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Abstract
Considerable effort has been dedicated to de-
tecting machine-generated texts to prevent a
situation where the widespread generation of
text—with minimal cost and effort— reduces
trust in human interaction and factual informa-
tion online. Our study takes a more refined
approach by analysing different Conversational
AI Agents (CAAs). By constructing linguistic
profiles for each AI agent, the aim is to identify
the Uniquely Identifiable Linguistic Patterns
(UILPs) for each model and to demonstrate the
effectiveness of these UILPs in identifying its
respective AI agent using authorship attribu-
tion techniques. Promisingly, we are able to
classify AI agents based on their original texts
with a weighted F1-score of 96.94%. Further,
we can attribute AI agents according to their
writing style (as specified by prompts), yield-
ing a weighted F1-score of 95.84%, which sets
the baseline for this task. By employing princi-
pal component analysis (PCA) for dimensional-
ity reduction, we achieve a weighted F1-score
ranging from 89.25% to 97.83%, and an overall
weighted F1-score of 96.93%.

1 Introduction

Recent advances in deep learning and natural lan-
guage processing have led to the emergence of
conversational AI agents (CAAs), hereby referred
to as AI agents, which we define as large language
models that can generate natural language as a di-
alogue system. These have been applied in tasks
such as question answering (Zhao et al., 2023), fake
news detection and abuse detection (Uchendu et al.,
2021). The widespread use of AI agents has high-
lighted the importance of determining the origin
of a text (Desaire et al., 2023; Fagni et al., 2021;
Mitrović et al., 2023; Fagni et al., 2021; Mitro-
vić et al., 2023; Becker et al., 2023; Islam et al.,
2023; Markowitz et al., 2023) and has led to a
surge of interest in analysing the linguistic struc-
tures within them (Desaire et al., 2023). One note-
worthy linguistic aspect that remains unexplored is

the determination of whether AI agents possess any
uniquely identifiable linguistic patterns (UILPs).

Our research draws inspiration from the linguis-
tic theories of language identity and linguistic pat-
terns within the compositions of individual authors
(Nini, 2023; Coulthard, 2004). Specifically, our
study undertakes the task of assessing the valid-
ity of the aforementioned theories regarding AI
agents. As a result, we have meticulously crafted
the UILPs for the following five generative large
language models: GPT-41, GPT-3.51, Text-Curie-
0011, PaLM-22 and LLaMA2-7b3, aiming to as-
certain the presence of UILPs. The most effective
method to confirm the usefulness of an identified
UILP is through validation, a process achievable
through the task of authorship attribution. Author-
ship attribution for AI agents is the ability to ascer-
tain the authorship of texts generated by AI agents
(Juola, 2008, 2006; Sari, 2018). By establishing
authorship, whether proving or disproving, we can
reinforce the theory of distinct linguistic patterns
in AI agents. We seek to answer crucial questions
about the existence of UILPs in AI agents, the
linguistic overlap between various text types gener-
ated by these models, and the feasibility of identi-
fying AI agents based on their individual UILPs.

The ability to prove the existence of UILPs pro-
vides many benefits such as preventing the harmful
use of AI agents (e.g., detecting fake news, hate
speech, plagiarism). Additionally, this enables the
reuse of the UILP in classification tasks, potentially
enhancing classification accuracy. We propose a
transparent means for linguistic analysis that is
more interpretable across different AI agents and
forms the central emphasis of this paper.

1Model details and source: OpenAI’s GPT-3.5. (2021).
https://www.openai.com/

2Model details and source: Bard: The Language Model for
Writing Assistance. (2022). https://www.bardmodel.com/

3Model details and source: LLaMA2-7b: A Large Mul-
tilingual Language Model for Free-Form Editing. (2023).
https://www.llama7b.ai/
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Thus far, there has been no investigation on the
UILP of AI agents, and there has been only lim-
ited comparison of different AI agents and little
research indicating if these AI agents can be differ-
entiated from each other based on their linguistic
patterns. Moreover, there is a notable absence of
analysis of AI agents based on stylometry, i.e., the
statistical analysis of language often used in the
context of forensic linguistics (Rocha et al., 2016).
We propose both a feature-based machine learn-
ing classification as well as the use of transformer
language models for AI agent classification. The
research questions (RQs) we aim to answer in this
paper are as follows:

RQ1: To what extent can we perform authorship
attribution (AA) for AI agents based on their
original texts, through the recognition of their
UILPs?

RQ2: Can we attribute text to AI agents through
the recognition of UILPs in texts that they gen-
erated based on different stylistic prompts?

RQ3: How can we measure the linguistic overlap,
if any, in outputs from the AI agent when it
generates distinct texts?

In addressing the above questions, we have made
the following contributions:

• Two new datasets: The first dataset is a collec-
tion of original texts created by five AI agents,
while the second dataset is an expanded ver-
sion of the first whereby each text was para-
phrased by its respective AI agent according to
the following five styles: (a) paraphrased with
no specified style, (b) written as a fictitious
narrative, (c) written as a tweet, (d) written as
a social media blog post and (e) written as an
academic article.

• An approach to AI agent attribution based on
a Logistic Regression (LR) model trained on
linguistic features and a fine-tuned DeBERTa
model (He et al., 2021).

• A method for identifying linguistic patterns in
the texts generated by the different AI agents
based on principal component analysis (PCA).

2 Related work

The analysis of authorship attribution encompasses
two distinct categories: feature-based and large lan-
guage model-based classification. Feature-based

approaches involve creating a specific feature set
for a specific task (Sari, 2018; Juola, 2008). Multi-
variate linguistic analysis paired with a traditional
machine learning classifier is an example of this
(Abbasi and Chen, 2008). Approaches using pre-
trained transformer language modes have demon-
strated superior accuracy with few preprocessing
steps (Fabien et al., 2020; Uchendu et al., 2021;
Ai et al., 2022). These models significantly out-
perform traditional models in many cases. Newer
approaches use pre-trained transformer models and
in some cases, these are combined with linguistic
features (Fabien et al., 2020; Sari, 2018).

Posited by Nini (2023), the Principle of Lin-
guistic Individuality states that at any given mo-
ment it is exceedingly improbable for two indi-
viduals to possess identical linguistic grammars.
This principle is aligned with authorship attribu-
tion (Coulthard et al., 2016) which assumes that
writings from one author would exhibit greater lin-
guistic similarity than writings from a different au-
thor (Burrows, 2002; Anthonissen and Petré, 2019).
This theory has not been investigated in the case of
AI agents, which is what we sought to achieve in
our work.

There has been a central focus on GPT mod-
els, with an emphasis on distinguishing between
text written by humans and those generated by
machines using transformer models (Fagni et al.,
2021; Mitrović et al., 2023; Solaiman et al., 2019;
Uchendu et al., 2021; Bakhtin et al., 2019; Ippolito
et al., 2020), or surface-level linguistic features (De-
saire et al., 2023; Markowitz et al., 2023) which
have been regarded as a limited analysis when stud-
ied individually (Schuster et al., 2020). Other stud-
ies have utilised a primarily linguistic approach,
analysing words and sentiment to distinguish hu-
man and machine-generated text (Markowitz et al.,
2023). The limitations of previous approaches,
compared to the methodology employed in this pa-
per, become evident when considering their empha-
sis on distinguishing between human and machine-
generated content.

These studies lack a comparative analysis of var-
ious AI agents and rarely incorporate multivari-
ate stylometric analysis in their evaluation, which
would better capture the use of AI agents in gener-
ating texts in other scenarios. Munir et al. (2021)
investigated the attribution accuracies of synthetic
text using transformer models (XLNet) and prior
attribution approaches. Other work has shown that
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traditional authorship attribution approaches can-
not fully capture the style of an author when the
author is a human (compared to when it is a ma-
chine). Machine-generated authorship attribution
is a comparatively straightforward task. Machines
do not display the same level of linguistic vari-
ety inherent in humans limiting their capacity to
produce linguistically diverse texts (André et al.,
2023). This limitation is imposed by their inability
to evolve linguistically without being retrained (Ai
et al., 2022). Humans have a wide writing style
which means their features and feature usage can
differ depending on the text genre (Uchendu et al.,
2021). This increases the complexity of authorship
attribution tasks.

3 Methodology

3.1 Model selection

The models used for this project include GPT-3.5,
GPT-4, Text-Curie-001 (OpenAI, 2023), PaLM-2
(Anil et al., 2023)1 and, LlaMA2-7b (Touvron et al.,
2023). All of these models are proficient in the nat-
ural language generation task with varying levels
of sophistication. The Open AI GPT (generative
pre-trained transformer)2 models used in this paper
were all trained using reinforcement learning from
human feedback (RLHF) on text data, web pages
and books, among others. GPT-4 (OpenAI, 2023)
is currently the most optimised model; GPT-3.5
has the same capabilities as GPT-4 but operates on
a smaller scale. The Text-Curie-001 model is an
older, now deprecated model produced by Open
AI.

PaLM-2 (Pathways Language Model)3 devel-
oped by Anil et al. (2023) was pre-trained on a
large quantity of parallel multilingual corpora, web
pages, source code and various other datasets. Pro-
posed by Touvron et al. (2023), LLaMA2-7b (Lan-
guage Learning and Meaning Acquisition)4 was
trained on textual data using a standard optimiser
and RLHF. We refer the reader to Table 1 for de-
tails on each model’s size (in terms of the number
of learned parameters) and the maximum number
of tokens in their output.

1This model was used via Google’s BARD, now known as
Gemini (https://gemini.google.com/app)

2Introducing GPT models: https://platform.openai.
com/docs/guides/gpt

3PaLM-2: https://ai.google/discover/palm2/
4LLaMA: https://ai.meta.com/blog/

large-language-model-llama-meta-ai/

Model Creator Size # Tokens
GPT-4 OpenAI 1.7T 8192

GPT-3.5 OpenAI 175B 4097
Text-Curie-001 OpenAI 6.7B 2049

PaLM-2 Google — 8192
LLaMA2-7b Meta 7B 2048

Table 1: Comparison of AI agents based on their size in
terms of the number of parameters (unknown for PaLM-
2) and the maximum number of tokens in their output
(# Tokens)

3.2 Data collection

Data collection was carried out in two phases. In
the first phase, a set of 10 prompts was collated,
with each prompt corresponding to a news category
on the BBC website5 to cover various topics. The
specific topic for each prompt was derived from the
headline that was most popular at that time within
a particular category. For instance, within the edu-
cation category, the most prominent headline per-
tained to the impact of Covid-19 anxieties on aca-
demic studies. The topics were selected to ensure
a diversity of texts and the provided prompts did
not include harmful or sensitive content; therefore,
we anticipate the generated text to be devoid of this
material. Table 9 in Appendix A provides a list of
these prompts. An example of the outputs for the
prompts in the different prompt styles can be seen
in Table 10 in Appendix B. These prompts were
given as input to all the AI agents. Data collection
was carried out through two methods: manual input
of prompts in the case of PaLM-2 (through BARD),
or by utilising APIs in the case of LLaMA2-7b and
the GPT models. For each of the 10 prompts, 20
texts were generated. Thus, overall, 200 texts were
generated per model. The only exception is PaLM-
2, whose generated text corresponds to only nine
queries as the model’s responses for one of the 10
queries were inadequate, thus leading to the gener-
ation of only 180 texts for this model. This dataset
will be referred to as our original data. The data
was labelled according to the model used, using
labels OG0-OG4 (Original-0 to Original-4). We
also used only the GPT-generated data (GPT-3.5,
GPT-4 and text-curie-001) from the original data in
our analysis. This dataset, referred to as the GPT
data, was labelled according to the model used us-
ing integers from GD0-GD2 (GPT data-0 to GPT
data-2) in this dataset.

5BBC: https://www.bbc.co.uk/
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The second phase pertains to the collection of
stylistic data for only GPT 3.5, 4 and Text-Curie-
001. We employed only these three AI agents be-
cause they responded effectively to the prompt,
while other AI agents produced nonsensical or re-
peated texts. The stylistic data uses the original
data to produce paraphrases of this text in different
stylistic genres. Firstly, we asked each model to
paraphrase the original text in a general manner,
i.e., without specifying a specific style. The model
was then asked to paraphrase the original text (from
the first phase) in four styles: as an academic pa-
per, as a social media post, as a fictitious narrative
and as a tweet. These texts were labelled accord-
ing to the style with labels ranging from S0 to S4
(Style-0 to Style-4) for each stylistic variation in
this dataset. For each paraphrasing prompt, 200
texts were generated (corresponding to the origi-
nal 200 texts generated as part of the first phase).
In total, there are 1200 texts for each model: the
original 200, a version of those 200 that are general
paraphrases and 200 for each of the four above-
mentioned styles. This set of data will be referred
to as stylistic data. All datasets were split into train-
ing and testing sets following a 80:20 partition. No
preprocessing steps were applied to the data.6

The process of dataset creation posed a chal-
lenge, with certain models generating incoherent
texts which were variations of the input text, or
texts that were too short or too long. This was
due to the absence of predefined constraints dur-
ing the text generation process. The cohesiveness
or semantic soundness of texts is not a primary
issue in this work as we aim to focus on context-
independent linguistic features. Model hallucina-
tion was not a significant concern for us, as our
work primarily concentrated on extracting linguis-
tic features; hence, the content held minimal im-
portance. However, steps to ensure that generated
text was reasonable and free of grammatical errors
were taken. As previously mentioned, data collec-
tion involved either manually inputting prompts or
utilising an API. When employing APIs, texts were
generated in small batches of 20-50 rows of text
data to guarantee that the model produced coherent
text data rather than generating random iterations
of a single phrase. Lastly, the final datasets were
manually assessed to ensure their suitability for
the attribution task. This was assessed by ensur-

6The dataset is available at: https://github.com/
iqrazahid05/UILP/

ing each row contained enough text (more than 10
tokens), a set number of texts per author (depen-
dent on the dataset), avoided repetitive material and
created topic-diverse texts. Diverse prompts were
employed to ensure this.

3.3 Data evaluation

Data was evaluated using a combination of various
automated metrics. We utilised BERTScore and
METEOR to assess textual coherence. During data
generation, a small subset of the data from the three
datasets (original, GPT and stylistic) was assessed
by the data collector (the first author of this paper).
The results for the automated metrics are presented
in Tables 2 and 3. For both metrics, results closer to
one indicate higher textual similarity and increased
text cohesiveness.

Meteor Scores
Original 0.8333
GPT 0.8331
Stylistic 0.8315

Table 2: METEOR scores for the original, GPT and
stylistic datasets

BERTScore Comparisons
Comparison Precision Recall F1 Score

Original vs GPT 0.8949 0.8875 0.8911
Original vs Stylistic 0.8046 0.8026 0.8030
GPT vs Stylistic 0.8041 0.8059 0.8044

Table 3: BERTScore comparisons for the original, GPT
and stylistic datasets

3.4 Writeprints as feature representation

Abbasi and Chen (2008) proposed the Writeprint
feature set: a set of linguistic features that ulti-
mately represent the distinctive writing style of an
author in an authorship attribution task. The pro-
posed feature set is largely composed of dynamic
features, which are context-dependent, an example
of which is the presence of certain word, unigrams
or bigrams. For example, the presence of the word
bigram “yours sincerely” could be indicative of a
particular author when writing emails. However,
the same author is unlikely to use the same bigram
in a different context, e.g., when writing an aca-
demic article. Thus, to represent an author’s writ-
ing style regardless of context (or textual genre), we
extended the original Writeprint to include static
features, which are context-independent and are
present in a large percentage of texts irrespective
of the genre. The extended feature set differs from
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the original Writeprints in that the former encom-
passes previously unexplored aspects of a text, such
as phonology, morphological irregularities, ellip-
sis, and omission. Our Extended Writeprint (EWP)
is provided in full in Appendix C. These features
were extracted from the texts generated by each
of the AI agents of interest with the aid of exist-
ing Python packages, e.g., spaCy (Honnibal et al.,
2020) and NLTK (Bird, 2006). This results in a
unique linguistic profile for each model, which is
used in two ways: to determine the most informa-
tive features representing the UILP of each of our
AI agents of interest (Section 3.5) and to train tradi-
tional machine learning-based classification mod-
els to attribute a text to its AI agent (Section 3.6).

3.5 Analysing the UILP of AI agents
We employed principal component analysis (PCA)
to assess the top 100 most informative linguistic
features that represent each model (based on its
generated texts). We also assess the collective
top 100 most informative linguistic features. PCA
was performed on the standardised feature counts.
Subsequently, we quantified the degree of overlap
among these top 100 features across the various
models. Instead of necessitating the training or
retraining of pre-existing language models for at-
tributing texts generated by AI agents, we advo-
cate for a feature-based approach coupled with a
machine learning-based classifier. The advantage
of employing a feature-based approach lies in its
efficiency, requiring less time and computational
resources. By employing a feature-based approach,
we can ensure consistent attribution accuracies re-
gardless of when or by whom the text was gen-
erated. This is achieved by the ability to identify
distinctive linguistic patterns unique to each AI
agent.

We identified unique features for each model
based on the most informative features identified
by PCA. These unique features were then extracted
from the writeprint of the texts. Authorship attri-
bution was then performed using these uniquely
occurring features.

3.6 Classification models
We cast authorship attribution as a multi-class clas-
sification problem, whereby a model takes a given
text as input and outputs a label that corresponds
to any one of the five AI agents.

A variety of traditional machine learning-based
models were trained as classifiers. These include

Support Vector Machine (SVM), Random Forest
(RF) and Logistic Regression (LR) models. Each
of these models was trained on the EWP features
described in Section 3.4, using optimised parame-
ter values which were defined through the use of
grid search. This allowed us to set a baseline and
quantify the extent of any performance improve-
ments. We computed the standard deviation (SD)
over five runs. Our results show that the SD in
all experiments is low, indicating that the perfor-
mance scores tend to cluster around the mean. This
consistency highlights the stability of our results.

Additionally, we aimed to assess the attribu-
tion performance in comparison to a transformer-
based language model given that transformer mod-
els have demonstrated superior performances in
classification tasks (Vaswani et al., 2023; Fabien
et al., 2020). In this case, we selected the Decoding-
enhanced BERT with Disentangled Attention (De-
BERTa) model as it has outperformed other trans-
former models in a variety of classification-related
tasks (He et al., 2021). Details of the hyperpa-
rameters used in training the machine learning and
transformer-based language models can be found
in Appendix D and E. All experiments were run
on Google Colab using the A100 GPU accelerator.
Due to the high computational power required to
run the DeBERTa model, the results presented are
based on a single run.

Prior approaches tend to overlook the identifi-
cation of distinctive patterns, opting instead for a
multivariate dynamic feature extraction technique.
Such techniques are text, author and content spe-
cific due to dynamic feature selection (Ai et al.,
2022; Sari, 2018). The emphasis here lies in dis-
cerning unique patterns that can be utilised to iden-
tify the AI agents of interest, regardless of the text
they produce, with consistent results.

4 Evaluation Results and Discussion

4.1 Attribution of original Texts

Table 4 presents the results for authorship attribu-
tion based on the original data. The EWP features
were extracted from all the texts and the method-
ology was applied. From the results, we can see
that the optimised DeBERTa model obtained the
highest weighted F1-score at 99.11%. However, it
is worth noting that the discrepancy in F1-scores
across all models is at most merely 5.23% demon-
strating competitive performance across all models.
When the extended feature set is combined with
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Data Model Accuracy W-F1 SD

Original
Data

SVM 93.87 93.88 0.00
RF 96.54 96.54 0.37
LR 96.94 96.94 0.00

DeBERTa 99.11 99.11 -

GPT Models

SVM 94.11 94.17 0.00
RF 96.67 96.67 0.00
LR 97.50 97.50 0.19

DeBERTa 99.11 99.11 -

Stylistic
Data

SVM 95.56 95.56 0.00
RF 95.25 95.24 0.25
LR 95.83 95.84 0.00

DeBERTa 88.00 88.00 -

Table 4: Performance metrics for different data group-
ings. The accuracy, weighted F1-score (W-F1) and
standard deviation (SD) when using optimised SVM,
LR, RF and DeBERTa models. Standard deviation is
calculated after 5 runs.

an optimised ML classifier, the weighted F1-score
ranges from 93.88% to 96.94%. This demonstrates
the existence of UILPs in each AI agent due to
the attribution success of each model displaying a
minimum weighted F1-score of 93.88%.

From the results in Table 4, we can see that
DeBERTa has the highest weighted F1-score at
99.11%. In this experiment, the discrepancy in
F1-scores across all models is 4.94%. Since all
the compared models are OpenAI-engineered, it
is reasonable to anticipate that they exhibit similar
linguistic patterns in their generated texts hence the
lower F1-scores across all experiments. This model
displays an impressively competitive performance,
with the optimised LR model having a weighted
F1-score of 97.50%, which is only a 1.61% drop
when compared to a fine-tuned DeBERTa model.

4.2 Attribution of stylistic Texts

We perform cross-genre authorship attribution by
investigating the attribution of stylistic texts. We ex-
amine the attribution performance for all AI agents
on different stylistic data.

The results of stylistic attribution for GPT mod-
els are presented in Table 4. As aforementioned,
since all models are OpenAI-engineered we expect
some linguistic commonalities across different gen-
res of text. Here we attempt to attribute all texts
(original, paraphrase, social media posts, tweets,
academic articles and fictitious narratives) to their
respective AI agent. The results support the notion
of models demonstrating a UILP in their gener-
ated stylistic texts as well as the notions posited by
Juola (2008); Sari (2018); Coulthard (2004) who

suggested that these UILPs can be identified across
different textual genres. Notably, lower results can
be expected when performing cross-genre attribu-
tion. This accounts for the 11.11% reduction in
the weighted F1-score when comparing the orig-
inal data to the stylistic data using optimised De-
BERTa models. We observe a deduction of 1.1%
in the weighted F1-score when using an optimised
LR model and a 19.62% deduction when compar-
ing the classification abilities of the default LR
model on the original data and the stylistic data.
To conclude, irrespective of the text’s style, each
AI agent can be identified according to the highest
weighted F1-score attained which stands at 95.84%.
This reaffirms the notion that classification perfor-
mances decrease across genres due to varying lin-
guistic patterns (Stamatatos, 2016).

Figure 1: Overlap for the top 100 most informative linguistic
features extracted based on our EWP using PCA for all AI
agents.

4.3 Attribution based on PCA of features

In this section, we identify the top 100 most infor-
mative linguistic features across all AI agents and
the top 100 most informative linguistic features for
each AI agent. We then assess the extent to which
attribution can be performed based on these.
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Accuracy and Weighted F1-Score
AI agent GPT-3.5 GPT-4 LLaMA2-7b PaLM-2 Text-Curie-001
GPT-3.5 80.52 80.49 82.50 82.50 78.06 78.05 88.89 88.89 90.85 90.84
GPT-4 78.16 78.16 87.50 87.50 72.95 72.94 83.54 83.54 90.91 90.91

LLaMA2-7b 65.64 65.63 77.16 77.14 66.67 66.67 75.00 75.04 94.75 94.74
PaLM-2 82.05 82.05 84.67 84.62 86.42 86.43 79.49 79.49 97.31 97.30

Text-Curie-001 98.77 98.77 95.24 95.24 98.77 98.77 97.56 97.56 98.79 98.77
Overall 81.63 81.00 85.71 85.42 81.12 80.45 85.01 85.36 94.39 94.38

Table 5: Accuracy and weighted F1-scores for models based on their top 100 most informative linguistic features
extracted from the EWP using PCA analysis. Attribution was performed for each model and then for the entire
original dataset using an optimised Logistic Regression model

For all the original data, we extracted our EWP
features. Subsequently, we conducted PCA to iden-
tify the top 100 most informative linguistic fea-
tures across the entire dataset. Attribution was
carried out using these selected top 100 features;
the accuracy of each model was then computed
and provided in Table 5. When performing attri-
bution using only the top 100 most informative
linguistic features, we found that Text-Curie-001
has the highest weighted F1-score for any model
and has a self-identifying weighted F1-score of
98.77%. LLaMA2-7b obtained the lowest perfor-
mance, with a weighted F1-score of 66.67% when
identified using its individual top 100 feature set.

These results support the theory of linguistic
individuality (Nini, 2023) as the AI agents do not
have identical grammars even though the training
material, methods and developers are the same or
similar. This can be seen explicitly in the analysis
of the Open AI GPT models, whereby the F1-score
varies from 96.93% to 88.25%, showing a slight
discrepancy of 8.68%. Each AI agent struggles to
distinguish itself when using its own top 100 most
informative features. However, we found that this
is due to the substantial overlap in these features,
as demonstrated in Figure 1. On average, they
share more than 50% of their top 100 features with
another AI agent. This clarifies why, in Table 5,
we observe an absence of a distinct pattern in AI
agents’ ability to identify themselves through their
top 100 features. There are noticeable instances
of misclassification concerning GPT-3.5 and GPT-
4. The relatively poorer attribution of GPT-3.5
and GPT-4 can be explained by the fact that both
models are OpenAI-engineered and have similar
training processes.

Further investigation was performed to deter-
mine if AI agents can be identified based on their
unique feature sets. We conducted a comparison
of the top 100 features across all AI agents and

AI agent Accuracy W-F1 SD
GPT-3.5 91.60 89.25 0.03
GPT-4 97.63 95.50 0.01

LLaMA2-7b 100 97.83 0.00
PaLM-2 95.35 93.17 0.01

Text-Curie-001 100 96.97 0.00
All 96.93 96.93 0.02

Table 6: Accuracy and weighted F1-score (W-F1) for
each AI agent when performing authorship attribution
using only their unique features

AI agent Accuracy W-F1 SD
GPT-3.5 86.42 86.17 0.00
GPT-4 86.08 87.18 0.00

LLaMA2-7b 93.34 100 0.02
PaLM-2 94.74 90.00 0.00

Text-Curie-001 98.77 97.56 0.00
All 91.84 91.81 0.00

Table 7: Accuracy and weighted F1-score (W-F1) of
attribution using an optimised LR model trained on the
top 100 most informative linguistic features extracted
using PCA across all datasets

identified features unique to each model (see Ta-
bles 6 and 7). Based on the analysis of the top 100
most information features across all AI agents, our
results reveal the ability to attribute each AI agent
with weighted F1-scores ranging from 89.25% to
97.83%. These results suggest the existence of sev-
eral linguistic commonalities. However, as seen in
Table 6 classification results improve when investi-
gating unique features per model as opposed to a
"one size fits all" approach (Uchendu et al., 2021).

After obtaining the set of distinctive features for
each model, we moved on to the original dataset
containing approximately 300 features. For each
model, we exclusively extracted the features that
were unique to that model. For example, dur-
ing the attribution for GPT-4, we isolated features
that were uniquely associated with GPT-4 in its
top 100 most informative features. GPT models
exhibited greater morphological diversity among
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these unique features compared to LLaMa7-2b and
PaLM-2. In contrast, the unique feature sets of
LLaMa7-2b and PaLM-2 predominantly included
function words. These specific features were then
extracted for every model from the comprehensive
set of 300 features. Subsequently, we performed
attribution analyses for each model based on this
refined set of features. For example, we identified
and extracted all features that were uniquely iden-
tified in the top 100 features. We then extracted
GPT-4’s unique features for all other AI agents
and attempted attribution using this unique feature
set. The differences in results were significant: the
weighted F1-scores ranged from 86.17% to 100%
when using optimised hyperparameters. The re-
sults support the theory that when investigating an
AI agent’s inherently unique features, one can at-
tribute each AI agent with greater success. Further
results on the attribution success for each model
can be seen in Table 6.

The subsequent phase involved conducting PCA
for each model and extracting the most informative
top 100 features. Following this, we attempted the
attribution for all models using these top 100 fea-
tures. The results, shown in Table 5, indicate that
only LLaMA2-7b could successfully self-identify
as the most similar AI agent based on these fea-
tures. A more in-depth linguistic examination of
these features revealed that PCA features are pre-
dominantly comprised of static features, defined
as context-independent and frequently occurring
attributes. Furthermore, the diagrams in Figure 1 il-
lustrate substantial feature overlap among different
models when analysing 300 features. This supports
the theory of Linguistic Uniqueness (Nini, 2023)
and the existence of a UILP as it is evident that
each model has a set of features that it does not
share with the others. These results pertain solely
to the original data, with accuracies and weighted
F1-scores obtained using the LR algorithm.

4.4 Linguistic analysis

For each model, rather than extracting all features
specified in the EWP, we reduced the feature set
to include only linguistic features associated with
each specific linguistic category (details of the fea-
tures and their categories are provided in Table
11 in Appendix C). Attribution was subsequently
conducted for the original data using these refined
feature sets. The results of this classification are
presented in Table 8.

Individual accuracy scores for each linguistic
category and the overall dataset were computed.
Tagging and n-gram categories achieved the high-
est weighted F1-score among all ML classifiers.
This can be attributed to several factors. Firstly, the
presence of over 100 different part-of-speech and
dependency tags as well as n-grams adds a signifi-
cant level of linguistic diversity to the dataset. This
category also encompassed the labels for different
sentence types e.g. the count of passive sentence
constructions. Furthermore, research has estab-
lished that AI agents employ repetitive sentence
structures to maintain cohesiveness, and this makes
tags a particularly identifiable linguistic structure
(Mitrović et al., 2023; Markowitz et al., 2023).
Forensic research has also continually highlighted
n-grams as an extremely identifiable linguistic fea-
ture in authorship attribution (Sari, 2018). It is still
important to note that there is greater variability in
the weighted F1-scores with the highest F1-score
for any classifier being 91.79% (for RF) and the
lowest at 73.30% (for LR) creating a difference of
18.54% between classifiers.

Accuracy and Weighted-F1
SVM RF LR

Word lists 89.80 89.73 88.72 88.30 84.18 84.31
Symbols 84.18 83.70 91.33 91.26 78.57 78.34
Tags 87.76 87.66 91.33 91.34 89.80 89.77
Syntax 75.51 76.21 77.04 77.37 72.96 73.30
Semantic 79.08 79.06 84.69 84.76 79.59 79.38
Lexical 90.51 90.33 91.33 91.33 89.80 89.86
N-gram 91.84 91.79 90.31 90.31 90.31 90.18

Table 8: Accuracy and Weighted F1-scores for individ-
ual linguistic categories on the original data

In comparing the linguistic features of two texts
from two AI agents in a qualitative assessment, dis-
tinctive patterns emerge, suggesting potential varia-
tions in author style and expression. Text T1 refers
to the text generated by PaLM-2 and Text T2 is the
one from GPT-3.5 as seen in Table 16 in Appendix
F. Both texts share some features, indicating com-
monalities in sentence structures and grammatical
constructions. Despite sharing five common POS
and dependency tags, both texts display between 8
to 21 unique dependency and POS tags, signifying
a common syntactic foundation with specific lin-
guistic constructions that differentiate their styles.
Notably, T1 employs comparative adjectives, while
T2 includes modal verbs, showcasing distinctive
choices that may reflect variations in tone or style.
In the realm of authorship attribution, these linguis-
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tic differences underscore the potential for the texts
to be perceived as the work of different authors, as
individual writing habits and preferences become
apparent through their unique linguistic patterns.
See Tables 17 and 18 in Appendix F for further
details on the feature counts and for the subset of
features extracted for this assessment.

4.5 Error analysis
The error analysis was conducted on the original
dataset. This can be attributed to its incorporation
of all AI agents and utilisation of the EWP. Further,
attribution was performed using both an ML and
transformer model (in this case Logistic Regression
DeBERTa (He et al., 2021)).

(a) Confusion matrix for the attribution of the Orig-
inal data using Logistic Regression

(b) Confusion matrix for the attribution of the Orig-
inal data using DeBERTa

Figure 2: Key: 0 = Text-Curie-001; 1 = GPT-3.5; 2 =
GPT-4; 3 = LLaMa2-7b; 4 = PaLM-2

In Figure 2a and 2b we see the classification
outputs from LR and DeBERTa. The DeBERTa
model exhibited a total of three misclassifications.
All three instances involved GPT-4 data being in-
correctly labelled as GPT-3.5. The explanation
for this lies in the fact that both models undergo
the same training process. Both are OpenAI au-
thored and additionally, GPT-3.5 is the predecessor

of GPT-4. The LR model displayed a total of 9
misclassifications. There is one instance of GPT-4
misclassification as GPT-3.5, a mistake made by
DeBERTa. All other misclassifications were of
LLaMa2-7b; this AI agent was incorrectly clas-
sified as Text-Curie-001, GPT-3.5 and PaLM-2.
Based on a linguistic assessment of the misclas-
sified data, we see that the instances of misclassi-
fied LLaMA2-7b data exhibited stylistic variations.
These texts tended to be longer on average and
had more morphological variation which explains
the misclassifications as Text-Curie-001 and GPT-
3.5. Nevertheless, both models exhibited a mini-
mum number of errors, leading us to consider them
insignificant. Further fine-tuning and conducting
additional linguistic analysis could help mitigate
these misclassifications.

5 Conclusion and future work

In our study, we have confirmed the presence of
Uniquely Identifiable Linguistic Patterns (UILPs)
in conversational AI agents. This is supported
by high accuracy in attribution for both original
and stylistic data, with weighted F1-scores rang-
ing from 93.88% to 96.96% when utilising the
Extended Writeprint (EWP) and traditional ma-
chine learning-based classifiers. We also demon-
strate similar performance when using a fine-tuned
DeBERTa model, achieving a 99.11% weighted
F1-score. Our results demonstrate that traditional
machine learning-based models can obtain compet-
itive attribution performance compared to a fine-
tuned DeBERTa model when utilising the EWP for
classification. Through PCA analysis, we explored
the attribution of AI agents based on their UILPs.
Our results show that the combination of our EWP
and RF classification effectively supports cross-
genre attribution, with weighted F1-scores ranging
from 94.17% to 97.50% for the stylistic data. This
affirms the principle of linguistic individuality in
AI agents, showcasing their UILPs. These findings
offer valuable insights into the distinctive linguistic
patterns in text generated by AI agents, with poten-
tial applications in digital forensics, detecting fake
news and plagiarism. Future work will improve
both the datasets introduced in this paper by ex-
panding the size and scope of the stylistic prompts.
We seek to perform a fine-grained linguistic analy-
sis of a larger set of AI agents cross-lingually.
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Limitations

In our study, text generation using various APIs that
make our AI agents of interest accessible proved
to be a time-intensive process, limiting the volume
of prompts that could be supplied and thus the text
that can be generated. Additionally, certain models
imposed output constraints. For instance, in the
case of PaLM-2, we resorted to manually inputting
prompts into BARD due to the unavailability of the
API, which was a time-consuming endeavour. Fur-
thermore, some AI agent outputs did not produce
cohesive texts (in the case of LLaMA2-7b), or pro-
duced very short texts (in the case of Text-Curie-
001). Also, only a set of three text genres were
investigated: academic articles, fictitious narratives
and, tweets and social media posts (the latter two
falling under the same genre). To perform cross-
genre authorship attribution we must expand this
scope to cover a wider array of genres as well as
investigate at different levels of formality. Lastly,
a study into misclassified instances must be con-
ducted to identify patterns or determine if there is
a specific type of error being made by the model.

Ethics Statement

For this study, the data was sourced from various AI
agents, and human involvement was not required.
The dataset does not contain any harmful or sensi-
tive content. As there was no human participation
and no collection of personal data, an ethics review
was not necessary.
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Appendix A Prompts for AI agents

News category Prompt
1 Cost of living Write me an essay on rising house prices in 2023
2 Climate Write me an essay on what the UK can do to reduce carbon emissions
3 Tech Write me an essay on Facebook’s transfer of European data to US servers
4 Politics Write me an essay on the UKs ministerial code
5 Culture Write me an essay on the Glastonbury festival in the UK
6 Science Write me an essay on the womb condition adenomyosis
7 Family and Education Write me an essay on how Covid anxiety is affecting students and exams
8 War in Ukraine Write me an essay on Zelensky’s contribution in the war in Ukraine
9 UK Write me an essay on the Madeleine McCann police search in Portugal

10 World Write me an essay on the Star Wars original studios

Table 9: The prompts used to collect AI agent-generated texts. All original texts were produced all by AI agents:
GPT-3.5, GPT-4, Text-Curie-001, PaLM-2 and LLaMA2-7b. In contrast, only GPT-3.5, GPT-4 and Text-Curie-001
were used in generating texts according to stylistic variations (paraphrase, as a social media post, as a tweet, as an
academic article and as a fictitious narrative
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Appendix B Data Examples

Style Text

Original

In 2023, a pervasive and pressing issue has gripped households across the globe —
the cost of living crisis. As economic landscapes evolve and global conditions shift,
individuals and families find themselves grappling with the ever-increasing burden of
expenses.

Paraphrase

In 2023, households worldwide are confronted with a widespread and urgent problem
— the crisis of rising living costs. As economic environments undergo changes and
global circumstances shift, individuals and families are contending with a growing
weight of expenditures.

Social media
post

Feeling the pinch of the 2023 cost of living crisis! It’s a tough
reality we’re all navigating together. From skyrocketing prices to tightening budgets,
the struggle is real. Let’s open up the conversation and share our tips on stretching
those hard-earned pounds, supporting one another through these challenging times.
#CostOfLivingCrisis #CommunitySupport #BudgetingTips
#TogetherWeCanHandleIt

Tweet

The cost of living is soaring in 2023, and it’s hitting hard! From groceries to
gas, it’s becoming more challenging to make ends meet. Let’s keep
the conversation going on how we can tackle this #CostOfLivingCrisis
together and support those facing financial strain. #Economy2023

Academic
Paper

The year 2023 has witnessed a growing concern worldwide regarding the
cost of living. The term "cost of living" encompasses the expenses individuals
and families incur to maintain a reasonable standard of living, including housing,
food, transportation, healthcare, education, and other essentials. This
essay seeks to provide a comprehensive analysis of the cost of living crisis
in 2023, focusing on its underlying causes, economic implications, and potential
policy measures to mitigate its effects.

Fictitious
narrative

In the year 2023, as the calendar pages turned, people across the nation
found themselves entangled in a relentless and unforgiving cost of living
crisis. The once-stable balance of life, as they knew it, had been upended,
and every aspect of their daily existence was impacted.

Table 10: The GPT-3.5 output for the prompt “Write me a <stylistic_text> on the cost of living crisis in 2023”,
where <stylistic_text> is replaced by one of paraphrase, social media post, tweet, academic article and fictitious
narrative
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Appendix C The Extended WritePrint

Category Feature Description

Lexical

Token-based
Word length
Sentence length
Average sentence count, Average word count

Character-based
Upper- and lower-case distribution
Digit frequency

Word length distribution One to ten plus letters
Top n-grams Top 50 occurring tri and bi grams
Special characters/punctuation Frequency counts

Vocabulary richness
Type-token ration (TTR)
Text repetitiveness rate (TRR)

Hapax Legomena Frequency counts

Clipping
Process of shortening words at any word boundary:
e.g., “Advertisement” to “Ad”

Syntactic

Tagging
Part-of-Speech (POS) tags
Dependency tags

Term replacement/omission

Ellipsis: e.g. [full sentence] “I like coffee and she likes tea” to
[elliptical sentence] “I like coffee, and she”

Substitutions: e.g. [full sentence] “John went to the store.
John bought back milk” to [substituted sentence] “John went to the store.
He bought back milk”

Morphological Variation

Irregular patterns:
- Present participle form
- Plural forms
- Past tense form
- Past participle form
- Plural form (-ies, -ves, es)
- Possessive form
- Comparative and Superlative form
- Singular form (-y, -o)

Sentence types
Simple, Complex, Compound
Declarative, Interrogative, Exclamatory,
Imperative, Conditional, Comparative, Passive

Semantic
Sentiment scores
Synonym/Homonym counts

Other
Phonetic

Alliteration
Assonance
Consonance

Word lists
Function words
Acronyms/Slang

Table 11: The Extended WritePrint (EWP). This feature set consists of static (context-independent) and dynamic
(context-dependent) features
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Appendix D Hyperparameter settings for the DeBERTa model

Hyperparameter Amended value
num_train_epochs 6
train_batch_size 16
eval_batch_size 16

gradient_accumulation_steps 4
n_gpu -1

max_seq_length 512
class_weight Custom labels specified

early_stopping_patience 2
early_stopping_delta 0.01

Table 12: The hyperparameters used in training the DeBERTa model (He et al., 2021)

Appendix E Hyperparameter settings for the traditional machine learning-based
classification models

Hyperparameter Amended value
max_depth None

min_samples_leaf 1
min_samples_split 5

n_estimators 300
class_weights Balanced

Table 13: The hyperparameters used in training the Random Forest classifier

Hyperparameter Amended value
C 10

penalty l2
solver liblinear

Table 14: The hyperparameters used in training the Logistic Regression classifier

Hyperparameter Amended value
C 0.1

kernel linear

Table 15: The hyperparameters used in training the Support Vector Machine classifier
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Appendix F Linguistic analysis

Conversational AI Agent Output

PaLM-2

Workers choosing between warmth and a full refrigerator. Dreams put on hold,
replaced by the daily grind of survival. The cost of living crisis is a call to action.
It demands solutions, not platitudes. It requires bold leadership, targeted
support, and a commitment to building a fairer, more resilient society. This isn’t just a
winter chill; it’s a systemic squeeze. And until we collectively address its root causes,
the UK’s future risks being defined not by prosperity, but by the struggle to merely exist.

GPT-3.5

The United Kingdom is currently contending with a profound cost of living crisis,
as citizens grapple with the escalating prices of essential goods and services.
From surging energy costs to rising food and housing expenses, the financial strain on
households has become palpable. This crisis not only impacts individual wallets
but also raises concerns about broader economic inequality. Many individuals and families
are forced to reassess their budgets and make difficult choices to navigate
through these challenging times. As the cost of living continues to rise, policymakers
face the imperative of implementing effective strategies to alleviate the burden on citizens
and foster economic resilience. The cost of living crisis in the UK is a pressing issue that
demands thoughtful and comprehensive solutions to ensure the well-being of the
population.

Table 16: The GPT-3.5 (Text one (T1)) and PaLM-2 (Text two (T2)) output for the prompt “Write me a write a
short paragraph on the cost of living crisis in the UK”
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Linguistic Features Feature
Average word length 5.125 charaters per word
Average sentence length 14.9 words per sentence
Type-token ratio 0.678
Text repetitiveness rate 0.32

Character unigram
’e’ (occurs 98 times), ’t’ (occurs 78 times), ’s’ (occurs 58 times),
’i’ (occurs 54 times), ’n’ (occurs 54 times)

Character bigram
‘th’ (occurs 45 times), ’es’ (occurs 38 times), ’nt’ (occurs 30 times),
’in’ (occurs 28 times), ’er’ (occurs 28 times)

Character trigram
’the’ (occurs 23 times), ’ing’ (occurs 16 times), ’ion’ (occurs 14 times),
’ent’ (occurs 13 times), ’ndi’ (occurs 9 times)

Sentence type
Simple (3), compound (2), complex (2), declarative (6),
passive (1), exclamatory (1)

POS and Dependency tags

Top 5 POS Tags:
NN (Noun, singular or mass), IN (Preposition or subordinating conjunction),
JJ (Adjective), VBZ (Verb, 3rd person singular present), DT (Determiner)

Top 5 Dependency Tags:
nsubj (Nominal subject), ROOT (Root of the clause), prep (Prepositional modifier),
pobj (Object of preposition), det (Determiner)

Number of shared POS tags: 5
Number of shared dependency tags: 5

Number of Unique POS tags: 13
Number of Unique dependency tags: 8

Table 17: Subset of features extracted from GPT-3.5 (T1) for linguistic analysis

Linguistic Features Feature count
Average word length 5.276 characters per word
Average sentence length 16 words per sentence
Type-token ratio 0.607
Text repetitiveness rate 0.392

Character unigram
’e’ (occurs 50 times), ’t’ (occurs 43 times), ’s’ (occurs 37 times),
’r’ (occurs 30 times), ’i’ (occurs 28 times)

Character bigram
’th’ (occurs 24 times), ’es’ (occurs 23 times), ’ti’ (occurs 21 times),
’in’ (occurs 21 times), ’re’ (occurs 18 times)

Character trigram
’the’ (occurs 14 times), ’ion’ (occurs 13 times), ’ing’ (occurs 12 times)
’ent’ (occurs 10 times), ’tio’ (occurs 9 times)

Sentence type Simple (5), compound (3), complex (4), declarative (12), passive (1)

POS and Dependency tags

Top 5 POS Tags:
NN (Noun, singular or mass), VBZ (Verb, 3rd person singular present),
IN (Preposition or subordinating conjunction), DT (Determiner),
JJ (Adjective)

Top 5 Dependency Tags:
nsubj (Nominal subject), ROOT (Root of the clause),
prep (Prepositional modifier), pobj (Object of preposition),
det (Determiner)

Number of shared POS tags: 5
Number of shared dependency tags: 5

Number of Unique POS tags: 21
Number of Unique dependency tags: 8

Table 18: Subset of features extracted from PaLM-2 (T2) for linguistic analysis
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