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Abstract

The disparity in the languages commonly stud-
ied in Natural Language Processing (NLP) is
typically reflected by referring to languages
as low vs high-resourced. However, there is
limited consensus on what exactly qualifies as
a ‘low-resource language.’ To understand how
NLP papers define and study ‘low resource’ lan-
guages, we qualitatively analyzed 150 papers
from the ACL Anthology and popular speech-
processing conferences that mention the key-
word ‘low-resource.’ Based on our analysis, we
show how several interacting axes contribute to
‘low-resourcedness’ of a language and why that
makes it difficult to track progress for each indi-
vidual language. We hope our work (1) elicits
explicit definitions of the terminology when it
is used in papers and (2) provides grounding for
the different axes to consider when connoting
a language as low-resource.

1 Introduction

If the fleet-footed Achilles and a slow-
moving tortoise are in a race, Achilles
will never catch the tortoise if the tor-
toise has a head start. Regardless of how
fast Achilles runs, he first has to reach
a point the tortoise already passed, by
which point the tortoise will have moved
ahead. –Zeno’s Achilles Paradox 1

The majority of research in the NLP commu-
nity has focused on only a handful of the world’s
languages (Joshi et al., 2020; Bird, 2022). Partic-
ularly, languages spoken by communities in the
Global South have largely been neglected (Nekoto
et al., 2020; Schwartz, 2022). Languages under-
studied by the NLP community are usually referred
to as ‘low-resource’, while those well-studied are

∗Work done while this author was at MBZUAI.
†These authors provided equal advice and supervision.

1https://www.britannica.com/topic/Achilles-paradox

referred to as ‘high-resource.’ This framing of
high vs low-resource languages resembles Zeno’s
Achilles paradox: ‘high-resourced languages’ are
the tortoise, that have been given a head start in the
research community and continue to receive much
of the attention, and ‘low-resource languages’ are
Achilles. In reality, Achilles can always outrun the
tortoise2. However, the face value interpretation of
the paradox can serve as an analogy for how the
current trajectory of the NLP research community
to include majority of the worlds languages in the
path already forged for ‘high-resourced’ languages
leaves ‘low-resource languages’ constantly trying
to catch up to a goalpost that is always moving.

The disparity in research and performance of
language technologies across languages can be
a double-edged sword. On the one hand, under-
studied and underserved languages may be at a
higher risk of language loss and have speakers ex-
posed to direct downstream harm due to failures
of language technologies (Nigatu and Raji, 2024;
Choudhury, 2023). On the other hand, the drive to
include these languages in research without proper
consideration of community needs (1) may lead
to aggressive–and at times exploitative–data col-
lection and (2) result in technologies that do not
meet the needs of the communities who speak those
languages (Diddee et al., 2022; Le Ferrand et al.,
2022a; Dearden and Tucker, 2021).

Recently, we have seen efforts to increase the
representation of ‘low-resource languages’ in NLP
research (e.g. NLLB, 2024; Adelani et al., 2022).
Yet, the exact definition of the term ‘low-resource’
remains elusive3. A common criterion to connote
languages as ‘low’ vs ‘high’ resourced is data.
However, using data as the only criterion oversim-

2https://ibmathsresources.com/2018/11/30/zenos-
paradox-achilles-and-the-tortoise-2/

3‘Under-resource’ is a term used interchangeably–and per-
haps equally as ambiguously–with ‘low-resource.’ For brevity,
we mainly use the phrase ‘low-resource’ in this paper.
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plifies the context of the language itself. Languages
dubbed as ‘low-resource’ may vary depending on
factors like their number of speakers, non-digital
archives, or language experts (Kuhn, 2024).

The lack of consensus in what qualifies a lan-
guage as ‘low-resource’ makes it challenging to
(1) track progress in research and development for
‘low-resource languages’ in general, (2) determine
what interventions are effected towards a language,
(3) pinpoint when a language stops being ‘low-
resource’, and (4) discern if technologies built for
these languages truly address the needs of the com-
munities who speak them or if they are built simply
on the premise that the same technology exists for
a ‘higher resourced language.’

In this work, we survey papers that study lan-
guages coined as ‘low-resource’. We qualitatively
analyzed 150 papers that include the keywords
‘low-resource’ and ‘under-resource.’ We used qual-
itative methods to unravel (1) how such papers
define the term ‘low-resource’ or ‘under-resource’,
(2) what languages are studied as ‘low-resource’,
and (3) what criteria is used to classify a language
as ‘low-resource.’

Our analysis reveals four separate but interacting
aspects of ‘resourcedness’ that are used to connote
a language as ‘low-resource’ (see Section 3 & Sec-
tion 4). In Section 5, we use real-world examples
to demonstrate how each of the aspects interact
and how those interactions impact what interven-
tions are designed and implemented for a language.
Finally, we use our analysis to ground recommen-
dations for different stakeholders (see Section 6).

2 Methodology

Data We collected data for papers published at
*CL venues4 from the ACL Anthology5 and at the
following Speech Processing conferences: INTER-
SPEECH and International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP) us-
ing the Semantic Scholar (Kinney et al., 2023) API .
We used a keyword search to identify papers that in-
clude the terms ‘low-resource’ or ‘under-resource’
in their titles or abstracts. Our final corpus included
868 unique papers.

Qualitative Analysis In the initial stage of our
analysis, we found that the term ‘low-resource’ is

4We focused on the top 6 venues based on Google
Scholar metrics for computational linguistics( https:
//scholar.google.com/citations?view_op=top_
venues&hl=en&vq=eng_computationallinguistics)

5https://github.com/acl-org/acl-anthology

used to refer to three broad categories: (1) tasks and
domains where there is a lack of labeled data, (2)
‘simulated low-resource’ settings via methods like
under-sampling , (3) ‘low-resource languages’ de-
fined based on diverse criteria. Table 1 summarizes
this finding. For our qualitative analysis, we ex-
clusively focused on the third category, i.e., papers
that study ‘low-resource languages’ as our inter-
est is in understanding how a language is labeled
as low-resource. We also found papers that tried
both sampling higher-resourced languages and us-
ing actual, low-resourced languages (e.g. Zevallos
and Bel, 2023b). We include those in our analysis
as they study a ‘low-resourced language’ in addi-
tion to a simulated setting. We manually labeled
541 papers to identify those that explicitly work
on non-simulated low-resource languages and ran-
domly sampled 150 papers for qualitative analysis.
Our sampling strategy was independent of any pa-
rameter such as publication year; the time span
for the 150 papers was 2017-2023. We conducted
our analysis by reading each paper and annotating
how the term ‘low-resource’ or ‘under-resource’
is defined, what languages are studied in the pa-
per, and any additional challenges mentioned in
the paper in relation to the languages of study be-
ing ‘low-resource.’ We used inductive thematic
analysis (Braun and Clarke, 2006) and discussed
the themes that emerged from our analysis in fre-
quent meetings to synthesize overarching themes.
In the following section, we present the results of
our analysis along with illustrative quotes.

Category Description Examples %
Tasks and
Domains

tasks and do-
mains where
there is limited
labeled data

Sun et al.
(2022a);
Bajaj et al.
(2021)

27.27

Simulated using tech-
niques like
under-sampling
to simulate
low-resource
settings

Zevallos and
Bel (2023b);
Dehouck
and Gómez-
Rodríguez
(2020)

12.27

Languages languages cate-
gorized based on
factors like data
or number of
speakers

Coto-Solano
(2022);
Ponti et al.
(2021)

65.04

Table 1: Three categories of papers returned for the
keyword search for ‘low-resource.’ Note that the per-
centages do not add up to 100 because some papers fall
into more than one category. For instance, Mager et al.
(2020) study both simulated and actual low-resource
languages.
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3 What is a ‘low-resource’ language?

In this section, we present the overarching aspects
we found from our thematic analysis. It is first
important to note the different styles papers use
when defining the term ‘low-resource’:

“Languages facing this lack of large
amount of data are called low-resourced,
and all linguistic varieties in Mexico
are struggling with this situation.” –
Sierra Martínez et al. (2020)

“Under-resourced, under-studied and
endangered or small languages yield
problems for automatic processing and
exploiting because of the small amount
of available data as well as the missing
or sparse description of the languages.”
–Ferger (2020)

“It frames these as “low resource lan-
guages,” lacking the text, speech and
lexical resources that are needed for
creating speech and language technolo-
gies (Krauwer, 2003)”. –Lane and Bird
(2021a)

In the quotes shown above we see that
Sierra Martínez et al. (2020) explicitly define the
term, Ferger (2020) describes challenges of work-
ing with low-resource and Lane and Bird (2021a)
define the term and provide citations from prior
work. If a paper uses prior work without explicitly
stating its definition, we rely on the definition of
the cited work. In cases where there are no explicit
definitions, we rely on the challenges mentioned
by the paper to categorize how the paper decides if
a language is ‘low-resource.’

We found that definitions for the term ‘low-
resource’ borrow from four aspects: (1) Socio-
political aspects relating to financial and historical
constraints, (2) Resources, both human and digital,
(3) Artifacts such as linguistic knowledge, data,
and technological infrastructure, and (4) Agency
of community members in what technology is built
for their languages. We summarize these four as-
pects in Figure 1 and dive into detail about each
aspect in the following subsections.

3.1 Socio-Political

Some papers call out structural issues pertaining to
societal, economic, and political forces. We found

Figure 1: Four overarching aspects that contribute
to a language being classified as low-resource. Socio-
political aspects are at the top, influencing both the
availability of resources and the creation of artifacts.
Community agency is a common thread in all the other
three aspects.

papers that reflect on low-resourcedness due to fi-
nancial and economic constraints to curating data
(e.g. Coto-Solano, 2022; Pathak et al., 2022) and
limited use of such languages in mainstream me-
dia, government, and education (e.g. Mehta et al.,
2020). For example:

“In many of these communities, lan-
guages like English and Spanish have
displaced the Indigenous languages in
domains such as technology and chatting,
and so the available data is curtailed.”–
Feldman and Coto-Solano (2020)

“However, these languages are not rep-
resented in education, government, pub-
lic services, and media, and therefore,
they show high levels of endangerment.”–
Sierra Martínez et al. (2020)

3.2 Resource

The second aspect discussed by papers is the avail-
ability of and access to human and digital re-
sources6.

Human Resources We found three types of hu-
man resources mentioned in papers in relation to
low-resource languages: (1) native speakers (e.g.
Feldman and Coto-Solano, 2020; Leong et al.,
2022), (2) linguistic experts (e.g. Pathak et al.,
2022), and (3) NLP researchers (e.g. Yimam et al.,

6Note that in the context of this work, data is an artifact
curated for NLP purposes and so is not referred to as a resource
in this category.
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2020). With regards to native speakers, while some
low-resource languages are described as having a
limited number of native speakers, others are de-
scribed as still being low-resourced despite a large
number of native speakers. For instance:

“Quechua, a low-resource language
from South America, is a language spo-
ken by millions but, despite several ef-
forts in the past, still lacks the resources
necessary to build high-performance
computational systems.”–Melgarejo et al.
(2022)

“However, low-resource languages such
as Amharic have received less attention
due to several reasons such as lack of
well-annotated datasets, unavailability
of computing resources, and fewer or no
expert researchers in the area.”–Yimam
et al. (2020)

Access to Digital Devices and Platforms Lack
of access to digital devices–and by extension, the
digital presence of communities–is another reason
mentioned in relation to ‘low-resource’ languages
(e.g. Bamutura et al., 2020; Nzeyimana and Niy-
ongabo Rubungo, 2022). Mainly, this reason is tied
to the lack of available digital data for languages
that fit the mainstream way of training models. Pa-
pers state that ‘low-resource’ languages are not
available in formats suitable for crawls and scrap-
ing (e.g. Feldman and Coto-Solano, 2020).

“The included low-resource languages
are also very limited because they are
mainly sourced from Wikipedia articles,
where languages with few articles like
Kinyarwanda are often left behind.” –
Nzeyimana and Niyongabo Rubungo
(2022)

“In addition to this, many Indigenous
communities have chronic digital in-
equalities, which makes it difficult to
generate crowd-sourcing campaigns for
those languages. Finally, in many cases,
the data that is most valuable to speakers
of the language is collected from elders
and knowledge keepers, but those elders
might be the people who have the least
access to technological means of commu-
nication.” –Feldman and Coto-Solano
(2020)

3.3 Artifacts
The third aspect of resourcedness is tied to the
production and accessibility of artifacts: linguistic
knowledge, data, and technology.

Linguistic Features and Descriptions Papers
state how there are limited available linguistic de-
scriptions for ‘low-resource’ languages (e.g. Fer-
ger, 2020; Sikasote and Anastasopoulos, 2022).
Often, linguistic features–such as morphological
complexity and typology–are used as reasons why
it is difficult to blindly adopt methods that work
for high-resource languages, even in cases where
there is an equal number of training data (e.g.
de Lhoneux et al., 2022). Standardization–or lack
thereof–is another feature mentioned in relation to
‘low-resourcedness’ of languages. Both linguistic
features and lack of standardization are mentioned
as reasons for data sparsity. For example:

“Due to differences in language typol-
ogy, it is not necessarily as simple as
looking only at number of lines of train-
ing data.[...] For example, Inuktitut is
known to be highly morphologically com-
plex, resulting in many words (defined
as space/punctuation separated) that ap-
pear just once or only a few times, even
in such a large corpus.”–Knowles and
Littell (2022)

“Not only is data scarce, but it might
lack standardization, making the dataset
more sparse than it would be for lan-
guages with standardized orthographies
and numerous speakers.” –Coto-Solano
(2022)

Data With regards to data, the classification of
a language as low-resource could be based on la-
beled or annotated data (e.g. Ponti et al., 2021),
unlabeled data (e.g. ImaniGooghari et al., 2022),
or benchmark data (e.g. Reid et al., 2021). Some
papers focus their definitions on the quality of data
(e.g. Maillard et al., 2023; Ramnath et al., 2021),
stating that low-resource language data is usually
noisy. Other papers quantify the amount of data
(e.g. Biswas et al., 2020). We also observed a sub-
set of papers that use a predefined cutoff for the
amount of data: for instance, Ramachandran and
de Melo (2020) state they “...picked six languages
that had around 10K or fewer verses available.”
Some papers would quantify the amount of data in
relation to a popular trend in the field:
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“Only some of the 22 scheduled Indian
languages, which are a subset of the nu-
merous languages spoken and written in
India, have enough resources for train-
ing a deep learning model.” –Saurav
et al. (2020)

Technology Exclusion from technological ad-
vances for the languages of study is another aspect
mentioned in relation to low-resource languages.
This ranges from the lack of basic computational
tools–such as text pre-processing tools (e.g. Niy-
ongabo et al., 2020) –to exclusion from pre-trained
language models (e.g. Leong et al., 2022; Pfeiffer
et al., 2020). There were also mentions of lack of
compute resources (e.g. Yimam et al., 2020).

“Handling utterances with non-
Kanien’kéha characters would have
required grapheme-to-phoneme predic-
tion capable of dealing with multilingual
text and code-switching, which we did
not have available.” –Pine et al. (2022a)

“In total, we can discern four categories
in our language set: 1) high-resource
languages and 2) low-resource lan-
guages covered by the pretrained SOTA
multilingual models (i.e., by mBERT and
XLM-R); as well as 3) low-resource lan-
guages and 4) truly low-resource lan-
guages not covered by the multilingual
models”–Pfeiffer et al. (2020)

3.4 Agency
Transcending all the other aspects is community
agency and the role it plays in what and by whom
language technologies are built. Coto-Solano
(2022) state how even in cases where communities
are willing to provide data, financial constraints pre-
vent them from doing so. Le Ferrand et al. (2022a)
emphasize building language tools detached from
community practices leads to technologies with
minimal utility to the communities. This detach-
ment from community practices is also stated as a
reason for minimal studies in these languages:

“Although Assamese has a very old and
rich literary history, technology develop-
ment in NLP is still in a nascent stage.”
–Pathak et al. (2022)

When communities are actively engaged, we
observe their values embedded in the production

Figure 2: Number of languages included in the studies
per language family.

of technology, regardless of the outcome of the
research project:

“While a total of 24 hours of audio were
recorded, members of the Kanien’kéha-
speaking community told us it would be
inappropriate to use the voices of speak-
ers who had passed away, leaving only
recordings of Satewas’s voice. [...] The
resulting speech corpus comprised 3.46
hours of speech.” –Pine et al. (2022b)

4 What Languages are Studied as
‘Low-Resource’?

Languages may be studied in multilingual contexts,
i.e. included alongside other languages (e.g. Ade-
lani et al., 2022; Goyal et al., 2021) or in mono-
lingual contexts (e.g. Yimam et al., 2020; Pathak
et al., 2022). Papers had varying depths of descrip-
tions for the languages they studied, with papers
working on fewer languages having more in-depth
descriptions. For instance, Mehta et al. (2020),
which exclusively work on the Gondi language,
has a dedicated section on the historical, political,
and linguistic context of the Gondi language and its
community. On the other hand, Goyal et al. (2021),
which works on 101 languages, has one table with
all the languages, their ISO codes, language fam-
ilies, writing scripts, and the amount of available
data.

In Figure 2, we show the number of languages
and language families studied in our samples,
where papers explicitly mention them as low-
resource. We observe a diverse set of language
families, with Indo-European languages having the
highest number of languages studied in our sam-
ples, followed by Niger-Congo and Austronesian.
In Appendix C, we detail the top 20 most frequently
studied languages in our sample.
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Figure 3: Criteria distribution used in the top-20 lan-
guages to categorize languages.

The graph in Figure 3 shows the distributions of
the various criteria used for categorizing a language
as ‘low-resource’ in the top 20 languages studied.
While data is the most commonly used criterion
across many papers and languages, other factors,
such as lack of computational tools, limited number
of native speakers, etc, are also used (see Section
3). Even with papers that use data as a criterion,
we observe different qualifications for what type
of data a language may lack to qualify as a ‘low-
resource’ language. In Figure 6, we further break
down the criterion of data. We observe that lack of
labeled data is the most commonly used criterion
in our sample at 39.8%. We also observe the lack
of digitized text (1.7%) and online-available data
(6.9%) as criteria to connote a language as low-
resource.

5 Why does it matter?

In the previous section, we describe four overar-
ching aspects that determine if a language is ‘low-
resource’: socio-political aspects, human and digi-
tal resources, artifacts, and agency of community
members. In Figure 4, we present language profiles
for 6 languages. We choose the six languages from
the bottom three classes in Joshi et al. (2020): ‘The
Left Behinds’ with limited labeled and unlabeled
data, ‘The Scraping-Bys’ with some amount of un-
labeled data, and ‘The Hopefuls’ with some labeled
data. We use literature about these languages and
their communities to demonstrate why it matters
that we are specific in the terminology we use.

Languages in the same class of data availability
might differ in other aspects. From ‘The Left

Behinds’, we present profiles for Numma-guhooni7

and Warlpiri. Numma-guhooni is spoken in Kenya
where the official Federal languages are Kiswahili8

and English. Warlpiri is spoken by the Warlpiri
people of Australia, where the most dominant lan-
guage is English. While both languages fall into the
same class, the number of speakers for Warlpiri is
4 times that of Numma-guhooni. Ethnologue clas-
sifies Warlpiri as a stable language, while Numma-
guhooni is endangered. In terms of digital resource
availability, Ethnologue classifies Numma-guhooni
as still meaning, there is no sign of digital support
for the language, while Warlpiri is labeled emerg-
ing with some digital content available. Warlpiri
also has some NLP tools available, for instance,
KirrKirr is a dictionary visualization tool for the
Warlpiri language (Manning et al., 2001).

From ‘The Scraping-Bys’, we look at Chero-
kee and Kalaallisut. Cherokee, spoken by around
2,000 out of the 300,000 Cherokee people of the
Cherokee Nation in the United States of America,
is labeled as endangered by Ethnologue. On the
other hand, Kalaallisut, which is spoken by about
50,000 people and is the official Federal language
of Greenland, is labeled as institutional by Eth-
noluge. However, Cherokee has a higher ranking
for digital language support, dubbed vital while
Kalaallisut is ascending.

For ‘The Hopefuls’, we look at isiZulu and
Konkani. We observe the two languages are some-
what similar in terms of human and digital re-
sources, with both being institutional in vitality
and vital in digital access. However, we see the
languages vary by their number of speakers with
isiZulu having about 6 times the number of speak-
ers as Konkani. Additionally, isiZulu is the most
common language spoken as a first language in
South Africa, while Konkani has shown a decline
in number of speakers, with speakers outside of
its primary province declaring other, dominant lan-
guages as their native language (Rajan et al., 2020).
Both languages have NLP tools available for tasks
like machine translation and speech processing as
well as pre-processing tools.

Overall, we observe that within a given class
based on data availability, there are drastic differ-
ences in what other resources are available for a

7While this language is refereed to with another name in
the literature, there is evidence that the word is derogatory and
so we exclusively use the name native speakers use (Stiles,
1982).

8also known as Swahili in English speaking contexts.
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Figure 4: Language profiles for six languages across three classes based on data availability. The first row in
each profile deals with socio-political issues, the second row resources, and the last row with artifacts (see Figure 1).
We observe drastic differences between languages of the same class. See Appendix A for details on the labels.

language. We observe that the variance decreases
as we move up the classes, which can partially be
explained by the stark 88.38% of the world’s lan-
guages belonging to ‘The Left-Behinds’, compared
to 5.49% in ‘The Scraping-Bys’ and 0.36% in ‘The
Hopefuls’ (Joshi et al., 2020). However, as we
demonstrate, the realities of each of the languages
within each class are very different.

The different aspects that determine ‘low-
resourcedness’ have causal links. The four as-
pects we discuss in Section 3 interact with each
other in constraining what is available. Socio-
political issues constrain what Resources are avail-
able for a given language, which in turn impact
what Artifacts are produced for that language. For
instance, while there are no official languages in
the USA or Australia, federal policies in the US
up to 1948 forced Indigenous children to assimi-
late into Western culture, punishing students for
speaking their languages (Wakeman, 2021). Simi-
larly, colonization destroyed several languages of
Indigenous populations in Australia (Laura Stocker
and Rooney, 2016). As a result, both Cherokee and
Warlpiri, along with the numerous other Indigenous
languages of the Americas, Australia, and Canada
are endangered, i.e lack human resources.

Assimilation is not limited to the languages of

the colonizer. Post-independence from colonial
rule of Britain, Kenya adopted the educational
and language policies of Britain, with English de-
clared the official language in formal sectors and
Kiswahili the national language of the country. As
a result, the majority of data available in digital
and electronic media as well as in public settings
are in English or Kiswahili (Barasa, 2023). Hence,
speakers of languages like Numma-guhooni are
largely assimilated with larger ethnic groups and
Kiswahili is predominantly spoken and learned
by the new generation (Tosco, 1992). While in
2010, the Kenya constitution shifted towards cen-
tering the preservation of native languages, there
were not enough funds allocated to carry this
through (Barasa, 2023). Though at a different scale,
this is similar to the case of Konkani, which is in
‘The Hopefuls’ class, losing native speakers to more
dominant local languages (Rajan et al., 2020).

Constraints of human and digital resources re-
strict the creation of artifacts for languages. As
discussed in Section 3.2, the minimal digital pres-
ence results in limited available data, especially at
the scale needed for training SOTA models. Links
among the different aspects are not necessarily lin-
ear; socio-political issues also directly constrain
what languages are taught in schools, impacting
linguistic knowledge produced for a language. Ad-
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Aspect Sub-
Division

Terminology Definition

Socio-
political

Economic low-affluence (Hammarström,
2009)

based on Gross Language Product (GLP) (product of the
number of native speakers in any country and the country’s
per capita Gross National Product.)

Political politically-disadvantaged languages not used in mainstream media and governmen-
tal communications due to political forces

Resources Native
Speakers*

extinct; critically endangered;
severely endangered; defini-
tively endangered; unsafe; safe
(Brenzinger et al., 2003)

6 point scale based on number of speakers of the language

Online
Presence

Low-Web Resource(Patil et al.,
2022)

limited online corpus or web presence

Language
experts

expert-constrained limited number of linguistic experts or researchers

Artifacts Linguistic
Knowledge∗

oral languages; non-native or-
thography; native orthography

based on the availability and type of orthography a lan-
guage has.

undocumented; inadequate;
fragmentory; fair; good; su-
perlative (Brenzinger et al.,
2003)

6 point scale based on the amount and quality of documen-
tation available for a language.

Data* Class 0; Class 1; Class 2; Class
3; Class 4; Class 5 (Joshi et al.,
2020)

6 classes based on the availability of labeled and unlabeled
data

Technology* Still; Emerging; Ascending; Vi-
tal; Thriving (Simons et al.,
2022)

5-level classification based on digital language support
available in a given language.

Table 2: Suggestions for explicit terminology addressing three aspects we identified through our analysis. We
provide citations for terminology taken from prior work. (*) indicate the terminology are part of a scale and all
labels in the scale are listed.

ditionally, prior work demonstrates the Western-
dominated researcher landscape in NLP and how
it ties to coloniality (Held et al., 2023). With the
limited number of speakers for a given language,
the number of NLP researchers who are also na-
tive speakers of the language is largely constrained,
which is further confounded by the limited financial
resources available to researchers from such com-
munities. As a result, having agency in what tools
are designed for a language becomes challenging.

Knowing which aspect a language is lacking
in allows for targeted interventions. One of
the main factors that determine the survival of a
language is inter-generational transmission (Bren-
zinger et al., 2003). For instance, while Cherokee
and Kalaallisut are both in the same class, Chero-
kee is endangered while Kalaallisut is institutional.
Hence, interventions–both in socio-political and ar-
tifact aspects–are best targeted toward reviving and
preserving the Cherokee language. On the other
hand, digital access for Kalaalisut is ascending,
hence there might be more efforts towards increas-
ing the availability of digital data. Since Kalaallisut
is institutional, financial resources for preserving
and growing the language are available at a federal
level. Additionally, it is used as the language of

instruction in the education system of the country,
aiding in the inter-generational transfer of the lan-
guage. Across classes, we observe similarities in
Numma-guhooni and Konkani, of native speakers
assimilating to other dominant but local languages.
Hence, interventions for these languages may be
more effective in language learning apps that focus
on learning the less-dominant language and trans-
lation systems between dominant local languages
and the target language.

Communities are actively resisting exploita-
tion and sustaining their languages; our tools
should support them. Despite the several layers of
constraints, it is important to note that communities
are not in idle state of deficit. Across classes, we
observe a similarity between Warlpiri and Chero-
kee, in that there are community-based initiatives to
preserve and grow the languages (e.g. the Warlpiri
Education and Training Trust (WETT)9 and the
Cherokee Immersion School10). By centering com-
munity values in our designs and research, we can
collectively forge new paths for each language, con-
ditioned on its unique circumstances.

9https://www.clc.org.au/wett/
10https://www.cwyschools.org/
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6 What can we do?

Using specific terminology or having explicit
definitions allows us to measure progress more
precisely. The specific resource a language is
deemed ‘low’ in directly impacts what interven-
tions are effected towards it. For instance, pro-
grams aimed at increasing language representation
in Human Language Technologies (HLTs) have sev-
eral selection criteria (Cieri et al., 2016). Such pro-
grams use different terminologies and definitions,
where “each term encodes differences in traditions,
goals, and approaches” (Simpson et al., 2008). As
a result, what languages are included and served by
such programs differ, even if languages have the
same amount of data.

While Cherokee is tagged as having vital dig-
ital resources, it is also an endangered language.
Collecting more data in the language from the lim-
ited number of speakers or including it in Large
Language Models may not exactly alleviate its low-
resourcedness. We argue for more explicit dec-
larations of which aspects of resources are being
referred to when the term low-resource is used. In
Table 2, we give recommendations for terminolo-
gies based on prior work and our findings. There
are also several taxonomies and classes based on
data (e.g Joshi et al., 2020), language vitality (e.g
Brenzinger et al., 2003), and digital support (e.g
Simons et al., 2022).

Recommendations for stakeholders: Based on
our findings, we give recommendations for differ-
ent stakeholders involved in the effort to increase
language representation in NLP research. Individ-
ual researchers can (1) engage with community
members and speakers of the languages they work
on, (2) articulate how their work is limited in re-
lation to the characteristics of the languages they
work on, and (3) be explicit about what criteria
they use to denote a language as ‘low-resource.’
Community members can also form grassroots or-
ganizations such as Masakhane11, which allow re-
searchers who speak diverse languages to build lan-
guage technologies together and learn from each
other’s experiences. Additionally, such organiza-
tions can prioritize engaging with native speakers
who may not be in the NLP research field, allow-
ing for diverse perspectives when deciding what
tools should be built for what language. Work-

11https://www.masakhane.io/

shops such as AmericasNLP12 and AfricaNLP13

continue to serve as spaces for fostering research
and collaboration for languages that are mostly ig-
nored in mainstream NLP research. However, main
(*)CL conferences can increase the representation
of these languages by (1) offering alternative tracks
for papers, (2) easing the cost of attendance and
registration for researchers from these communi-
ties, and (3) diversifying conference venues. Aca-
demic institutions can aid researchers who speak
these languages by promoting interdisciplinary col-
laboration and partner with local and international
organizations to document and preserve marginal-
ized languages. Industry players interested in lan-
guage diversity of their products can play a role
by offering financial and technical support; for
example, subsidizing resources for communities
working on low-resource languages. Companies
could also prioritize making their products acces-
sible to the communities (e.g. Üstün et al., 2024).
Government bodies can play a role in preserving
languages through policies, funding, and digital
inclusion. Funding agencies can support language
diversity and enforce building technologies that are
relevant to the specific linguistic community by
setting research priorities and prioritizing grants to
underrepresented researchers.

7 Conclusion

In this paper, we present 4 aspects of ‘resourced-
ness’ used to classify a language as ‘low-resource’
based on a qualitative survey of 150 papers. Based
on our analysis, we give recommendations for ter-
minology that explicitly calls out which resource
we are referring to when we say a language is ‘low-
resource.’ A language may lack in several aspects,
making the use of individual terminology difficult–
e.g. in multilingual settings. However, the diffi-
culty does not absolve us from the responsibility
to provide detailed documentation. At the very
least, clear statements on what exactly is meant by
low-resource when referring to a language would
allow us to more clearly articulate the problems
a particular technology resolves for a particular
language.

8 Limitations

As a qualitative study, our paper does not give the
definitions of the term from all the papers in all the

12https://github.com/AmericasNLP
13https://africanlp.masakhane.io/
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venues we searched. We also do not make quan-
titative claims. Instead, we focus on a nuanced
analysis of how our sample papers describe the
phenomenon and provide direct quotes from pa-
pers we analyzed as evidence. While it was not
practical for us to conduct qualitative analysis on
more than the papers in our sample, future work
could use automated methods and conduct a quan-
titative analysis. Similarly, our analysis of what
languages are studied is limited to the papers in
our sample. This could also be supplemented with
automated extraction at scale. Additionally, while
we could not perform a longitudinal analysis with
our sample size of 150 papers, future work could
explore such a study to understand how the use of
the term ‘low-resource’ evolved over time.
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A Labels for Classifying Languages

In this section, we provide the descriptions for la-
bels used for language vitality and digital access
used in Figure 4.

A.1 Vitality
In this work, we refer to the scale from
Ethnologue14 which is derived from the Ex-
panded Graded Intergenerational Disruption Scale
(EGIDS) (Anderbeck, 2015).

Institutional — The language has been devel-
oped to the point that it is used and sustained by
institutions beyond the home and community.

Stable — The language is not being sustained
by formal institutions, but it is still the norm in the
home and community that all children learn and
use the language.

Endangered — It is no longer the norm that chil-
dren learn and use this language.

Extinct - The language is no longer used, and
no one retains a sense of ethnic identity associated
with the language.

A.2 Digital Access
This taxonomy is from Simons et al. (2022) and is
also used by Ethnologue.

Still — this language shows no signs of digital
support

Emerging — the language has some content in
digital form and/or encoding tools

Ascending — the language has some spell check-
ing or localized tools or machine translation as well

Vital — the language is supported by multiple
tools in all of the above categories and as well as
some speech processing

Thriving — the language has all of the above
plus virtual assistants

B Criteria used in Studying Languages

Figure 5 shows the distributions of the various
criteria used for categorizing a language as ‘low-
resource’ in the studied languages. Figure 6 depicts

14https://www.ethnologue.com/
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Figure 5: Distribution of criteria stated by papers in our study to categorize languages as low-resource.

different perspectives used to refer to the lack of a
dataset for a language.

Figure 6: Criteria used in the papers to show lack of
data.

C Most frequently studied languages

Figure 7 shows the top 20 most frequently stud-
ied languages in our sample. We see that Swahili
and Telugu take the lead with 14 papers working
on them. Geographically, we observe that Indian
languages (n = 7) are the most represented in our
sample, with an equal number of languages (n = 7)
from the entire continent of Africa.

D Categories used to define low-resource

Here, we grouped papers according to the criteria
used in the paper to categorize a language as a
low-resource language.

Socio-political [(Maillard et al., 2023; Coto-
Solano, 2022; Pathak et al., 2022)]

Resources

Figure 7: Number of papers per language for the top-20
most studied languages.

Native Speakers [(Pine et al., 2022a; Oliver
et al., 2022; Coto-Solano, 2022; Feldman and Coto-
Solano, 2020; Leong et al., 2022)]

Online Presence [(Bamutura et al., 2020;
Sierra Martínez et al., 2020; Adelani et al., 2022;
Nzeyimana and Niyongabo Rubungo, 2022; Feld-
man and Coto-Solano, 2020; Bustamante et al.,
2020; Patil et al., 2022; Adelani et al., 2022)]

Language experts [(Brixey et al., 2020; Yi-
mam et al., 2020)]

Artifacts

Linguistic Knowledge [(Qasmi et al., 2020;
Coto-Solano, 2022)]

Data [Ferger (2020); Zevallos and Bel
(2023a); Pine et al. (2022a); Fei and Li (2020);
Eskander et al. (2020a); Xia et al. (2021); Goyal
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et al. (2022); Sorokin (2020); Pfeiffer et al. (2020);
Sierra Martínez et al. (2020); Ahuja et al. (2022);
Mehta et al. (2020); Le Ferrand et al. (2022b);
Mukiibi et al. (2022); Chaudhary et al. (2021);
Üstün et al. (2020); Eskander et al. (2020b); Liang
et al. (2022); Pfeiffer et al. (2021); ImaniGooghari
et al. (2022); Dione et al. (2022); Chukwuneke
et al. (2022); Schmidt et al. (2022); Hasan et al.
(2020); Muradoglu and Hulden (2022); Biswas
et al. (2020); Marchisio et al. (2022); Maillard
et al. (2023); Litschko et al. (2020); Coto-Solano
(2022); Gaim et al. (2023); Adebara et al. (2022);
Krishnan and Ragavan (2021); Alabi et al. (2020);
Yimam et al. (2020); Li et al. (2022a); Saunack
et al. (2021); Niyongabo et al. (2020); Ramnath
et al. (2021); Ponti et al. (2021); Adouane et al.
(2020); Reid et al. (2021); Parović et al. (2022);
Minixhofer et al. (2022); Zeng et al. (2023); Pathak
et al. (2022); Botha et al. (2020); Chakrabarty et al.
(2022); Debnath et al. (2021); Sarioglu Kayi et al.
(2020); Alabi et al. (2022); Ko et al. (2021); Liu
and Hulden (2020); Wang et al. (2020); Zhou et al.
(2020); Sharma et al. (2022); Bari et al. (2021);
ImaniGooghari et al. (2023); Yuan et al. (2020);
Gezmu et al. (2022); Qi et al. (2022); Knowles
and Littell (2022); Khayrallah et al. (2020); Mager
et al. (2020); Monsur et al. (2022); Ramachan-
dran and de Melo (2020); Sun and Xiong (2022);
Hangya et al. (2022); Saurav et al. (2020); Ouyang
et al. (2021); Parvez and Chang (2021); Moeller
et al. (2021); Fomicheva et al. (2022); Mueller
et al. (2020); Siddhant et al. (2020); Bartelds et al.
(2023); Daniel et al. (2019); Chen et al. (2022);
Fetahu et al. (2022); Li et al. (2022b,b); Bartelds
and Wieling (2022); Minixhofer et al. (2022); Minh
et al. (2022); Koloski et al. (2022); Coto-Solano
et al. (2022); Yakut Kilic and Pan (2022); Linke
et al. (2022); Langedijk et al. (2022); Muradoglu
and Hulden (2022); Huang et al. (2022); Jundi
et al. (2023); Xu et al. (2023); Li et al. (2023a);
Su et al. (2022); Hua et al. (2023); Li et al. (2023b);
Sun et al. (2022b); Moghe et al. (2023); Bhat et al.
(2023); de Vries et al. (2022); Eder et al. (2021);
Zhang et al. (2019); Fang and Cohn (2017); Xia
et al. (2019); Liu et al. (2023b); Schlichtkrull and
Søgaard (2017); Dingliwal et al. (2021); Ebrahimi
et al. (2023); Röttger et al. (2022); Ghosh et al.
(2023); Ding et al. (2020); Zou et al. (2021); Lux
and Vu (2022); Zheng et al. (2021); Liu et al.
(2023a)]

Technology [(Bamutura et al., 2020; Bya-
mugisha, 2022; Melgarejo et al., 2022; Yimam
et al., 2020; Himoro and Pareja-Lora, 2022; Li
et al., 2022a; Niyongabo et al., 2020; Duggenpudi
et al., 2022; Avram et al., 2022; Lane and Bird,
2021b; Eskander et al., 2020a; Rocha Souza et al.,
2020; Lane and Bird, 2020; de Lhoneux et al., 2022;
ImaniGooghari et al., 2022; Brixey et al., 2020; Ri-
jhwani et al., 2020; Sikasote and Anastasopoulos,
2022; Adouane et al., 2020; Botha et al., 2020;
Moeller et al., 2021; Jin et al., 2020; Dhar et al.,
2022; Pfeiffer et al., 2020; Leong et al., 2022)]
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