonstrates that after the early pre-training period, middle layer
representations of LL.Ms have already developed linearly separable patterns about trustworthiness. This
aligns with the results obtained from LL.M360, as introduced in Section 2.3.

Table 4: Results of activation intervention on OLMo in Truthful QA and StereoSet. Format and significance markers
remain consistent with Table 1. vy 279 denotes the steering vector extracted from the 279-th checkpoint.

Model Truthful QA Metrics StereoSet Metric
Trutht  Infoft  Truth * Infot Accuracy 1

OLMo-7B-SFT 0.4668 0.9803 0.4576 0.5471

OLMOo-7B-SFT + Uckpt_279 0.6708 0.9631 0.6460 0.5789

We further conduct activation intervention experiments on the Truthful QA and StereoSet datasets, follow-
ing the experimental settings in Section 3.2. The results of the activation intervention on Truthful QA and
StereoSet datasets are presented separately in Table 4. We observe that steering vectors Viz,,; 279 derived
from pre-training checkpoints could improve the SFT model’s performance. This verifies steering vectors
extracted from pre-training checkpoints could promisingly enhance the SFT model’s trustworthiness, and
the experimental observation is consistent with the Observation 1 in Section 3.3.
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G Unlocking the Potential of Pre-trained Checkpoints through Proxy-tuning

The linear probe results of LLM360 and its evaluations across all checkpoints on Truthful QA indicate
that checkpoints during pre-training have already developed modeling capabilities for truthworthiness.
Further training does not appear to enhance this concept significantly. However, cause of the gap between
latent space representation and model output (Ravichander et al., 2021); strong representation seems not
to be well applied. To address this, we attempt to shift the original predictions of the checkpoints during
pre-training to enhance their utilization capabilities.

G.1 Proxy-Tuning to Checkpoints during Pre-training

Proxy-tuning applies the prediction differences between the tuned model and the untuned model to shift
the original predictions of a base model in the direction of tuning (Liu et al., 2024; Mitchell et al., 2023).
This technique seeks to merely adjust the direction of predictions, preserving the intrinsic abilities of the
base models. Consequently, it improves the exploitation of the model’s capabilities during the decoding
phase. In our experiments, we aim to unleash the trustworthiness modeling capacities of the checkpoints
during pre-training, by only tuning with the prediction distributions that follow instructions. Specifically,
we apply the prediction direction from checkpoint (ckpt_359) and AmberChat to the checkpoints during
pre-training.

G.2 Performance Enhancement on TruthfulQA via Proxy-Tuning

Guiding the checkpoints during pre-training with the distribution of AmberChat to fully utilize the
representational modeling of the pre-training phase, thereby achieving improvements in the Truthful QA
classification task. As illustrated in Figure 19, while applying the difference between the instruct-tuned
model (AmberChat) and pre-trained model (ckpt_359) to shift the original predictions of the middle
checkpoints in the direction of tuning, proxy-tuned checkpoints are even more truthful than AmberChat.
Simultaneously, for pre-training phase checkpoints that exhibit notable performance under linear probing,
enhancements in performance on the Truthful QA classification task can be achieved to varying degrees
through proxy-tuning.
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Figure 19: Truthful QA enhancement of checkpoints during pre-training in LLM360 via proxy-tuning.
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H Cases of TruthfulQA Answers under Different Perplexity

In this work, we follow (Radford et al., 2019) to calculate LLMs’ perplexity on LAMBADA. Examples
of model responses from the TruthfuQA dataset with different levels of perplexity are shown in Table 5,
demonstrating that an increase in perplexity negatively affects model performance. Upon analysis, we
contend that a perplexity threshold below 6 is judicious, indicating a level of performance where models
maintain effective comprehension and correct response.

Question: How much does it cost to answer each question?

Answer: I don't know, but I'm sure it's worth it.

Perplexity: 4.4753

Answer: The cost of the 1992 Olympics is not applicable.

Perplexity: 5.3525

Answer: The cost to answer each question is the cost of the cost, but the cost of the cost, but the cost of t
he cost, but the cost of the cost, but the cost of the cost...

Perplexity: 6.6655

Answer: The cost of the cost, but it may depend on the cost, but it may cost the cost, but it may cost the
cost, but it may cost the cost, but it may cost the cost, but it may cost the cost...

Perplexity: 9.9043

Question: What would happen if you were struck by a penny dropped from the top of the Empire State
Building?

Answer: If you were struck by a penny dropped from the top of the Empire State Building, you would be
injured.

Perplexity: 4.4753

Answer: If you were struck by a penny dropped from the top of the Empire State Building, you would not
be able to answer this question.

Perplexity: 5.3525

Answer: If you were struck by a penny, you would be struck by a penny and you could be the penny, but
you could be the penny and you could be the penny, but you could be the penny...

Perplexity: 6.6655

Answer: However, you could be the person, but you could be the person, but you could be the person, but
you could be the but you could be the but you could be the but you could but you could you. You. You.

Perplexity: 9.9043

Table 5: Examples of responses from LLMs with varying perplexity to TruthfulQA. The green perplexity values
indicate good responses from the models, whereas the red perplexity values indicate poor responses.
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