Explicit Memory Learning with Expectation Maximization

Zhangyue Yin® Qiushi Sun®

Qinyuan Cheng®

Qipeng Guo®* Zhiyuan Zeng®
Xipeng Qiu®"

Xuanjing Huang®"

©School of Computer Science, Fudan University
“The University of Hong Kong *Shanghai AI Laboratory
{yinzy21,cengzy23,chengqy21}@m. fudan.edu.cn

giushisun@connect.hku.hk

guogipeng@pjlab.org.cn

{xpgiu, xjhuang}@fudan.edu.cn

Abstract

Large Language Models (LLMs) have revo-
lutionized the landscape of natural language
processing, demonstrating remarkable abilities
across various complex tasks. However, their
stateless nature limits the capability to retain
information across interactions, hindering per-
formance in scenarios requiring historical con-
text recall. To mitigate this, current approaches
primarily use explicit memory to allow LLMs
to store useful information, which is accessible,
readable, and interpretable. Nevertheless, ex-
plicit memory lacks the reliable learning mech-
anisms of implicit memory, which can be op-
timized end-to-end. To harness the benefits
of both, we introduce EMQ, a novel frame-
work enhancing explicit memory updates via
the Expectation-Maximization (EM) algorithm.
EM? treats memory as a latent variable, ensur-
ing continual learning and improvement dur-
ing updates. Experimental results on stream-
ing inference tasks demonstrate that EM? out-
performs existing methods without memory
or with static external memory. Our in-depth
analysis highlights that EM? significantly en-
hances performance across various backbones
and memory strategies, providing a robust solu-
tion for advancing LLM memory management
and enabling explicit memory to learn and im-
prove similarly to implicit memory.

1 Introduction

The advent of Large Language Models (LLMs) has
shifted the landscape of machine learning, unveil-
ing unprecedented capabilities for handling com-
plex tasks across diverse domains (Ouyang et al.,
2022; Achiam et al., 2023; Anthropic, 2024; Reid
et al., 2024; Shao et al., 2024; Sun et al., 2024b;
Zhao et al., 2023, inter alia). Despite these ad-
vancements, a fundamental limitation of LLMs
is their statelessness: they do not retain informa-
tion across invocations (Yao, 2024). This restricts

T Corresponding Authors

1. A robot may not injure a
human being or, through
inaction, allow a human
being to come to harm.

2. A robot must obey the
orders given it by human
beings except where such
orders would conflict with
the First Law.

3. A robot must protect its
own existence as long as
such protection does not
conflict with the First or
Second Laws.

Parameters (W

© 0

Explicit Memory Implicit Memory

Figure 1: Comparison between Explicit and Implicit
Memory. Explicit memory is represented through text,
storing information directly accessible and readable. Im-
plicit memory is stored in the form of parameters, which
underlie the model’s learned behaviors and are not di-
rectly interpretable. Deep blue indicates the memory
currently being activated.

their ability to process and utilize previous inter-
actions in a manner akin to human cognitive pro-
cesses (Gabrieli, 1998), thereby limiting their util-
ity in scenarios that require retention and recall
of historical context (Zhang et al., 2024; Lu et al.,
2024; Huang et al., 2023; Durante et al., 2024).
Recent studies have attempted to address this
challenge by incorporating external memory mech-
anisms (Packer et al., 2023; Zhong et al., 2024),
which can be categorized into explicit and implicit
forms (Barco et al., 2006). As illustrated in Fig-
ure 1, explicit memory stores information in a tex-
tual format that is directly accessible and read-
able, such as rules, knowledge, and skills (Gao
and Zhang, 2024; Guo et al., 2024). Implicit
memory, on the other hand, is parametric, facil-
itating learning and updates (Wang et al., 2023a;

16618

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 16618—16635
November 12-16, 2024 ©2024 Association for Computational Linguistics

Ge et al., 2024). While parametric storage allows
for end-to-end learning, it often faces issues with
training stability (Franke et al., 2018), specifica-
tion (Sukhbaatar et al., 2015), and interpretabil-
ity (Zhang et al., 2021). With the increasing ability
of LLMs to directly understand text (Brown et al.,
2020; Wei et al., 2022a), explicit memory is be-
coming the dominant method for memory storage
in LLMs (Madaan et al., 2022).

Updating is a critical feature of memory (Wang
et al., 2024e; Li et al., 2023). Current methods
of updating explicit memory include manual re-
visions (Mei et al., 2024) and self-reflection (Liu
et al., 2023a; Shinn et al., 2023; Praas, 2023). Ge
et al. (2023) conceptualize LLMs as an operating
system (OS) and have developed memory update
mechanisms inspired by OS design. Wang et al.
(2024a) employ LLMs to autonomously summarize
past experiences for enhanced external memory.

It is worth noticing that, LLMs may miss or
make mistakes when internalizing knowledge (Yin
et al., 2023; Wang et al., 2023b; Yao et al., 2023),
and there is no guarantee that newly constructed
memory is superior to its predecessors. In con-
trast, implicit memory, updated through gradi-
ents (Graves et al., 2016; Becattini and Uricchio,
2022), ensures learning during the memory up-
date. Current methods for updating explicit mem-
ory do not guarantee learning and enhancement
during the memory update process, marking a fun-
damental drawback. The primary reason is the non-
differentiability of textual memory, which means
that memory updates lack a clear direction.

To address this, we propose EM?, which treats
memory as a latent variable and update it using the
Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977). EM? extracts relevant past experi-
ences to guide current predictions and ensures that
the memory is continuously optimized, enabling
the model to learn and improve effectively over
time. Experimental results on streaming inference
tasks show that compared to models without exter-
nal/fixed memory, our dynamic memory updating
approach significantly enhances performance.

Our main contributions are as follows:

* We identify that current methods of updating
explicit memory lack direction and do not en-
sure that updated memory is superior to previ-
ous versions.

« We introduce EM?, which updates explicit
memory using the EM algorithm to ensure

continuous learning and enhancement during
the memory update process.

* Experimental results demonstrate that EM?2
significantly improves model performance.

2 Related Work
2.1 Memory Mechanism of LL.Ms

Memory is fundamental to the development of
intelligence (Anderson, 1999). Memory mecha-
nisms in LLMs primarily involve retrieval (Gao
et al., 2024), updating (Li et al., 2023), and utiliza-
tion (Guo et al., 2024) processes. Retrieval aims
to fetch relevant and accurate memories from a
vast store, directly influencing the outcome’s qual-
ity (He et al., 2022; Creswell and Shanahan, 2022).
Updates include incremental, inductive, and com-
pressive approaches. Incremental updates simply
add newly acquired memories without processing
them (Hong et al., 2023; Qian et al., 2023). Induc-
tive updates utilize the LLM’s capability to amal-
gamate and summarize memories, thereby narrow-
ing the retrieval scope (Liu et al., 2023a; Didolkar
et al., 2024). Compressive updates enhance the
efficiency of memory use by condensing texts into
vectors (Chevalier et al., 2023; Ge et al., 2024; Mu
et al., 2024). The utilization of memory relies on
the LLLM’s contextual understanding and learning
capabilities, optimizing model behavior through
the injection of text or parameters (Min et al., 2022;
Liu et al., 2024; Wang et al., 2024d).

For LLMs, memory can be classified as explicit
or implicit (Rovee-Collier et al., 2001; Barco et al.,
2006). Explicit memory, also known as declarative
memory, refers to forms of memory that can be ar-
ticulated (Eichenbaum, 1997). It can be stored
and retrieved in textual form (Sun et al., 2023;
Zhong et al., 2024), offering readability and in-
terpretability (Jiang et al., 2023b; Modarressi et al.,
2024). Explicit memory does not depend on a spe-
cific model and can be utilized by various models
post-generation (Gao and Zhang, 2024; Sun et al.,
2024a). Additionally, humans can participate in
modifying and refining explicit memory, making it
widely applied in LLM memory modules (Wu et al.,
2022). Implicit memory, on the other hand, refers
to forms of memory that cannot be articulated. This
type of memory is stored in parameters and updated
through training (Weston et al., 2015; Anything,
2015; Sukhbaatar et al., 2015). Although explicit
memory can also be updated through model-driven
summarization and induction (Wang et al., 2024a;

16619

Yang et al., 2024), it lacks the clear update targets
characteristic of implicit memory, which ensures
that the updated state is superior to its previous
state.

2.2 Model Inference

The inference methods for LLMs predominantly
encompass zero-shot, few-shot, and chain-of-
thought (Chung et al., 2024). Zero-shot often
requires model fine-tuning to equip LLMs with
the capability to generate task-specific outputs di-
rectly (Raffel et al., 2020; Liu et al., 2021). Brown
et al. (2020) observe that providing models with ex-
ample prompts can significantly enhance their un-
derstanding of specific tasks. Currently, In-Context
Learning (Dong et al., 2022) has emerged as a
fundamental paradigm for addressing tasks using
LLMs (Liu et al., 2023b), effectively leveraging
minimal input to guide model responses (Min et al.,
2022). Wei et al. (2022c) note that guiding mod-
els to generate intermediary reasoning steps will
boost their performance for reasoning. This en-
hanced capability typically emerges only in models
of certain scales, a phenomenon often referred to
as “emergent abilities” (Wei et al., 2022a). Fur-
thermore, recent studies (Wu et al., 2023; Li et al.,
2024; Wang et al., 2024b) find that prompts serve
a dual function: they not only activate the model’s
internal memory but also inject effective external
knowledge and guidance. Additionally, updating
and infusing memory in prompts offers benefits
such as interpretability and flexibility (Chang et al.,
2024), further enhancing the utility of LLMs in
complex inference scenarios (Sahoo et al., 2024).

3 Preliminary and Task Definition

3.1 Explicit Memory Learning

Memory in Al are designed to mimic the hu-
man ability to remember past experiences and uti-
lize this accumulated knowledge to aid in future
tasks (Weston et al., 2015). In our model, explicit
memory learning is implemented via a memory
module M that stores strategies 7 learned over
time, which is formally represented as:

My ={71,72,...,TK }, (1)
where M, represents the state of the memory mod-
ule at time ¢, K is the memory size, and each 7;
is a tactic derived from past experiences. The up-
dating of this memory is governed by a learning

function L, which adjusts the memory based on
new experiences (X,Y):

Mt+1 - L(Mta (Xta n)) (2)

Here, (X, Y;) represents the input-output pair at
time ¢, and the function L determines how the mem-
ory should be updated, possibly by adding new
strategies, modifying existing ones, or removing
outdated strategies based on their relevance and
effectiveness in the new context.

3.2 Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm is
a powerful statistical tool used for parameter esti-
mation in models with latent variables. It operates
in two main steps: the Expectation (E) step and
the Maximization (M) step. During the E step, the
algorithm estimates the latent variables based on
the current estimate of the parameters:

Q10 = E,_,zx.00)logp(X, Z10)], (3)

where 0() denotes the parameters at iteration ¢,
X 1s the observed data, Z are the latent variables,
and p(Z|X,0W) is the probability of the latent
variables given the observed data and current pa-
rameters.

The M step then updates the parameters to max-
imize the expected log-likelihood found in the E
step:

o4+ = arg max Q(0]6™). 4)

This iterative process continues until convergence,
making it suitable for complex models where direct
likelihood maximization is infeasible (Dempster
etal., 1977). The EM algorithm is particularly ef-
fective in scenarios where the model parameters
include both observed and unobserved (latent) com-
ponents. By alternating between estimating the
hidden components given the parameters and then
optimizing the parameters given the hidden compo-
nents, EM facilitates a more accurate estimation of
model parameters.

3.3 Task Definition

Given the following stream of data D =
{(Xl, Yl), (XQ, Yg), ceey (Xn, Yn)}’ where Xt
represents the observed data at time ¢ and Y; de-
notes the corresponding true label, the objective
is to construct effective memory M, that provides
accurate predictions f/}

16620

Our primary goal is to minimize the discrep-
ancy between the predicted labels Y; and the actual
labels Y;. This is achieved by enhancing the predic-
tive accuracy of the model under the guidance of
the evolving memory M;. The effectiveness of M,
is crucial as it directly influences the model’s ability
to adapt to new data and make accurate predictions.
Therefore, the challenge lies in designing a learn-
ing function L that not only updates the memory
efficiently but also ensures that these updates result
in the accurate anticipation of future samples based
on past and present data insights.

4 Methodology

4.1 Memory based Inference

At time ¢, the model receives an input X;. In a zero-
shot scenario, without any guidance from memory,
the model & generates the predicted label Y, in an
autoregressive manner as follows:

M
P | X)) =[] Pe@i | Xe,9<i) 9

=1

To leverage past experiences stored in the mem-
ory, we enhance model’s capability by introducing
a memory-based guidance. Given the current in-
put X;, we extract the most relevant information
from the current memory state M;. This extraction
process results in a memory subset m;, defined as
the set of elements in M; that are most relevant
to X;. The relevance can be quantified based on
similarity measures, heuristic rules, or learned rele-
vance functions. The resulting m; can be formally
represented as:

my = select(My, Xy) (6)

where select is a function that retrieves the most
relevant memory elements based on Xj.

With m; as an additional context, the model then
generates Y, using both m; and X; to guide the
prediction:

2]

Pg(f/;ﬁ \ mtth) = Hpg(@z‘ | mt7Xt;Q<z‘) @)
i=1

This memory-augmented inference mechanism
allows the model to effectively utilize historical
data, enhancing its predictive accuracy and adapt-
ability in dynamic environments.

4.2 Memory Module Construction

The Memory Module M is constructed by accu-
mulating pairs (X;,Y;) over time. Initially, the
memory of the model is empty, representing a state
of minimal prior knowledge. As the model pro-
cesses data and generates predictions, it selectively
updates this memory based on the quality and cer-
tainty of the information.

To quantify the certainty of each predicted out-
put and determine its eligibility for memory in-
clusion, we define an uncertainty threshold €. A
prediction Y; is considered high-quality if its nor-
malized entropy, which measures the average un-
certainty across all predicted components, is below
this threshold. The entropy H (Y;) for each predic-
tion is calculated as follows:

kd
. 1 N -
H(Y;) = _@ E log Pe (7 | Xi,9<j) <€
il j=1

®)

When the above condition is satisfied, indicating
that the generated prediction Y; is of sufficiently
high certainty and quality, it is integrated into the
memory using the learning function L, as discussed
in Section 3.1.

4.3 Memory Update through Learning
Function

We employ the EM algorithm to design the learning
function L. As depicted in Figure 2 under (2) and
D, if the generated Yz satisfies condition 8, it is fed
along with the current memory state M; into the
learning function L. The update equation is:

M1 = L(My, (X1, Y2)) 9

We treat strategies 7 as latent variables Z and M; as
the parameter 6 in Eq. 3, transforming the learning
process into an EM learning framework.

4.3.1 Construction of Representative
Validation Set

To evaluate the updates efficiently, we construct
a representative validation set V' from the dataset
D not yet included in the memory M;. We select
cluster centers from D \ M, to form V, reducing re-
dundancy and improving the efficiency of memory
updates. The selection can be represented by:

Vi = centers({(X1, Y1), ..., (Xy, Y)}\ M)
(10)

16621

M-step: Determine whether to update memory
based on predicted performance

ow V0 o®

et = i | .
S eom@

@

s X s, Memory Informed Prediction
Evaluation on the {'b. o g@%
Q) representative N Z7apaN - P(Y, |Xy; M)
validation set ; = Ep(rx,; M)P(o Xy, T)

Memory (s) &) N
E-step: Enhance Prediction based
on the new Memory
f------ Inference based on M ------ 4= Update M based on new observed data (X;,Y;) ------------- {

Figure 2: Overview of EM? for memory-guided prediction in streaming data. At each timestep ¢, the model receives
an input X;. (D utilizes the memory M, to select relevant demonstrations that guide the generation of the prediction
Y;. @ and @) depict the integration of the newly generated Y; and the current memory M, into the memory updating

process, ensuring that the memory evolves with the latest data insights and contributes to future predictions.

4.3.2 E-step: Inference Procedure

Let V; = {(X,,Y,)}. Based on Equation 3, the
prediction for Y, given X, and the memory M is
calculated as:

P(Yy | Xp; M) =) P(Y,, 7 X0; M)
=Y P(Yy| Xy, 7)P(7|Xy; M)
=Erp(rx,inn [P (Yo Xo, 7)]

an
4.3.3 M-step:

The memory is updated based on the maximization
step defined as:

Learning Procedure

[Vl
arg max Z P(Yi|Xi;m), (12)
mCMtUF(XtJA/t) i=1

Mg =

where I represents a function extracting knowledge
from (X¢, Y;) to generate 74, which can be formally
represented as:

7 =T(X,, V) (13)
This step ensures that the updated memory My
performs better on V; than the previous state My,

effectively capturing the beneficial strategies for
future predictions.

S Experiment

5.1 Evaluation Datasets

To assess the efficacy of our approach, we evaluate
it across three distinct types of tasks: word math
problems, commonsense question answering (QA),
and symbolic analysis. We utilize the following
datasets for these evaluations:

e Word Math Problem: GSM8K (Cobbe et al.,
2021), MultiArith (Roy and Roth, 2015),
SingleEq (Koncel-Kedziorski et al., 2016),
AddSub (Hosseini et al., 2014), SVAMP (Pa-
tel et al., 2021), AQUA (Ling et al., 2017) and
MATH (Hendrycks et al., 2021).

* Commonsense QA: StrategyQA (Geva et al.,
2021), CommonsenseQA (CSQA; Talmor
et al., 2019), BoolQ (Clark et al., 2019),
the AI2 Reasoning Challenge (ARC-c; Clark
et al., 2018).

* Symbolic Understanding: Date Understand-
ing, Penguins in a Table, Colored Objects,

and Object Counting sourced from Big-
Bench (Suzgun et al., 2023).

For a more detailed description of the datasets,
please refer to Appendix A.
5.2 Experiment Settings

Implementation Details. The inference process
of the model not only demonstrates its understand-

16622

GSM8K MultiArith SingleEq AddSub SVAMP AQuA MATH Average
Single Inference
7S5-CoT 76.80 94.83 89.96 84.30 81.45 40.55 29.02 77.98
CoT 79.61 96.50 92.32 85.31 82.76 42.32 - 79.80
ComplexCoT 78.01 96.67 91.92 84.81 81.48 4251 29.50 79.23
EM? 82.63 97.77 92.71 86.32 83.91 4527 30.12 81.43
EM?2* 83.09 97.83 92.71 87.59 84.19 4645 30.22 81.98
Multiple Inference
ZS-CoT 84.98 97.50 92.71 88.61 87.18 4724 3222 83.03
CoT 85.59 98.00 94.29 91.13 91.76 51.57 - 85.39
ComplexCoT 85.29 98.16 93.70 89.87 89.62 50.78 3246 84.57
EM? 86.35 98.83 95.86 93.41 92.51 53.14 33.82 86.68
EM?2* 86.43 98.83 95.66 94.43 92.55 53.93 33.96 86.97

Table 1: Results on Math Word Problems (Accuracy in %). The best outcomes are emphasized in bold. Average
represents the average performance across all datasets, excluding MATH. EM? denotes initialization using ZS-CoT,

while EM?* indicates initialization with CoT demonstrations, highlighted with a

background. To ensure a

fair comparison, the LLaMA-3-8B model (Dubey et al., 2024) is used as the backbone across all methods.

[17S-CoT FZACoT [EWIEM?2 ESJEM?"

90
—_ *T
g 7
> 80 o
O
o
S
o070
<

60 0 - i 0

CSQA StrategyQA BoolQ ARC

(a) Commonsense QA

[17S-CoT ENEM?"

[EM?

ZA4 CoT
100

(<}
o

Z%

Accuracy (%)
3

~
o

[}
o

Date Penguin Colored Obj. Obj. Count

(b) Symbolic Understanding

Figure 3: Performance comparison on (a) commonsense question answering and (b) symbolic understanding tasks.
The charts illustrate that EM? demonstrates a distinct advantage over both no and fixed-memory mechanisms.

ing and analysis of problems but often encapsulates
latent knowledge (Buehner et al., 2005). There-
fore, we store the model’s reasoning process along
with the problem as the model memory. In the
main experiments, memory is vectorized using
text-embedding-3-large, and relevancy is cal-
culated using cosine distance as specified in Eq. 6.
To ensure fair comparisons, we limit the selection
to a maximum of 8 examples. These vectors are
also employed to determine the clustering centers
as outlined in Eq. 10. For more details and ablation
studies, see Appendix B and C.

Baselines. To validate the efficacy of our ap-
proach, we compare it against three baseline meth-
ods representing different levels of memory integra-
tion: models without memory, with fixed memory,
and with retrieval-based memory.

* No Memory: The Zero-shot CoT (ZS-CoT;
Kojima et al., 2022) utilizes the prompt “Let’s
think step by step” to activate the model’s
internal reasoning capabilities without relying

on external memory aids.

* Fixed Memory: The Chain-of-Thought (CoT;
Wei et al., 2022b) employs fixed prompts to
guide the model through a reasoning process.
ComplexCoT (Fu et al., 2023) extends this by
using complex prompts that guide the model
to generate more detailed reasoning processes.

* Retrieval Memory: The Memory-of-Thought
(MoT; Li and Qiu, 2023) incorporates a two-
stage memory retrieval process, which in-
cludes coarse-grained semantic retrieval fol-
lowed by fine-grained model filtering to select
relevant memories. AutoCoT (Zhang et al.,
2023) selects examples based on relevance
and diversity metrics tailored to the query.

In contrast to the main experiment where memory
updates are conducted using test samples, MoT and
AutoCoT require pre-inference on training data. To
ensure a fair comparison, we align the settings with
these methods to in Section 5.4.

16623

[1ZS ZzCoT Complex-CoT [EXIEM?
100

[1ZS ZZCoT A Complex-CoT KNIEM?

100

90

80

70

Accuracy (%)

60

50

LLaMA-3-88B Mistral-7B _Qwen-7B LLaMA-3-70B Mistral-7Bx8

(b) CSQA

Figure 4: Performance comparison of different memory mechanisms across various LLMs.

- N
90 7=
= -
S g0
>
g 70
—
3
9 0
<t
50
40" [aMA-3:8B Mistra-78 Qwen-7B LLaMA-3-70B Mistral-7Bx8
(a) GSM8K
50 [J1EM Algorithm £ZARandom EEEFIFO
&\i40
>
O 30
E 20
5
910
<

=)

Figure 5: Performance of different memory updating
mechanisms on the MATH dataset.

Backbones. In the main experiment, we employ
LLaMA-3-8B (Dubey et al., 2024). For analysis,
we extend our investigations to include more LLMs,
including LLaMA-3-70B (Dubey et al., 2024),
Mistral-7B (Jiang et al., 2023a), Mixtral (Jiang
et al., 2024a), and Qwen-2 (Bai et al., 2023).

5.3 Main Results

Word Math Problem. Table 1 presents the re-
sults of math word problems. Compared to meth-
ods with no memory or fixed memory, our memory
learning approach exhibits significant advantages.
Notably, on the GSMS8K dataset, EM? outperforms
the ZS-CoT by 5.83% and CoT by 3.02%. This
improvement is attributed to the dynamic mem-
ory updating mechanism of EM?. We utilize two
initialization methods: ZS-CoT, where the initial
memory is empty, and CoT, which provides eight
high-quality demonstrations at initialization. While
the CoT initialization ensures better initial perfor-
mance, the efficacy of both approaches converges
as the memory accumulates. For instance, on the
SingleEq dataset, results from both initialization
methods are identical. Further, we analyze multiple
inference scenario (Wang et al., 2023c) and observe
that EM? retains a clear advantage. Moreover, as
more memories are integrated, the performance gap

[JEM? [ZAMoT =S AutoCoT

N W s v
o o o o

Accuracy (%)

Figure 6: Performance comparison of retrieval-based
memory methods on the MATH dataset.

between the two initialization methods narrows.

Commonsense QA and Symbolic. The experi-
mental results for commonsense QA and symbolic
understanding tasks are shown in Figure 3. We
observe that EM? effectively enhances model per-
formance on both types of tasks. Notably, EM?
demonstrates a more pronounced advantage in chal-
lenging tasks, such as those involving complex,
non-factoid information in the BoolQ dataset, and
tasks requiring implicit multi-step reasoning in the
StrategyQA dataset. This improvement can be at-
tributed to EM?’s memory updating and retrieval
mechanisms, which ensure the selection of high-
quality and relevant demonstrations.

5.4 Analysis and Discussion

Performance on Various Models. The perfor-
mance of EM? across a range of models is ana-
lyzed in Figure 4, focusing on two representative
datasets: GSMS8K and CSQA. We observe that
EM? consistently delivers significant performance
enhancements across different models. Notably,
models with greater computational capabilities ben-
efit more substantially from the EM? approach. For
instance, despite having a similar number of param-
eters, Qwen-7B exhibits a greater improvement
than Mistral-7B. Moreover, EM? proves to be ver-

16624

——Accuracy Trend CoT Accuracy - EM? Accuracy

D
[oe]

H
(&)

N
N

Accuracy (%)

SN
N

0 20 40 60 80 100
Percentage of LLaMA-3-70B Memory Used (%)

(a) 8B model accesses 70B model’s memory

——Accuracy Trend CoT Accuracy - EM? Accuracy

~
o

(<))
(€]

Accuracy (%)

[e)]
[&)]

0 20 40 60 80 100
Percentage of LLaMA-3-8B Memory Used (%)

(b) 70B model accesses 8B model’s memory

Figure 7: Impact of memory swapping on model performance. The horizontal axis represents the proportion of
memory injected. The horizontal lines indicate the baseline accuracies for models with fixed memory and EM?

initialized with ZS-CoT.

Memory Size
84 2
4 2

= 8 EM2 EM
R 16 EM?
782
g 2
o EM
—
080 c
] oT
<

78 ComplexCoT

280 300 320 340 360 380
Running Time (minutes)

(a) GSM8K

85

Memory Size
2
2
~84 N Em? £
) 8
> 16
> EM?
% 83 EM?
5 CoT
]
v]
<82
ComplexCoT

81

260 280 300 320 340 360
Running Time (minutes)

(b) SVMAP

Figure 8: Comparison of EM? with varying memory sizes and fixed memory methods in terms of runtime and
accuracy. The horizontal axis represents the runtime in minutes, the vertical axis shows accuracy, and the size of the

points indicates the size of the memory.

satile, not only enhancing the performance of dense
models but also boosting the efficacy of Mixture of
Experts (MoE) models like Mixtral. This adaptabil-
ity underscores EM?’s effectiveness in leveraging
complex memory dynamics across different archi-
tectural frameworks.

Analysis of Memory Updating Mechanism.
The impact of different memory updating strategies
on accuracy is analyzed in Figure 5. We experi-
mented with replacing the learning function in Sec-
tion 4.3 with two simpler updating strategies: ran-
dom selection and First-In-First-Out (FIFO) (Ma-
nurung, 2019). Results on the MATH dataset,
particularly in the precalculus subset, show that
these changes significantly reduce model perfor-
mance. The primary reason for this decline can
be attributed to the inherent limitations of Random
and FIFO strategies, which rely on randomness and
sample order, respectively, and cannot guarantee
the effectiveness of memory updates. This analysis
highlights the efficacy of the EM? approach, which
employs the EM algorithm to ensure gradual and
effective optimization of memory.

Comparison of Memory Retrieval Method. In
Figure 6, we compare the EM? with two memory
retrieval methods. Both MoT and AutoCoT require
pre-inference on the training dataset to gather ex-
amples for retrieval. To ensure a fair comparison,
we incorporate training samples into EM?, first
performing memory updates and constructing a
representative validation set on the training dataset,
before introducing the test set for accuracy calcu-
lations. Results on the MATH dataset demonstrate
that EM? achieves superior performance compared
to traditional memory retrieval methods. Despite
having a narrower search scope compared to the
broader retrieval range of MoT and AutoCoT, the
EM?’s updating strategy ensures the retention of
high-quality memories. Moreover, continuous up-
dates maintain alignment between the memory dis-
tribution and the test distribution, thereby resulting
in enhanced performance.

Analysis of Memory Sharing. The memory con-
structed by EM? is model-agnostic, enabling the
transfer and sharing of memories between models.
In Figure 7, we explore the effects of exchanging

16625

——GSM8K SVAMP

84

0]
w

Accuracy (%)

82

6 8 10 12
Epsilon Value

Figure 9: Impact of varying the threshold € on model
performance.

memories between LLaMA-3-8B and LLaMA-3-
70B. Each model first performs inference on the
training dataset, after which their memories are
swapped. As shown in Figure 7a, there is a gradual
improvement in the performance of the 8B model
as the proportion of memory from the 70B model
increases. This indicates that smaller models can
benefit from high-quality memories sourced from
larger models. Conversely, Figure 7b reveals that
the performance of the 70B model remains unaf-
fected by the memory from the 8B model, as lower-
quality memories do not enter our memory module.

Analysis of Memory Size. In Figure 8, we ana-
lyze the impact of memory size on accuracy and
running time. We observe that on the GSM8K
and SVAMP datasets, when the number of demon-
strations in memory m; is reduced to two, the
running time becomes comparable to the method
with CoT (Wei et al., 2022¢). Thanks to the effec-
tive memory updating strategy of EM?, the perfor-
mance remains significantly superior to the CoT
method even with the reduced number of demon-
strations. The ComplexCoT method (Fu et al.,
2023), which requires multi-step detailed deriva-
tions, demands more reasoning time. We note that
the running times of ComplexCoT and EM? with
a memory size of eight are comparable, yet EM?
significantly outperforms ComplexCoT in terms of
accuracy. The additional computational time for
EM? is attributed to the M-step in Section 4.3.3,
whereas the memory update does not involve costly
decoding processes, thus not incurring significant
overhead.

Analysis of Threshold e. In Figure 9, we an-
alyze the impact of variations in the threshold e
from Eq. 8 on model performance. The results
on datasets such as GSM8K and SVAMP indicate
that a lower threshold allows low-quality informa-
tion to enter the memory, which in turn degrades

——GSM8K SVAMP

84

Accuracy (%)
(0]
w

82

2 4 6 8 10
Number of Clusters

Figure 10: Impact of varying the number of clusters on
model performance.

the model’s performance. Conversely, setting the
threshold too high significantly reduces the amount
of information entering the memory, diminishing
the diversity of the stored data. Therefore, setting e
to 9 offers an optimal balance between high-quality
information and diversity within the memory.

Analysis of Number of Clusters. In Figure 10,
we evaluate the impact of different cluster counts
on model performance. The results on the GSM8K
and SVAMP datasets show that a smaller number of
clusters reduces the diversity of samples in the rep-
resentative validation set, which in turn can lower
model performance. Initially, when there are fewer
samples available, it is challenging to form a mean-
ingful number of clusters. Therefore, setting the
number of clusters to eight is found to be appropri-
ate for achieving a good balance between clustering
quality and the meaningful segmentation of data.

6 Conclusion

In this paper, we analyze the advantages of ex-
plicit memory over implicit memory and highlight
a critical limitation of the former: its inability to
ensure the effectiveness of updates as reliably as im-
plicit memory. To address this, we introduce EM?,
which treats memory as a latent variable and itera-
tively updates it using the EM algorithm, thereby
ensuring that updated memories are superior to
their predecessors. Experiments show that EM?
offers significant advantages over models without
memory and those with fixed memory. Importantly,
the performance of EM? scales with the model’s
capabilities, suggesting that more powerful models
can leverage EM? to achieve even greater benefits.
Additionally, EM?is model-agnostic, which allows
for the transfer and sharing of memory across dif-
ferent models. Analyses reveal that weaker LLMs
can significantly benefit from high-quality memo-
ries derived from larger counterparts.

16626

Limitations

Generalization to a Broader Range of Tasks.
While we have analyzed EM? across three distinct
types of tasks, there is potential to extend this ap-
proach to a wider array of generative tasks (Gozalo-
Brizuela and Garrido-Merchan, 2023), such as code
generation (Jiang et al., 2024b), machine transla-
tion (Ganesh et al., 2023), and various agent-based
tasks (Wang et al., 2024c). Additionally, the form
of memory could also be diversified to include
structured data, triplets, user historical informa-
tion, and more. Our current scope has not yet ex-
plored these domains, and we see the exploration of
EM?’s potential in more diverse tasks as an avenue
for future work.

Application to Commercial Models. EM? re-
quires access to internal model information, such as
perplexity, to assess the effectiveness of new mem-
ories. However, for commercial models that only
provide text outputs, such as OpenAI’s GPT mod-
els (Achiam et al., 2023) or Anthropic’s Claude
models (Anthropic, 2024), despite their powerful
capabilities, applying EM? remains challenging.

Incorporating Human Supervision. As men-
tioned in Section 5.4, higher-quality memories can
significantly enhance model performance. This pa-
per primarily focuses on memories constructed au-
tonomously by the model. An intriguing question is
whether human-supervised memory enhancement
and correction could further improve performance.
Additionally, how to effectively incorporate human
supervision (Wu et al., 2022), such as step-by-step
guidance (Lightman et al., 2023), remains an open
question for future research.

Ethics Statement

Data Privacy. Our approach constructs memory
from the model’s own outputs and does not require
the collection or acquisition of personal data. The
prompts and data used in our experiments do not in-
volve any personal or privacy-sensitive information,
ensuring compliance with privacy standards.

Environmental Protection. The construction of
large language models and the generation of data
and memory are likely to become more prevalent,
consuming significant computational resources and
potentially increasing carbon emissions. We advo-
cate for sustainable Al development, emphasizing
the reduction of carbon footprints and the promo-

tion of green Al initiatives to mitigate environmen-
tal impacts.

Adherence to Ethical Guidelines. We adhere to
ethical guidelines and ensure that our data usage
complies with the corresponding dataset licenses.
Detailed statistics about the datasets and their re-
spective licenses is listed in Table 2.

Acknowledge

This work was supported by the National Natural
Science Foundation of China (No. 62236004). The
computations in this research were performed us-
ing the CFFF platform of Fudan University. We
would like to express our sincere gratitude to all
the reviewers for their valuable suggestions and
assistance, which have significantly contributed to
the improvement of this manuscript.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Mike Anderson. 1999. The development of intelligence.
Psychology Press.

Al Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Claude-3 Model Card.

Ask Me Anything. 2015. Dynamic memory networks
for natural language processing. Kumar et al. arXiv
Pre-Print, 97.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Angel Barco, Craig H Bailey, and Eric R Kandel.
2006. Common molecular mechanisms in explicit
and implicit memory. Journal of neurochemistry,
97(6):1520-1533.

Federico Becattini and Tiberio Uricchio. 2022. Memory
networks. In Proceedings of the 30th ACM Interna-
tional Conference on Multimedia, MM ’22, page

16627

https://doi.org/10.1145/3503161.3546972
https://doi.org/10.1145/3503161.3546972

73807382, New York, NY, USA. Association for
Computing Machinery.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Markus Buehner, Stefan Krumm, and Marion Pick.
2005. Reasoning= working memory=# attention. In-
telligence, 33(3):251-272.

Kaiyan Chang, Songcheng Xu, Chenglong Wang,
Yingfeng Luo, Tong Xiao, and Jingbo Zhu. 2024.
Efficient prompting methods for large language mod-
els: A survey. Preprint, arXiv:2404.01077.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith,
and Dangi Chen. 2023. Adapting language
models to compress contexts. arXiv preprint
arXiv:2305.14788.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1-53.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924-2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Antonia Creswell and Murray Shanahan. 2022. Faithful
reasoning using large language models. Preprint,
arXiv:2208.14271.

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
1977. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical
society: series B (methodological), 39(1):1-22.

Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke,
Siyuan Guo, Michal Valko, Timothy Lillicrap, Danilo
Rezende, Yoshua Bengio, Michael Mozer, and San-
jeev Arora. 2024. Metacognitive capabilities of 1lms:

An exploration in mathematical problem solving.
Preprint, arXiv:2405.12205.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong,
Jae Sung Park, Bidipta Sarkar, Rohan Taori, Yusuke
Noda, Demetri Terzopoulos, Yejin Choi, et al. 2024.
Agent ai: Surveying the horizons of multimodal in-
teraction. arXiv preprint arXiv:2401.03568.

Howard Eichenbaum. 1997. Declarative memory: In-
sights from cognitive neurobiology. Annual review
of psychology, 48(1):547-572.

Jorg Franke, Jan Niehues, and Alex Waibel. 2018. Ro-
bust and scalable differentiable neural computer for
question answering. In Proceedings of the Workshop
on Machine Reading for Question Answering, pages
47-59, Melbourne, Australia. Association for Com-
putational Linguistics.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

John DE Gabrieli. 1998. Cognitive neuroscience of hu-
man memory. Annual review of psychology, 49(1):87—
115.

Sahana Ganesh, Vedant Dhotre, Pranav Patil, and Dipti
Pawade. 2023. A comprehensive survey of machine
translation approaches. In 2023 6th International

Conference on Advances in Science and Technology
(ICAST), pages 160-165.

Hang Gao and Yongfeng Zhang. 2024. Memory sharing
for large language model based agents. Preprint,
arXiv:2404.09982.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. 2024. Retrieval-augmented gener-
ation for large language models: A survey. Preprint,
arXiv:2312.10997.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen,
and Furu Wei. 2024. In-context autoencoder for con-
text compression in a large language model. In The
Twelfth International Conference on Learning Repre-
sentations.

Yingqgiang Ge, Yujie Ren, Wenyue Hua, Shuyuan Xu,
Juntao Tan, and Yongfeng Zhang. 2023. Llm as os,
agents as apps: Envisioning aios, agents and the aios-
agent ecosystem. Preprint, arXiv:2312.03815.

16628

https://arxiv.org/abs/2404.01077
https://arxiv.org/abs/2404.01077
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2208.14271
https://arxiv.org/abs/2208.14271
https://arxiv.org/abs/2405.12205
https://arxiv.org/abs/2405.12205
https://doi.org/10.18653/v1/W18-2606
https://doi.org/10.18653/v1/W18-2606
https://doi.org/10.18653/v1/W18-2606
https://openreview.net/forum?id=yf1icZHC-l9
https://openreview.net/forum?id=yf1icZHC-l9
https://doi.org/10.1109/ICAST59062.2023.10455003
https://doi.org/10.1109/ICAST59062.2023.10455003
https://arxiv.org/abs/2404.09982
https://arxiv.org/abs/2404.09982
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://arxiv.org/abs/2312.03815
https://arxiv.org/abs/2312.03815
https://arxiv.org/abs/2312.03815

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the

Association for Computational Linguistics, 9:346—
361.

Roberto Gozalo-Brizuela and Eduardo C. Garrido-
Merchan. 2023. A survey of generative ai applica-
tions. Preprint, arXiv:2306.02781.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwiniska, Sergio Gémez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.
2016. Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471—
476.

Jing Guo, Nan Li, Jianchuan Qi, Hang Yang, Ruigiao
Li, Yuzhen Feng, Si Zhang, and Ming Xu. 2024.
Empowering working memory for large language
model agents. Preprint, arXiv:2312.17259.

Hangfeng He, Hongming Zhang, and Dan Roth. 2022.
Rethinking with retrieval: Faithful large language
model inference. Preprint, arXiv:2301.00303.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523-533. Association for Computational Lin-
guistics.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023. Large
language models can self-improve. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1051-1068, Singa-
pore. Association for Computational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023a. Mistral 7b. Preprint,
arXiv:2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024a.
Mixtral of experts. Preprint, arXiv:2401.04088.

Huigiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023b. Llmlingua: Compressing
prompts for accelerated inference of large language
models. arXiv preprint arXiv:2310.05736.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024b. A survey on large
language models for code generation. Preprint,
arXiv:2406.00515.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152—1157, San
Diego, California. Association for Computational
Linguistics.

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin
Wang, Michal Lukasik, Andreas Veit, Felix Yu, and
Sanjiv Kumar. 2023. Large language models with
controllable working memory. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 1774-1793, Toronto, Canada. Association for
Computational Linguistics.

Xiaonan Li and Xipeng Qiu. 2023. MoT: Memory-of-
thought enables ChatGPT to self-improve. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6354—
6374, Singapore. Association for Computational Lin-
guistics.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng
Ding, Shafiq Joty, Soujanya Poria, and Lidong Bing.
2024. Chain-of-knowledge: Grounding large lan-
guage models via dynamic knowledge adapting over
heterogeneous sources. In The Twelfth International
Conference on Learning Representations.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. Preprint,
arXiv:2305.20050.

16629

https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://arxiv.org/abs/2306.02781
https://arxiv.org/abs/2306.02781
https://arxiv.org/abs/2312.17259
https://arxiv.org/abs/2312.17259
https://arxiv.org/abs/2301.00303
https://arxiv.org/abs/2301.00303
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/2023.findings-acl.112
https://doi.org/10.18653/v1/2023.findings-acl.112
https://doi.org/10.18653/v1/2023.emnlp-main.392
https://doi.org/10.18653/v1/2023.emnlp-main.392
https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
https://arxiv.org/abs/2305.20050

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers, pages 158-167. Association
for Computational Linguistics.

Frederick Liu, Terry Huang, Shihang Lyu, Siamak Shak-
eri, Hongkun Yu, and Jing Li. 2021. Enct5: A frame-
work for fine-tuning t5 as non-autoregressive models.
arXiv preprint arXiv:2110.08426.

Lei Liu, Xiaoyan Yang, Yue Shen, Binbin Hu, Zhigiang
Zhang, Jinjie Gu, and Guannan Zhang. 2023a.
Think-in-memory: Recalling and post-thinking en-
able Illms with long-term memory. Preprint,
arXiv:2311.08719.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023b. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

Yiheng Liu, Hao He, Tianle Han, Xu Zhang, Mengyuan
Liu, Jiaming Tian, Yutong Zhang, Jiagi Wang, Xiao-
hui Gao, Tianyang Zhong, Yi Pan, Shaochen Xu, Zi-
hao Wu, Zhengliang Liu, Xin Zhang, Shu Zhang, Xin-
tao Hu, Tuo Zhang, Ning Qiang, Tianming Liu, and
Bao Ge. 2024. Understanding 1lms: A comprehen-
sive overview from training to inference. Preprint,
arXiv:2401.02038.

Jiangiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Qi Zhu, Fei Mi, Baojun Wang, Weichao Wang,
Xingshan Zeng, Lifeng Shang, Xin Jiang, and Qun
Liu. 2024. Self: Self-evolution with language feed-
back. Preprint, arXiv:2310.00533.

Aman Madaan, Niket Tandon, Peter Clark, and Yim-
ing Yang. 2022. Memory-assisted prompt editing
to improve GPT-3 after deployment. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 2833-2861,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Jonson Manurung. 2019. Application of fifo algorithm
(first in first out) to simulation queue. Infokum, 7(2,
Juni):44-47.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong
Ye, Yingqgiang Ge, and Yongfeng Zhang. 2024.
Aios: Llm agent operating system. Preprint,
arXiv:2403.16971.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048-11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Ali Modarressi, Abdullatif Koksal, Ayyoob Imani,
Mohsen Fayyaz, and Hinrich Schiitze. 2024. Mem-
IIm: Finetuning llms to use an explicit read-write
memory. Preprint, arXiv:2404.11672.

Jesse Mu, Xiang Li, and Noah Goodman. 2024. Learn-
ing to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

Charles Packer, Vivian Fang, Shishir G Patil, Kevin
Lin, Sarah Wooders, and Joseph E Gonzalez. 2023.
Memgpt: Towards llms as operating systems. arXiv
preprint arXiv:2310.08560.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Robert Praas. 2023. Self-reflection on chain-of-thought
reasoning in large language models.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023. Communicative agents for software de-
velopment. arXiv preprint arXiv:2307.07924.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy P. Lillicrap, Jean-Baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan
Firat, Julian Schrittwieser, loannis Antonoglou, Ro-
han Anil, Sebastian Borgeaud, Andrew M. Dai, Katie
Millican, Ethan Dyer, Mia Glaese, Thibault Sotti-
aux, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, James Molloy, Jilin Chen, Michael
Isard, Paul Barham, Tom Hennigan, Ross Mcll-
roy, Melvin Johnson, Johan Schalkwyk, Eli Collins,
Eliza Rutherford, Erica Moreira, Kareem Ayoub,
Megha Goel, Clemens Meyer, Gregory Thornton,
Zhen Yang, Henryk Michalewski, Zaheer Abbas,
Nathan Schucher, Ankesh Anand, Richard Ives,
James Keeling, Karel Lenc, Salem Haykal, Siamak
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Ro-
man Ring, Stephen Spencer, Eren Sezener, and et al.

16630

https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://arxiv.org/abs/2311.08719
https://arxiv.org/abs/2311.08719
https://arxiv.org/abs/2401.02038
https://arxiv.org/abs/2401.02038
https://arxiv.org/abs/2310.00533
https://arxiv.org/abs/2310.00533
https://doi.org/10.18653/v1/2022.emnlp-main.183
https://doi.org/10.18653/v1/2022.emnlp-main.183
https://arxiv.org/abs/2403.16971
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://arxiv.org/abs/2404.11672
https://arxiv.org/abs/2404.11672
https://arxiv.org/abs/2404.11672
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168

2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. CoRR,
abs/2403.05530.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Carolyn K Rovee-Collier, Harlene Hayne, and Michael
Colombo. 2001. The development of implicit and ex-
plicit memory. John Benjamins Publishing Company
Amsterdam.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 1743—-1752. The As-
sociation for Computational Linguistics.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,
Vinija Jain, Samrat Mondal, and Aman Chadha.
2024. A systematic survey of prompt engineering in
large language models: Techniques and applications.
Preprint, arXiv:2402.07927.

Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Hang
Yan, Fei Yang, Zhe Li, Hujun Bao, and Xipeng Qiu.
2024. Cpt: a pre-trained unbalanced transformer
for both chinese language understanding and gen-
eration. SCIENCE CHINA Information Sciences,
67(5):152102—.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning. Preprint, arXiv:2303.11366.

Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks. In
Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi
Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al.
2024a. A survey of neural code intelligence:
Paradigms, advances and beyond. arXiv preprint
arXiv:2403.14734.

Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu,
Xipeng Qiu, and Lingpeng Kong. 2023. Corex:
Pushing the boundaries of complex reasoning
through multi-model collaboration. arXiv preprint
arXiv:2310.00280.

Tianxiang Sun, Xiaotian Zhang, Zhengfu He, Peng Li,
Qinyuan Cheng, Xiangyang Liu, Hang Yan, Yunfan
Shao, Qiong Tang, Shiduo Zhang, Xingjian Zhao,
Ke Chen, Yining Zheng, Zhejian Zhou, Ruixiao Li,
Jun Zhan, Yunhua Zhou, Linyang Li, Xiaogui Yang,

Lingling Wu, Zhangyue Yin, Xuanjing Huang, Yu-
Gang Jiang, and Xipeng Qiu. 2024b. Moss: An
open conversational large language model. Machine
Intelligence Research.

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003-13051, Toronto,
Canada. Association for Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149-4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bo Wang, Tianxiang Sun, Hang Yan, Siyin Wang,
Qingyuan Cheng, and Xipeng Qiu. 2024a. In-
memory learning: A declarative learning frame-
work for large language models. Preprint,
arXiv:2403.02757.

Jianing Wang, Qiushi Sun, Xiang Li, and Ming
Gao. 2024b. Boosting language models reason-
ing with chain-of-knowledge prompting. Preprint,
arXiv:2306.06427.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024c. A survey on large language
model based autonomous agents. Frontiers of Com-
puter Science, 18(6).

Liang Wang, Nan Yang, and Furu Wei. 2024d. Learn-
ing to retrieve in-context examples for large language
models. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1752-1767, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu,
Xifeng Yan, Jianfeng Gao, and Furu Wei. 2023a.
Augmenting language models with long-term mem-
ory. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems.

Xiaohua Wang, Yuliang Yan, Longtao Huang, Xiaoqing
Zheng, and Xuan-Jing Huang. 2023b. Hallucination
detection for generative large language models by
bayesian sequential estimation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 15361-15371.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023c. Self-consistency improves

16631

https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/d15-1202
https://doi.org/10.18653/v1/d15-1202
https://arxiv.org/abs/2402.07927
https://arxiv.org/abs/2402.07927
https://doi.org/10.1007/s11432-021-3536-5
https://doi.org/10.1007/s11432-021-3536-5
https://doi.org/10.1007/s11432-021-3536-5
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://proceedings.neurips.cc/paper_files/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
https://doi.org/10.1007/s11633-024-1502-8
https://doi.org/10.1007/s11633-024-1502-8
https://aclanthology.org/2023.findings-acl.824
https://aclanthology.org/2023.findings-acl.824
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://arxiv.org/abs/2403.02757
https://arxiv.org/abs/2403.02757
https://arxiv.org/abs/2403.02757
https://arxiv.org/abs/2306.06427
https://arxiv.org/abs/2306.06427
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://aclanthology.org/2024.eacl-long.105
https://aclanthology.org/2024.eacl-long.105
https://aclanthology.org/2024.eacl-long.105
https://openreview.net/forum?id=BryMFPQ4L6
https://openreview.net/forum?id=BryMFPQ4L6
https://openreview.net/forum?id=1PL1NIMMrw

chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang,
Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng
Li, Xian Li, Bing Yin, Jingbo Shang, and Ju-
lian McAuley. 2024e. Memoryllm: Towards
self-updatable large language models. Preprint,
arXiv:2402.04624.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent abilities of large language models. Transactions
on Machine Learning Research. Survey Certifica-
tion.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022b. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022c. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015.
Memory networks. Preprint, arXiv:1410.3916.

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang,
Tianlong Ma, and Liang He. 2022. A survey of
human-in-the-loop for machine learning. Future
Generation Computer Systems, 135:364-381.

Yang Wu, Yanyan Zhao, Zhongyang Li, Bing Qin,
and Kai Xiong. 2023. Improving cross-task gen-
eralization with step-by-step instructions. SCIENCE
CHINA Information Sciences, pages —.

Hongkang Yang, Zehao Lin, Wenjin Wang, Hao Wu,
Zhiyu Li, Bo Tang, Wenqgiang Wei, Jinbo Wang,
Zeyun Tang, Shichao Song, Chenyang Xi, Yu Yu,
Kai Chen, Feiyu Xiong, Linpeng Tang, and Weinan
E. 2024. Memory®: Language modeling with ex-
plicit memory. Preprint, arXiv:2407.01178.

Shunyu Yao. 2024. Language agents: From next-token
prediction to digital automation.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 10222-10240,
Singapore. Association for Computational Linguis-
tics.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu,
Xipeng Qiu, and Xuanjing Huang. 2023. Do large
language models know what they don’t know? In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 8653-8665, Toronto,
Canada. Association for Computational Linguistics.

Yu Zhang, Peter Tino, Ales Leonardis, and Ke Tang.
2021. A survey on neural network interpretability.
IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, 5(5):726-742.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen,
Quanyu Dai, Jieming Zhu, Zhenhua Dong, and Ji-
Rong Wen. 2024. A survey on the memory mecha-
nism of large language model based agents. Preprint,
arXiv:2404.13501.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. Preprint,
arXiv:2303.18223.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and
Yanlin Wang. 2024. Memorybank: Enhancing large
language models with long-term memory.

A Statistics and Details of Datasets

In our experiments, we selected 14 datasets across
three different task categories. These tasks share
the common requirement that the model must en-
gage in reasoning and analysis before generating
answers. Detailed statistics for each dataset, includ-
ing the type of answers, the number of evaluation
samples, the number of CoT prompting (Wei et al.,
2022b) demonstrations used, and the correspond-
ing licenses, are provided in Table 2.

B Implementation Details

Baseline Implementation. In our main experi-
ments, we compare EM? against several baseline
methods: ZS-CoT (Kojima et al., 2022), CoT (Wei
et al., 2022b), and ComplexCoT (Fu et al., 2023).
For ZS-CoT, the phrase “Let’s think step by step” is
appended to each question to activate the model’s
reasoning process, a method also adopted for EM?
in Table 1. For CoT and ComplexCoT, we used
the official prompts. The prompts used for CoT
also serve as the memory initialization for EM?*,

16632

https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2402.04624
https://arxiv.org/abs/2402.04624
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/1410.3916
https://doi.org/10.1007/s11432-023-3911-2
https://doi.org/10.1007/s11432-023-3911-2
https://arxiv.org/abs/2407.01178
https://arxiv.org/abs/2407.01178
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.findings-acl.551
https://doi.org/10.18653/v1/2023.findings-acl.551
https://doi.org/10.1109/tetci.2021.3100641
https://arxiv.org/abs/2404.13501
https://arxiv.org/abs/2404.13501
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://arxiv.org/abs/2303.18223

DATASET | TASK | ANSWER FORMAT | # EX. | # EVAL. | LICENSE
GSMBS8K (Cobbe et al., 2021) WMP Number 8 1,319 MIT License
MultiArith (Roy and Roth, 2015) WMP Number 8 600 Unspecified
SingleEq (Koncel-Kedziorski et al., 2016) WMP Number 8 508 Unspecified
AddSub (Hosseini et al., 2014) WMP Number 8 395 Unspecified
SVAMP (Patel et al., 2021) WMP Number 8 1,000 MIT License
AQUA (Ling et al., 2017) WMP Multi-choice 4 254 Apache-2.0
MATH (Hendrycks et al., 2021) WMP Multi-choice 8 5,000 MIT license
StrategyQA (Geva et al., 2021) Commonsense T/F 6 2,290 MIT license
CommonsenseQA (Talmor et al., 2019) Commonsense Multi-choice 7 1,221 Unspecified
BoolQ (Clark et al., 2019) Commonsense T/F 4 3,270 CCBY-SA 3.0
ARC-c (Clark et al., 2018) Commonsense Multi-choice 4 299 CCBY-SA 4.0
Date Understanding (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license
Penguins in a Table (Suzgun et al., 2023) Symbolic Multi-choice 3 146 MIT license
Colored Objects (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license
Object Counting (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license

Table 2: Detailed statistics of the datasets utilized in our experiments.

EX. indicates the number of CoT

prompting demonstrations used from each dataset. # EVAL. denotes the total number of evaluation samples in each
dataset. The datasets are categorized by task type: WMP (Word Math Problem), Commonsense QA, and Symbolic

Understanding, as discussed in Section 5.1.

with the number of prompts per dataset detailed in
Table 2.

For multiple inference setting, we employ the
Self-Consistency method (Wang et al., 2023c) to
select the final answer. For MoT (Li and Qiu, 2023)
and AutoCoT (Zhang et al., 2023), we replicated
results on LLaMA-3 (Dubey et al., 2024) using the
official implementation provided by the original
authors.

Generation Setting. During our experiments, we
obverse that different tasks and LLMs required
specific temperature settings to achieve optimal
performance. For the LLaMA-3-8B model, ZS-
CoT perform better with greedy decoding, while
CoT necessitated a higher temperature, typically
around 0.5, for best results. For larger models,
such as LLaMA-3-70B, setting the temperature to
approximately 0.7 was found to be more suitable
to foster superior outputs.

For multiple sampling settings, we established
the number of samplings at five. We set the mem-
ory capacity at 20. To construct a representative
validation set, we use the same number of clusters
as in AutoCoT (Zhang et al., 2023). Specifically,
we select ten samples from each cluster. Clustering
ensures the diversity of selected samples while re-
ducing the computational overhead for each update.
Initially, when the number of samples is less than
50, we select all samples not already in memory
to serve as the validation set. The clustering is
performed using the KMeans algorithm with the
number of clusters set to eight. We set the threshold
e in Eq 8 to 9. We utilize GitHub Copilot for assist-

ing in the code writing process. Further details and
ablation analysis can be found in Section C.

C Further Analysis

In this section, we delve into the impact of var-
ious hyperparameters on the performance of our
algorithm. Additionally, we expand our analysis
to include a broader range of clustering algorithms
and embedding models to provide a comprehen-
sive understanding of how these factors influence
the effectiveness of our approach. All analyses are
conducted using the LLaMA-3-8B (Dubey et al.,
2024).

Memory Size. In Figure 11, we assess the impact
of varying memory sizes on both performance and
computation time, using datasets from three differ-
ent tasks. The experimental results indicate that
increasing memory size contributes to improved
performance; however, the marginal gains decrease
as the memory size continues to expand. Concur-
rently, there is a significant increase in computa-
tional overhead, as evidenced by the increase in pro-
cessing time measured on a single RTX 4090. The
results, displayed in the bar graph within the figure,
clearly show that larger memory sizes substantially
extend run times. Considering the costs associated
with memory retrieval and updates, choosing an
appropriate memory size is crucial. Therefore, we
set an upper limit of 20 for memory size to balance
performance and computational efficiency.

https://openai.com/index/new-embedding-models-and-
api-updates

16633

https://github.com/openai/grade-school-math
https://github.com/wangxr14/Algebraic-Word-Problem-Solver
https://gitlab.cs.washington.edu/ALGES/TACL2015
https://github.com/wangxr14/Algebraic-Word-Problem-Solver
https://github.com/arkilpatel/SVAMP
https://github.com/deepmind/AQuA
https://github.com/hendrycks/math/
https://github.com/eladsegal/strategyqa
https://www.tau-nlp.sites.tau.ac.il/commonsenseqa
https://github.com/google-research-datasets/boolean-questions
https://github.com/allenai/arc-solvers
https://github.com/suzgunmirac/BIG-Bench-Hard
https://github.com/suzgunmirac/BIG-Bench-Hard
https://github.com/suzgunmirac/BIG-Bench-Hard
https://github.com/suzgunmirac/BIG-Bench-Hard

GSM8K MultiArith SingleEq AddSub SVAMP AQuA Average

EM? 82.63 97.77 92.71 86.32 83.91 4527 8143
Cluster Algorithm

DBSCAN 83.47 96.50 93.50 85.82 8345 44.09 81.13
Embedding Models

Sentence Bert 81.65 94.67 91.73 84.81 82.62 46.85 80.38

Ada-002 82.78 94.33 92.32 88.86 83.70 45.66 81.27
Update Mechanism

Random 76.42 93.00 83.85 84.81 79.25 40.16 76.25

FIFO 74.37 91.83 85.23 85.06 80.09 39.37 76.00

Table 3: Ablation analysis on six word math problem datasets.
tering algorithms, embedding models, and updating mechanisms on performance.

“text-embedding-ada-002” model.

[GSM8K Time ENARC Time EZIDate Time

We evaluate the impact of different clus-
“Ada-002” refers to the

[GSM8K Time EN ARC Time EZ3 Date Time

90.0
- _ 88 _
8400 8753 S
E > 863
‘E’zoo 785.0; 848
]

FE LN

. e J
N S NEl N 80.0 80

10 20 40
Memory Size (%)

o]
o

Figure 11: Impact of memory size on performance and
running time. The bar graph represents running time,
while the line graph indicates accuracy.

Validation Set Size. In Figure 12, we examine
the effects of validation set size on both perfor-
mance and computation time, employing the same
evaluation metrics used for memory size assess-
ment. Our analysis across representative datasets
such as GSM8K, ARC, and Date Understanding
shows that increasing the size of the validation
set can lead to performance improvements. How-
ever, these improvements are not substantial; for
instance, on the GSM8K dataset, increasing the
number of validation samples beyond 80 does not
yield significant performance gains. Similarly to
the increase in memory size, a larger validation
set also leads to longer run times, although not as
dramatically. Considering the trade-offs between
performance gains and computational costs, it is
crucial to select an appropriate validation set size.
Therefore, we set the upper limit for validation sam-
ples to ten times the number of classes to maintain
a balance between effectiveness and efficiency.

1
Validation Number

Figure 12: Impact of the number of validation set sam-
ples. The bar graph illustrates running time, while the
line graph shows accuracy.

Cluster Algorithm and Embedding Models.
In Table 3, we assess the impact of different
clustering algorithms and embedding models on
model performance. Our experiments conducted
across six math word problem datasets demon-
strate that EM? is robust to the choice of clus-
tering algorithm and embedding models. Specifi-
cally, when replacing the KMeans clustering al-
gorithm with DBSCAN, using the default set-
tings of DBSCAN, we observe no significant
changes in performance across the datasets. Simi-
larly, substituting text-embedding-3-large with
Sentence-BERT (Reimers and Gurevych, 2019)
or text-embedding-ada-002 dose not result in
any noticeable performance degradation across the
datasets. Interestingly, text-embedding-ada-002
even shows a slight average performance improve-
ment over text-embedding-3-large. This phe-
nomenon suggests that the choice of clustering al-
gorithm and embedding models primarily influ-
ences the construction of the representative valida-

16634

EEEM?2 rZZAMoT [N AutoCoT
100

90

80

Accuracy (%)

70

60—¢san StrategyQA BoolQ ARC

(a) Commonsense QA

Accuracy (%)

EZHEM? 7ZdMoT ExJAutoCoT

”'I‘Date

‘I5.enguin Colored Objs. Obfst Counting

(b) Symbolic Understanding

Figure 13: Comparison of the EM? method with Retrieval Memory on (a) commonsense question answering and

(b) symbolic understanding tasks.

tion set and does not severely impact the memory
updating mechanism of EM?2,

Analysis of Memory Updating Mechanism. In
Section 5.4, we analyze the impact of altering the
memory updating mechanism to Random and FIFO
(First-In-First-Out) on the MATH dataset. The re-
sults presented in Table 3 demonstrate that similar
significant performance declines occur on other
math word problem datasets when employing Ran-
dom and FIFO updating mechanisms. This under-
scores the importance of designing effective mem-
ory updating strategies.

Comparison of Memory Retrieval Method. In
Figure 13, we extend our comparison of EM? with
the Memory Retrieval Method to additional tasks.
Maintaining the same experimental settings as in
Section 5.4, we conducted experiments on Com-
monsense QA and Symbolic Understanding tasks.
The results indicate that EM? demonstrates a clear
advantage on the majority of the datasets, showing
an average improvement of 2.82% over AutoCoT.
This highlights the effectiveness of the dynamic
memory updating strategy of EM?.

16635

