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Abstract

Large Language Models (LLMs) have shown
potential in reasoning over structured environ-
ments, e.g., knowledge graphs and tables. Such
tasks typically require multi-hop reasoning,
i.e., match natural language utterance with in-
stances in the environment. Previous works
adopt LLMs to incrementally build a reason-
ing path, where LLMs either invoke tools or
pick up items by step-by-step interacting with
the environment. We propose Reasoning-Path-
Editing (Readi), a novel framework where
LLMs can efficiently and faithfully reason over
structured environments. In Readi, LLMs ini-
tially generate a reasoning path given a query,
and edit the path only when necessary. We in-
stantiate the path on structured environments
and provide feedback to edit the path if any-
thing goes wrong. Experimental results on
three KGQA and two TableQA datasets show
the effectiveness of Readi, significantly sur-
passing previous LLM-based methods (by 9.1%
Hit@1 on WebQSP, 12.4% on MQA-3H and
9.5% on WTQ), comparable with state-of-the-
art fine-tuned methods (67% on CWQ and
74.7% on WebQSP) and substantially boost-
ing the vanilla LLMs (by 14.9% on CWQ). Our
code will be available on https://aka.ms/
readi.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable performance in NLP
fields (Ouyang et al., 2022; OpenAI, 2023;
Liang et al., 2022). To further unleash their reason-
ing ability in complex scenarios, delicate strategies
are proposed to equip LLMs with human-like
thought process (e.g., Chain-of-thought Wei et al.,
2022) or leverage them as autonomous agents
capable of planning, reflection and execution (Yao
et al., 2023; Liu et al., 2024). One compelling
scenario where LLMs showcase their potential

*This work is done during the internship at Microsoft.
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Figure 1: An illustration of our proposed framework,
Readi, where LLMs initially generate a reasoning path,
and when necessary, edit this path. We instantiate the
path on structured environments and invoke editing if
the instantiation gets stuck.

is reasoning over structured environments
(SEs) (Jiang et al., 2023a; Sun et al., 2024). With
dedicate schemas, SEs (e.g., knowledge graphs,
tables) abstract real-world semantics for repre-
senting, storing, and querying data with relational
structures. For instance, Freebase (Bollacker et al.,
2008) captures 45M entities and 3B facts over 100
domains, organized in triple patterns. The crux
of successful reasoning lies in bridging the gap
between natural language and the mechanism of
how the SEs are represented and operated (Gu
et al., 2023; Li et al., 2023).

While LLMs exhibit promising capabilities, their
performance often falls short when faced with
multi-hop reasoning involving large-scale SEs. To
faithfully reason, prior works adopt an iterative
way that start from certain elements (e.g., entity,
relation in KG, column in Table), instantiate on
SEs and then gradually expand the reasoning path
while consuming just relevant portions instead of
the entire environment (Sun et al., 2024; Jiang et al.,
2023a; Huang et al., 2024). This step-by-step in-
teraction could mitigate hallucination of LLMs to
some extent. However, the reasoning efficiency is
sacrificed and thus hinder the practical feasibility.
For a simple constraint, say “the daughter of
Obama”, such methods probably require two LLM-
calls to first query the relations around “Obama”
and then select “father_of” from returned can-
didates. Moreover, at each step, LLMs make one
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choice based on history, making it prone to error
propagation. Alternatively, fine-tuned methods in-
ject environments into model parameters by tuning
with human-labeled supervision. During inference,
they recall schema patterns to build reasoning paths
(Zhang et al., 2022; Saxena et al., 2020; LUO et al.,
2024; Ding et al., 2024; Xiong et al., 2024) without
interaction with SEs. This end-to-end paradigm is
efficient. However, it is never ensured that the
model output can be grounded on SEs. Study
shows that 50% paths of RoG (LUO et al., 2024)
failed to yield faithful results. In addition, they
heavily rely on annotations, which are difficult to
obtain for large-scale SEs. Further research is thus
needed to achieve efficient (i.e., less LLM-calls)
and faithful (i.e., grounded on SEs) reasoning over
massive SEs.

Therefore, we seek to propose an interaction
paradigm that leverage LLMs to support complex
reasoning on large-scale SEs faithfully and effi-
ciently. Conducting empirical study on KGQA
task, we find that 46%-60% of reasoning paths ini-
tially generated by LLMs can be well instantiated,
which inspires us to fully exploit LLM’s intrinsic
planning ability in complex reasoning. While the
idea of plan-and-refine is straightforward and ap-
plied in various real world tasks (Qiao et al., 2023;
Collaboration, 2023; Ichter et al., 2022), it’s worth
noting that there exists few research on application
in SEs when the initial plan encounters obstacles.

In this paper, we propose Reasoning-Path-
Editing (Readi), a novel framework that leverages
the intrinsic planning ability of LLMs (Figure 1).
In Readi, LLMs initially generate a reasoning path,
which is then instantiated on SEs to facilitate faith-
ful reasoning. Path editing is triggered only if cor-
rections are necessary. This way, we alleviate the
burden of step-by-step interaction for LLMs, result-
ing in improved overall efficiency. To harness the
information of large-scale SEs, instead of injecting
the entire static SEs into the model, we collect rea-
soning log as immediate feedback which includes
details such as the position of stuck points, associ-
ated relations, half-way done instances, etc. This
dynamic guidance refines the reasoning path more
targeted and further enhances faithfulness. Our ex-
periments on Question Answering over Knowledge
Graphs (KGQA) and Tables (TableQA) demon-
strate that Readi surpasses existing solutions in
terms of both LLM-calls and accuracy.

We summerize our contributions as follows:
• We introduce Readi, a novel framework where

LLMs reason efficiently and faithfully over large-
scale structured environments. Notably, Readi is
the first to fully harness LLMs intrinsic planning
ability for reasoning in such contexts.
• In comprehensive experiments across five

multi-hop reasoning tasks in KGQA and TableQA,
Readi outperforms other LLM-based solutions and
surpasses most fine-tuned methods. Specifically,
it achieves 67.0% Hit@1 on CWQ, 78.7% on We-
bQSP and state-of-the-art results on MQA-1H.
• We give detailed analysis which highlights the

performance of Readi’s reasoning path generation
and editing modules. Experiments demonstrate
that Readi, with an average of 1.55 calls for edit-
ing, significantly reduces the number of LLM-calls
compared to the step-by-step interaction paradigm
(which costs 4 to 8 calls). Furthermore, the reason-
ing log reveals that Readi exhibits characteristics
akin to human thought process.

2 Related Works

Step-by-step reasoning over structured environ-
ments by LLMs. Introducing massive SEs (e.g.,
Freebase (Bollacker et al., 2008) captures 45M en-
tities and 3B facts over 100 domains) into LLMs
context windows is impractical. Existing works
break the task down to incrementally construct a
reasoning path. They either treat LLMs as an agent
to invoke tools based on history states and observa-
tions (Liu et al., 2024; Qin et al., 2023), or design
iterative procedures where LLMs are responsible
for picking up items on SEs (Gu et al., 2023; Jiang
et al., 2023a; Sun et al., 2024). These works reach
faithfulness by leveraging the reasoning ability of
LLMs for tool or item selection. However, their
performance is concerned with three shortcomings:
1) The iterative interaction with SEs is cumber-
some, requiring quite a few LLM-calls, which is
especially not efficient for complex reasoning tasks.
2) The greedy step-by-step decision lacks a global
view of the path, making it prone to error propa-
gation. 3) The accumulated prompts are lengthy
where LLMs may lose attention of history or can-
didates. To ease these problems, we propose to
directly generate a reasoning path, and edit it with
feedback when the instantiation gets stuck.
End-to-End reasoning over structured environ-
ments by fine-tuning. Fine-tuned models memo-
rize the environments through training over annota-
tions. They either directly generate a path and then
ground it on SEs (LUO et al., 2024; Huang et al.,
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2023b; Shu et al., 2022; Hu et al., 2022), or retrieve
relevant items to build a path (Zhang et al., 2022;
Saxena et al., 2020; Ding et al., 2024). Such end-to-
end reasoning shows efficiency with no interaction
with SEs. However, they have three limitations:
1) The grounding of reasoning path only depends
on model outputs, without ensuring faithfulness on
SEs. To remedy this issue, they rely on a wider
beam at the expense of more retrieved instances. 2)
They rely heavily on annotations, which are expen-
sive for massive environments. 3) The performance
drops substantially on data unseen during train-
ing (Gu et al., 2021; Huang et al., 2023a), which is
common in real-world scenarios. To alleviate these
problems, instead of fine-tuning, we propose to in-
stantiate LLMs reasoning path. Then, if anything
goes wrong, we call LLMs to edit the path.

Plan-and-Refine Reasoning with LLMs. For
faithfulness of LLMs reasoning, previous works
adopt LLMs to refine the output (Pan et al., 2023).
Some require LLMs to self-correct, prompting
them to identify and correct errors (Madaan et al.,
2023; Pourreza and Rafiei, 2023). Such methods
achieve limited improvement, since they rely only
on the intrinsic knowledge of LLMs, without any
access to the environment. Alternatively, other
works require LLMs to refine the previous plan
based on environmental feedback (e.g. code error
messages) (Chen et al., 2023; Qiao et al., 2023).
The feedback provides the execution results and
possible errors, which are more purposeful and
thus effective. However, how to collect feedback
for large-scale structured environments remains an
open question. In Readi, we collect immediate rea-
soning log through the instantiation of reasoning
path, including the position of error, half-way done
instances and associated relations.

3 Task Definition

Reasoning over structured environments (SEs),
e.g., question answering over Knowledge Graphs
(KGQA) and Tables (TableQA), typically requires
matching a question with instances in SEs to con-
strain the answer. An intermediate reasoning path
is a structural representation of the question, as
a bridge between the question and SEs. Figure 2 ex-
emplifies some reasoning paths and their instances
on KG. Note that a KG is a set of triple patterns,
i.e., {(e, r, e′)|e, e′ ∈ E , r ∈ R}, where E and R
refers to the set of entity and relation, respectively.

Formally, given a question Q and n topic en-
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Figure 2: Examples of the question, reasoning path, and
corresponding path instances on knowledge graph.

tities E, the reasoning path P is conditioned by
several constraints in Q. It is worth noting that
P can represent complex constraints, (i.e., P
can be single-constrained or multi-constrained).
A single-constrained P is from only one topic
entity. For example, a sequence of relations
from the entity to the answer (Example Q1) or
a Chain-of-thought (Wei et al., 2022). A multi-
constrained P is from multiple topic entities, con-
sisting of multiple paths to constrain the answer
(Example Q2). Correspondingly, we instantiate
P on KG to obtain instances. For Example Q1,
the reasoning path “father_of→university”

from “Obama” is instantiated to “Obama
father_of−−−−−−→

Malia
college−−−−→UCMC” and “Obama

father_of−−−−−−→ Sasha
college−−−−→UCMC”.

Following Sun et al. (2018), we model reasoning
over structured environments as an retrieve-then-
reason task, where we leverage LLMs to build the
reasoning path given Q. Then we reason over the
path instances to obtain the answer.

4 Methodology

4.1 Overview

For better illustration, we adopt KGQA, a challeng-
ing scenario of multi-hop reasoning over massive
environments, to showcase concrete implementa-
tion (Refer to Appendix A for TableQA). A running
example is in Figure 3. Given a question and topic
entities, we leverage the planning ability of LLMs
to generate the initial reasoning path P (Section
4.2). Then we instantiate P on KG (Section 4.3).
If the entire P is successfully instantiated, we take
the intersection of all instances, then generate the
answer. If any path in P gets stuck, we collect error
messages to guide further refinement (Section 4.4).
Such process runs until P is fully instantiated or
a maximum edit time is reached. Please refer to
Appendix G for concrete prompts of each module.
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and call an LLM to edit the path. Finally, an LLM answers the question based on the KG instances.

4.2 Reasoning Path Generation

Inspired by Li et al. (2023), we leverage in-context
learning (ICL) to generate the initial reasoning path,
as shown in Figure 3(a). Given a question and n
topic entities, we utilize Chain-of-Thought (CoT)
to generate the initial path, consisting of n con-
straints starting from each topic entity. For the
example in Figure 3, we have a two-constrained
path (from “France” to constrain the bordering
countries and from “Nijmegen” to airports serving
it and then to countries containing these airports).

4.3 Reasoning Path Instantiation

We instantiate the reasoning path P on KG and
merge the instances. The main difficulty lies in
how to sequentially match the natural language
(NL) relations in P with relations in KG. Our in-
stantiation involves two steps: relation-binding and
path-connecting, as shown in Figure 3(b).

For relation-binding, given a path consisting of
some NL relations (e.g., for “[France] border”,
we have one relation “border” expressed in NL),
we bind them to relation schemas in KG. Since a
relation r in NL may have similar relation schemas
in KG with analogical format and semantic mean-
ings (Li et al., 2023), we leverage BM25 and Con-
triever (Izacard et al., 2022) to retrieve similar re-
lations r̂ as candidates for r. For example, we
bind “border” with 3 candidate relations “adjoin,
near_by, locations” in KG (the orange italicized
relations in Figure 3(b). This way, we obtain candi-

date relations for all relations in P .
For path-connecting, note that the starting entity

of each path is given. For the example in Figure
3(b), we need to check if there exists any path in-
stance in KG from “France” where relations in
this instance sequentially match the bound candi-
date relations of all relations in P . Specifically, if
any relations in candidates “adjoin, near_by, loca-
tions” connects to “France” (the orange bold “ad-
join”), we obtain entities satisfying the constraint
“[France] border”, so the NL relation “border”
is instantiated to “adjoin” on KG. Then, we repeat
the same process for the remaining relations in P
to finally instantiate the whole path.

If any path in P is not successfully instantiated,
e.g., none of the candidate relations r̂ connects
to the current entity, this is the necessary time to
invoke editing (Section 4.4). If the entire P is suc-
cessfully instantiated or the maximum edit time is
reached, we merge all KG instances by intersection
to answer the question (Section 4.5). Please refer
to Appendix B.1 for concrete implementation.

4.4 Reasoning Path Editing
The goal of editing is to help LLMs identify the
error of previous reasoning path and provide some
error messages, consisting of 2 steps: summariza-
tion and preparation, similar to an error traceback
of coding, as shown in Figure 3(c).

For summarization, we categorize the reasons of
error as follows: i. “irrelevant NL relation rerr”:
none of the KG relation candidates of rerr con-
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nects to current entity; ii. “empty reasoning path”;
iii. “path ends with compound nodes”1. Thus, if the
instantiation goes wrong, we detect error position
err, current NL relation rerr (none for reason iii)
and current ending entity êerr (before which the
NL relations are successfully instantiated).

For preparation, we collect some useful mes-
sages: 1) the reason of error. 2) the currently
halfway-done instances. 3) relations around êerr is
accessible, which might be the candidates to amend
the halfway-done instances. Finally, an LLM is
called to edit the previous path based on Q and
these error messages by ICL.

For the example in Figure 3, we have the NL rela-
tion “border” instantiated to “adjoin” and obtain
a compound node at the end of instance, which trig-
gers reason iii to invoke LLMs for editing. There-
fore, we concatenate reason iii, halfway-done in-

stance “France
adjoin−→ Compound Node” and candi-

date relations around the “Compound Node” (e.g.,
“country” and “relationship”) as error messages.
More details are in Appendix B.2.

4.5 QA Reasoning

Upon obtaining the merged KG instances Sq, i.e.,
the intersection of instances for each path (con-
straint), we build an LLM-based reasoning module
to answer the question Q. We concatenate Q and
Sq as input and prompt an LLM to generate the
answer. Note that the form of Sq is a set of triple
patterns (entity, relation, entity′). For entities,
we convert the mid in KG to the corresponding
friendly name. For relations and compound nodes,
we keep their original forms in KG. Specifically,
we ask LLMs to pick the knowledge triples used to
answer Q in a CoT manner. For the example KG
instances from “France” in Figure 3, we have 2
knowledge triples “(France, adjoin, compound
node), (compound node, country, German)”,
based on which, the LLM can reason that “the
country bordering France” is “German”.

5 Experiments

To comprehensively evaluate the reasoning ability
of Readi on large-scale structured environments,
we experiment on two complex tasks, KGQA and
TableQA. (Please refer to Appendix A for detailed
implementation of TableQA).

1Compound value node, i.e., blank node, is typical in KG
to express some complex entities, such as an event.

5.1 Datasets

We evaluate on three KGQA and two TableQA
datasets. Detailed statistics are in Appendix C.1.
WebQuestionsSP (WebQSP) (Yih et al., 2016)
contains KGQA questions from Google query logs
with up to 2-hop reasoning on Freebase, mostly
requiring a single-constrained reasoning path.
ComplexWebQuestions (CWQ) (Talmor and Be-
rant, 2018) is a complex KGQA benchmark, chal-
lenging for up to 4-hop reasoning on Freebase, with
55% multi-constrained questions.
MetaQA (Zhang et al., 2018) is a KGQA dataset
from movie domain, with 3 levels of difficulty, de-
noted as MQA-1H, MQA-2H and MQA-3H.
WikiTableQuestions (WTQ) (Pasupat and Liang,
2015) contains questions over 421 tables, challeng-
ing for complex aggregation operations, e.g., count,
argmax, and sorting.
WikiSQL (Zhong et al., 2017) is a large-scale com-
plex dataset based on Wikipedia tables, requiring
comparison, aggregation and arithmetic operations.

5.2 Baselines

KGQA Baselines. Training-based meth-
ods fine-tune pre-trained language models
(PLMs): EmbedKGQA (Saxena et al., 2020),
NSM (He et al., 2021), TransferNet (Shi
et al., 2021), SR+NSM+E2E (Zhang et al.,
2022), UniKGQA (Jiang et al., 2023c), Reason-
ingLM (Jiang et al., 2023b) and RoG (LUO et al.,
2024). Inference-based methods call LLM-APIs:
Davinci-003 (Ouyang et al., 2022), GPT3.5,
GPT4 (OpenAI, 2023), AgentBench (Liu et al.,
2024), StructGPT (Jiang et al., 2023a). All
baselines assume golden topic entities are given.
TableQA Baselines. Training-based methods find-
tune PLMs: TAPAS (Herzig et al., 2020), Unified-
SKG (Xie et al., 2022), TAPEX (Liu et al., 2022).
Inference-based methods call LLM-APIs: Davinci-
003 (Ouyang et al., 2022), GPT3.5, GPT4 (Ope-
nAI, 2023), StructGPT (Jiang et al., 2023a). Note
that Inference-based methods model TableQA as
an information retrieval task.

Following Tan et al. (2023), we adopt Hit@1,
assessing whether the predicted entity is correct,
to evaluate KGQA. We adopt denotation accuracy,
assessing whether the prediction exactly matches
the golden, to evaluate TableQA. We elaborate
baselines in Appendix C.3. We also discuss in-
depth comparison with ToG (Sun et al., 2024) and
DATER (Ye et al., 2023) in Appendix F.
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Methods WebQSP CWQ MQA-1H MQA-2H MQA-3H

Training-based Method
EmbedKGQA (Saxena et al., 2020) 66.6 - 97.5 98.8 94.8
NSM (He et al., 2021) 67.7 47.6 97.1 99.9 98.9
TransferNet (Shi et al., 2021) 71.4 48.6 97.5 100⋆ 100⋆

SR+NSM+E2E (Zhang et al., 2022) 69.5 49.3 - - -
UniKGQA (Jiang et al., 2023c) 75.1 50.7 97.5 99.0 99.1
ReasoningLM (Jiang et al., 2023b) 78.5 69.0⋆ 96.5 98.3 92.7
RoG (LUO et al., 2024) 85.7⋆ 62.6 - - 84.8

Inference-based Method
Davinci-003 (Ouyang et al., 2022) 48.7 - 52.1 25.3 42.5
GPT3.5 (OpenAI, 2022) 65.7 44.7 61.9 31.0 43.2
GPT4 (OpenAI, 2023) 70.7 52.1 71.8 52.5 49.2
AgentBench (Liu et al., 2024) 47.8 24.8 - - -
StructGPT (Jiang et al., 2023a) 69.6 - 97.1 97.3 87.0

Readi-GPT3.5 74.3 55.6 98.4 99.9 99.4
Readi-GPT4 78.7 67.0 98.5⋆ 99.9 99.2

Table 1: QA performance (Hit@1) of Readi on KGQA datasets. Results of GPT3.5, GPT4 (OpenAI, 2023) and
AgentBench (Liu et al., 2024) are run by ourselves, others are from the origin paper. Bold and underline fonts
denotes the best and second-best for two types of methods, respectively. ⋆ denotes the overall state-of-the-art result.

5.3 Implementation Details
We adopt gpt-3.5-turbo (OpenAI, 2022) and
GPT4 (OpenAI, 2023) as LLMs, denoted as Readi-
GPT3.5 and Readi-GPT4. Temperature is 0.3 for
all modules. For relation-binding, we deploy a
Pyserini as a hybrid searcher with BM25 and Con-
triever (Izacard et al., 2022). For each relation
generated by LLMs, we retrieve top 5 similar rela-
tions on Freebase. For instantiation, we deploy a
Virtuoso server following the instructions2. More
details can be found in Appendix C.

5.4 Main Results
Results for KGQA As shown in Table 1, over-
all, Readi significantly outperforms all Inference-
based methods, the vanilla LLMs and most training-
based methods on all datasets, demonstrating the
effectiveness of Readi. Compared with inference-
based methods, Readi substantially boosts the re-
sults of the vanilla LLM (by 8.6% on WebQSP and
14.9% on CWQ), demonstrating that Readi en-
ables LLMs to practically interact with structured
environments. Moreover, Readi-GPT3.5 already
significantly surpasses state-of-the-art results with
LLM-APIs (by 4.7% on WebQSP and 12.4% on
MQA-3H), and Readi-GPT4 further enhances the
performance. With fewer LLM-calls, our directly-
generated reasoning path and editing framework

2https://github.com/dki-lab/Freebase-Setup

Methods WTQ WikiSQL

Training-based Method
TAPAS 48.8 83.6
UnifiedSKG (T5-3B) 49.3 86.0
TAPEX 57.5 89.5

Inference-based Method
Davinci-003 34.8 49.1
GPT3.5 55.8 59.8
GPT4 57.0 59.9
StructGPT 52.2 65.6

Readi-GPT3.5 61.7 66.2
Readi-GPT4 61.3 66.0

Table 2: QA performance (denotation accuracy) of
Readi on TableQA datasets. Bold fonts denotes the best
results for Training-based and Inference-based methods.

still achieves better performance. Compared with
Training-based methods, without large-scale super-
vision and cost of beam search, Readi achieves
comparable performance (e.g. 67.0 Hit@1 on
CWQ) by some demonstration examples, show-
ing the effectiveness of Readi. Additionally,
Readi sets new state-of-the-art results MQA-1H,
showing the effectiveness of editing which provides
pertinent feedback upon instantiation errors.

Results for TableQA We experiment on TableQA
scenario requiring multi-hop reasoning over ta-
bles to show the generalizability of Readi. As
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Variance of Readi
Answer Coverage Rate (AC) QA Performance (Hit@1)

Corrupt Empty GPT3.5 GPT4 Corrupt Empty GPT3.5 GPT4

w/o edit - - 56.7 62.7 - - 51.0 57.2
w/ edit by GPT3.5 54.0 56.4 62.5 64.3 57.3 58.5 58.7 58.5
w/ edit by GPT4 55.6 63.9 68.6 65.8 58.2 59.9 58.1 59.3

Table 3: Answer Coverage Rate (AC) and QA Performance (Hit@1) of variance of Readi (GPT3.5 as reasoning
module). Each column denotes a path generation method. Corrupt means a path with some randomly-sampled
relations. Empty means empty path. w/o edit means we only leverage the initial reasoning path.

shown in Table 2, overall, Readi outperforms all
Inference-based and most Training-based baselines,
setting state-of-the-art results on WTQ, demon-
strating the effectiveness of our framework. Com-
pared with Inference-based methods, Readi sur-
passes previous state-of-the-art methods by 9.5%
and the vanilla LLM by 5.9% on WTQ, showing
that Readi significantly improve the LLMs per-
formance. Compared with Training-based meth-
ods, Readi, without massive annotations, is sig-
nificantly superior on WTQ, while trailing behind
on WikiSQL. This may be due to the i.i.d. dis-
tribution between the training and testing sets of
WikiSQL, favoring the results of fully-trained meth-
ods. Interestingly, Readi-GPT3.5 are comparable
with Readi-GPT4. This might because we asks
LLMs to reason (with aggregation operations) di-
rectly based on retrieved table items. Further anal-
ysis shows that Readi-GPT3.5 has more chance of
invoking editing than Readi-GPT4, which offers
more pertinent feedback from the environments.
Elaboration on effectiveness of editing is in Sec-
tion 6.1, Section 6.2 and Appendix D.2.

6 Analysis

We further analyze Readi’s modules, reasoning
path and efficiency on 1000 test samples of CWQ.
For fairness, we base all evaluation on our instan-
tiation and reasoning modules. Please refer to Ap-
pendix D for more detailed analysis of Readi.

6.1 Ablation Study
Effectiveness of reasoning path generation and
editing modules. As shown in Table 3, we adpot
the answer coverage rate (AC, rate of instances con-
taining the answer) and QA performance (Hit@1)
for illustration. We also analyze the robustness of
editing module with a Corrupt path and an Empty
path. First, Readi establishes a plug-and-play na-
ture for both modules, showing their effectiveness.
With only an initial path (we instantiate the path
and maintain the longest path if it goes wrong),

Methods
Graph Quality QA Perf.

AC #RK Hit@1

SR
- beam size 1 58.4 26.3 50.9
- beam size 3 67.2 47.1 54.6

RoG
- beam size 1 57.0 69.5 52.2
- beam size 3 77.5 170.1 57.3

Readi initial path
- GPT3.5 56.7 134.6 51.0
- GPT4 62.7 101.4 57.2

Readi full
- GPT3.5 62.5 93.7 58.7
- GPT4 71.8 121.5 59.3

Table 4: Reasoning path evaluation of Readiand com-
pared methods. AC and #RK denotes answer coverage
rate and number of retrieved knowledge, respectively.

Readi reaches comparable results (1st row). With
an Empty initial path (Empty columns), the edit-
ing modules still yield competitive results close
to the full Readi. Second, editing with LLMs
significantly improves the performance (2nd and
3rd rows), further showing the effectiveness of the
editing module. Third, generally, higher capacity
of LLMs leads to better results for both modules,
which meets our expectation. Lastly, Readi shows
robustness for reasoning path editing, performing
well even with an Empty or even a Corrupt path
(Corrupt and Empty columns).

6.2 Reasoning Path Analysis

We compare reasoning path of Readi with rep-
resentative fine-tuned methods, i.e., Subgraph Re-
trieval (SR) (Zhang et al., 2022) trains an encoder to
retrieve relation and then builds a path, RoG (LUO
et al., 2024) tunes a Llama 2 (Touvron et al., 2023)
to generate a path.
Quality of Readi’s reasoning path. We adopt
answer coverage rate (AC) and number of retrieved
knowledge (#RK) as the quality of graph. Ideally,
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Figure 4: Extensive features of Readi’s reasoning path,
compared with fine-tuned methods and Golden.

the higher AC and lower #RK, the better. Also, we
analyze the QA performance (Hit@1), shown in Ta-
ble 4. First, Readi’s initial path is comparable with
fine-tuned methods, with GPT4 surpassing them by
a large margin (5.0% and 6.3% Hit@1 than RoG
and SR, respectively), showing the effectiveness
of our reasoning path. Second, with some nec-
essary editing, Readi obtains substantially higher
AC, with a little higher #RK (GPT4) and even lower
#RK (GPT3.5), and significantly higher QA per-
formance than fine-tuned methods, showing the
effectiveness of LLMs editing. Third, with wider
beam size, fine-tuned methods gain higher AC, yet
a drastically growing #RK, and lower Hit@1 than
Readi, illustrating our superiority.
Extensive features of Readi’s reasoning path.
The quality of reasoning path is multi-dimensional.
To further show insights of reasoning path by
LLMs, we design some metrics, including the in-
stantiation progress, error types, etc. We compare
with SR, RoG and Golden (Outermost in Figure 4).
More detailed analysis is in Appendix D.1.

Insights driven by Figure 4 are three-folded: 1)
Readi’s initial path already achieves better in QA
results. More than a half (60%) of Readi’s initial
paths can be fully instantiated (LLMs called only
once), showing that Readi effectively unleash
the strong planning ability of LLMs. For each
path, a large proportion (averagely 74%) can be
instantiated, again indicating the possibility to safe
LLM-calls. 2) With necessary editing, Readi gets
significantly closer to golden (From green to red in
Figure 4), exceeding compared methods in many
metrics, especially the QA results. 3) Interestingly,
the path by LLMs establish a human-like nature,
for humans tend to get stuck at points they have
never seen in real world. For Compound Node End-
ing Rate (special for KG), fine-tuned methods are
close to Golden, showing that they memorize the

Question 1: What is the name of the money used in the
country the Peruvian Paso breed originated?
Initial Reasoning Path: (from “Peruvian Paso”)
biology.organism.breeds→biology.breed.originated_in→ lo-
cation.country.currency_used
Error Message: irrelevant relation “biology...breeds”.
Candidates: biology.breed.originated_in, ...
Edited Reasoning Path: (from “Peruvian Paso”)
biology.breed.originated_in→location.country.currency_used

Question 2: What to see in the country that has Gozo?
Initial Reasoning Path: (from “Gozo”)
location.location.containedby→location.country.attractions
Error Message: irrelevant relation “location...attractions”.

Contexts: Gozo
location.location.containedby−−−−−−−−−−−−−−−−−−−→Melta

Candidates: travel.travel_destination.tourist_attractions, ...
Edited Reasoning Path: (from “Gozo”)
location.location.containedby→travel.travel_destination.tour-
ist_attractions

Table 5: Cases of Readi’s reasoning path editing.

Figure 5: Distribution of number of LLM-Call for rea-
soning path editing of Readi-GPT4.

structured information. However, they trail behind
behind Readi on QA results, demonstrating that
unfaithfulness still exits for fine-tuned methods.

6.3 Efficiency Evaluation

How many LLM-calls do we need? Due to un-
expectable nature of LLMs output, we cannot give
an exact number of LLM-calls for Readi. Instead,
we present the distribution of number of LLM-calls
for editing in Figure 5 and some exemplar cases
in Table 5. Note that there are at least 2-hop and
up to 4-hop reasoning required for CWQ (theo-
retically 4-8 LLM-calls for iterative interaction).
The instantiation success rate and average instanti-
ate progress in Figure 4 already demonstrate that
Readi can save a bunch of LLM-calls. In Figure 5,
most of the time the initial reasoning path is already
instantiable, no need for more LLM-calls. Aver-
agely, the LLM is called 1.55 times to edit the path,
saving more invocation than iterative interaction.
Also, cases in Table 5 show that, with the necessary
editing, LLMs can correct previous path based on
some error messages during instantiation.

7 Conclusion

In this paper, we propose a novel framework
Readi where LLMs can reason over structured
environments efficiently and faithfully. In Readi,
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LLMs initially generate a reasoning path which is
then instantiated on environments to facilitate faith-
ful reasoning. Path editing is triggered only if the
instantiation gets stuck. We showcase the imple-
mentation of Readi on knowledge graph, evaluate
the effectiveness on KGQA and TableQA and an-
alyze extensive features of Readi. Our work also
shed lights on practically interaction between nat-
ural language and structured environments, where
LLMs plays a crucial role to bridge the gap.

8 Limitations

Although Readi achieves strong performance in
complex reasoning task over structured environ-
ments, e.g., knowledge graph and tables, there are
still some limitations of our method. First, we lever-
age only two LLMs as backbone to evaluate Readi.
Therefore, more experiments can be done to test
performance of Readi for other LLMs (including
the inference-based and training-based). Second,
we adopt reasoning path as a representation of nat-
ural language utterance and model the task as a
information-retrieval one. An interesting direction
is semantic parsing, e.g., text2SQL, which we
will leave for future work. Moreover, we can also
test Readi on question answering over database
or other reasoning fields. Third, the instantiation
in our current implementation of KGQA is intu-
itive but may induce many queries for SPARQL
engine if encountered some “big” entities. Finally,
our proposal, to fully harness intrinsic planning
ability of LLMs and incorporate structural reason-
ing log to edit the path, performs well and saves
some LLM-calls in experiments, which does not
mean we should always depend on LLMs plans.
And although the initial path by LLMs can be well
instantiated, this just means the path by LLMs cor-
responds to some instances on KG, but not ensures
that the path exactly matches with the constraints
in the question.
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A Implementation of Readi for TableQA

Algorithm 1 demonstrates Readi’s framework. Our
implementation of Readi for TableQA strictly
sticks to Algorithm 1, and is simpler than KGQA.
The main difference between TableQA and KGQA
is the implementation of reasoning path (Refer to
Section 3). Detailed prompts of all modules is in
Appendix G.

Algorithm 1: Readi
Data: task Q, entity set E, environment G, max edit

time T
1 t← 0
2 P0 ← Reasoning_Path_Generation(Q,E)
3 while t ≤ T do
4 IG , Errmsg ← Instantiate(Pt,G)
5 if Errmsg ̸= ∅ then
6 Pt+1 ← Edit_Path(Errmsg, Pt, Q)
7 t← t+ 1
8 else
9 Go to Line 11

10 end
11 end
12 InstancesG ← Merge_Results(IG)

Reasoning path for TableQA starts from a given
table, to some columns and then to some rows, in
order to constrain specific items in the table to
answer the question. A sample of WTQ (Pasupat
and Liang, 2015) dataset is shown in Table 6. The
reasoning path of such question is from this table
to column “Name in English” and “Depth”, and
then to row items whose “Name in English” is
“Lake Tuz” and “Lake Palas Tuzla”.

For reasoning path generation, we ask LLMs
to generate a reasoning path, given a question
and some table descriptions (i.e., the header and
a randomly-sampled row), by in-context learning.
Specifically, we require the LLMs to pick up at
least to rows for complex arithmetic and aggrega-
tion operations in TableQA. For the example in
Table 6, ideally, the LLM would generate a dict
indicating the chosen header is “[’Name in En-
glish’, ’Depth’]”, and the row constrain is “"Name
in English": [’Lake Tuz’, ’Lake Palas Tuzla’]”.

For reasoning path instantiation, since
schemas of a table is not as massive as a KG, we
don’t need a relation binding module to retrieve
candidate relations and connect them according
to the reasoning path. Instead, we first filter out
columns and then filter out the rows in the reason-
ing path. For the example in Table 6, we filter out
the column "Name in English" and "Depth" and
rows whose "Name in English" is "Lake Tuz"

or "Lake Palas Tuzla". If the the instantiation
goes wrong, this is the necessary time to invoke
editing. Here we only consider whether the instanti-
ation of columns in the reasoning path goes wrong.
If a selected row in the reasoning path fails to be
instantiated, we do not invoke editing and return
all rows in the columns.

For reasoning path editing, we collect the cur-
rently instantiated columns and candidate columns
when the instantiation goes wrong, as error mes-
sages. Note that we only consider wrong columns
as error, where we categorize the reasons of error as
follows: i. “irrelevant column colerr”: the column
colerr in the reasoning path failed to be instanti-
ated in the given table; ii. “insufficient columns in
reasoning path”: the output reasoning path contains
less than two columns (most questions in WTQ (Pa-
supat and Liang, 2015) and WikiSQL (Zhong et al.,
2017) need at least two columns to constrain the
answer). Then, we ask the LLMs to edit previous
reasoning path according to the feedback. For ex-
ample, if chosen header is ["English Name"], not
matching the headers in Table 6. We provide all
candidate headers and a randomly-sampled row in
Table 6 as error messages.

The QA reasoning is similar to KGQA, we con-
catenate the question and instantiated table items
and ask the LLMs to answer the question.

B Detailed Implementation of Readi for
KGQA

B.1 Reasoning Path Instantiation Details

In this part, we demonstrate more details of path-
connecting mentioned in Section 4.3. Assume that
we have a reasoning path starting from an entity,
with m relations R. All relations are bound to
candidates R̂. For the example in Figure 3, we have
a reasoning path “[Nijmegen] serve_airport
→ contain” and have “r1 : serve_airport”
bound to “r̂1 : airport, terminal, serving port” in
KG, and similarly have “r2 : contain” bound to
“r̂2 : contained by, contains, place of ”. The purpose
if path-connecting is to check if there exists an
instance in KG where the starting point is entity
“Nijmegen”, then connect to some relations in r̂1,
and then connect to some relations in r̂2.

The path-connecting is essentially an Breadth-
first search (BFS) algorithm, with a queue que con-
taining possible entities connected to current re-
lations. Firstly, we push the starting point (e.g.,
“Nijmegen”) into que. Second, at each time,
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Name in English Name in Turkish Area (km2) Depth Location (Districts and/or provinces)

Lake Van Van Gölü 3755 km2 171 m Van, Bitlis
Lake Tuz Tuz Gölü 1500 km2 2 m Aksaray, Ankara, Konya

Lake Palas Tuzla Palas Tuzla Gölü 106 km2 15 m Palas/Kayseri
......

Table 6: An example from WTQ (Pasupat and Liang, 2015), with the question “which is deeper, lake tuz or
lake palas tuzla?”.

we pop out current head of que and check if
current candidate relations (e.g., “adjoin, termi-
nal, serving port”) can connect to it on KG. If
so, we successfully instantiate “serve_airport”
on KG, and we can obtain some entities which
are “serve_airport” of “Nijmegen” (e.g., “WZ
air.” and “NTA.”). Then, we add these entities
to que. Such BFS searching continues until all
relations are instantiated or anything goes wrong.

Note that for a “big” entity, their may be a
substantial number of tail entities for a relation.
For example, there are hundreds of entities for
“France

location−→ ”. This may end up with a longer in-
stantiation time and shed lights on future improve-
ments of Readi. In this case, we adopt a threshold
to constrain the size of que.

B.2 Reasoning Path Editing Details

Section 4.4 covers the basic process of reasoning
path editing. Here are some implementation de-
tails for the preparation step, the purpose is to
adopt pertinent structural information on KG to
help LLMs identify the error position of previous
reasoning path and edit it. For the half-way done in-
stances in the Error Messages, we use “compound
node” to indicate all cvt nodes in Freebase (Bol-
lacker et al., 2008), and we just sample several (as
a hyper-parameter) instances of each instantiated
relation to showcase the path instances in KG of
the previous path. The loss of information from
sampling is minor because the messages just in-
form the LLMs that the relations in the reasoning
path can be grounded to certain instances on KG.
For candidate relations, we also adopt a threshold
to constrain the size, if there are too many of them,
we filter out using similarity search (same embed-
ding as relation-binding) according to the original
question.

For example, there are hundreds of compound

node instances connected to “France
adjoin−→ ”, and

we just use “France
adjoin−→ compound node” to rep-

Dataset Training Dev Test

KGQA Dataset
WEBQSP 3,098 - 1,639

CWQ 27,639 3,519 3,531
MQA-1H 96,106 9,992 9,947
MQA-2H 118,980 14,872 14,872
MQA-3H 114,196 14,274 14,274

TableQA Dataset
WTQ 11,321 2,831 4,344

WIKISQL 56,355 8,421 15,878

Table 7: Statistics of experiment datasets.

resent the instances. If their are hundreds of candi-
date relations connected to these compounds nodes,
we use the question “What country bordering
France contains an airport that serves
Nijmegen” to filter out top 35 similar candidates.

C Detailed Experimental Setups

C.1 Dataset Statistics

We experiment Readi on test sets of all datasets.
We adopt Hit@1 and denotation accuracy for
KGQA and TableQA, respectively. We evaluate
Readi on 3 KGQA and 2 TableQA datasets (De-
scriptions in Section 5.1). Statistics of datasets are
shown in Table 7. Note that we model all datasets
as an information retrieval task, instead of a seman-
tic parsing one.

C.2 LLM API version

For CWQ and WebQSP, we use gpt-3.5-turbo-16k-
0613 and gpt-4-32k for GPT3.5 and GPT4, respec-
tively. For others, we adopt gpt-3.5-turbo-0613 and
gpt-4 for GPT3.5 and GPT4, respectively.

C.3 Baselines

KGQA baselines. Training-based methods:

• EmbedKGQA (Saxena et al., 2020) adopts
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an encoder to retrieve relevant entities and
generate the answer.

• NSM (He et al., 2021) adapts neural state
machine for KGQA and rank entities in a re-
trieved subgraph.

• TransferNet (Shi et al., 2021) adopts a trans-
parent framework to rank entities according
to different parts of a question in a subgraph.

• SR+NSM+E2E (Zhang et al., 2022) trains an
encoder to retrieve relevant relations and build
a path from retrieved relations.

• UniKGQA (Jiang et al., 2023c) retrieves a
sub-graph and rank the schemas in a unified
way.

• ReasoningLM (Jiang et al., 2023b) designs
an entity encoding and training framework to
rank entities in a sub-graph.

• RoG (LUO et al., 2024) trains a LLama 2
(Touvron et al., 2023) to firstly generate a
path, second ground this path to the knowl-
edge graph, and then generate answer based
on the grounded graph.

Inference-based methods:

• Davinci-003 (Ouyang et al., 2022), GPT3.5
and GPT4 (OpenAI, 2023) are based on LLM-
APIs. We adopt few-shot in-context learn-
ing to ask the model to output the answer of
question in order to test the models inherent
knowledge of datasets.

• AgentBench (Liu et al., 2024) is an agent-
based method asking LLMs to call tools based
on tool-discription, history and observations.

• StructGPT (Jiang et al., 2023a) requires LLMs
to iterative pick up relations and entities based
on current returned candidates.

TableQA baselines. Training-based methods:

• TAPAS (Herzig et al., 2020) predicts deno-
tation by selecting table cells and optionally
applys an aggregation operator to the selec-
tion.

• UnifiedSKG (Xie et al., 2022) sequentializes
the table and tunes a T5-3B model to answer
the question.

Metrics LPP LIP AIP ISR CER

Golden Path 3.2 3.2 1.0 1.0 0

SR (Zhang et al., 2022) 3.7 3.3 0.88 0.86 0.01
RoG (LUO et al., 2024) 2.6 1.4 0.55 0.50 0.02

Readi-GPT3.5 - init 4.3 2.5 0.64 0.46 0.49
Readi-GPT3.5 - full 3.3 2.8 0.86 0.80 0.22
Readi-GPT4 - init 3.4 2.5 0.74 0.60 0.45
Readi-GPT3.5 - full 3.6 3.2 0.89 0.84 0.25

Table 8: Extensive features of Readi-GPT3.5 and
Readi-GPT4’s reasoning path, compared with Golden
reasoning path. LPP, LIP, AIP, ISR, IER means length of
predict path, length of instantiated path, average instan-
tiation progress, instantiation success rate and ending
with intermediate nodes rate, respectively.

• TAPEX (Liu et al., 2022) guides language
models to mimic a SQL executor.

Inference-based methods:

• Davinci-003 (Ouyang et al., 2022), GPT3.5,
GPT4 (OpenAI, 2023) are based on LLM-
APIs. We adopt few-shot in-context learning
to ask the model to output the answer, based
on the question and the entire table.

• StructGPT (Jiang et al., 2023a) iteratively fil-
ter out columns and rows of table and ask the
LLMs to answer the question.

Note that all Inference-based baselines are infor-
mation retrieval ones.

D Detailed Analysis

D.1 Elaboration on Reasoning Path Analysis

Note that quality of reasoning path is multi-
dimensional. To further show some insights of
reasoning path by LLMs, we meticulously design
some metrics. We introduce average Length of
predicted path (LPP), average length of instanti-
ated path (LIP), average instantiation progress (AIP,
average of LIP/LPP for each question), instantia-
tion success rate (ISR) and Compound nodes end-
ing rate (CER), where all length mentioned above
refers to number of relations on path. We com-
pare with fine-tuned SR (Zhang et al., 2022) and
RoG (LUO et al., 2024) (beam=1). The Golden
Path is obtained by extracting relations from golden
logical forms in the dataset, which is only used for
analysis.
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Figure 6: Extensive analysis of Readi-GPT3.5 reason-
ing path, compared with Golden reasoning path.

Figure 7: Features of Readi’s reasoning path, compared
with fine-tuned methods and Golden.

The absolute performance of different metrics of
Readi are shown in Table 8. Also, Figure 6 demon-
strates some instantiate progress of Readi-GPT3.5.
Figure 7 shows some relative results of different
metrics for Readi-GPT3.5, compared with fine-
tuned methods and the Golden. Additionally, we
show the distribution of number of LLM-calls for
editing for Readi-GPT3.5 in Figure 8.

It is shown that the initial reasoning path by
Readi is already comparable with fine-tuned ones.
With some necessary editing, Readi significantly
gets closer to golden. In addition, without aware-
ness of the environments, a large number of
Readi’s initial path (49%) get stuck at compound
nodes, while fine-tuned methods well memorize
the schemas in structured environments. However,
with pertinent feedback upon instantiation errors,
Readi substantially alleviates this problems and
reaches higher QA performance than fine-tuned
methods, again demonstrating that unfaithfulness
still exits even with large-scale fine-tuning.

Figure 8: Distribution of number of LLM-Call for rea-
soning path editing of Readi-GPT3.5

MAX_EDIT_TIME 2 4 6 8

Hit@1 51.6 59.2 59.7 59.8

Table 9: Readi-GPT35’s performance for different
MAX_EDIT_TIME on CWQ.

GPT35 GPT4

CWQ 84.6 86.4
WebQSP 95.5 91.9

Table 10: Recall (%) of retriever for instantiation.

D.2 Performance of varied
MAX_EDIT_TIME

We have reported the distribution of Editing times
in Figure 5 (GPT4) and Figure 8 (GPT3.5) to show
the efficiency of Readi. To some extent, the distri-
bution also showcases the quality of the Reasoning
Path and Effectiveness of Editing module. Note
that we set the MAX_EDIT_TIME to eight to test
the quality, which can be set smaller to save more
resources. To further provide some insights, we
experiment on different MAX_EDIT_TIME set-
ting on CWQ subset in Table 9. Results show that
with more chances to edit, the reasoning path gets
better, further showing the effectiveness of Edit-
ing. And four times of editing already achieves an
comparable outcome.

D.3 Performance of Retriever
The performance of retrieval may affect the instan-
tiation. We calculate the recall of retriever in Table
10, showing that the performance of retrival is not
the bottleneck of Readi. Moreover, our imple-
mentation is adapted from KB-BINDER (Li et al.,
2023), which has already shown effectiveness of
binding relations to KG.

D.4 Token Cost
As indicated in our title, we discusses how LLMs
can efficiently and faithfully interact with struc-
tured environments. By efficiency, we focus on the
way of interaction, i.e. less LLM invocations (Sec-
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Error Types Instantiation Error Answer not Covered QA Error False Negative

CWQ-GPT3.5 22% 28% 30% 20%
WebQSP-GPT3.5 6% 32% 32% 30%
CWQ-GPT4 18% 36% 20% 26%
WebQSP-GPT4 20% 26% 22% 32%

Table 11: Qualitative error analysis of Readi.

CWQ WebQSP

avg token (k) 52.9 37.6
avg cost ($) 0.090 0.064

Table 12: Average token cost of Readi (reasoning path
generation and editing.

tion 1), to obtain pertinent information on large-
scale structured environments for multi-hop reason-
ing. As in some industrial circumstances, the times
of LLM-calls are strictly constrained. However,
some might concern the token cost of Readi as a
measure of efficiency, though it is not our priority.
Here, we report the average token cost per ques-
tion in Table 12. We utilize Python library tiktoken,
for GPT3.5 with six-shot for generation, 5-shot for
editing and MAX_EDIT_TIME set to 4 for CWQ
and 2 for WebQSP.

Note that it is non-trivial to directly compare the
exact token cost with other methods, for the sake
of number and format of examples, uncontrollable
LLM-API traffic, and even the difficulty of the
task. For example, StructGPT (Jiang et al., 2023a)
claims to incorporate 32-shot examples, but the
exact few-shot prompts are not provided. Readi’s
token cost can also be modulated by adjusting the
MAX_EDIT_TIME. Furthermore, excessive calls
or overly challenging tasks may cause the LLM-
API to fail in providing the appropriate content or
format, exceeding the MAX_TRY_TIMES, which
also affects the token cost. That’s also why we
analyze the times of LLM-call as efficiency of our
interaction framework in the main body of paper.

D.5 Qualitative Error Analysis

We analyze 200 randomly-sampled error cases of
CWQ and WebQSP in Table 11. We divide the
error into four categories (Section 4.4 and 6.2):
i. "Instantiation Error": Even after Editing, the
path is still not fully instantiated. ii. "Answer not
Covered": Answer not in retrieved knowledge. iii.
"QA Error": Even the answer is covered, the QA

output is still wrong (e.g., hallucination). iv. "False
Negative": For example, the ground truth of “the
two continents Turkey is in” is “Eurasia”,
and the model output “Europe and Asia”.

Based on Table 11, first, our reasoning path can
be well instantiated and utilized to answer the multi-
hop reasoning question. Second, there is still room
for improvement of the retrieved knowledge, which
we would like to focus in our future work. Third,
the hallucination in QA reasoning still exits, with
GPT4 performing better than GPT3.5.

E Generalizability

Note that our focus is not on comparative analysis
of various LLMs. We propose Readi to enhance
LLMs reasoning over structured environments.
Therefore, we utilize LLMs with strong understand-
ing and reasoning capabilities (e.g., GPT3.5) to
show their performance with Readi. Here we dis-
cuss generalizability of Readi framework.
Generalizability to domain-specific KG. The con-
cept of reasoning path is a structured representation
of a multi-hop reasoning process (Section 3). By
the intrinsic planning ability in Section 1, we adopt
LLMs strong question understanding and reasoning
ability to directly generate the reasoning path. Here
is an intuition of Readi: we humans can navigate
multi-hop reasoning challenges across various do-
mains by recognizing named entities and relations
of the task. LLMs, trained on large-scale natu-
ral language corpus, may develop these abilities.
Therefore, Readi is designed to operate without
the need of domain-specific knowledge.

We have experimented on both large-scaled KG
(CWQ and WebQSP) and domain-specific KG
(MetaQA), where Readi shows impressive perfor-
mance (Section 5). One concern is generalization
to specific domain with massive relations. Here,
we illustrate how Readi handles such cases with
an example.

Consider a question “What’s the nationality
of Lebron James”. Assume that the LLM has
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LLM CWQ WebQSP

Llama-2-70b-chat 49.2 76.9

Table 13: Readi’s performance with other LLM-API
on CWQ and WebQSP.

few domain knowledge and initially generates
“[Lebron James] nationality” as the reason-
ing path, whereas the ground truth path in KG is
“[Lebron James] born_in - city_of”.

When instantiation (Section 4.3), we bind
“nationality” to relations in the KG but find
none of them connected to [Lebron James], so
we invoke editing. In the error message, we in-
clude relations around [Lebron James], which is
[born_in, sex, father_of, . . . ], as a hint
for Editing (Section 4.4 and Appendix B.2).

With the semantic understanding that “born_in”
can relate to "nationality of Lebron James",
the LLM can correct previous path. The ablation
of Editing (Section 6.1) and analysis of Reasoning
Path after Editing (Section 6.2) further demonstrate
these. Note that relations around [Lebron James]
is limited, compared with those in the whole KG.

The whole idea mirrors human cognitive strate-
gies when conducting web searching for multi-hop
reasoning tasks, where we flexibly adjust our sub-
conscious plan based on information in browsers.
Genalizability to other LLMs. Here, we show
Readi’s geralizability to other LLMs. Due to
API availability, we test Readi with Llama-2-
70b-chat on CWQ and WebQSP samples. The
MAX_EDIT_TIME is set to 4 for CWQ and 2
for WebQSP. For fair comparison, we adopt our
GPT3.5-based QA reasoning module. Table 13
shows that Readi can generalize to other open-
sourced LLMs.

We also discuss Readi’s generalizability to fine-
tuned models. RoG (Section 6.2) tunes a Llama 2
to generate a reasoning path, showing the feasibility
of generating a path by fine-tuning. We’ve shown
that Readi performs well with Editing by LLM to
improve the path. One concern is about Editing
with a fine-tuned model, depending on annotations,
which we would go deeper in future works.

F Comparison with ToG and DATER

We further compare Readi with ToG (Sun et al.,
2024) and DATER (Ye et al., 2023).

Method CWQ WebQSP

ToG-GPT3.5 57.1 76.2
Readi-GPT3.5 57.9 77.5

ToG-GPT4 67.6 82.6
Readi-GPT4 69.2 82.4

Table 14: Readi’s performance compared with ToG
over ToG’s metric.

F.1 With ToG

Think-on-Graph (ToG) is an LLM-based KGQA
method, which also reason the answer with an
LLM in an information retrieval manner. Here,
we discuss the differences between our Readi and
ToG. As discussed in Related Works (Section 2),
ToG adopts an LLM to step-by-step filter out some
Knowledge Graph (KG) instances, similar to beam
search. Note that there is no reasoning path, i.e., a
structural representation of the question by LLMs,
in ToG’s methodology.
Interaction Paradigm. Our Readi’s novelty lies
in the following aspects: 1) Required Capability.
In ToG, the LLM traverses on the KG, similar to
beam search, to filter out entities or relations by
scoring all candidates at each step, which mainly
requires discrimination ability. In contrast, our
Readi requires the strong understanding and rea-
soning ability to maintain a structural representa-
tion of the entire question. 2) Way to Introduce
the Environment. To obtain structural informa-
tion in large-scale KG, ToG introduces all relations
around an entity, or all tail entities around a relation,
as candidates for LLMs to score the distribution.
Such process can be cumbersome because there
are sometimes massive candidates on KG, e.g., lo-
cations in France. On the other hand, in Readi,
we collect pertinent reasoning log only upon the
instantiation errors. Readi fully unleash the un-
derstanding ability of LLMs and ease the burden
of multi-turn scoring for long candidate lists. 3)
Grounding. To obtain instances, in ToG, LLMs
select items at each step, restricted by the beam
size, hindering it from reasoning questions requir-
ing logical operations (based on a set of instances
for aggregation, comparison, etc). Conversely, for
Readi, we introduce a novel instantiation module
(Section 4.3) to obtain all instances based on con-
straints in the reasoning path.
Generalizability. Readi can generalize to more
circumstances (Appendix E): 1) Supported En-
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vironments, Think-on-Graph (ToG) only focuses
on KG. However, Readi is a more general interac-
tion framework for reasoning over structured envi-
ronments. We showcase the concrete implementa-
tion of both KGQA (Section 4) and TableQA (Ap-
pendix A). 2) Supported Reasoning Tasks. ToG,
whose KG instances are restricted by the beam
size, falls short for questions requiring logical oper-
ations, e.g., aggregation, comparison, etc. However,
Readi, adopting LLMs to maintain a structural rep-
resentation of the question, is not restricted by any
beam size, which can cover such reasoning cases
by LLMs reasoning with retrieved instances.
Experimental Results. We did not cover the re-
sults of ToG in main results, for the sake of fair
comparison. The evaluation metric from the official
published code of ToG differs from the standard
Hit@1. Conversely, Readi’s evaluation strictly fol-
lows Tan et al. (2023), which is also used by all
compared LLM-based baselines. While ToG does
not provide any output files and the reported results
are not reproducible, here we report Readi’s re-
sults based on ToG’s metrics in Table 14, where
our Readi, with less LLM-calls, still outperforms
ToG, overall.

F.2 With DATER

We have considered DATER but did not directly
compare with it for the following reasons.
The base LLMs. DATER adopt Codex (Chen et al.,
2021) as the backbone LLM, which is different
from ours. Codex performs significantly better than
GPT3.5 in TableQA (9.1% higher acc on WTQ
(Liu et al., 2023)). However, Codex is close-soured
and does not offer API-calls any more3. Therefore,
it is not fair to directly compare Readi (based on
GPT3.5) with DATER.
The way of reasoning over Tables. Our exper-
iment is to show if our interaction framework,
Readi, can adopt LLMs to effectively obtain use-
ful information from structured environments and
then reason the answer. Therefore, we compare
with methods modeling TableQA as an Informa-
tion Retrieval task (refer to Section 3 and Section
5.2). However, DATER uses a text2SQL model to
obtain facts in table. This involves external tools
(the SQL Interpreter) to handle the logical and nu-
merical operations (e.g., aggregation, compare and
calculation), which is not fair to compare with.

3https://platform.openai.com/docs/deprecations

G Prompt List

Note that we do not modify prompts for baseline
methods. Prompts for the vanilla LLMs is in Table
15, following (Sun et al., 2024). For TableQA, the
prompts for vanilla LLMs is the same in Table 17.
Detailed prompts for each module of Readi is in
Table 16 (KGQA) and Table 17 (TableQA).

For number of few-shot demonstrations, on
CWQ (Talmor and Berant, 2018) and WebQSP
(Yih et al., 2016) we adopt 6 shots for reasoning
path generation and 5 shots for other modules. For
MQA(Zhang et al., 2018), the shot number for rea-
soning path generation follows (Li et al., 2023) and
we adopt only 3 shots for editing and reasoning
(we donnot design a reasoning module for MQA).
For WTQ (Pasupat and Liang, 2015) and WikiSQL
(Zhong et al., 2017), we use 7, 2, 7 shots for gener-
ation, editing and reasoning, respectively.
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Instruction Please answer the question:
Demonstration Example
Q: What state is home to the university that is represented in sports by George Washington Colonials
men’s basketball?
A: Washington, D.C..

Table 15: Prompts for vanilla LLMs for KGQA in our experiments.

Prompts for reasoning path generation
Given a question and some Topic Entities in the Question, output possible freebase Relation Paths
starting from each Topic Entities in order to answer the question.
Demonstration Example
Question: Find the person who said “Taste cannot be controlled by law”, where did this person die
from?
Topic Entities: [“Taste cannot be controlled by law”]
Thought: There is only one topic entity, the answer is constrained by one path. For, the path from
“Taste cannot be controlled by law”, firstly, it should cover the person quote it. Second, it should cover
the place where the person died.
Path: { “Taste cannot be controlled by law”: [ Taste cannot be controlled by law → peo-
ple.person.quotations → people.deceased_person.place_of_death ]}
Prompts for reasoning path editing
Task: Given an Inital Path and some feedback information of a Question, please correct the initial path.
Demonstration Example
Question: The movie featured Miley Cyrus and was produced by Tobin Armbrust?
Initial Path: Miley Cyrus→film.film.actor→film.film.producer Error Message
1. <compound node> in the end.
2. relation "film.film.producer" not instantiated.
Instantiation Context
Instantiate Paths: Miley Cyrus → film.actor.film → <compound node>
Candidate Relations
[’film.director.film’, ’film.performance.film’, ...]
Corrected Path
Goal: The Initial Path starts from Miley Cyrus, which should cover the movies featured by Miley
Cyrus.
Thought: In Instantiate Paths I know that Miley Cyrus acts some films, described by a compound
node. In candidates, I find "film.performance.film" most relevant to get the films. Meanwhile,
"film.film.producer" is not relevant to my Goal.
Final Path: Miley Cyrus→film.actor.film→ film.performance.film

Prompts for QA reasoning
Given a question and the associated retrieved knowledge graph triplets (entity, relation, entity), you
are asked to answer the question with these triplets. If the given knowledge triples is not enough or
missing, you can use your own knowledge. Use {} to enclose the answer! Please think step by step.
Demonstration Example
Q: The artist nominated for The Long Winter lived where?
Knowledge Triplets:
(The Long Winter, book.written_work.author, Laura Ingalls Wilder), (Laura Ingalls Wilder, peo-
ple.person.places_lived, m.28e5697), (m.28e5697, people.place_lived.location, De Smet)
A: First, based on (The Long Winter, book.written_work.author, Laura Ingalls Wilder), the au-
thor of The Long Winter is Laura Ingalls Wilder. Second, based on (Laura Ingalls Wilder, peo-
ple.person.places_lived, m.28e5697), (m.28e5697, people.place_lived.location, De Smet), Laura
Ingalls Wilder lived in De Smet. So, the answer is {De Smet}.

Table 16: Detailed KGQA prompts for modules of Readi.
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Prompts for reasoning path generation
You should predict the needed header and rows in a table for the question.
Demonstration Example
Question: what was the last year where this team was a part of the usl a-league?
| year | division | league | regular season | playoffs | open cup | avg. attendance |
| – | – | – | – | – | – | – |
| 2001 | 2 | USL A-League | 4th, Western | Quarterfinals | Did not qualify | 7,169 |
Thought:
First, according to headers and example rows, I need the years the team is in usl a-league league and
return the latest year, so I need headers "year" and "league".
Second, I need to constrain "league" = "usl a-league" to know the years of this team as part of the "usl
a-league", so I need "league": ["usl a-league"].
Chosen Headers: ["year", "league"]
Constrains: "league": ["usl a-league"]

Prompts for reasoning path editing
There are some mistakes in your previous header or constrains of a question. Follow the given feedback,
fix your mistakes and give the correct header and constrains.
Demonstration Example
Question: what was the last year where this team was a part of the usl a-league?
| year | division | league | regular season | playoffs | open cup | avg. attendance |
| – | – | – | – | – | – | – |
| 2001 | 2 | USL A-League | 4th, Western | Quarterfinals | Did not qualify | 7,169 |
Wrong Answer:
Chosen Headers: ["year", "team"]
Constrains: "Team": ["usl a-league"]
Feedback:
1. Header [’team’] not in candidate Headers. You can only choose headers from ["year", ..."avg.
attendance"].
Thought: First, previously I chose headers "year" and "yeam", but "team" is not in Header list.
Following the feedback, I need the team in "league"="usl a-league" , so I need headers "year" and
"league".
Second, I need to constrain "league" = "usl a-league".
Chosen Headers: ["year", "league"]
Constrains: "league": ["usl a-league"]

Prompts for QA reasoning
You should output the answer of question based on a table.
Output your answer in the last line as "Answer: [’your answer’]"!
Demonstration Example
Question: what was the last year where this team was a part of the usl a-league?
Table:
Headers: league, year
item 1: (league, usl a-league); (year, 2001)
item 2: (league, usl a-league); (year, 2002)
item 3: (league, usl a-league); (year, 2003)
item 4: (league, usl a-league); (year, 2004)
Thought:
First, I know the years the teams is a part of usl a-league are 2001, 2002, 2003 and 2004 from the items
in Table.
Second, I calculate the last year is 2004, so the answer is [’2004’].
Answer: [’2004’]

Table 17: Detailed TableQA prompts for modules of Readi.
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