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Abstract

This paper surveys and organizes research
works on medical dialog systems, which is
an important yet challenging task. Although
these systems have been surveyed in the med-
ical community from an application perspec-
tive, a systematic review from a rigorous tech-
nical perspective has to date remained notice-
ably absent. As a result, an overview of the
categories, methods, and evaluation of medical
dialogue systems remain limited and underspec-
ified, hindering the further improvement of this
area. To fill this gap, we investigate an initial
pool of 327 papers from well-known computer
science, and natural language processing con-
ferences and journals, and make an overview.
Recently, large language models have shown
strong model capacity on downstream tasks,
which also reshaped medical dialog systems’
foundation. Despite the alluring practical appli-
cation value, current medical dialogue systems
still suffer from problems. To this end, this pa-
per lists the grand challenges of medical dialog
systems, especially of large language models.

1 Introduction

Dialogue systems for the medical domain, which
are designed to converse with patients to obtain
additional symptoms, make a diagnosis and recom-
mend a treatment plan automatically (Tang et al.,
2016; Wei et al., 2018; Liao et al., 2020; Zhong
et al., 2022). Medical dialogue systems have sig-
nificant potential to simplify the diagnostic proce-
dure and reduce the cost of collecting information
from patients, thus containing alluring application
value and attracting academic and industrial atten-
tion (Wang et al., 2023a; Chen et al., 2023d).

Existing medical dialogue systems have played
an important role in diagnosis (Liao et al., 2020;
Lin et al., 2019), monitoring (Lee et al., 2019; Ma-
harjan et al., 2019), intervention (Javed et al., 2018),

* Corresponding author.

counselling (Lee et al., 2017), education (Ali et al.,
2021), and etc. To meet these real meets, re-
trieval (Tao et al., 2021; Zhu et al., 2022), gen-
eration (Zhong et al., 2022; Liu et al., 2022b; Du
et al., 2019), and hybrid (Li et al., 2018; Yang
et al., 2021) methods are applied for building med-
ical dialogue systems. Specifically, retrieval-based
methods select appropriate responses from a pre-
built index, generation-based methods respond in
a generative manner, and hybrid methods combine
both approaches, using retrieval for efficiency and
generative methods for flexibility.

Recently, the revolutionary progress in large
language models (LLM) (Zeng et al., 2022a; Ope-
nAI, 2023; Touvron et al., 2023; Bao et al., 2023)
has catalyzed substantial technological transfor-
mations in dialogue systems. LLMs are sophis-
ticated neural network-based systems that have
been trained on vast amounts of text data, enabling
them to generate human-like responses and achieve
remarkable accuracy, thus reshaping medical dia-
logue systems’ foundation.

Despite the potential performance in the med-
ical question-answering, there remains a transla-
tional gap (Newman-Griffis et al., 2021)1 between
cutting-edge techniques and realistic requirements
in various medical scenarios. For example, in Fig-
ure 2, LLMs operate in a question-and-answering
manner, instead of diagnosing like doctors, which
may lead to patients being unable to obtain precise
diagnostic results and effective treatment strategies.

To move towards closing this gap, this work (a)
summarizes the system categories, methods, and
evaluation of medical dialogue systems, (b) ana-
lyzes the current issues and challenges of medical
dialogue systems, then (c) attempts to provide po-

1Translational NLP research is focused on identifying the
factors that contribute to the success or failure of translations
and on creating versatile and adaptable methodologies that can
bridge the gap between theoretical NLP advancements and
their practical implementation in various real-world scenarios.
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System Categories (§2)

Functions

Diagnosis KS-DS (Xu et al., 2019), KNSE (Chen et al., 2023c), DISC-MedLLM (Bao et al., 2023), BenTsao (Wang et al., 2023a)

Intervention TRIK (Ljunglöf et al., 2009), Lekbot (Ljunglöf et al., 2011), ASD (Ali et al., 2020; Di Nuovo et al., 2020)

Monitoring Hear me out (Maharjan et al., 2019), Dr. Youth (Lee et al., 2019), I hear you I feel you (Lee et al., 2020)

Counselling Psychiatric Counseling (Oh et al., 2017), Robo (Moghadasi et al., 2020), Woebot (De Nieva et al., 2020)

Education VirtualPatient (Campillos-Llanos et al., 2020), SOPHIE (Ali et al., 2021)

Multi-objective Robo (Moghadasi et al., 2020), Woebot (De Nieva et al., 2020), Therapy Chatbot (Sharma et al., 2018)

Types

Task-oriented Dialogue TeenChat (Huang et al., 2015a), DQN-Agent (Liu et al., 2018), KS-DS (Xu et al., 2019), HRL (Liao et al., 2020)

Dialogue Recommendation CF (Huang et al., 2012), SPA-ACA (Hoens et al., 2013), fb-kNN (Bhatti et al., 2019), DP-CRNN (Zhou et al., 2020b)

ChitChat Dialogue EmotionalChat (Huber et al., 2018; Lan et al., 2021; Chen and Liang, 2022; Zhang et al., 2023e; Zhao et al., 2023)

Question-and-answering MEANS (Abacha and Zweigenbaum, 2015), BenTsao (Wang et al., 2023a), DISC-MedLLM (Bao et al., 2023)

Mixed-type Dialogue InsMed (Shi et al., 2023a), Multi-party social ARI robot (Angus et al., 2024)

Methods before LLM (§3)

Retrieval
Literature Retrieval SemBioNLQA (Sarrouti and El Alaoui, 2020), BioMedBERT (Chakraborty et al., 2020), MedCPT (Jin et al., 2023)

Dialogue Retrieval SHIHbot (Brixey et al., 2017), Healthcare Bot (Athota et al., 2020)

Generation

Pipeline

Natural Language
Understanding

Token-level: ULisboa (Leal et al., 2015), BERT (Miftahutdinov and Tutubalina, 2019),
MTAAL (Zhou et al., 2021a), generate-and-rank (Xu et al., 2020)

Utterance-level:
BiGRU (Li et al., 2019), MSL (Shi et al., 2021), MedDG (Liu et al., 2022b)

Dialog-level: SAT (Du et al., 2019), MIE (Zhang et al., 2020a),
CMUI (Dai et al., 2022), CSDM (Zeng et al., 2022b)

Dialogue Management DQN Agent (Wei et al., 2018), KR-DQN (Xu et al., 2019),
DSMD (Liu et al., 2022a), HRL (Zhong et al., 2022)

Natural Language
Generation VRBot (Li et al., 2021),GEML (Lin et al., 2021),KnowInject (Naseem et al., 2022)

End-to-end MedDialog (Zeng et al., 2020a), VA (Saha et al., 2021), CovidDialog (Zhou et al., 2021c), MedPIR (Zhao et al., 2022a)

Hybrid HRGR-Agent (Li et al., 2018), MedWriter (Yang et al., 2021), BIOREADER (Frisoni et al., 2022), PMC-Patients (Zhao et al., 2022b)

LLM-based Methods (§4)

Prompting LLMs DeID-GPT (Liu et al., 2023c), ChatCAD (Wang et al., 2023d), Dr. Knows (Gao et al., 2023), MedPrompt (Nori et al., 2023),
MedPaLM (Singhal et al., 2023a), MedPaLM2 (Singhal et al., 2023b), MedAgent (Tang et al., 2023b)

Fine-tuning LLMs
PULSE (Zhang et al., 2023d), BenTsao (Wang et al., 2023a), HuatuoGPT (Zhang et al., 2023a), ChatDoctor (Li et al., 2023c),

DoctorGLM (Xiong et al., 2023), Zhongjing (Yang et al., 2023), Qilin-med (Ye et al., 2023b), AMIE (Tu et al., 2024),
MEDITRON (Chen et al., 2023e), Radiology-LLaMA2 (Liu et al., 2023b), Clinical Camel (Toma et al., 2023), XrayGLM (Wang et al., 2023c)

Evaluation (§5)

Evaluation Metrics
Retrieval: Mean Average Precision (Luo et al., 2022), etc.
Pipeline: Precision, Recall, F1, Accuracy, etc. (Qin et al., 2023)
End-to-end Generation: BLUE (Papineni et al., 2002), ROUGE (Lin, 2004), Distinct (Li et al., 2015), human evaluation (Shi et al., 2023a), etc.

Datasets

Retrieval: BioASQ (Luo et al., 2022)
Pipeline: CMDD (Lin et al., 2019), MIE (Zhang et al., 2020a), MedDG (Liu et al., 2022b), IMCS-21 (Chen et al., 2022),

MZ (Wei et al., 2018), DX (Xu et al., 2019)
End-to-end Generation: MedDialog (Zeng et al., 2020b), MedDG (Liu et al., 2022b), MidMed (Shi et al., 2023a),

CovidDialog (Yang et al., 2020), Ext-CovidDialog (Varshney et al., 2023)

Grand Challenges (§6)

Challenges Inherited from General Domain Hallucination (Huang et al., 2023a), Numberical Data (Akhtar et al., 2023), Adversarial Attack (Shayegani et al., 2023)

Medical-specific Challenges Medical Specialization (Gao et al., 2023), Medical Evaluation (Cai et al., 2023),
Multi-modal Dialogue (Wang et al., 2023d), Multi-disciplinary Treatment (Tang et al., 2023b)

Figure 1: The main content flow and categorization of this survey.

tential solutions to facilitate further development.

In the existing literature, medical dialogue sys-
tems have been discussed and surveyed (Laranjo
et al., 2018; Vaidyam et al., 2019; Kearns et al.,
2019; Valizadeh and Parde, 2022; He et al., 2023;
Hadi et al., 2023; Li et al., 2024). This survey
differs from these surveys in two aspects. First,
our survey is a systematic review from a rigorous
technical perspective, summarizing methods be-
fore LLM, and LLM-based methods. Second, this
survey highlights the grand challenges of current
medical dialogue systems, including medical spe-
cialization (Gao et al., 2023) and multi-disciplinary
treatment (Tang et al., 2023b), which may inspire
further research.

This survey is organized as follows: Section 2
introduces the system categories of medical dia-
logue systems, followed by the methods before

LLM, LLM-based methods, and evaluation of med-
ical dialogue systems in Section 3, Section 4, and
Section 5, respectively. Finally, we summarize the
major challenges and possible solutions for further
work in Section 6.

The contributions of this paper are as follows:

• First survey: To our knowledge, we are the
first to present a comprehensive survey for
medical dialogue systems from a technical
perspective, summarizing categories, methods
before LLM, and LLM-based methods.

• New frontiers: We discuss frontiers and sum-
marize common and medical-specific chal-
lenges, which shed light on further research;

• Abundant resources: We make the first at-

2841



Patient-Doctor Dialogue Patient-ChatGPT Dialogue 
Patient: I have excessive sweating and dry peeling in 
hands and feet. In summer, skin peeling is serious and 
hands are sweaty.
Doctor: Do you feel itching?
Patient: I do not feel itching.
Doctor: It considered to be sweat, which is a 
manifestation of eczema.
Patient: Thanks.
Doctor: Drug therapy is recommended. Soak your hands 
in warm water for half an hour, then apply 
dexamethasone cream.

Patient: I have excessive sweating and dry peeling in hands and feet. In summer, skin peeling 
is serious and hands are sweaty.
ChatGPT: I'm sorry to hear that. Excessive sweating and dry peeling in hands and feet can 
be uncomfortable and inconvenient. Here are some suggestions that may help:
1. Use antiperspirant: …
2. Wear breathable clothing: …
3. Soak your hands and feet in warm water: …
4. Moisturize your skin: ...
5. Avoid hot and spicy foods: ...
6. See a doctor: ...

Figure 2: Two dialogues by patient-doctor and patient-chatgpt.

tempt to organize medical dialogue resources2

including open-source implementations, cor-
pora, and paper lists, which may help new
researchers quickly adapt to this field.

2 System Categories

This section briefly summarizes the functions and
techniques of current medical dialogue systems.
Specifically, the functions can be divided into five
categories according to the dominant subjects, in-
cluding doctors (diagnosis, intervention), patients
(monitoring, counseling), and medical students
(medical education).

2.1 Functions of Systems
It is essential to figure out the different functions
of medical dialogues in our daily life. As shown in
Figure 1, there are six main system objectives:
Diagnosis systems (Xu et al., 2019; Chen et al.,
2023c; Bao et al., 2023; Wang et al., 2023a) are de-
signed to first collect the patient’s medical history,
symptoms, signs, and then predict health condition;
Intervention systems (Ljunglöf et al., 2009, 2011;
Ali et al., 2020; Di Nuovo et al., 2020) are designed
to provide comprehensive approaches and strate-
gies to prevent diseases, cure or reduce the severity
or duration of diseases;
Monitoring systems (Maharjan et al., 2019; Lee
et al., 2019, 2020) are designed to continuously
track, record, and analyze vital signs and other
health-related data of patients;
Counseling systems (Oh et al., 2017; Moghadasi
et al., 2020; De Nieva et al., 2020) are designed to
guide medical counseling services, such as recom-
mending hospitals and doctors;
Medical education systems (Ali et al., 2021) are
designed to provide a simulation of real clinical
scenarios. A typical application is patient simulator

2The repository is publicly available at
https://github.com/xmshi-trio/AwesomeMedicalDialogue

systems (Sijstermans et al., 2007; Danforth et al.,
2009; Menendez et al., 2015);
Multi-objective systems (Moghadasi et al., 2020;
De Nieva et al., 2020; Sharma et al., 2018) are
designed for more than one of those goals.

The above are brief descriptions of the different
functions of medical dialogue systems, and new
functions of medical dialogue systems will emerge
according to emergent user demands, which gives
rise to various challenges.

2.2 Types of Dialogues

From the aspect of the dialogue type, current medi-
cal dialogue systems can be divided into five cate-
gories:
Task-oriented dialogue systems (Young et al.,
2013; Huang et al., 2015a; Liu et al., 2018; Xu
et al., 2019; Liao et al., 2020) are designed to help
users complete specific tasks through dialogue in-
teraction;
Dialogue recommendation systems (Huang et al.,
2012; Hoens et al., 2013; Bhatti et al., 2019; Zhou
et al., 2020a; Ko et al., 2022) are designed to recom-
mend information, products, or services that users
may be interested in by analyzing users’ historical
behavioral data and portraits;
Chit-chat dialogue systems (Huber et al., 2018;
Lan et al., 2021; Chen and Liang, 2022; Yan et al.,
2022; Zhang et al., 2023e; Zhao et al., 2023) are
designed to revolve around exchanging information
and discussing topics with users;
Question-and-answer systems (Abacha and
Zweigenbaum, 2015; Zaib et al., 2022; Wang et al.,
2023a; Bao et al., 2023) are designed to provide
relevant and accurate answers according to users’
specific questions;
Mixed-type dialogue systems (Shi et al., 2023a)
are designed to finish complex tasks by the com-
bination of the above four types of dialogues. Be-
sides, the multi-party social ARI robot (Angus
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et al., 2024) is designed to interact with clinic pa-
tients and their companions, which can give direc-
tions, provide light entertainment (like quizzes and
jokes), and inform people about bus times, the cafe
menu, and more.

3 Methods before LLM

In this section, we briefly summarize the med-
ical dialogue systems before the emergence of
LLM from the technical aspect of publicly avail-
able resources. The methods can be mainly di-
vided into three categories, retrieval-based meth-
ods, generation-based methods, and hybrid meth-
ods (Wang et al., 2023b).

3.1 Retrieval-based methods

Retrieval-based medical dialogue systems are de-
signed to select appropriate responses from the
pre-built index (Tao et al., 2021; Zhu et al., 2022),
which can be mainly divided into two categories ac-
cording to different sources of indexed documents,
medical literature, and medical dialogue.
Medical Literature Retrieval. The recent statis-
tics show that 61% of adults look online for health
information (Fox et al., 2011). This demands
proper retrieval systems for health-related biomed-
ical queries. Major challenges in the biomedical
domain are in handling complex, ambiguous, in-
consistent medical terms and their ad-hoc abbrevi-
ations (Zhao et al., 2019; Luo et al., 2019).

Biomedical information retrieval has tradition-
ally relied upon term-matching algorithms (such
as TF-IDF (Aizawa, 2003), BM25 (Robertson
et al., 1995), and In_expC2 (Robertson et al., 2009;
Sankhavara, 2018)), which search for documents
that contain terms mentioned in the query.

However, term-matching suffers from semantic
retrieval, especially for terms that have different
meanings in different contexts. To alleviate the
issue, Luo et al. (2022) provides context-specific
vector representations for each context and query,
and the matching is conducted with the vector simi-
larity. Vector representation focuses on semantic in-
formation, thus alleviating semantic inconsistency.
Medical Dialogue Retrieval. Medical dialogue
systems with the dialogue retrieval method are de-
signed to select appropriate responses from the pre-
built dialogue index. Typically, medical dialogue
retrieval methods choose responses that are ranked
highest but may choose a lower-ranked response to
avoid repetition (Athota et al., 2020; Brixey et al.,

2017). The selection is conducted with a response
classifier that is trained on linked questions and
responses. If the score of the top-ranked response
is below a predefined threshold, the medical dialog
systems instead select an off-topic response that
indicates “I do not understand”.

Despite the efficiency, the results may not ex-
actly match patients’ queries, which may trigger
serious safety risks.

3.2 Generation-based Methods

Generation-based methods can be divided into
two categories, pipeline and end-to-end. The
pipeline methods typically generate system re-
sponse through sub-components, while the end-
to-end methods directly generate system response
given only dialogue history and the corresponding
knowledgebase without intermediate supervision.

3.2.1 Pipeline
The pipeline methods mainly contain three sub-
components (natural language understanding, dia-
logue management, and natural language genera-
tion) (Young et al., 2013).
Natural Language Understanding. Natural lan-
guage understanding for medical dialogue is de-
signed to capture key semantic meaning (Zhang
et al., 2020b). This work divides the medical nat-
ural language understanding task into three lev-
els: token-level (medical concept normalization),
utterance-level (slot filling, intent detection), and
dialogue-level (medical dialogue information ex-
traction).
Token-level. Medical concept normalization aims
to map a variable length medical mention to a
medical concept in some external coding sys-
tem. The technique development can be summa-
rized as: string-matching or dictionary look-up ap-
proach (Leal et al., 2015; D’Souza and Ng, 2015;
Lee et al., 2016), deep learning based classification
method (Limsopatham and Collier, 2016; Miftahut-
dinov and Tutubalina, 2019; Luo et al., 2018; Zhao
et al., 2019; Zhou et al., 2021b,a), generate-and-
rank method (Xu et al., 2020), constrained genera-
tion method (Yan et al., 2020).
Utterance-level. Intent detection and slot filling
are utterance-level natural language understand-
ing tasks. An intent specifies the goal underlying
the expressed utterance while slots are additional
parameters for these intents. Intent detection is usu-
ally defined as a multi-label classification problem
and slot filling is usually defined as a sequence
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labeling problem (Weld et al., 2022; Liu et al.,
2022b). To further utilize semantic information
from these two tasks, intent detection and slot fill-
ing are usually jointly learned (Zhang et al., 2019a;
Li et al., 2019; Song et al., 2022). Besides, to al-
leviate the issue of lacking training data, weakly
supervised learning from doctor responses are uti-
lized (Shi et al., 2020, 2021; Shi and Wanxiang,
2023), which treats doctor responses as weak su-
pervision of patient queries.
Dialog-level. Medical dialogue information ex-
traction is designed to extract key information
from medical dialogues, which greatly facilitates
the development of many real-world applications
such as electronic medical record generation (Guan
et al., 2018), automatic disease diagnosis (Xu et al.,
2019), etc. Du et al. (2019); Zhang et al. (2020a)
propose to convert doctor-patient dialogues into
electronic medical records, effectively reducing the
labor costs of doctors. To enhance the exploitation
of the inter-dependencies in multiple utterances,
Dai et al. (2022) introduces a selective attention
mechanism to explicitly capture the dependencies
among utterances. Furthermore, to alleviate the
issue of speaker role ambiguity, Zeng et al. (2022b)
introduces a multi-view aware channel that cap-
tures different information in dialogues.
Dialog Management. Dialog management aims
to select the next actions for response based on the
current dialog state toward achieving long-term di-
alog goals (Young et al., 2013; Thrun and Littman,
2000; Schatzmann et al., 2006).

Wei et al. (2018); Xu et al. (2019) cast the med-
ical dialogue system as a Markov Decision Pro-
cess and train the dialogue policy via reinforcement
learning, which is composed of states, actions, re-
wards, policy, and transitions. Besides, Zhong et al.
(2022) propose to integrate a hierarchical policy
structure of two levels into the dialog system for
policy learning, alleviating the huge action space in
the real environment. In addition, Liu et al. (2022a)
propose an interpretable decision process to en-
hance interpretability.
Natural Language Generation. Natural language
generation is designed to convert system acts into
text or speech (Young et al., 2013). Li et al. (2021)
propose to summarize diagnosis history through
a key phrase and propose a variational Bayesian
generative approach to generate based on patient
states and physician actions. Besides, to enhance
the rationality of medical dialogues, Naseem et al.
(2022) leverage an external medical knowledge

graph and injects triples as domain knowledge into
the dialogue generation. To capture the correlations
between different diseases, Lin et al. (2021) pro-
pose to utilize a commonsense knowledge graph to
characterize the prior disease-symptom relations.

3.2.2 End-to-end Dialogue Generation
End-to-end dialogue generation aims to directly
generate responses based on dialogue history and
knowledgebase, which mostly adopts a sequence-
to-sequence framework (Bahdanau et al., 2014;
Vaswani et al., 2017). It consists of a context
encoder to encode the dialogue history and a de-
coder to generate the responses. Formally, give
a sequence of inputs (x1, . . . , xT ), the goal of
the task is to estimate the conditional probabil-
ity p(y1, . . . , yT ′ |x1, . . . , xT ), where (y1, . . . , yT ′ )
is the output sequence, T is the input se-
quence length and T

′
is the output sequence

length. The probability of y1, . . . , yT ′ is usually
computed in the autoregressive manner. Each
p(yt|x1, . . . , xT , y1, . . . , yt−1) distribution is rep-
resented with a softmax overall words.

In the medical domain, Saha et al. (2021), Yang
et al. (2020); Zhou et al. (2021c) and Zeng et al.
(2020b) apply the above generative models for dia-
logues on mental health, COVID-19 and diagnosis,
respectively. Besides, Zhao et al. (2022a) build a
medical dialogue graph that exploits the medical re-
lationship between utterances and trains the model
to generate the pivotal information before produc-
ing the actual response, thus learning to focus on
the key information.

3.3 Hybrid Methods

Due to the limited coverage and timeliness of train-
ing data, generation-based models often result in
hallucination (Ji et al., 2023; Ye et al., 2023a),
which are particularly severe in medical scenarios
and may lead to serious risks. To alleviate the issue,
retrieval augmented generation methods (Lewis
et al., 2020; Li et al., 2022) are proposed, which re-
trieve accurate and in-time information to augment
generation to obtain precise responses.

In the medical domain, BIOREADER (Frisoni
et al., 2022) fetches and assembles relevant scien-
tific literature chunks from a neural database, and
then enhances the domain-specific T5-based solu-
tion (Raffel et al., 2020). By contrast, Zhao et al.
(2022b) retrieve PubMed Central articles using sim-
ple heuristics and Retrieved articles are utilized as
supplementary materials for generating responses
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for clinical decision-supporting systems. For re-
port generation, MedWriter (Yang et al., 2021) first
employs the retrieval module to retrieve the most
relevant sentences from retrieved reports for given
images, and then fuses them to generate meaning-
ful medical reports. For sentence retrieval, HRGR-
Agent (Li et al., 2018) utilizes reinforcement learn-
ing with sentence-level and word-level rewards.

4 Large Language Model-based Methods

LLMs have generated significant interest due
to their remarkable performance in understand-
ing instructions and generating human-like re-
sponses. This section summarizes the medical di-
alogue methods based on LLMs. Current LLMs-
based methods can be divided into two categories,
prompting, and fine-tuning general LLMs. Typical
medical LLMs are listed in Table 1.

4.1 Prompting based Methods
The training corpora of LLMs contain medical liter-
ature, therefore it is possible to align the LLMs with
medical scenarios through appropriate prompts.
Popular prompting methods include hand-crafted
prompting and prompt tuning.

4.1.1 Hand-crafted Prompting
Hand-crafted prompting is designed to create in-
tuitive prompts based on human introspection.
Specifically, hand-crafted prompting methods in
the current medical dialogue system can be mainly
divided into three categories, zero/few-shot prompt-
ing, chain-of-thought prompting, and prompting
ensemble.
Zero/Few-shot Prompting. Zero-shot prompting
aims to directly give instructions to prompt LLMs
to efficiently perform a task following the given
instruction. Meanwhile, the few-shot prompting
strategy aims to include samples describing the
task through demonstrations, which has shown ef-
fectiveness in various tasks (Brown et al., 2020;
Min et al., 2022).

In the medical domain, expert hand-crafted
prompting is widely utilized. Current works mainly
focus on question-and-answering (Nori et al., 2023;
Singhal et al., 2023a,b), diagnosis (Wang et al.,
2023d; Gao et al., 2023; Tang et al., 2023b), and
text de-identification (Liu et al., 2023c). For
question-and-answering, MedPaLM (Singhal et al.,
2023a), MedPaLM 2 (Singhal et al., 2023b), and
MedPrompt (Nori et al., 2023) collaborate with
a panel of qualified clinicians to identify the best

demonstration examples and meticulously craft the
few-shot prompts. For diagnosis, ChatCAD (Wang
et al., 2023d), Dr. Knows (Gao et al., 2023), MedA-
gents (Tang et al., 2023b) design task-specific
prompts for computer-aided diagnosis on medical
image, diagnosis prediction, and multi-disciplinary
treatment, respectively. Another LLM prompt-
ing applied in the medical domain is text de-
identification and anonymization of medical re-
ports (Liu et al., 2023c).
Chain-of-Thought Prompting. Chain-of-
Thought (CoT) improves LLMs’ ability to solve
complex problems by encouraging it to explain its
reasoning process step by step before generating
answers (Wei et al., 2022).

In the medical domain, medical questions in-
volve complex multi-step reasoning, making them
a good fit for CoT prompting techniques. Sing-
hal et al. (2023a,b) craft CoT prompts to provide
clear demonstrations of how to reason and an-
swer the given medical questions. Besides, Med-
Prompt (Nori et al., 2023) utilizes GPT-4 to gen-
erate CoT with task-specific prompts and to miti-
gate the hallucinated or incorrect reasoning chains,
MedPrompt (Nori et al., 2023) utilizes the label-
verification. Specifically, GPT-4 is required to gen-
erate both a rationale and an estimation of the most
likely answer to follow from that reasoning chain,
and the reliability of generated chains is judged by
whether the answers match the ground truth label.
Self-consistency Prompting. MedPaLM (Sing-
hal et al., 2023a) and MedPaLM2 (Singhal et al.,
2023b) utilize self-consistency prompting (Wang
et al., 2022b) to improve the performance on the
multiple-choice benchmarks by prompt and sample
multiple decoding outputs from the model. The
method is based on the rationale that for the med-
ical domain with complex reasoning paths, there
might be multiple potential routes to the correct
answer (Singhal et al., 2023a). Therefore, the final
answer is the one with the majority vote.

4.1.2 Prompt Tuning
The above methods utilize hand-crafted static
prompts, which are knowledge-intensive and
training-free. To better align general LLMs with
the medical domain, inspired by the great suc-
cess of prompting (Liu et al., 2023a) and fine-
tuning (Hu et al., 2023), prompt tuning (Liu et al.,
2021b; Lester et al., 2021) introduces learnable
prompts, which is fine-tuned during the training
stage. In contrast to traditional fine-tuning meth-
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ods (Hu et al., 2023), prompt tuning only fine-
tuning a very small set of parameters, thus effec-
tively aligning LLMs to the medical domain (Nori
et al., 2023). Recently, MedPaLM (Singhal et al.,
2023a) and MedPaLM2 (Singhal et al., 2023b) ap-
ply the prompt tuning in various medical question-
and-answer datasets and achieve a competitive per-
formance compared to human experts.

4.2 Fine-tuning Based Methods

Compared to small-scale models, LLMs exhibit
strong generalization across various natural lan-
guage processing tasks and a unique emergent abil-
ity to solve unseen or complicated tasks. However,
despite their numerous merits, LLMs are not de-
signed to cater specifically to the medical domain.
Their general domain knowledge often falls short
when addressing such specialized fields, where ac-
curate and domain-specific expert knowledge is
critical. This can lead to sub-optimal diagnostic
precision, drug recommendations, and medical ad-
vice, potentially endangering patients. Recently,
efforts have been made to address this problem.
The typical training method is fine-tuning founda-
tion models on medical data.

Various works, including PULSE (Zhang
et al., 2023d), BenTsao (Wang et al., 2023a),
HuatuoGPT-II (Chen et al., 2023b), ChatDoctor (Li
et al., 2023c), MEDITRON (Chen et al., 2023e),
Radiology-LLaMA2 (Liu et al., 2023b), Clinical
Camel (Toma et al., 2023), XrayGLM (Wang et al.,
2023c), conduct supervised fine-tuning by fine-
tuning foundation models with their task-specific
tasks. Besides, Zhongjing (Yang et al., 2023) im-
plements an entire training pipeline from contin-
uous pre-training, and supervised fine-tuning, to
reinforcement learning from human feedback, and
training with a Chinese multi-turn medical dia-
logue dataset, which enhances the model’s capa-
bility for complex dialogue. In addition, to ad-
dress the issue of overconfident predictions and tap-
ping into domain-specific insights, Qilin-med (Ye
et al., 2023b) presents a method combining domain-
specific continued pre-training, supervised fine-
tuning, and direct preference optimization.

5 Evaluation

5.1 Metrics

In this section, we introduce two common evalua-
tion methods: automatic and human evaluation.
Automatic Evaluation. For retrieval tasks, the

mean average precision is utilized in Luo et al.
(2022). For the pipeline tasks (except dialogue pol-
icy learning), precision, recall, F1, and accuracy
are utilized as the evaluation metrics (Qin et al.,
2023). For the end-to-end generation, automatic
evaluation usually uses various indicators and eval-
uation tools, such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), BERTScore (Zhang et al.,
2019b), etc., to quantify the similarity and quality
between the model-returned results and the refer-
ence results. Compared with human evaluation,
automatic evaluation does not require human par-
ticipation, which saves costs and time.
Human Evaluation. Human evaluation is espe-
cially for generation tasks, due to the reason that
free text of the generated model exhibits diverse
expressions which are formally different, but se-
mantically similar, thus is more reliable for gen-
eration tasks (Novikova et al., 2017). Compared
with automatic evaluation, manual evaluation is
closer to the actual application scenario and can
provide more comprehensive and accurate feed-
back. In the manual evaluation, evaluators (such
as experts, researchers, or ordinary users) are usu-
ally invited to evaluate generated results. Despite
the effectiveness, even human evaluations can have
high variance and instability due to cultural and
individual differences (Peng et al., 1997).

5.2 Datasets and Benchmarks
Medical evaluation datasets are used to test and
compare the performance of different dialogue sys-
tems on various tasks. We list fourteen popular
datasets and benchmarks from Table 3 to Table 7.
Each benchmark focuses on different aspects and
evaluation criteria, providing valuable contribu-
tions to their respective domains. These bench-
marks are divided into four categories.
Benchmarks for Retrieval. BioASQ (Tsatsaronis
et al., 2015) assesses the ability of systems to se-
mantically index very large numbers of biomedical
scientific articles and to return concise and user-
understandable answers to given natural language
questions by combining information from biomedi-
cal articles and ontologies. The evaluation metric
is the mean average precision. The benchmark on
BioASQ is listed in Table 2.
Benchmarks for Pipeline Tasks. Medical dia-
logue systems contain a vast majority of tasks. To
this end, existing benchmarks tend to evaluate the
performance in different tasks.

For sentence-level natural language understand-
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ing, there are three datasets, including CMDD (Lin
et al., 2019), MedDG (Liu et al., 2022b), and
IMCS-21 (NER) (Chen et al., 2022). The widely
used evaluation metrics are precision, recall, and
F1. The benchmark is listed in Table 3. Besides,
MIE (Zhang et al., 2020a) is a dialogue-level natu-
ral language understanding dataset. The benchmark
is listed in Table 4.

For the dialogue act classification task, IMCS-
21 (Chen et al., 2022) contains a sub-task. The
utilized evaluation metrics are precision, recall, F1,
and accuracy. The benchmark is listed in Table 5.

For the dialogue policy learning, the benchmark
on MZ (Wei et al., 2018), DX (Xu et al., 2019),
IMCS-21 (DDP) (Chen et al., 2022) is listed in
Table 6.
Benchmarks for Generation Tasks. For the end-
to-end dialogue generation, there are five dialogue
datasets, including MedDialog (Zeng et al., 2020a),
MedDG (Liu et al., 2022b), CovidDialog (Yang
et al., 2020), Ext-CovidDialog (Varshney et al.,
2023), and MidMed (Shi et al., 2023a). The auto-
matic evaluation metrics utilized for the medical
generation include BLEU-4, Distinct-1, Distinct-2,
etc. The benchmark is listed in Table 7.
Evaluations for LLM. The summarization of
LLM evaluation is listed in Table 8, including auto-
matic evaluation, human evaluation, and evaluation
data. Current LLM evaluations are primarily con-
ducted in the form of multiple-choice questions and
question-and-answers, which lack assessments of
capabilities in clinical scenarios.

6 Grand Challenge

Our summarization of the medical dialogue sys-
tem inspires us to redesign a wide spectrum of as-
pects. This section summarizes current challenges
for medical dialogue systems.

6.1 Challenges Inherited from General
Domain

Hallucination. Hallucination is defined as the gen-
erated content that is nonsensical or unfaithful
to the provided source content (Filippova, 2020;
Maynez et al., 2020; Zhou et al., 2020a). Halluci-
nation in medical LLMs is concerning because it
hinders performance and raises safety concerns for
real-world medical applications and may lead to
potential privacy violations (Carlini et al., 2021).

To alleviate the issue, the popular methods are
high-quality data construction, randomness reduc-

tion, retrieval-augmented generation (Zhang et al.,
2023c; Lee et al., 2022), multi-agent debate (Du
et al., 2023), and post-process (Chen et al., 2023a;
Gou et al., 2023).
Numberical Data Process. Medical dialogue sys-
tems often involve medical statistical data, and the
understanding of the data directly affects the accu-
racy of system consultation. The reason for this
issue is that LLMs are probability-based genera-
tive models. They generate text responses from a
softmax function probability distribution.

A key solution for this issue is plug-in (Schick
et al., 2023; Shen et al., 2023), which exploits ex-
ternal tools to improve their capabilities. Inspired
by Toolformer (Schick et al., 2023) and hugging-
GPT (Shen et al., 2023), a solution for medical
numberical values is that LLMs can be designed
to return mathematical expressions, perform calcu-
lations with mathematical plug-ins, and return the
calculation results to the large model for reply.
Adversarial Attack. Adversarial examples are in-
puts designed by an adversary to cause a neural
network to perform some incorrect behavior (Big-
gio et al., 2013; Szegedy et al., 2013), which may
cause serious medical accidents.

The possible solutions for this issue are adver-
sarial training (Shafahi et al., 2019), and ensemble
learning (Dong et al., 2020). A combination of
these techniques, along with ongoing research and
vigilance, can help improve the robustness of neu-
ral networks to adversarial attacks.

6.2 Medical-specific Challenges
Medical Specialization. Current medical LLMs
can not perform as a doctor to make a clinical diag-
nosis and are more like a medical Q&A. Two exam-
ples from patient-doctor and patient-ChatGPT are
shown in Figure 2. In the example, the doctor in-
quires for additional patient information, provides
diagnostic results, and then gives treatment advice.
However, ChatGPT lists possible diagnoses for the
input question, instead of a specific conclusion.
Thus, ChatGPT gives Q&A answers, instead of ex-
pert diagnosis answers. To be more professional,
current LLMs should be more specialized in down-
stream medical clinical tasks.

Potential solutions to this challenge could in-
volve: (1) model fine-tuning with specialized medi-
cal training datasets, encompassing in-depth multi-
turn medical diagnostic dialogues and comprehen-
sive medical decision-making process data; and (2)
integrating the medical decision-making process
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into medical LLMs with a retrieval-augmented gen-
eration approach (Li et al., 2023a).
Medical LLMs Evaluation. Towards the evalu-
ation manner, current evaluation methods can be
divided into two kinds, automatic evaluation and
human evaluation. Automated evaluation methods,
while expedient, often lack the depth to fairly and
objectively assess the capabilities of medical LLMs.
Conversely, manual evaluation, though more nu-
anced, is resource-intensive and time-consuming.
Thus, it is valuable to seek a hybrid approach that
combines the efficiency of automation with the dis-
cernment of human insight.

Towards the evaluation of medical LLMs’ capa-
bilities, current evaluation methods can be divided
into two main kinds, which are medical information
extraction, and medical question-and-answering.
Current LLM evaluations are insufficient for the
evaluation of LLMs’ diagnostic capabilities in real
clinical scenarios as they neglect either multi-turn
diagnostic interviewing or rigorous diagnostic re-
sults. Therefore, there is a great demand for design-
ing a unified and comprehensive evaluation crite-
rion, such as LLM-Mini-CEX (Shi et al., 2023b)
for evaluating LLMs’ diagnostic capability in real
clinical applications.
Multi-Modal Medical Dialogue. Multimodal in-
formation plays a pivotal role in medical consulta-
tions, enhancing diagnostic accuracy and patient
care. By integrating visual, auditory, and textual
data, healthcare professionals gain a comprehen-
sive understanding of a patient’s condition. This
holistic approach is crucial for personalized treat-
ment plans and improves patient outcomes. The
future of medicine lies in leveraging multimodality
to its fullest potential.

However, current medical dialogue systems con-
duct diagnoses based on text interaction. A lack of
multi-modal information may lead to incorrect di-
agnostic results. For example, if specific images are
missing during the process of seeking medical treat-
ment for skin diseases, accurate diagnostic results
can not be made for the specific disease obtained
by the patient. To alleviate the issue, multi-modal
medical dialogue systems are needed to understand
and process multi-modal inputs.
Multi-disciplinary Treatment. Multidisciplinary
consultation provides an opportunity for specialists
from different disciplines to engage in formal dis-
cussions over diagnostic and therapeutic strategies
in oncology. In complex clinical situations, special-
ists discuss decisions collectively, particularly in

cases involving palliative chemotherapy.
LLM-based multi-agent society is a promising

method to conduct multidisciplinary consultation.
Zhang et al. (2023b); Tang et al. (2023b) has shown
that collaborative strategies with various permuta-
tions of thinking patterns attribute significantly to
performance.

7 Conclusion

The exploration of medical dialogue systems has
come a long way, yet the journey towards seam-
less integration with healthcare is far from over.
The convergence of categories, methods, and met-
rics reviewed here showcases the field’s maturity.
With the advent of LLMs, we stand on the cusp of
unprecedented advancements. However, the chal-
lenges highlighted underscore the need for continu-
ous innovation and interdisciplinary collaboration.
The future of medical dialogue systems hinges on
our ability to navigate these complexities, ensur-
ing that these technologies serve as a catalyst for
improved patient care and medical research. Re-
searchers should embrace these trends with a com-
mitment to ethical, inclusive, and transformative
healthcare solutions.
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Date Name Institution Foundation Model / Manner # of Parameter Code

2024-01 AMIE Google PaLM2 / Tuning 540B -

2023-12 Zhongjing Zhengzhou University Ziya-LLaMA / Tuning 13B Github

2023-11 MedAgents Yale University GPT-4 / Prompting - Github

2023-11 MedPrompt Microsoft GPT-4 / Prompting 7B, 13B -

2023-11 HuatuoGPT-TT CUHK, Shenzhen Baichuan2 / Tuning 7B, 13B Github

2023-11 MEDITRON EPFL LLaMA2 / Tuning 70B Github

2023-11 Qilin-Med Peking University Baichuan / Tuning 7B Github

2023-08 Radiology-LLaMA2 University of Georgia LLaMA2 / Tuning - -

2023-08 Dr. Knows University of
Wisconsin Madison ChatGPT / Prompting - -

2023-07 CoDoC Google - - Github

2023-07 CareGPT Macao Polytechnic
University

Baichuan2, LLaMA2,
InternLM / Tuning

7B, 13B,
20B Github

2023-05 Med-PaLM2 Google PaLM2 / Prompting 540B -

2023-05 Clinical Camel University
of Toronto LLaMA2 / Tuning 70B Hugginface

2023-05 DeID-GPT University
of Georgia GPT-4 / Prompting - Github

2023-04 DoctorGLM ShanghaiTech
University ChatGLM / Tuning 6B Github

2023-04 ChatCAD ShanghaiTech
University ChatGPT / Prompting - -

2023-04 XrayGLM Macao Polytechnic
University VisualGLM / Tuning 6B Github

2023-03 BianQue South China
University of Technology ChatGLM / Tuning 6B Github

2023-03 PULSE Shanghai Artificial
Intelligence Laboratory BLOOMZ, InternLM / Tuning 7B, 20B Github

Table 1: Some typical medical LLMs, including AMIE (Tu et al., 2024), Zhongjing (Yang et al., 2023), MedA-
gents (Tang et al., 2023b), MedPrompt (Nori et al., 2023), HuatuoGPT-II (Chen et al., 2023b), MEDITRON (Chen
et al., 2023e), Radionlogy-LLaMA2 (Liu et al., 2023b), Dr. Knows (Gao et al., 2023), CoDoC (Dvijotham et al.,
2023), CareGPT (Rongsheng et al., 2023), Med-PaLM2 (Singhal et al., 2023b), Clinical Camel (Toma et al., 2023),
DeID-GPT (Liu et al., 2023c), DoctorGLM (Xiong et al., 2023), ChatCAD (Wang et al., 2023d), XrayGLM (Wang
et al., 2023c), BianQue (Chen et al., 2023d), PULSE (Zhang et al., 2023d), which are sorted by the release date of
the models or the publication date of the corresponding papers and resources. “Tuning” and “Prompting” represent
the fine-tuning method and the prompting method, respectively.

BM25 DPR_128 DPR_256 P-DPR_128 P-DPR_256 Hybrid (P-DPR_128)

BioASQ-Small (Luo et al., 2022) 65.10 53.31 42.89 66.66 63.62 68.25
BioASQ-Large (Luo et al., 2022) 34.32 - - 33.13 - 36.26

Table 2: Results on medical retrieval dataset BioASQ (Luo et al., 2022). The evaluation metric is the mean average
precision, which is expressed as percentages (%).
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Dataset Model Precision Recall F1

CMDD (Lin et al., 2019)

Bi-GRU (Dyer et al., 2015) 76.02 88.09 81.61
Bi-LSTM (Dyer et al., 2015) 76.64 87.60 81.62
Bi-GRU-CRF (Huang et al., 2015b) 86.44 89.13 87.77
Bi-LSTM-CRF (Huang et al., 2015b) 89.93 89.56 89.74
CNNs-Bi-GRU-CRF (Ma and Hovy, 2016) 87.08 90.82 88.91
CNNs-Bi-LSTM-CRF (Ma and Hovy, 2016) 90.45 90.48 90.47

MedDG (Liu et al., 2022b)

LSTM (Hochreiter and Schmidhuber, 1997) 25.34 27.75 26.49
TextCNN (Kim, 2014) 22.37 30.12 25.67
BERT-wwm (Cui et al., 2021) 26.05 31.09 28.35
PCL-MedBERT (Wang et al., 2022a) 26.46 33.07 29.40
MedDGBERT (Liu et al., 2022b) 25.34 36.20 29.81

IMCS-21 (NER) (Chen et al., 2022)

Lattice LSTM (Zhang and Yang, 2018) 89.37 90.84 90.10
BERT-CRF (Devlin et al., 2018) 88.46 92.35 90.37
ERNIE (Zhang et al., 2019d) 88.87 92.27 90.53
FLAT (Li et al., 2020) 88.76 92.07 90.38
LEBERT (Liu et al., 2021a) 86.53 92.91 89.60
MC-BERT (Zhang et al., 2021) 88.92 92.18 90.52
ERNIE-Health (Zhang et al., 2019d) 89.71 2.82 91.24

Table 3: Results on medical information extraction datasets, including CMDD (Lin et al., 2019), MedDG (Liu et al.,
2022b), and IMCS-21 (NER) (Chen et al., 2022). The evaluation metrics are precision, recall, and F1, which are
expressed as percentages (%).

Model Category Item Full

Precision Recall F1 Precision Recall F1 Precision Recall F1

Plain-Classifier 93.57 89.49 90.96 83.42 73.76 77.29 61.34 52.65 56.08
MIE-Classifier-single 97.14 91.82 93.23 91.77 75.36 80.96 71.87 56.67 61.78
MIE-Classifier-multi 96.61 92.86 93.45 90.68 82.41 84.65 68.86 62.50 63.99
MIE-single 96.93 90.16 92.01 94.27 79.81 84.72 75.37 63.17 67.27
MIE-multi 98.86 91.52 92.69 95.31 82.53 86.83 76.83 64.07 69.28

Table 4: Result on MIE. The evaluation metrics are precision, recall, and F1, which are expressed as percentages
(%). The results are reported in category-level, item-level, and full-level.

Models Precision Recall F1 Accuracy

TextCNN (Kim, 2014) 74.02 70.92 72.22 78.99
TextRNN (Liu et al., 2016) 73.07 69.88 70.96 78.53
TextRCNN (Lai et al., 2015) 73.82 72.53 72.89 79.40
DPCNN (Johnson and Zhang, 2017) 74.30 69.45 71.28 78.75
BERT (Devlin et al., 2018) 75.35 77.16 76.14 81.62
ERNIE (Zhang et al., 2019d) 76.18 77.33 76.67 82.19
MC-BERT (Zhang et al., 2021) 75.03 77.09 75.94 81.54
ERNIE-Health (Zhang et al., 2019d) 75.81 77.85 76.71 82.37

Table 5: Results of models on dialogue act classification task on IMCS-21. The evaluation metrics are precision,
recall, F1, and accuracy, which are expressed as percentages (%).

Dataset Model Success Match Rate Turn

MZ (Wei et al., 2018) DQN (Liao et al., 2020) 0.65 - 5.11
KR-DQN (Xu et al., 2019) 0.73 - -

DX (Xu et al., 2019) DQN (Liao et al., 2020) 0.731 0.110 3.92
KR-DQN (Xu et al., 2019) 0.740 0.267 3.36

IMCS-21 (DDP) (Chen et al., 2022)

DQN (Liao et al., 2020) 0.408 0.047 9.75
KR-DQN (Xu et al., 2019) 0.485 0.279 6.75
REFUEL (Kao et al., 2018) 0.505 0.262 5.50
GAMP (Xia et al., 2020) 0.500 0.067 1.78
HRL (Zhong et al., 2022) 0.556 0.295 6.99

Table 6: Results of models on medical dialogue policy learning. The evaluation metrics are success rate, match rate,
and average turn. Success rate and match rate are expressed as percentages (%).
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Dataset Model BLEU-4 Distinct-1 Distinct-2

Transformer (Vaswani et al., 2017) 0.9 0.03 2.0
BERT-GPT (Zeng et al., 2020b) 0.5 0.02 2.1MedDialog (Zeng et al., 2020a)
GPT-2 (Solaiman et al., 2019) 1.8 0.02 2.0

Seq2Seq (Sutskever et al., 2014) 19.20 0.75 5.32
HRED (Lei et al., 2018) 21.19 0.75 7.06
GPT-2 (Solaiman et al., 2019) 16.56 0.87 11.20
DialoGPT (Zhang et al., 2019c) 18.61 0.77 9.87
BERT-GPT (Zeng et al., 2020b) 23.84 0.65 11.25

MedDG (Liu et al., 2022b)

MedDGBERT-GPT (Liu et al., 2022b) 23.99 0.63 11.04

Transformer (Vaswani et al., 2017) 5.2 3.7 6.4
GPT-2 (Solaiman et al., 2019) 7.6 13.9 31.0
BART (Lewis et al., 2019) 6.0 16.8 35.7CovidDialog (Yang et al., 2020)

BERT+TAPT (Yang et al., 2020) 3.4 11.5 25.3

DialogGPT (Zhang et al., 2019c) 0.015 - -
BERT (Devlin et al., 2018) 0.038 - -
BART (Lewis et al., 2019) 0.047 - -Ext-CovidDialog (Varshney et al., 2023)

BioBERT (Chakraborty et al., 2020) 0.048 - -

BST (Smith et al., 2020) 1.02 - -
MGCG (Liu et al., 2020) 1.06 - -
VRbot (Li et al., 2021) 1.31 - -
Seq2Seq (Sutskever et al., 2014) 1.01 - -
DialoGPT (Zhang et al., 2019c) 1.53 - -
BART (Lewis et al., 2019) 18.87 - -

MidMed (Shi et al., 2023a)

InsMed (Shi et al., 2023a) 19.73 - -

Table 7: Results of models on the medical dialogue generation task. The results are expressed as percentages (%).

Model/Project Name Automatic Eval Human Eval Evaluation Data

Med-PaLM (Singhal et al., 2023a) Accuracy, Self-consistency ✓ MedMCQA, PubMedQA, et al.
CMB (Wang et al., 2023e) GPT-4 evaluation ✓ CMB-Exam, CMB-Clin
MES (Tang et al., 2023a) ROUGE-L, BLEU, etc. ✓ -
C-Eval (Med) (Huang et al., 2023b) Accuracy ✓ C-Eval (Clinical Medicine, Basic Medicine)
CMMLU (Med) (Li et al., 2023b) Accuracy ✓ CMMLU (College Medicine)
PromptCBLUE (Wei et al., 2023) Accuracy, ROUGE-L, etc. ✗ CMeIE, CHIP-CDEE, MedDG, et al.
MedBench (Zhang, 2024) Accuracy, ROUGE-L, etc. ✗ Med-Exam, MedHC, MedSafety, et al.

Table 8: Summarization of LLM evaluation projects, including automatic evaluation, human evaluation, and
evaluation data. Seven LLM models/ projects are listed, Med-PaLM (Singhal et al., 2023a), CMB (Wang et al.,
2023e), MES (Tang et al., 2023a), C-Eval (Huang et al., 2023b), CMMLU (Li et al., 2023b), PromptCBLUE (Wei
et al., 2023), and MedBench (Zhang, 2024).
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