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Abstract

Despite the significant advancements in
keyphrase extraction and keyphrase generation
methods, the predominant approach for eval-
uation mainly relies on exact matching with
human references. This scheme fails to recog-
nize systems that generate keyphrases seman-
tically equivalent to the references or diverse
keyphrases that carry practical utility. To bet-
ter assess the capability of keyphrase systems,
we propose KPEVAL, a comprehensive eval-
uation framework consisting of four critical
aspects: reference agreement, faithfulness, di-
versity, and utility. For each aspect, we design
semantic-based metrics to reflect the evalua-
tion objectives. Meta-evaluation studies demon-
strate that our evaluation strategy correlates
better with human preferences compared to a
range of previously proposed metrics. Using
KPEVAL, we re-evaluate 23 keyphrase systems
and discover that (1) established model compar-
ison results have blind-spots especially when
considering reference-free evaluation; (2) large
language models are underestimated by prior
evaluation works; and (3) there is no single best
model that can excel in all the aspects.

1 Introduction

Building automated keyphrase prediction systems
has been a long-lasting research interest of Informa-
tion Retrieval (IR) and Natural Language Process-
ing (NLP) (Witten et al., 1999; Hulth, 2003; Meng
et al., 2017). While a large number of keyphrase
prediction systems have been proposed, the major-
ity of them are assessed using a simplistic method:
comparing the stemmed predictions with human
references for exact matches. An extensive review
of 76 recent keyphrase extraction and generation
papers published in major conferences reveals a
predominant reliance on exact matching, with 75
of 76 papers employing it and 51 treating it as the
sole evaluation criterion (Appendix A).

This over-reliance brings two major concerns.
First, it has been established that the evaluation ac-
curacy of exact matching is inadequate (Zesch and
Gurevych, 2009). Although a number of heuris-
tics are proposed to relax the matching criteria
(Zesch and Gurevych, 2009; Kim et al., 2010; Luo
et al., 2021; Koto et al., 2022) or enrich the label
set (Chan et al., 2019), they still struggle to accu-
rately capture phrase semantics and have not been
validated by systematic meta-evaluation. Second,
solely relying on reference-based evaluation is an
incomplete strategy that overlooks critical aspects
such as diversity of the predicted keyphrases (Bahu-
leyan and El Asri, 2020) or their utility in practical
applications of keyphrase systems such as indexing
for IR applications (Boudin and Gallina, 2021).

In this paper, we undertake a systematic ap-
proach to advance keyphrase evaluation. For
reference-based evaluation, we propose a phrase-
level semantic matching metric with a high quality
embedding trained on large-scale keyphrase data.
Based on the human evaluation corpus annotated on
KP20k (Meng et al., 2017) and KPTimes (Gallina
et al., 2019), the meta-evaluation on five keyphrase
systems shows that our metric significantly out-
performs existing metrics by more than 0.15 ab-
solute points in Kendall’s Tau. By contrast, many
proposed improvements to exact matching surpris-
ingly fail to improve its human agreement (§5.3).
Further analyses reveal that the proposed metric ex-
hibits enhanced stability under the label variations
commonly present in the keyphrase annotations.

Next, we move beyond reference agreement and
holistically consider the desiderata for evaluating
keyphrase systems. Three crucial aspects are in-
troduced: (1) faithfulness, whether the predictions
are grounded to the document (§6.1); (2) diversity,
whether the predictions represent distinct concepts
(§6.2); and (3) utility for downstream IR appli-
cations (§6.3). To accurately assess each aspect,
we propose semantically-oriented metric designs
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Figure 1: An illustration of the proposed keyphrase evaluation framework. KPEVAL evaluates keyphrase systems
on four crucial properties and incorporates semantic-based metrics for more accurate assessment.

including embedding similarity, model-based con-
sistency evaluation, and dense retrieval.

Together, these aspects and metrics form KPE-
VAL, a fine-grained semantic-based keyphrase eval-
uation framework (Figure 1). In §7, we employ
KPEVAL to evaluate 23 keyphrase systems, pro-
ducing intriguing insights:

1. KPEVAL uncovers blind-spots in established
model comparisons, such as the actual supe-
riority of ExHiRD-h (Chen et al., 2020) in
many aspects as well as a common difficulty
to outperform a baseline in all the aspects.

2. We find that large language models (LLMs),
particularly GPT-3.5 (Ouyang et al., 2022),
exhibit remarkable performance compared to
current state-of-the-art keyphrase generation
and extraction models. Our results challenge
existing conclusions and lead to a reconsider-
ation of using LLMs as keyphrase systems.

3. Finally, KPEVAL’s four aspects test distinct
abilities at which different models excel, sug-
gesting the importance of aligning evaluation
with the diverse needs of real applications.

In summary, KPEVAL establishes a new stan-
dard for keyphrase evaluation by advancing
reference-based evaluation accuracy and aligning
model development with application values via
holistic reference-free evaluation. To facilitate fu-
ture studies, the implementation is released as a
toolkit along with the meta-evaluation annotations
at https://github.com/uclanlp/KPEval.

2 Related Work

In this section, we review the relevant literature on
evaluating keyphrase systems.

Reference-based evaluation The major metrics
for evaluating keyphrase systems are precision, re-
call, and F1 based on exact-match between the
stemmed predictions and references (Mihalcea and
Tarau, 2004; Meng et al., 2017; Yuan et al., 2020).
This method indiscriminately penalizes unmatched
predictions, including synonyms or parent/child
concepts of the reference. Later works attempt to
improve the metric by relaxing the matching crite-
rion. Zesch and Gurevych (2009) propose to use
R-precision with approximate matching, tolerating
a prediction to be a substring of a reference and
vice versa. Kim et al. (2010) employ n-gram match-
ing metrics such as BLEU (Papineni et al., 2002)
and Rouge (Lin, 2004). Chan et al. (2019) expand
the references with name variations. Luo et al.
(2021) propose a fine-grained score that combines
token-level matching, edit distance, and duplica-
tion penalty. Koto et al. (2022) and Glazkova and
Morozov (2022) use the semantic-based BertScore
(Zhang et al., 2020) with predictions and references
concatenated into two strings.

Meanwhile, ranking-based metrics such as
Mean Reciprocal Rank, mean Averaged Preci-
sion, and Normalized Discounted Cumulative Gain
are introduced to evaluate the ranking provided
by keyphrase extraction models (Florescu and

2
1960

https://github.com/uclanlp/KPEval


Caragea, 2017; Boudin, 2018; Kim et al., 2021).
These metrics also compute exact matching to the
references during their evaluation.

Reference-free evaluation Directly evaluating
keyphrase predictions without references is less
common. Early studies conduct human evalua-
tion (Barker and Cornacchia, 2000; Matsuo and
Ishizuka, 2004). Later work evaluates the pre-
dictions’ utility in applications such as retrieval
(Bracewell et al., 2005; Boudin and Gallina, 2021)
or summarization (Litvak and Last, 2008). Bahu-
leyan and El Asri (2020) conduct reference-free
evaluation of the predictions’ diversity.

Meta-evaluation Meta-evaluation studies that
compare keyphrase metrics with human evalua-
tions have been limited in scope, with a focus on
reference-based evaluation. Kim et al. (2010) com-
pare five lexical matching metrics and concluded
that R-precision has the highest Spearman correla-
tion with human judgments. Bougouin et al. (2016)
annotated a meta-evaluation corpus with 400 doc-
uments in French, evaluating 3 keyphrase models
on "appropriateness" and "silence", approximately
corresponding to precision and false negative rate.

Discussion Building upon existing literature, this
work systematically rethinks the goals of keyphrase
evaluation and advances the evaluation methodol-
ogy. We introduce KPEVAL, a holistic evaluation
framework encompassing four key aspects (§4).
KPEVAL incorporates semantic-based metrics vali-
dated via rigorous meta-evaluation (§5.3 and §6.1).
Finally, we conduct a large-scale evaluation of 21
keyphrase systems and offer novel insights into
existing model comparisons and LLMs (§7).

3 Background

This section formulates the keyphrase prediction
and evaluation tasks and outlines the scope of study.

3.1 Keyphrase Prediction
We denote an instance of keyphrase prediction as
a tuple (X ,Y), where X represents an input docu-
ment and Y = {y1, ..., yn} is a set of n reference
keyphrases provided by humans. Each yi is cate-
gorized as a present keyphrase if it corresponds to
contiguous word sequences in X after stemming, or
an absent keyphrase if it does not. Keyphrase gener-
ation (KPG) assumes Y to include both present and
absent keyphrases, whereas keyphrase extraction
(KPE) only allows present keyphrases in Y .

3.2 Keyphrase Evaluation

The keyphrase evaluation process can be viewed
as mapping a 4-element tuple (X ,Y,P, C) to a
real number via a function f . P = {p1, ..., pm}
is a set of m predictions made by a model M on
X . Different from the commonly followed works
(Meng et al., 2017; Yuan et al., 2020), we do not
distinguish between present and absent keyphrases.
This enables matching a predicted keyphrase to any
semantically relevant reference, and vice versa.
C is a corpus that represents the domain of in-

terest, which is an important factor in assessing
keyphrase quality. For example, "sports games"
may be informative in a general news domain but
less so in the specialized domain of basketball
news1. In this paper, C will play a crucial role in
evaluating the utility of keyphrases for facilitating
ad-hoc in-domain document retrieval (§6.3).

3.3 Evaluation Scope

Models This paper covers 21 representative,
strong, and diverse keyphrase prediction mod-
els spanning three categories: (1) KPE models,
(2) KPG models, and (3) large language models
(LLMs) and APIs. We aim to include highly cited
(up to February 2024) models such as Multipar-
titeRank (Boudin (2018), 219 citations), CatSeq
(Yuan et al. (2020), 92 citations), and SetTrans (Ye
et al. (2021), 65 citations). We provide introduc-
tions and implementation details in Appendix B.

Datasets We test on two datasets throughout the
paper: (1) KP20k (Meng et al., 2017) that features
20k Computer Science papers with keyphrases ex-
tracted from the paper metadata and (2) KPTimes
(Gallina et al., 2019) that provides 10k news docu-
ments paired with keyphrases assigned by expert
editors. The two datasets are selected due to their
large training sets (500k for KP20k and 250k for
KPTimes) and their wide usage in keyphrase re-
search. As such, the models’ performance is easier
for the community to relate to and the reproduction
correctness can be verified more easily.

4 KPEVAL: Evaluation Aspects

We introduce KPEVAL, a fine-grained framework
for keyphrase evaluation. KPEVAL posits to evalu-
ate P’s quality across four crucial aspects:

1. Reference Agreement: Evaluates the extent
to which P aligns with human-annotated Y .

1Check Tomokiyo and Hurst (2003) for more examples.
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KP-Set Input Reference Corpus

Reference Agreement ✔ ✔

Faithfulness ✔

Diversity ✔

Utility ✔ ✔ ✔

Table 1: Assumptions of KPEVAL’s aspects: whether
they operate on a set of keyphrases (KP-Set) and
whether they require input, reference, or a corpus.

2. Faithfulness: Determines whether each pi in
P is semantically grounded in X .

3. Diversity: Assesses whether P includes di-
verse keyphrases with minimal repetitions.

4. Utility: Measures the potential of P to en-
hance downstream applications, such as docu-
ment indexing for improved IR performance.

Table 1 outlines the assumptions of the evalu-
ated aspects: whether they are calculated on a set
of phrases and whether X , Y , or C is needed for
evaluation. By design, these aspects have deep
groundings in the previous literature. Faithfulness
and reference agreement can be seen as different
definitions of informativeness: the former enforces
the information of pi to be contained in X , while
the latter measures P’s coverage of X ’s salient in-
formation with respect to a background domain
(Tomokiyo and Hurst, 2003). Diversity (Bahuleyan
and El Asri, 2020) and IR-based utility (Boudin
and Gallina, 2021) reflect major efforts to move
beyond reference-based evaluation. Building upon
these works, KPEVAL aims to provide a unified
perspective and to advance the evaluation method-
ology. Figure 1 illustrates the evaluation design for
each aspect, which we will introduce next.

5 KPEVAL: Reference-Based Evaluation
with Semantic Matching

To begin with, we focus on reference agreement,
the most extensively investigated aspect. Recogniz-
ing the limitations of previous approaches, we intro-
duce a semantic matching formulation and conduct
meta-evaluation to confirm its effectiveness.

5.1 Reference Agreement: Metric Design

Desiderata: a prediction should be credited if
it is semantically similar to a human-written
keyphrase; matching should be at phrase-level.

Despite the prevalent use of existing reference-
based metrics, their designs harbor intrinsic limita-
tions. On one hand, F1@5 (Meng et al., 2017) and
F1@M (Yuan et al., 2020) fail to credit many se-
mantically correct predictions. On the other hand,

BertScore with concatenated predictions and refer-
ences (Koto et al., 2022) reflects semantic similar-
ity, but its token-level matching strategy obscures
the semantics of individual keyphrases. Recogniz-
ing these limitations, we propose a phrase-level
semantic matching strategy in KPEVAL and define
semantic precision (SemP ), recall (SemR), and
F1 (SemF1) as follows2:

SemP (P,Y) = 1
|P|

∑
p∈P maxy∈Y sim(p, y),

SemR(P,Y) = 1
|Y|

∑
y∈Y maxp∈P sim(p, y),

SemF1(P,Y) = 2·SemP (P,Y)·SemR(P,Y)
SemP (P,Y)+SemR(P,Y) ,

where sim is the similarity between the represen-
tation of two phrases. To enable the use of any
existing dense embedding model, in this paper, we
operationalize sim with the cosine similarity:

sim(p, q) = cos_sim(hp, hq) =
hT
p hq

||hp||·||hq || ,

where hp is the representation of phrase p obtained
by aggregating the representation of all tokens in
the phrase. To obtain a high quality embedding that
captures phrase-level semantics well, we fine-tune
a paraphrase model from Reimers and Gurevych
(2019)3 using unsupervised SimCSE (Gao et al.,
2021) on 1.04 million keyphrases from the train-
ing sets of KP20k, KPTimes, StackEx (Yuan et al.,
2020), and OpenKP (Xiong et al., 2019). The data
covers a wide range of domains including science,
news, forum, and web documents. At inference
time, a single phrase p is provided as the input
to the model, and the last hidden states are mean-
pooled to obtain hp. We further document the train-
ing details of this model in Appendix C.1.

5.2 Meta-Evaluation Setup

We conduct rigorous meta-evaluation to compare
SemF1 with existing metrics. We sample 50 doc-
uments from the test sets of KP20k and KPTimes
each. For each document, we obtain predictions
from five representative models: MultipartiteRank,
CatSeq, SetTrans, in-domain BART models from
Wu et al. (2023a), as well as five-shot prompting
GPT-3.54. This variety encompasses both KPE

2Out metric should be distinguished from Bansal et al.
(2022). We keep the name choice as the tasks are different.

3We use the checkpoint at https://huggingface.co/
sentence-transformers/all-mpnet-base-v2.

4We use SciBART+OAGKX for KP20k and KeyBART
for KPTimes to represent in-domain BART models. Detail
regarding the evaluated models are provided in Appendix B.
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Reference Agreement Faithfulness
pi → Y yi → P average PKP AKP all

KP20k 0.735 0.750 0.743 0.644 0.526 0.627
KPTimes 0.788 0.741 0.765 0.606 0.514 0.563

Table 2: Inter-annotator agreement measured via the in-
terval Krippendorff’s alpha. → denotes the direction of
matching a single phrase against a set of phrases. "PKP"
and "AKP" denote present and absent keyphrases.

and KPG model, and includes unsupervised, su-
pervised, and few-shot prompting methods. Then,
three crowd-source annotators are asked to rate
on Likert-scale the semantic similarity between
(1) each prediction keyphrase pi and the most se-
mantically similar keyphrase in Y , and (2) each
reference keyphrase yi and the most semantically
similar keyphrase in P . We report the details of
the annotator recruitment process, the annotation
instructions, and the interface in Appendix D.

A total of 1500 document-level annotations with
13401 phrase-level evaluations are collected. As
presented in Table 2, we observe 0.75 Krippen-
dorff’s alpha for both datasets and both matching
directions, indicating a high inter-annotator agree-
ment. The annotations are aggregated to obtain (1)
phrase-level scores for matching a single phrase
to a set of phrases (pi → Y and yi → P) and (2)
document-level precision, recall, and F1 scores, cal-
culated after normalizing the scores to a 0-1 scale.

5.3 Meta-Evaluation Results

Using the document-level F1 score annotations, we
compare SemF1 with six baseline metrics:

1. Exact Matching F1@M (Yuan et al., 2020).
2. F1@M with Substring Matching. We con-

clude a match between two phrases if either
one is a substring of the other. This corre-
sponds to the INCLUDES and PARTOF strat-
egy in Zesch and Gurevych (2009).

3. R-precision (Zesch and Gurevych, 2009).
4. FG (Luo et al., 2021).
5. Rouge-L F1 (Lin, 2004).
6. BertScore FScore (Zhang et al., 2020)5. We

concatenate all the phrases in P with commas
to form a single prediction string, and do the
same for Y to form the reference string6.

We apply Porter Stemmer (Porter, 1980) on P
and Y before calculating baseline 1, 2, and 3.

5We use the RoBERTa-large model and the representation
at the 17th layer, as recommended by the official implementa-
tion at https://github.com/Tiiiger/bert_score.

6We find that BertScore is insensitive to the order of labels
and predictions. Details are discussed in Appendix C.4.

0.0 0.2 0.4 0.6 0.8 1.0
Kendall's Tau

Exact Matching

Substring Matching

R-precision

FG

Rouge-L

BertScore

Semantic Matching

KP20k

0.0 0.2 0.4 0.6 0.8 1.0
Kendall's Tau

KPTimes

Figure 2: The 95% confidence intervals for the
Kendall’s Tau between human and automatic metrics
on KP20k and KPTimes. SemF1 exhibits a higher
correlation with humans and smaller intervals.

KP20k KPTimes
r ρ τ r ρ τ

Exact Matching F1@M 0.705 0.689 0.590 0.768 0.792 0.684
FastText 0.808 0.797 0.635 0.844 0.850 0.693
Phrase-BERT 0.792 0.793 0.631 0.876 0.898 0.755
SpanBERT 0.757 0.724 0.562 0.824 0.819 0.653
SimCSE (unsupervised) 0.862 0.834 0.677 0.906 0.905 0.762
SimCSE (supervised) 0.844 0.827 0.669 0.907 0.915 0.780
Ours 0.898 0.884 0.735 0.926 0.925 0.794

- fine-tuning 0.870 0.856 0.705 0.911 0.915 0.780

Table 3: A comparison between different phrase embed-
ding models on scoring an individual phrase against a
set of phrases. Our model achieves the best matching
correlation with humans, significantly outperforming
the second best with p < 0.001 via a paired t-test.

In Figure 2, we report the 95% confidence in-
terval of Kendall’s Tau via input-level bootstrap
resampling with 1000 samples, following Deutsch
et al. (2021). Surprisingly, although exact match-
ing produces many false negatives, existing propos-
als to relax exact matching do not provide much
overall performance gains either: while substring
matching consistently outperforms exact match-
ing by a small amount, R-precision and FG have
a lower correlation with human compared to ex-
act matching. BertScore’s performance is highly
domain-dependent: it achieves the second-best per-
formance on KPTimes while performs poorly on
KP20k. By contrast, SemF1 greatly outperforms
other metrics on both datasets, with a much higher
mean score and a smaller variation.

Is the observed high performance of SemF1
consistent with any embedding model? Our abla-
tion studies suggest a negative answer. We evalu-
ate with fine-grained phrase-level annotations for
both directions of matching (i.e., pi → Y and
yi → P). Table 3 presents the Pearson correla-
tion (r), Spearman correlation (ρ), and Kendall’s
Tau (τ ) of exact matching and semantic matching
with various embedding models: FastText (Joulin
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et al., 2016)7, Phrase-BERT (Wang et al., 2021),
SpanBERT (Joshi et al., 2020), SimCSE (Gao et al.,
2021)8, our phrase embedding, and the model be-
fore the proposed fine-tuning. Despite being a
strong strategy by design, semantic matching fails
to outperform exact matching in Kendall’s Tau with
SpanBERT embedding. With the proposed model,
semantic matching outperforms exact matching
by 0.1 absolute points in Kendall’s Tau and more
than 0.15 absolute points in Pearson and Spearman
correlation. It is worth-noting that although the
base SBERT model already achieves strong per-
formance, our phrase-level contrastive fine-tuning
provides further performance gains.

Remark We have confirmed that the semantic
matching strategy better accommodates semanti-
cally correct predictions. Additionally, our prelim-
inary study indicates that human references often
exhibit lexical variability. When faced with such
variability, SemF1 demonstrates lower variance
than F1@M (detailed in Appendix C.5).

6 KPEVAL: Reference-Free Evaluation

For a range of text generation tasks, the optimal out-
put is often highly aspect-specific (Wen et al., 2015;
Mehri and Eskenazi, 2020; Fabbri et al., 2021).
As such, reference-based evaluation is incomplete
as it does not always align with the evaluation
goals. To address this gap, KPEVAL introduces
three novel evaluation aspects, along with corre-
sponding reference-free metrics, aimed at aligning
closer with real-world application requirements.

6.1 Faithfulness
Desiderata: keyphrase predictions should always
be grounded in the document.

In practical scenarios, it is vital for keyphrase
systems to refrain from producing concepts not cov-
ered in the document, which we term as unfaithful
keyphrases. Determining whether a keyphrase is
faithful is non-trivial: an absent keyphrase could
be faithful by being synonyms or parent/child con-
cepts of the concepts in the document, while a
present keyphrase could be deemed unfaithful if it
has a wrong boundary. For instance, the keyphrase
"hard problem" is unfaithful to a document dis-
cussing "NP-hard problem". This example also

7We use the crawl-300d-2M.vec model.
8We use the simcse-roberta-large models distributed

by the original authors on huggingface.

ID Model KP20k KPTimes
M4 MultipartiteRank 0.694 0.829
M10 CatSeq 0.722 0.936
M15 SetTrans 0.777 0.912
M18 KeyBART - 0.933
M19 SciBART-large+OAGKX 0.779 -
M21 text-davinci-003 (5-shot) 0.750 0.966

Table 4: Faithfulness evaluation of the predictions made
by five models. We report the proportion of keyphrases
marked as faithful by human annotators.

illustrates the inadequacy of reference-based evalu-
ation, as "hard problem" may achieve a high score
when matched against "NP-hard problem".

Are existing keyphrase models faithful? We
conduct a human evaluation of the same set of five
models in §5.2 on 100 documents from KP20k and
KPTimes each. For each (document, keyphrase
prediction) pair, three annotators are asked to make
a binary judgement between faithful and unfaithful
(details in Appendix D). Table 2 presents the inter-
annotator agreement. We find a moderate agree-
ment for present keyphrases and a lower agreement
for absent keyphrases. We aggregate the present
keyphrase annotations by majority voting. For the
absent keyphrases, two of the authors manually
resolve the instances where the crowd-source an-
notators do not agree. Table 4 presents the faithful-
ness scores for the evaluated models. Surprisingly,
M3’s outputs are not as faithful as the neural KPG
models, supporting the hypothesis that extractive
models can suffer from the boundary mistakes that
harm their faithfulness. In addition, models make
more unfaithful predictions in KP20k compared to
KPTimes, indicating the possible difficulty of ac-
curately generating concepts grounded in scientific
papers compared to news documents.

Automatic Faithfulness Evaluation Using the
human annotations, we evaluate three automatic
metrics for judging a keyphrase’s faithfulness:

1. The precision metric of BertScore(X , pi). We
use the RoBERTa-large model as in §5.3.

2. The faithfulness metric of BartScore (Yuan
et al., 2021). pi is embedded into "In summary,
this is a document about pi" for calculating
its probability given X . BART-large trained
on CNN-DM (See et al., 2017) is used.

3. The consistency metric of UniEval (Zhong
et al., 2022), which scores text generation
as boolean QA. We embed X and pi with a
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KP20k KPTimes
BertScore 0.676 0.648
BartScore 0.677 0.663
UniEval 0.690† 0.672†

Table 5: Meta-evaluation results for faithfulness metrics.
We report the AUROC evaluated with human annota-
tions in Table 4. †statistically significantly better than
the second best with p < 0.01 via a paired t-test.

template for summarization evaluation: "ques-
tion: Is this claim consistent with the doc-
ument? </s> summary: the document dis-
cusses about pi. </s> document: X ". Then,
we use the UniEval model for summarization
evaluation provided by the original authors to
obtain a score expressed as the probability of
the model generating "Yes" normalized by the
probability for "Yes" and "No".

All of these metrics output a real number score.
To compare their performance, we report their AU-
ROC in Table 5. On both datasets, UniEval out-
performs BertScore and BartScore, achieving the
highest agreement with human raters. Currently,
KPEVAL adopts UniEval as the default faithful-
ness metric. We encourage future work to continue
developing stronger metrics for this aspect.

6.2 Diversity

Desiderata: reward more semantically distinct
concepts and penalize repetitions.

Generating keyphrases with minimal repetition
is a desirable property of keyphrase applications.
To assess the diversity of P , KPEVAL includes
one lexical and one semantic metric based on
Bahuleyan and El Asri (2020). The lexical met-
ric dup_token_ratio is the percentage of dupli-
cate tokens after stemming. The semantic metric
dup_emb_sim is the average of pairwise cosine
similarity, using the phrase embedding in §5.1:

emb_sim(P) =
∑m

i=1

∑m
j=1 1(i ̸=j)sim(pi,pj)

m(m−1) .

We note that by design, we do not penalize over-
generating uninformative keyphrases, as it intu-
itively implies a high diversity9. Judging the qual-
ity of the keyphrases is instead delegated to the
metrics for reference agreement and faithfulness.

9As a result, metrics such as the orthogonal regularization
term used by CatSeqD (Yuan et al., 2020) are not suitable for
our purposes, as the term naturally increases with |P|.

6.3 Utility

Desiderata: reward predictions that facilitate ef-
fective ad-hoc retrieval of the document.

Information Retrieval (IR) is an important down-
stream application for keyphrases (Jones and Stave-
ley, 1999; Song et al., 2006; Kim et al., 2013). To
directly evaluate whether M can generate useful
keyphrases for IR-related tasks, KPEVAL tests P
on facilitating ad-hoc retrieval of X from an in-
domain corpus C (Boudin and Gallina, 2021).

Concretely, we leverage an in-domain cor-
pus C that has documents and human-annotated
keyphrases10. We first index C’s documents into
the form (title, keyphrases) → document. To evalu-
ate P , we add a single entry (X ’s title, P) → X to
the aforementioned database. Then, a set of queries
Q = {q1, q2, ..., q|Q|} specifically written for X are
used to attempt to retrieve X from this pool. The
utility of P is measured by two metrics for retrieval
effectiveness: Recall at k (Recall@k) and Recipro-
cal Rank at k (RR@k), averaged across all queries
in Q. To simulate the queries written by real users,
we use GPT-4 (OpenAI, 2023) to annotate three ad-
hoc queries based on each document. For KP20k,
the queries are in the style of in-text citations simi-
lar to Boudin and Gallina (2021). For KPTimes, we
generate short phrases that mimic queries on web
search engines. We present the prompting details in
Appendix C.2. For metric calculation, we consider
BM25 (Robertson and Walker, 1994) and a dense
embedding model11 as the retriever and report the
averaged scores.

7 Fine-grained benchmarking of
keyphrase systems

Finally, we benchmark 23 keyphrase systems with
KPEVAL, with the full evaluation results on KP20k
and KPTimes presented in Table 7. The implemen-
tation details are presented in Appendix B. This
section presents the insights on two questions:

1. Do our finding align with the conclusions
drawn from previous model comparisons?

2. How do large language models compare with
existing keyphrase prediction methods?

Uncovering blind-spots of established results
We revisit a set of models compared in Ye et al.

10We use the respective training sets as C for KP20k and
KPTimes. In practice, one can run any keyphrase prediction
method if human-written keyphrases are not available for C.

11We use cross-encoder/ms-marco-MiniLM-L-6-v2
model via huggingface.
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Model #KP Reference Agreement (↑) Faithfulness (↑) Diversity (↓) Utility (↑)
F1@M(P ) F1@M(A) SemF1 UniEval dup emb_sim RR@5 Recall@5

(A) CatSeq 7.2 0.362 0.003 0.548 0.774BD 0.370 0.310 0.884C 0.797C

(B) CatSeqTG-2RF1 7.9 0.386AC 0.005A 0.553A 0.734 0.355A 0.251A 0.886C 0.801AC

(C) ExHiRD-h 5.5 0.374A 0.005A 0.562AB 0.781ABD 0.214ABD 0.195AB 0.878 0.791
(D) SetTrans 7.7 0.390AC 0.006ABC 0.583ABC 0.766B 0.308AB 0.203AB 0.889AC 0.803AC

Table 6: Re-evaluation of four models considered in Ye et al. (2021). #KP = Number of keyphrases. (P ) and (A)
indicate present and absent keyphrases. dup = dup_token_ratio. For dup and emb_sim, lower scores are better.
We use four superscripts to mark the results that are significantly better than CatSeq (A), CatSeqTG-2RF1 (B),
ExHiRD-h (C), and SetTrans (D) with p < 0.01 via a paired t-test.

Figure 3: A comparison between GPT-3.5 and strong supervised (left) and unsupervised (right) keyphrase extraction
and keyphrase generation methods. GPT-3.5 achieves strong performance on both datasets and most dimensions.
We use RR@5 to represent utility and 1− dup_token_ratio to represent diversity.

(2021): CatSeq, CatSeqTG-2RF1, ExHiRD-h, and
SetTrans. As shown in Table 6, a nuanced pattern
emerges when evaluating beyond F1@M , the main
metric reported in the original paper. SemF1 is
consistent with F1@M in recognizing SetTrans as
the best model for reference agreement. However,
SetTrans does not outperform all the three base-
lines in reference-free evaluation. Specifically, the
best faithfulness and diversity scores are achieved
by ExHiRD-h, and the difference between Set-
Trans and CatSeqTG-2RF1 in utility is insignif-
icant. Moreover, contradicting with F1@M , KPE-
VAL’s metrics show a superiority of ExHiRD-h over
CatSeqTG-2RF1 for reference agreement, faithful-
ness, and diversity. We provide several support-
ing examples in Appendix E. By revealing these
blind-spots in previous results, KPEVAL enables
a holistic view in model comparison and a stricter
criterion in establishing the state-of-the-art.

LLM vs traditional keyphrase models With the
ascent of LLMs as foundational elements in NLP,
their efficacy in keyphrase prediction warrants ex-
amination. Prior research reported significant per-
formance gaps when evaluating LLMs with exact
matching F1@M (Song et al., 2023; Martínez-
Cruz et al., 2023). With KPEVAL, we conduct
a more comprehensive investigation. In Figure 3,
we compare GPT-3.5 with state-of-the-art KPE and
KPG methods. For supervised methods, perfor-

mance of five-shot prompting GPT-3.5 is compa-
rable or better than HyperMatch along every di-
mension, and comparable to SciBART+OAGKX in
diversity, utility, and faithfulness. In addition, zero-
shot prompting outperforms the unsupervised Tex-
tRank, PromptRank, and the Azure API in diversity
while being competitive across other dimensions.
These results suggest that the potential of LLMs
for keyphrase prediction may be underappreciated
under traditional evaluation paradigms.

Discussion What have we learned in this re-
evaluation? First, the refined evaluation facilitated
by KPEVAL challenges some of the existing model
comparisons and emphasizes the difficulty of out-
performing baselines across all aspects. In fact,
these aspects test unique abilities, exhibiting weak
cross-aspect correlations (Appendix C.3) and dis-
tinct preferences for keyphrase systems (Table 6,
7). Our findings advocate for a tailored approach
to metric weighting, allowing users to customize
evaluations based on their evaluation desiderata.
Finally, our results reveal strong performance of
GPT-3.5, encouraging future work to further under-
stand and improve LLMs for keyphrase prediction.

8 Conclusion

We introduce KPEVAL, a fine-grained evaluation
framework that conducts semantic-based evalua-
tion on reference agreement, faithfulness, diversity,
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ID Model #KP Reference Agreement Faithfulness Diversity Utility
SemP ↑ SemR ↑ SemF1 ↑ UniEval ↑ dup ↓ emb_sim ↓ RR@5 ↑ Recall@5 ↑

KP20k
M1 TF-IDF❋ 10.0 0.431 0.524 0.463 0.696 0.396 0.161 0.889 0.805
M2 TextRank❋ 10.0 0.432 0.518 0.460 0.737 0.391 0.180 0.882 0.796
M3 RAKE❋ 10.0 0.401 0.499 0.437 0.733 0.295 0.170 0.855 0.783
M4 MultipartiteRank❋ 10.0 0.364 0.548 0.429 0.712 0.148 0.092 0.881 0.794
M5 YAKE!❋ 10.0 0.434 0.508 0.459 0.778 0.372 0.190 0.859 0.786
M6 PromptRank❋✿ 10.0 0.414 0.556 0.465 0.755 0.133 0.159 0.866 0.786
M7 Kea❋♦ 10.0 0.452 0.533 0.479 0.715 0.445 0.175 0.892 0.809†
M8 BERT+CRF❋♦✿ 10.0 0.675† 0.447 0.515 0.801† 0.137 0.399 0.879 0.796
M9 HyperMatch❋♦✿ 10.0 0.505 0.631† 0.549 0.772 0.297 0.233 0.881 0.798

M10 CatSeq♦ 7.2 0.596 0.531 0.548 0.774 0.370 0.310 0.884 0.797
M11 CatSeqTG-2RF1♦ 7.9 0.550 0.579 0.553 0.734 0.355 0.251 0.886 0.801
M12 ExHiRD-h♦ 5.5 0.587 0.559 0.562 0.781 0.214 0.195 0.878 0.791
M13 SEG-Net♦ 11.0 0.560 0.596 0.565 0.757 0.260 0.177 0.889 0.804
M14 Transformer♦ 8.2 0.558 0.593 0.562 0.747 0.289 0.239 0.878 0.791
M15 SetTrans♦ 7.7 0.570 0.623 0.583 0.766 0.308 0.203 0.889 0.803
M16 SciBERT-G♦✿ 6.1 0.587 0.590 0.577 0.762 0.152 0.177 0.878 0.791
M17 BART-large♦✿ 6.6 0.567 0.607 0.574 0.759 0.144 0.168 0.877 0.790
M18 KeyBART♦✿ 6.0 0.580 0.599 0.577 0.765 0.130 0.163 0.883 0.792
M19 SciBART-large+OAGKX♦✿ 6.1 0.601 0.623 0.601† 0.766 0.129 0.158 0.879 0.793
M20 text-davinci-003 (0-shot)✿ 9.5 0.433 0.616 0.498 0.777 0.143 0.110 0.888 0.799
M21 text-davinci-003 (5-shot)✿ 6.5 0.503 0.599 0.535 0.790 0.084† 0.113 0.886 0.802
M22 Amazon Comprehend❋ 10.0 0.224 0.324 0.259 0.693 0.436 0.103 0.855 0.758
M23 Azure Cognitive Services❋ 10.0 0.387 0.536 0.440 0.778 0.198 0.068† 0.874 0.780
KPTimes
M1 TF-IDF❋ 10.0 0.403 0.557 0.461 0.658 0.175 0.163 0.589 0.482
M2 TextRank❋ 10.0 0.457 0.532 0.483 0.667 0.371 0.246 0.598 0.485
M3 RAKE 10.0 0.284 0.380 0.321 0.693 0.157 0.140 0.555 0.442
M4 MultipartiteRank❋ 10.0 0.410 0.575 0.472 0.670 0.123 0.150 0.589 0.483
M5 YAKE! 10.0 0.387 0.442 0.405 0.639 0.317 0.225 0.564 0.441
M6 PromptRank❋✿ 10.0 0.427 0.574 0.483 0.699 0.233 0.134 0.569 0.458
M7 Kea❋♦ 10.0 0.427 0.575 0.484 0.699 0.219 0.175 0.607† 0.500†
M8 BERT+CRF❋♦✿ 2.3 0.741 0.459 0.550 0.769† 0.072 0.556 0.583 0.478
M9 HyperMatch❋♦✿ 10.0 0.493 0.655 0.554 0.703 0.124 0.271 0.587 0.477

M10 CatSeq♦ 5.9 0.723 0.714 0.708 0.683 0.191 0.257 0.569 0.454
M11 CatSeqTG-2RF1♦ n/a n/a n/a n/a n/a n/a n/a n/a n/a
M12 ExHiRD-h♦ 5.8 0.725 0.713 0.709 0.680 0.149 0.238 0.572 0.454
M13 SEG-Net♦ n/a n/a n/a n/a n/a n/a n/a n/a n/a
M14 Transformer♦ 5.7 0.720 0.736 0.717 0.658 0.133 0.231 0.569 0.456
M15 SetTrans♦ 8.4 0.662 0.801 0.716 0.645 0.210 0.232 0.572 0.454
M16 SciBERT-G♦✿ 4.5 0.784 0.737 0.749 0.716 0.064 0.208 0.579 0.468
M17 BART-large♦✿ 5.4 0.768 0.796 0.770† 0.706 0.074 0.203 0.582 0.469
M18 KeyBART♦✿ 5.9 0.751 0.807† 0.766 0.696 0.086 0.206 0.579 0.466
M19 SciBART-large+OAGKX♦✿ 4.8 0.782 0.766 0.763 0.718 0.069 0.203 0.581 0.472
M20 text-davinci-003 (0-shot)✿ 14.1 0.383 0.620 0.467 0.690 0.082 0.137 0.599 0.487
M21 text-davinci-003 (5-shot)✿ 6.7 0.549 0.643 0.582 0.725 0.044† 0.188 0.590 0.479
M22 Amazon Comprehend❋ 10.0 0.258 0.347 0.292 0.617 0.291 0.203 0.544 0.433
M23 Azure Cognitive Services❋ 10.0 0.312 0.425 0.355 0.728 0.140 0.133† 0.543 0.425

Table 7: Evaluation results for 23 evaluated keyphrase systems. Due to budget constraints, we only sample 1000
documents per dataset for utility evaluation. For the other aspects, the complete test sets are used. #KP = Number of
keyphrases. dup = dup_token_ratio. We use ↑ for the higher the better and ↓ for the reverse. The best is boldfaced
and the second best is underlined. † indicates statistically significantly better than the second best with p < 0.01 via
a paired t-test. ❋ = KPE systems. ♦ = supervised models. ✿ = pre-trained language models.

and utility of keyphrase systems. We show the
advantage of our metrics via rigorous human evalu-
ation, and exhibit the usability of KPEVAL through
a large-scale evaluation of keyphrase systems in-
cluding LLM-based methods and keyphrase APIs.
Our framework marks the first step towards sys-
tematically evaluating keyphrase systems in the era

of LLMs. We hope KPEVAL can motivate future
works to adopt more accurate evaluation metrics
and further advance the evaluation methodology.
Future studies might also explore the development
of utility metrics tailored to the specific require-
ments of applications in niche domains.
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Limitations

While our study sheds light on enhancing the
keyphrase evaluation methodology, several limi-
tations exist for KPEVAL.

1. Multilingual Evaluation. We encourage fu-
ture work to extend the evaluations in this
paper to multilingual setting. By design, the
aspect and metric formulations in KPEVAL

are language-agnostic. For instance, SemF1
can be implemented with multilingual em-
beddings. Such embeddings need not to
keyphrase-specific. For instance, Table 3 sug-
gests that off-the-shelf embeddings cam al-
ready have reasonable performance.

2. Alternative Scoring Schemes. KPEVAL’s
evaluation and meta-evaluation strategies al-
ways target at producing fine-grained numeric
scores. This is different from tasks like
machine translation where direct assessment
scores are annotated (Graham et al., 2013)
or LLM competitions that report Elo scores
(Wu et al., 2023b). Exploring whether these
schemes may provide better evaluation quality
is an important question for future work on
keyphrase evaluation.

3. LLM-Based Evaluation. Recent works have
shown the viability of using LLMs for human-
aligning aspect-specific evaluation (Liu et al.,
2023). By comprehensively establishing the
possible evaluation aspects and curating meta-
evaluation data for reference agreement and
faithfulness, our work sets up the necessary
preparations for evaluating LLM-based met-
rics. We encourage future work to formally
define and investigate the performance of
keyphrase evaluation metrics based on LLMs.
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Supplementary Material: Appendices

A Literature survey: evaluation methods
used in recent keyphrase papers

We survey all the papers published from 2017
to 2023 in major conferences for AI, NLP, and
IR (ACL, NAACL, EMNLP, AAAI, and SIGIR)
about keyphrase extraction or keyphrase genera-
tion. We choose year 2017 as it marks the start of
deep keyphrase generation methods (Meng et al.,
2017). We manually check each paper’s experi-
ment sections and note down which of the six ma-
jor categories do the reported evaluation metrics
belong to: (1) precision, recall, and F1 based on
exact-matching; (2) diversity metrics, such as du-
plication ratio; (3) ranking-based metrics such as
mAP, α-NDCG, and MRR; (4) approximate ver-
sions of exact matching such as n-gram matching;
(5) retrieval-based utility metrics; (6) human eval-
uation. We make sure each of metrics used in the
surveyed papers can fall under one and only one
category under this ontology.

The survey results are presented in Figure 4.
Overall, despite its limitation, exact matching has
been de facto the method for assessing the perfor-
mance of newly proposed keyphrase systems, and
there has been limited progress in adopting alterna-
tive metrics. The majority of papers report exact
matching precision, recall, and F1. Two thirds of
all papers use exact matching as the only metric,
including 10 out of 11 papers published in 2023.
Human evaluation is only conducted in one paper
surveyed (Bennani-Smires et al., 2018).

B Keyphrase Systems: Implementation
Details and Full Evaluation Results

In this section, we describe in detail the considered
keyphrase systems as well as how we obtain their
outputs for evaluation.

B.1 Keyphrase Systems

We consider three types of keyphrase systems:
keyphrase extraction models, keyphrase generation
models, and APIs including large language models.

Keyphrase Extraction Systems KPE has tra-
ditionally been approached through unsupervised
methods, where noun phrase candidates are ranked
using heuristics (Hulth, 2003; Mihalcea and Ta-
rau, 2004). Supervised approaches include feature-
based ranking (Witten et al., 1999), sequence label-

0 10 20 30 40 50 60 70
Number of papers

Exact Matching

Diversity

Ranking

Approximate Matching

Utility

Human Evaluation

Choice of Evaluation Metrics

Figure 4: Distribution over 75 papers of the adopted
evaluation metrics: (1) F1 score based on exact-
matching; (2) diversity metrics such as duplication ratio;
(3) ranking-based metrics such as mAP, α-NDCG, and
MRR; (4) approximate versions of exact matching; (5)
retrieval-based utility metrics; (6) human evaluation.

ing (Zhang et al., 2016), and the use of pre-trained
language models (PLMs) for task-specific objec-
tives (Song et al., 2021, 2022). We consider the
following nine KPE models:
M1 TF-IDF (Jones, 1972) selects the phrases con-

taining words with highest TF-IDF weight.
M2 TextRank (Mihalcea and Tarau, 2004) runs

PageRank (Brin and Page, 1998) on an undi-
rected word cooccurrence graph.

M3 RAKE (Rose et al., 2010) is an efficient
single-document unsupervised KPE algorithm
that uses the cooccurrence graph to score
keyphrase candidates.

M4 MultipartiteRank (Boudin, 2018) represents
the document as a multipartite graph to en-
code topical diversity and improve intra-topic
keyphrase selection preferences.

M5 YAKE! (Campos et al., 2020) is an unsuper-
vised KPE method relying on local features
such as term co-occurrence and frequencies.

M6 Kea (Witten et al., 1999) builds a supervised
keyphrase classifier using statistical features
including TF-IDF and position information.

M7 BERT+CRF (Wu et al., 2022) fine-tunes a
pre-trained BERT (Devlin et al., 2019) on
sequence labeling with conditional random
fields (Lafferty et al., 2001).

M8 HyperMatch (Song et al., 2022) trains a su-
pervised model to rank phrase-document rele-
vance in a hyperbolic space.

M9 PromptRank (Kong et al., 2023) ranks the
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phrases by their probability given a prompt
prefix using a sequence-to-sequence pre-
trained language models.

Keyphrase Generation Systems KPG models
are often trained with various supervised objectives,
including One2One, One2Seq, and One2Set (Meng
et al., 2017; Yuan et al., 2020; Ye et al., 2021). A
range of strategies have been proposed, including
hierarchical modeling of phrases and words (Chen
et al., 2020), reinforcement learning (Chan et al.,
2019), unifying KPE and KPG (Chen et al., 2019;
Ahmad et al., 2021), and using PLMs (Kulkarni
et al., 2022). We consider ten KPG models:
M10 CatSeq (Yuan et al., 2020) is an RNN trained

with copy mechanism (Gu et al., 2016) on
generating keyphrases as a sequence.

M11 CatSeqTG-2RF1 (Chan et al., 2019) intro-
duces an RL-based approach using recall and
F1 as the rewards.

M12 ExHiRD-h (Chen et al., 2020) extends Cat-
Seq with a hierarchical decoding and an ex-
clusion mechanism to avoid duplications.

M13 SEG-Net (Ahmad et al., 2021) unifies
keyphrase extraction and keyphrase genera-
tion training and introduces layer-wise cover-
age attention mechanism

M14 Transformer (Ye et al., 2021) is a
Transformer model (Vaswani et al., 2017)
trained with copy mechanism on generating
keyphrases as a sequence.

M15 SetTrans (Ye et al., 2021) generates
keyphrases in parallel based on control codes
trained via a k-step target assignment process.

M16 SciBERT-G (Wu et al., 2022) fine-tunes
SciBERT (Beltagy et al., 2019) for seq2seq
keyphrase generation using a prefix-LM ob-
jective (Dong et al., 2019).

M17 BART-large (Wu et al., 2022) is a BART
model (Lewis et al., 2020) fine-tuned on gen-
erating keyphrases as a sequence.

M18 KeyBART (Kulkarni et al., 2022) is a BART
model adapted to scientific keyphrase genera-
tion before fine-tuning.

M19 SciBART-large+OAGKX (Wu et al., 2022)
is pre-trained on scientific corpus and scien-
tific keyphrase generation before fine-tuning.

Large language models and APIs. Recent ad-
vancements highlight the capability of large lan-
guage models (LLMs) to perform in-context learn-
ing (Brown et al., 2020). We explore GPT-3.5
(Ouyang et al., 2022) for KPG in the zero-shot

and few-shot prompting setting12. We also assess
two commercial keyphrase extraction APIs.
M20 Zero-shot prompting GPT-3.5.
M21 Five-shot prompting GPT-3.5.
M22 Amazon Comprehend API
M23 Azure Cognitive Services API

B.2 Implementation Details
We obtain the output from the original authors for
M8, M10, M11 for KP20k, and M7, M16, M17,
M18 for both KP20k and KPTimes. For the other
KPE and KPG models, we reproduce the results
on our own. For M1, M2, M4, M6, we obtain
the outputs using the pke library. For M3, M5,
M8, M10, M11, M12 (KPTimes only) and M9,
M13, M14, M15, we use the original implemen-
tations provided by the authors. For M18, we use
the DeepKPG toolkit. For the commercial APIs,
we implement the API call following the instruc-
tions. We obtained results on 3/5/2023 for M20
and 3/11/2023 for M21. Following existing KPE
literature, we consider the top 10 predictions from
M1, 2, 3, 4, 5, 6, 8, 9, 22, and 23. For all the
systems, we truncate the input to 512 tokens. We
perform hyperparameter tuning on the validation
sets and ensure that the models match the perfor-
mance reported by original paper or existing works
such as Wu et al. (2022). For M11 and M13 on KP-
Times, we failed to obtain reasonable performance
and thus choose to omit the results.

For GPT-3.5, we always start the prompt with a
task definition: "Keyphrases are the phrases that
summarize the most important and salient informa-
tion in a document. Given a document’s title and
body, generate the keyphrases."

In the zero-shot setting, we provide the title and
body in two separate lines, and start a new line with
"Keyphrases (separated by comma):". In the 5-shot
setting, we randomly sample 5 examples from the
train set for each test document, and provide their
title, body, and keyphrases in the same format in
the prompt before the document tested.

C KPEVAL Metrics: Implementation
Details and Further Analyses

C.1 Phrase Embedding Training Details
We fine-tune the paraphrase model pro-
vided by Reimers and Gurevych (2019)
distributed at https://huggingface.co/
sentence-transformers/all-mpnet-base-v2.

12We use OpenAI’s text-davinci-003 via API.
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Unsupervised SimCSE (Gao et al., 2021) is used
as the training loss. Specifically, given a batch of
B phrases, the loss can be expressed as:

Lsimcse =
1
B

∑B
i=1− log esim(hi,h

′
i)/τ

∑B
j=1 e

sim(hi,h
′
j
)/τ

,

where hi and h′i are the representations of phrase
i obtained using two separate forward passes with
dropout enabled. This objective discourages the
clustering of unrelated phrases in the representa-
tion space and retains a high similarity between
semantically related phrase pairs. τ is a scaling
factor which we empirically set to 0.05.

We fine-tune the model on Lsimcse using 1.04
million keyphrases from the training set of KP20k,
KPTimes, StackEx (Yuan et al., 2020), and
OpenKP (Xiong et al., 2019), covering a wide
range of domains including science, news, forum,
and web documents. We use the AdamW optimizer
with maximum sequence length 12, batch size 512,
dropout 0.1, and learning rate 1e-6 to fine-tune for 1
epoch. The hyperparameters are determined using
a grid search on the following search space: batch
size {128, 512, 1024, 2048}, learning rate {1e-6,
5e-6, 1e-5, 5e-5}. We randomly hold out 0.5%
from the training data for validation and model se-
lection. The final training takes 30 minutes on a
single Nvidia GeForce RTX 2080 Ti GPU.

Remark on embedding quality In Table 8, we
provide an additional study on the trained embed-
ding. Specifically, following Gao et al. (2021);
Wang and Isola (2020), we evaluate alignment, the
average similarity between keyphrases of similar
meanings, and uniformity, the average similarity
between unrelated keyphrase pairs. For alignment,
we utilize the name-variation pairs constructed by
Chan et al. (2019). We find that our model achieves
the best uniformity, which means that it assigns
close to 0 similarity for unrelated pairs. For phrases
with similar meanings, it achieves 0.58 alignment,
which is also close to human perceptions. Finally,
the separation between uniformity and alignment
is also the largest for our embedding model.

C.2 Ad-hoc Query Construction for Utility
We use GPT-4 (OpenAI, 2023) to annotate three
ad-hoc queries per document from KP20k and KP-
Times test sets. For both datasets, we sample with
temperature set to 0.9 to balance quality and diver-
sity. Due to budget constraints, we sample 1000
documents per dataset to construct the evaluation
set. The prompts are presented in Figure 9.

Alignment Uniformity ∆

Phrase-BERT 0.78 0.54 0.24
SpanBERT 0.71 0.54 0.17
Unsup. SimCSE 0.62 0.23 0.39
Sup. SimCSE 0.72 0.41 0.31
SBERT 0.63 0.11 0.52
Ours 0.58 0.02 0.56

Table 8: A comparison between different phrase em-
bedding models. Our model achieves a large difference
between alignment and uniformity, indicating the best
ability to distinguish unrelated phrases.

Dataset Order r ρ τ

KP20k Default 0.562 0.597 0.436
Permuted 0.5454 0.5785 0.4254

KPTimes Default 0.694 0.729 0.553
Permuted 0.6913 0.7273 0.5523

Table 9: The stability of BertScore when given permuted
labels and references. 0.5454 denotes mean 0.545 with
standard deviation 0.004.

C.3 Inter-metric Correlations

Using the document-level evaluation scores of the
21 keyphrase systems, we calculate the pair-wise
Kendall’s Tau for all the metrics in KPEVAL. The
results are shown in Figure 5. Overall, we find that
only the metrics for the same dimension show a
moderate or strong correlation with each other, and
the metrics for different aspects hardly correlate.
This results suggest that KPEVAL’s aspects mea-
sure distinct abilities and that optimizing a single
metric does not automatically transfer to a superior
performance on the other aspects.

C.4 Order Sensitivity of BertScore

As BertScore is evaluated on two sequences instead
of two sets of phrases, previous works concatenate
all the predicted phrases as a single string and evalu-
ate against all the references concatenated together
(Koto et al., 2022; Glazkova and Morozov, 2022).
However, it is unclear how to order the prediction
and reference keyphrases within these two strings
and whether BertScore’s performance is sensitive
to this ordering or not. We conduct phrase-level
meta-evaluation of BertScore with phrase-level per-
mutation applied to the matching target. Specifi-
cally, we shuffle the labels and the references be-
fore calculating meta-evaluation metrics. We repeat
this process for 100 times and report the mean and
standard deviation of human correlation in Table 9.
Overall, we find that the metric-human correlation
of BertScore is relatively insensitive to permuta-
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Figure 5: Correlation between KPEVAL’s metrics, measured by Kendall’s Tau. The diversity scores are negated to
provide a more intuitive view. We find that only the metrics for the same dimension correlate with each other.

tions: when given reference phrases or prediction
phrases concatenated in different orders, BertScore
maintains a similar evaluation quality. One notable
pattern is that when the references and the predic-
tions are not permuted, BertScore obtains slightly
higher performance. We hypothesize that in this
case many phrases may present in the same order in
the reference and the prediction, making the exactly
matched instances easier to distinguish.

C.5 Variation in Keyphrase Annotations
Motivates Semantic Matching

A major motivation for semantic matching is that
valid predictions vary in many ways. But at the
same time, do human references also exhibit lexical
variations? We investigate with a pilot study of
model-in-the-loop keyphrase annotation.

Setup We sample 100 documents each from the
test sets of KP20k and KPTimes and combine each
document’s Y with P from four systems: M8, M10,
M15, and M18 (KPTimes only)/M19 (KP20k only).
Three MTurk annotators are presented with the doc-
ument and the phrases re-ordered alphabetically.
They are then asked to write keyphrases that best
capture the salient information. We state that they
may select from the provided keyphrases or write
new keyphrases. Figure 12 presents the annotation
interface. We use the same set of annotators in ap-
pendix D and collect 3226 keyphrase annotations,
which approximately cost $700.

Keyphrase annotations exhibit lexical variations.
Figure 6 presents the distribution of phrase se-

Label M8 M10 M15 M19
0

2
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6

Ph
ra

se
 C

ou
nt

KP20k
Not selected
Selected, in label
Selected, not in label

Label M8 M10 M15 M18

KPTimes

Figure 6: Annotators’ selection distribution for each of
the keyphrase sources. The reported counts are aver-
aged across three annotators. Annotators do not prefer
selecting keyphrases belonging to the original labels.

lected by the annotators from each source. The
reported counts are averaged over three annotators.
Surprisingly, we find that the keyphrases in the
original labels are not preferred over the outputs
from other models. First, nearly 70% keyphrases
in the original labels are not selected. Second,
the annotators select several keyphrases from each
model’s outputs that do not appear in the label set.
For KP20k, the annotators even select more such
keyphrases compared to the phrases from the la-
bels. This suggests that label variations can be
common in keyphrase annotations, even if candi-
date keyphrases are given as a guidance.

Are the observed label variations caused by an-
notators writing entirely different concepts? We
find that the average character-level edit distance
between the selected phrases and the closest phrase
in label keyphrases is 11.0 for KP20k and 7.0 for
KPTimes, much smaller than the metric for phrases
that are not selected (17.5 for KP20k and 14.6 for
KPTimes). In other words, keyphrases written by
different humans are lexically similar to the origi-
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Label Sets KP20k KPTimes
F1@M SemF1 F1@M SemF1

Original 0.160 0.498 0.085 0.461
Newly Created 1 0.225 0.536 0.143 0.487
Newly Created 2 0.207 0.500 0.143 0.475
Newly Created 3 0.254 0.556 0.128 0.455

σ 0.039 0.027 0.028 0.014

Table 10: Evaluating M20 with F1@M and SemF1
using four label sets. SemF1 displays a higher consis-
tency across different label versions, as indicated by a
lower standard deviation (σ).

nal references, with slightly different phrasings.

Semantic matching is more robust to label vari-
ations. A desired property of keyphrase metrics
is outputting consistent scores with similar sets of
labels. Using the 200 annotated documents, we
compare F1@M and SemF1 on the outputs from
M20 with four sets of labels13: the original labels
and three sets of newly annotated labels. As shown
in Table 10, the output of SemF1 is more stable
using different label sets, indicating a higher ro-
bustness and reliability compared to F1@M .

D Annotation for Meta-Evaluation

Annotator Hiring For all the annotation experi-
ments, we use Amazon Mechanical Turk (MTurk)
and designed a qualification task to hire and train
annotators. We require the annotators to be located
in United States or United Kingdom and have fin-
ished more than 1000 HITs with 97% pass rate.
In the qualification task, the annotators are pre-
sented with the definition of semantic matching
with examples, and then asked to annotate three
documents. 46 annotators that have average ≤ 1.5
wrong annotations per document are selected. We
ensure that the purpose of the main tasks and how
we use the annotations are clearly explained in the
qualification task to the potential annotators.

Cost For reference agreement, a total of 1500
document-level annotations with 13401 phrase-
level evaluations are collected from the qualified
annotators, costing approximately $1400. For faith-
fulness, we collect 6450 phrase-level annotations
for KP20k and 6486 annotations for KPTimes, cost-
ing approximately $800. We adjust the unit pay to
ensure $15 hourly pay.

13We choose M20 as many supervised models’ outputs
largely overlap with those included in the annotation process.

Document Title: extensional normalisation and type directed partial
evaluation for typed lambda calculus with sums
Reference Keyphrases: normalisation, typed lambda calculus,
grothendieck logical relations, strong sums
Predictions (M21): typed lambda calculus, sums, extensional nor-
malisation, grothendieck logical relations
Human:
P = (1.00 + 0.67 + 0.60 + 1.00)/4 =0.82
R = (0.73 + 1.00 + 1.00 + 0.67)/4 =0.85
F1 = 2× 0.85× 0.82/(0.85 + 0.82) =0.83

Exact Matching: P = 0.50, R = 0.50, F1 = 0.50
Substring Matching: P = 1.00, R = 1.00, F1 = 1.00
BertScore: P = 0.94, R = 0.96, F1 = 0.95
Semantic Matching:
P = (1.00 + 0.62 + 0.55 + 1.00)/4 = 0.79
R = (0.55 + 1.00 + 1.00 + 0.62)/4 = 0.79
F1 = 2× 0.79× 0.79/(0.79 + 0.79) = 0.79

Figure 7: An example case from KP20k. Human scores
are the average of the scores from three annotators, nor-
malized to a [0,1] range. The small differences in human
precision and recall scores are due to annotation noises.
Semantic matching’s intermediate and final scores are
the most similar to human judgments.

Interface The annotation instructions and inter-
face for reference agreement are presented in Fig-
ure 10 and Figure 11. The interface for faithfulness
is presented in Figure 13.

E Qualitative Study

E.1 SemF1 vs. existing metrics
In Figure 7, we present a qualitative example where
the model (M21) predicts two keyphrases exactly
matching to some reference keyphrases and two
keyphrases semantically similar to the reference.
Correspondingly, human annotators assign partial
credits to both of the "near-misses". However, for
these phrases, exact matching gives a score 0 and
substring matching gives full credit. As the refer-
ence and the prediction contain many similar to-
kens, BertScore is also near 1.0. Semantic match-
ing’s scoring is the most similar to humans.

E.2 Rethinking model comparisons
In Figure 8, we compare ExHiRD-h and CatSeqTG-
2RF1 on two instances from KP20k. When evalu-
ated with exact matching, CatSeqTG-2RF1 is pre-
ferred. However, since a lot of correct keyphrases
are not recognized by exact matching, the irrele-
vant concepts and duplications are under-penalized
by F1@M . By contrast, these issues are identi-
fied by the metrics from KPEVAL dedicated to
faithfulness and diversity. With semantic-based
evaluation, KPEVAL suggests that ExHiRD-h out-
performs CatSeqTG-2RF1 on these two instances.
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Title: yet another write optimized dbms layer for flash based solid state storage .
Abstract: flash based solid state storage ( flashsss ) has write oriented problems such as low write throughput , and limited
life time . especially , flashssds have a characteristic vulnerable to random writes , due to its control logic utilizing parallelism
between the flash memory chips . in this paper , we present a write optimized layer of dbmss to address the write oriented
problems of flashsss in on line transaction processing environments . the layer consists of a write optimized buffer , a
corresponding log space , and an in memory mapping table , closely associated with a novel logging scheme called incremental
logging ( icl ) . the icl scheme enables dbmss to reduce page writes at the least expense of additional page reads , while
replacing random writes into sequential writes . through experiments , our approach demonstrated up to an order of magnitude
performance enhancement in i o processing time compared to the original dbms , increasing the longevity of flashsss by
approximately a factor of two .
Reference: icl ; ssd ; incremental logging ; flash memory ; write performance ; database
ExHiRD-h: solid state storage ; flash memory ; write optimized buffer ; incremental logging

– Exact matching: F1@M = 0.500 (Present), F1@M = 0 (Absent)
– KPEVAL: SemF1 = 0.657, faithfulness= 0.864, emb_sim = 0.322, RR = 1.0

CatSeqTG-2RF1: flash based solid state storage ; flash based solid state storage ; incremental
logging ; security ; flash memory ; flash memory ; flash memory

– Exact matching: F1@M = 0.667 (Present), F1@M = 0 (Absent)
– KPEVAL: SemF1 = 0.585, faithfulness= 0.773, emb_sim = 0.419, RR = 0.333

Title: bicepstrum based blind identification of the acoustic emission ( ae ) signal in precision turning .
Abstract: it is believed that the acoustic emissions ( ae ) signal contains potentially valuable information for monitoring
precision cutting processes , as well as to be employed as a control feedback signal . however , ae stress waves produced in the
cutting zone are distorted by the transmission path and the measurement systems . in this article , a bicepstrum based blind
system identification technique is proposed as a valid tool for estimating both , transmission path and sensor impulse response
. assumptions under which application of bicepstrum is valid are discussed and diamond turning experiments are presented ,
which demonstrate the feasibility of employing bicepstrum for ae blind identification .
Reference: acoustic emissions ; higher order statistics ; blind identification ; precision machining
ExHiRD-h: acoustic emission ; precision turning ; blind system identification ; acoustic emission ;
blind source separation

– Exact matching: F1@M = 0.333 (Present), F1@M = 0 (Absent)
– KPEVAL: SemF1 = 0.629, faithfulness= 0.825, emb_sim = 0.122, RR = 1.0

CatSeqTG-2RF1: bicepstrum ; blind identification ; acoustic emission ; precision turning ; diamond
turning ; algorithms ; blind source separation ; blind source separation ; blind source separation

– Exact matching: F1@M = 0.4 (Present), F1@M = 0 (Absent)
– KPEVAL: SemF1 = 0.556, faithfulness= 0.532, emb_sim = 0.336, RR = 0.333

Figure 8: A comparison between ExHiRD-h and CatSeqTG-2RF1 on two instances from KP20k. KPEVAL
challenges the results of exact matching with more fine-grained evaluation signals.
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KP20k:
For each paper, write a short citation text that summarizes some idea reflected in the abstract without
copying anything here. Use a fake paper id like [3] or [5] to refer to the paper. Do not present in a
summary format. Instead, write as if you are citing the paper in another paper.

Title: How Should I Explain? A Comparison of Different Explanation Types for Recommender Systems
Abstract: Recommender systems help users locate possible items of interest more quickly by filtering
and ranking them in a personalized way. In particular, we present the results of a user study in which
users of a recommender system were provided with different types of explanation. Our study reveals
that the content-based tag cloud explanations are particularly helpful to increase the user-perceived
level of transparency and to increase user satisfaction even though they demand higher cognitive effort
from the user. Based on these insights and observations, we derive a set of possible guidelines for
designing or selecting suitable explanations for recommender systems.
Citation: The ability for an artificially intelligent system to explain recommendations has been shown
to be an important factor for user acceptance and satisfaction [13].

... two examples omitted ...

Title: [document_title]
Abstract: [document_abstract]
Citation:

KPTimes:
For each piece of news, write several phrases as ad-hoc queries that some people might write if they
want to find this article on the Internet. Write your response in 3-5 phrases and separate the phrases
with commas.
Title: [document_title]
Abstract: [document_abstract]
Citation:

Figure 9: Prompts used for instructing GPT-4 to generate the ad-hoc queries for utility evaluation.

Figure 10: An example of the annotation instructions for the keyphrase evaluation study in §5.3.
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Figure 11: An example of the annotation interface for the keyphrase evaluation study in §5.3.

Figure 12: An example of the annotation interface for the keyphrase annotation study in Appendix C.5.
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Figure 13: An example of the annotation interface for the faithfulness study in §6.1.
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