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Abstract

Large Language Models (LLMs) have revo-
lutionized the landscape of natural language
processing, demonstrating remarkable abilities
across various complex tasks. However, their
stateless nature limits the capability to retain
information across interactions, hindering per-
formance in scenarios requiring historical con-
text recall. To mitigate this, current approaches
primarily use explicit memory to allow LLMs
to store useful information, which is accessible,
readable, and interpretable. Nevertheless, ex-
plicit memory lacks the reliable learning mech-
anisms of implicit memory, which can be op-
timized end-to-end. To harness the benefits
of both, we introduce EMQ, a novel frame-
work enhancing explicit memory updates via
the Expectation-Maximization (EM) algorithm.
EM? treats memory as a latent variable, ensur-
ing continual learning and improvement dur-
ing updates. Experimental results on stream-
ing inference tasks demonstrate that EM? out-
performs existing methods without memory
or with static external memory. Our in-depth
analysis highlights that EM? significantly en-
hances performance across various backbones
and memory strategies, providing a robust solu-
tion for advancing LLM memory management
and enabling explicit memory to learn and im-
prove similarly to implicit memory.

1 Introduction

The advent of Large Language Models (LLMs) has
shifted the landscape of machine learning, unveil-
ing unprecedented capabilities for handling com-
plex tasks across diverse domains (Ouyang et al.,
2022; Achiam et al., 2023; Anthropic, 2024; Reid
et al., 2024; Shao et al., 2024; Sun et al., 2024b;
Zhao et al., 2023, inter alia). Despite these ad-
vancements, a fundamental limitation of LLMs
is their statelessness: they do not retain informa-
tion across invocations (Yao, 2024). This restricts
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1. A robot may not injure a
human being or, through
inaction, allow a human
being to come to harm.

2. A robot must obey the
orders given it by human
beings except where such
orders would conflict with
the First Law.

3. A robot must protect its
own existence as long as
such protection does not
conflict with the First or
Second Laws.
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Figure 1: Comparison between Explicit and Implicit
Memory. Explicit memory is represented through text,
storing information directly accessible and readable. Im-
plicit memory is stored in the form of parameters, which
underlie the model’s learned behaviors and are not di-
rectly interpretable. Deep blue indicates the memory
currently being activated.

their ability to process and utilize previous inter-
actions in a manner akin to human cognitive pro-
cesses (Gabrieli, 1998), thereby limiting their util-
ity in scenarios that require retention and recall
of historical context (Zhang et al., 2024; Lu et al.,
2024; Huang et al., 2023; Durante et al., 2024).
Recent studies have attempted to address this
challenge by incorporating external memory mech-
anisms (Packer et al., 2023; Zhong et al., 2024),
which can be categorized into explicit and implicit
forms (Barco et al., 2006). As illustrated in Fig-
ure 1, explicit memory stores information in a tex-
tual format that is directly accessible and read-
able, such as rules, knowledge, and skills (Gao
and Zhang, 2024; Guo et al., 2024). Implicit
memory, on the other hand, is parametric, facil-
itating learning and updates (Wang et al., 2023a;
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Ge et al., 2024). While parametric storage allows
for end-to-end learning, it often faces issues with
training stability (Franke et al., 2018), specifica-
tion (Sukhbaatar et al., 2015), and interpretabil-
ity (Zhang et al., 2021). With the increasing ability
of LLMs to directly understand text (Brown et al.,
2020; Wei et al., 2022a), explicit memory is be-
coming the dominant method for memory storage
in LLMs (Madaan et al., 2022).

Updating is a critical feature of memory (Wang
et al., 2024e; Li et al., 2023). Current methods
of updating explicit memory include manual re-
visions (Mei et al., 2024) and self-reflection (Liu
et al., 2023a; Shinn et al., 2023; Praas, 2023). Ge
et al. (2023) conceptualize LLMs as an operating
system (OS) and have developed memory update
mechanisms inspired by OS design. Wang et al.
(2024a) employ LLMs to autonomously summarize
past experiences for enhanced external memory.

It is worth noticing that, LLMs may miss or
make mistakes when internalizing knowledge (Yin
et al., 2023; Wang et al., 2023b; Yao et al., 2023),
and there is no guarantee that newly constructed
memory is superior to its predecessors. In con-
trast, implicit memory, updated through gradi-
ents (Graves et al., 2016; Becattini and Uricchio,
2022), ensures learning during the memory up-
date. Current methods for updating explicit mem-
ory do not guarantee learning and enhancement
during the memory update process, marking a fun-
damental drawback. The primary reason is the non-
differentiability of textual memory, which means
that memory updates lack a clear direction.

To address this, we propose EM?, which treats
memory as a latent variable and update it using the
Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977). EM? extracts relevant past experi-
ences to guide current predictions and ensures that
the memory is continuously optimized, enabling
the model to learn and improve effectively over
time. Experimental results on streaming inference
tasks show that compared to models without exter-
nal/fixed memory, our dynamic memory updating
approach significantly enhances performance.

Our main contributions are as follows:

* We identify that current methods of updating
explicit memory lack direction and do not en-
sure that updated memory is superior to previ-
ous versions.

« We introduce EM?, which updates explicit
memory using the EM algorithm to ensure

continuous learning and enhancement during
the memory update process.

* Experimental results demonstrate that EM?2
significantly improves model performance.

2 Related Work
2.1 Memory Mechanism of LL.Ms

Memory is fundamental to the development of
intelligence (Anderson, 1999). Memory mecha-
nisms in LLMs primarily involve retrieval (Gao
et al., 2024), updating (Li et al., 2023), and utiliza-
tion (Guo et al., 2024) processes. Retrieval aims
to fetch relevant and accurate memories from a
vast store, directly influencing the outcome’s qual-
ity (He et al., 2022; Creswell and Shanahan, 2022).
Updates include incremental, inductive, and com-
pressive approaches. Incremental updates simply
add newly acquired memories without processing
them (Hong et al., 2023; Qian et al., 2023). Induc-
tive updates utilize the LLM’s capability to amal-
gamate and summarize memories, thereby narrow-
ing the retrieval scope (Liu et al., 2023a; Didolkar
et al., 2024). Compressive updates enhance the
efficiency of memory use by condensing texts into
vectors (Chevalier et al., 2023; Ge et al., 2024; Mu
et al., 2024). The utilization of memory relies on
the LLLM’s contextual understanding and learning
capabilities, optimizing model behavior through
the injection of text or parameters (Min et al., 2022;
Liu et al., 2024; Wang et al., 2024d).

For LLMs, memory can be classified as explicit
or implicit (Rovee-Collier et al., 2001; Barco et al.,
2006). Explicit memory, also known as declarative
memory, refers to forms of memory that can be ar-
ticulated (Eichenbaum, 1997). It can be stored
and retrieved in textual form (Sun et al., 2023;
Zhong et al., 2024), offering readability and in-
terpretability (Jiang et al., 2023b; Modarressi et al.,
2024). Explicit memory does not depend on a spe-
cific model and can be utilized by various models
post-generation (Gao and Zhang, 2024; Sun et al.,
2024a). Additionally, humans can participate in
modifying and refining explicit memory, making it
widely applied in LLM memory modules (Wu et al.,
2022). Implicit memory, on the other hand, refers
to forms of memory that cannot be articulated. This
type of memory is stored in parameters and updated
through training (Weston et al., 2015; Anything,
2015; Sukhbaatar et al., 2015). Although explicit
memory can also be updated through model-driven
summarization and induction (Wang et al., 2024a;
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Yang et al., 2024), it lacks the clear update targets
characteristic of implicit memory, which ensures
that the updated state is superior to its previous
state.

2.2 Model Inference

The inference methods for LLMs predominantly
encompass zero-shot, few-shot, and chain-of-
thought (Chung et al., 2024). Zero-shot often
requires model fine-tuning to equip LLMs with
the capability to generate task-specific outputs di-
rectly (Raffel et al., 2020; Liu et al., 2021). Brown
et al. (2020) observe that providing models with ex-
ample prompts can significantly enhance their un-
derstanding of specific tasks. Currently, In-Context
Learning (Dong et al., 2022) has emerged as a
fundamental paradigm for addressing tasks using
LLMs (Liu et al., 2023b), effectively leveraging
minimal input to guide model responses (Min et al.,
2022). Wei et al. (2022c) note that guiding mod-
els to generate intermediary reasoning steps will
boost their performance for reasoning. This en-
hanced capability typically emerges only in models
of certain scales, a phenomenon often referred to
as “emergent abilities” (Wei et al., 2022a). Fur-
thermore, recent studies (Wu et al., 2023; Li et al.,
2024; Wang et al., 2024b) find that prompts serve
a dual function: they not only activate the model’s
internal memory but also inject effective external
knowledge and guidance. Additionally, updating
and infusing memory in prompts offers benefits
such as interpretability and flexibility (Chang et al.,
2024), further enhancing the utility of LLMs in
complex inference scenarios (Sahoo et al., 2024).

3 Preliminary and Task Definition

3.1 Explicit Memory Learning

Memory in Al are designed to mimic the hu-
man ability to remember past experiences and uti-
lize this accumulated knowledge to aid in future
tasks (Weston et al., 2015). In our model, explicit
memory learning is implemented via a memory
module M that stores strategies 7 learned over
time, which is formally represented as:

My ={71,72,...,TK }, (1)
where M, represents the state of the memory mod-
ule at time ¢, K is the memory size, and each 7;
is a tactic derived from past experiences. The up-
dating of this memory is governed by a learning

function L, which adjusts the memory based on
new experiences (X,Y):

Mt+1 - L(Mta (Xta n)) (2)

Here, (X, Y;) represents the input-output pair at
time ¢, and the function L determines how the mem-
ory should be updated, possibly by adding new
strategies, modifying existing ones, or removing
outdated strategies based on their relevance and
effectiveness in the new context.

3.2 Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm is
a powerful statistical tool used for parameter esti-
mation in models with latent variables. It operates
in two main steps: the Expectation (E) step and
the Maximization (M) step. During the E step, the
algorithm estimates the latent variables based on
the current estimate of the parameters:

Q10 = E,_,zx.00)logp(X, Z10)], (3)

where 0() denotes the parameters at iteration ¢,
X 1s the observed data, Z are the latent variables,
and p(Z|X,0W) is the probability of the latent
variables given the observed data and current pa-
rameters.

The M step then updates the parameters to max-
imize the expected log-likelihood found in the E
step:

o4+ = arg max Q(0]6™). 4)

This iterative process continues until convergence,
making it suitable for complex models where direct
likelihood maximization is infeasible (Dempster
etal., 1977). The EM algorithm is particularly ef-
fective in scenarios where the model parameters
include both observed and unobserved (latent) com-
ponents. By alternating between estimating the
hidden components given the parameters and then
optimizing the parameters given the hidden compo-
nents, EM facilitates a more accurate estimation of
model parameters.

3.3 Task Definition

Given the following stream of data D =
{(Xl, Yl), (XQ, Yg), ceey (Xn, Yn)}’ where Xt
represents the observed data at time ¢ and Y; de-
notes the corresponding true label, the objective
is to construct effective memory M, that provides
accurate predictions f/}
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Our primary goal is to minimize the discrep-
ancy between the predicted labels Y; and the actual
labels Y;. This is achieved by enhancing the predic-
tive accuracy of the model under the guidance of
the evolving memory M;. The effectiveness of M,
is crucial as it directly influences the model’s ability
to adapt to new data and make accurate predictions.
Therefore, the challenge lies in designing a learn-
ing function L that not only updates the memory
efficiently but also ensures that these updates result
in the accurate anticipation of future samples based
on past and present data insights.

4 Methodology

4.1 Memory based Inference

At time ¢, the model receives an input X;. In a zero-
shot scenario, without any guidance from memory,
the model & generates the predicted label Y, in an
autoregressive manner as follows:

M
P | X)) =[] Pe@i | Xe,9<i) 9

=1

To leverage past experiences stored in the mem-
ory, we enhance model’s capability by introducing
a memory-based guidance. Given the current in-
put X;, we extract the most relevant information
from the current memory state M;. This extraction
process results in a memory subset m;, defined as
the set of elements in M; that are most relevant
to X;. The relevance can be quantified based on
similarity measures, heuristic rules, or learned rele-
vance functions. The resulting m; can be formally
represented as:

my = select(My, Xy) (6)

where select is a function that retrieves the most
relevant memory elements based on Xj.

With m; as an additional context, the model then
generates Y, using both m; and X; to guide the
prediction:

2]

Pg(f/;ﬁ \ mtth) = Hpg(@z‘ | mt7Xt;Q<z‘) @)
i=1

This memory-augmented inference mechanism
allows the model to effectively utilize historical
data, enhancing its predictive accuracy and adapt-
ability in dynamic environments.

4.2 Memory Module Construction

The Memory Module M is constructed by accu-
mulating pairs (X;,Y;) over time. Initially, the
memory of the model is empty, representing a state
of minimal prior knowledge. As the model pro-
cesses data and generates predictions, it selectively
updates this memory based on the quality and cer-
tainty of the information.

To quantify the certainty of each predicted out-
put and determine its eligibility for memory in-
clusion, we define an uncertainty threshold €. A
prediction Y; is considered high-quality if its nor-
malized entropy, which measures the average un-
certainty across all predicted components, is below
this threshold. The entropy H (Y;) for each predic-
tion is calculated as follows:

kd
. 1 N -
H(Y;) = _@ E log Pe (7 | Xi,9<j) <€
il j=1

®)

When the above condition is satisfied, indicating
that the generated prediction Y; is of sufficiently
high certainty and quality, it is integrated into the
memory using the learning function L, as discussed
in Section 3.1.

4.3 Memory Update through Learning
Function

We employ the EM algorithm to design the learning
function L. As depicted in Figure 2 under (2) and
D, if the generated Yz satisfies condition 8, it is fed
along with the current memory state M; into the
learning function L. The update equation is:

M1 = L(My, (X1, Y2)) 9

We treat strategies 7 as latent variables Z and M; as
the parameter 6 in Eq. 3, transforming the learning
process into an EM learning framework.

4.3.1 Construction of Representative
Validation Set

To evaluate the updates efficiently, we construct
a representative validation set V' from the dataset
D not yet included in the memory M;. We select
cluster centers from D \ M, to form V, reducing re-
dundancy and improving the efficiency of memory
updates. The selection can be represented by:

Vi = centers({(X1, Y1), ..., (Xy, Y)}\ M)
(10)
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M-step: Determine whether to update memory
based on predicted performance

ow V0 o®

et = i | .
S eom@

@

s X s, Memory Informed Prediction
Evaluation on the {'b. o g@%
Q) representative N Z7apaN - P(Y, |Xy; M)
validation set ; = Ep(rx,; M)P(o Xy, T)

Memory (s ) &) N
E-step: Enhance Prediction based
on the new Memory
f------ Inference based on M ------ 4= Update M based on new observed data (X;,Y;) ------------- {

Figure 2: Overview of EM? for memory-guided prediction in streaming data. At each timestep ¢, the model receives
an input X;. (D utilizes the memory M, to select relevant demonstrations that guide the generation of the prediction
Y;. @ and @) depict the integration of the newly generated Y; and the current memory M, into the memory updating

process, ensuring that the memory evolves with the latest data insights and contributes to future predictions.

4.3.2 E-step: Inference Procedure

Let V; = {(X,,Y,)}. Based on Equation 3, the
prediction for Y, given X, and the memory M is
calculated as:

P(Yy | Xp; M) =) P(Y,, 7 X0; M)
=Y P(Yy| Xy, 7)P(7|Xy; M)
=Erp(rx,inn [P (Yo Xo, 7)]

an
4.3.3 M-step:

The memory is updated based on the maximization
step defined as:

Learning Procedure

[Vl
arg max Z P(Yi|Xi;m), (12)
mCMtUF(XtJA/t) i=1

Mg =

where I represents a function extracting knowledge
from (X¢, Y;) to generate 74, which can be formally
represented as:

7 =T(X,, V) (13)
This step ensures that the updated memory My
performs better on V; than the previous state My,

effectively capturing the beneficial strategies for
future predictions.

S Experiment

5.1 Evaluation Datasets

To assess the efficacy of our approach, we evaluate
it across three distinct types of tasks: word math
problems, commonsense question answering (QA),
and symbolic analysis. We utilize the following
datasets for these evaluations:

e Word Math Problem: GSM8K (Cobbe et al.,
2021), MultiArith (Roy and Roth, 2015),
SingleEq (Koncel-Kedziorski et al., 2016),
AddSub (Hosseini et al., 2014), SVAMP (Pa-
tel et al., 2021), AQUA (Ling et al., 2017) and
MATH (Hendrycks et al., 2021).

* Commonsense QA: StrategyQA (Geva et al.,
2021), CommonsenseQA (CSQA; Talmor
et al., 2019), BoolQ (Clark et al., 2019),
the AI2 Reasoning Challenge (ARC-c; Clark
et al., 2018).

* Symbolic Understanding: Date Understand-
ing, Penguins in a Table, Colored Objects,

and Object Counting sourced from Big-
Bench (Suzgun et al., 2023).

For a more detailed description of the datasets,
please refer to Appendix A.
5.2 Experiment Settings

Implementation Details. The inference process
of the model not only demonstrates its understand-
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GSM8K MultiArith  SingleEq AddSub SVAMP AQuA MATH Average
Single Inference
7S5-CoT 76.80 94.83 89.96 84.30 81.45 40.55  29.02 77.98
CoT 79.61 96.50 92.32 85.31 82.76  42.32 - 79.80
ComplexCoT  78.01 96.67 91.92 84.81 81.48 4251  29.50 79.23
EM? 82.63 97.77 92.71 86.32 83.91 4527  30.12 81.43
EM?2* 83.09 97.83 92.71 87.59 84.19 4645 30.22 81.98
Multiple Inference
ZS-CoT 84.98 97.50 92.71 88.61 87.18 4724 3222 83.03
CoT 85.59 98.00 94.29 91.13 91.76 51.57 - 85.39
ComplexCoT  85.29 98.16 93.70 89.87 89.62 50.78 3246 84.57
EM? 86.35 98.83 95.86 93.41 92.51 53.14 33.82 86.68
EM?2* 86.43 98.83 95.66 94.43 92.55 53.93 33.96 86.97

Table 1: Results on Math Word Problems (Accuracy in %). The best outcomes are emphasized in bold. Average
represents the average performance across all datasets, excluding MATH. EM? denotes initialization using ZS-CoT,

while EM?* indicates initialization with CoT demonstrations, highlighted with a

background. To ensure a

fair comparison, the LLaMA-3-8B model (Dubey et al., 2024) is used as the backbone across all methods.
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Figure 3: Performance comparison on (a) commonsense question answering and (b) symbolic understanding tasks.
The charts illustrate that EM? demonstrates a distinct advantage over both no and fixed-memory mechanisms.

ing and analysis of problems but often encapsulates
latent knowledge (Buehner et al., 2005). There-
fore, we store the model’s reasoning process along
with the problem as the model memory. In the
main experiments, memory is vectorized using
text-embedding-3-large, and relevancy is cal-
culated using cosine distance as specified in Eq. 6.
To ensure fair comparisons, we limit the selection
to a maximum of 8 examples. These vectors are
also employed to determine the clustering centers
as outlined in Eq. 10. For more details and ablation
studies, see Appendix B and C.

Baselines. To validate the efficacy of our ap-
proach, we compare it against three baseline meth-
ods representing different levels of memory integra-
tion: models without memory, with fixed memory,
and with retrieval-based memory.

* No Memory: The Zero-shot CoT (ZS-CoT;
Kojima et al., 2022) utilizes the prompt “Let’s
think step by step” to activate the model’s
internal reasoning capabilities without relying

on external memory aids.

* Fixed Memory: The Chain-of-Thought (CoT;
Wei et al., 2022b) employs fixed prompts to
guide the model through a reasoning process.
ComplexCoT (Fu et al., 2023) extends this by
using complex prompts that guide the model
to generate more detailed reasoning processes.

* Retrieval Memory: The Memory-of-Thought
(MoT; Li and Qiu, 2023) incorporates a two-
stage memory retrieval process, which in-
cludes coarse-grained semantic retrieval fol-
lowed by fine-grained model filtering to select
relevant memories. AutoCoT (Zhang et al.,
2023) selects examples based on relevance
and diversity metrics tailored to the query.

In contrast to the main experiment where memory
updates are conducted using test samples, MoT and
AutoCoT require pre-inference on training data. To
ensure a fair comparison, we align the settings with
these methods to in Section 5.4.
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Figure 4: Performance comparison of different memory mechanisms across various LLMs.
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Figure 5: Performance of different memory updating
mechanisms on the MATH dataset.

Backbones. In the main experiment, we employ
LLaMA-3-8B (Dubey et al., 2024). For analysis,
we extend our investigations to include more LLMs,
including LLaMA-3-70B (Dubey et al., 2024),
Mistral-7B (Jiang et al., 2023a), Mixtral (Jiang
et al., 2024a), and Qwen-2 (Bai et al., 2023).

5.3 Main Results

Word Math Problem. Table 1 presents the re-
sults of math word problems. Compared to meth-
ods with no memory or fixed memory, our memory
learning approach exhibits significant advantages.
Notably, on the GSMS8K dataset, EM? outperforms
the ZS-CoT by 5.83% and CoT by 3.02%. This
improvement is attributed to the dynamic mem-
ory updating mechanism of EM?. We utilize two
initialization methods: ZS-CoT, where the initial
memory is empty, and CoT, which provides eight
high-quality demonstrations at initialization. While
the CoT initialization ensures better initial perfor-
mance, the efficacy of both approaches converges
as the memory accumulates. For instance, on the
SingleEq dataset, results from both initialization
methods are identical. Further, we analyze multiple
inference scenario (Wang et al., 2023c) and observe
that EM? retains a clear advantage. Moreover, as
more memories are integrated, the performance gap

[ JEM? [ZAMoT =S AutoCoT

N W s v
o o o o

Accuracy (%)

Figure 6: Performance comparison of retrieval-based
memory methods on the MATH dataset.

between the two initialization methods narrows.

Commonsense QA and Symbolic. The experi-
mental results for commonsense QA and symbolic
understanding tasks are shown in Figure 3. We
observe that EM? effectively enhances model per-
formance on both types of tasks. Notably, EM?
demonstrates a more pronounced advantage in chal-
lenging tasks, such as those involving complex,
non-factoid information in the BoolQ dataset, and
tasks requiring implicit multi-step reasoning in the
StrategyQA dataset. This improvement can be at-
tributed to EM?’s memory updating and retrieval
mechanisms, which ensure the selection of high-
quality and relevant demonstrations.

5.4 Analysis and Discussion

Performance on Various Models. The perfor-
mance of EM? across a range of models is ana-
lyzed in Figure 4, focusing on two representative
datasets: GSMS8K and CSQA. We observe that
EM? consistently delivers significant performance
enhancements across different models. Notably,
models with greater computational capabilities ben-
efit more substantially from the EM? approach. For
instance, despite having a similar number of param-
eters, Qwen-7B exhibits a greater improvement
than Mistral-7B. Moreover, EM? proves to be ver-
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Figure 8: Comparison of EM? with varying memory sizes and fixed memory methods in terms of runtime and
accuracy. The horizontal axis represents the runtime in minutes, the vertical axis shows accuracy, and the size of the

points indicates the size of the memory.

satile, not only enhancing the performance of dense
models but also boosting the efficacy of Mixture of
Experts (MoE) models like Mixtral. This adaptabil-
ity underscores EM?’s effectiveness in leveraging
complex memory dynamics across different archi-
tectural frameworks.

Analysis of Memory Updating Mechanism.
The impact of different memory updating strategies
on accuracy is analyzed in Figure 5. We experi-
mented with replacing the learning function in Sec-
tion 4.3 with two simpler updating strategies: ran-
dom selection and First-In-First-Out (FIFO) (Ma-
nurung, 2019). Results on the MATH dataset,
particularly in the precalculus subset, show that
these changes significantly reduce model perfor-
mance. The primary reason for this decline can
be attributed to the inherent limitations of Random
and FIFO strategies, which rely on randomness and
sample order, respectively, and cannot guarantee
the effectiveness of memory updates. This analysis
highlights the efficacy of the EM? approach, which
employs the EM algorithm to ensure gradual and
effective optimization of memory.

Comparison of Memory Retrieval Method. In
Figure 6, we compare the EM? with two memory
retrieval methods. Both MoT and AutoCoT require
pre-inference on the training dataset to gather ex-
amples for retrieval. To ensure a fair comparison,
we incorporate training samples into EM?, first
performing memory updates and constructing a
representative validation set on the training dataset,
before introducing the test set for accuracy calcu-
lations. Results on the MATH dataset demonstrate
that EM? achieves superior performance compared
to traditional memory retrieval methods. Despite
having a narrower search scope compared to the
broader retrieval range of MoT and AutoCoT, the
EM?’s updating strategy ensures the retention of
high-quality memories. Moreover, continuous up-
dates maintain alignment between the memory dis-
tribution and the test distribution, thereby resulting
in enhanced performance.

Analysis of Memory Sharing. The memory con-
structed by EM? is model-agnostic, enabling the
transfer and sharing of memories between models.
In Figure 7, we explore the effects of exchanging
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Figure 9: Impact of varying the threshold € on model
performance.

memories between LLaMA-3-8B and LLaMA-3-
70B. Each model first performs inference on the
training dataset, after which their memories are
swapped. As shown in Figure 7a, there is a gradual
improvement in the performance of the 8B model
as the proportion of memory from the 70B model
increases. This indicates that smaller models can
benefit from high-quality memories sourced from
larger models. Conversely, Figure 7b reveals that
the performance of the 70B model remains unaf-
fected by the memory from the 8B model, as lower-
quality memories do not enter our memory module.

Analysis of Memory Size. In Figure 8, we ana-
lyze the impact of memory size on accuracy and
running time. We observe that on the GSM8K
and SVAMP datasets, when the number of demon-
strations in memory m; is reduced to two, the
running time becomes comparable to the method
with CoT (Wei et al., 2022¢). Thanks to the effec-
tive memory updating strategy of EM?, the perfor-
mance remains significantly superior to the CoT
method even with the reduced number of demon-
strations. The ComplexCoT method (Fu et al.,
2023), which requires multi-step detailed deriva-
tions, demands more reasoning time. We note that
the running times of ComplexCoT and EM? with
a memory size of eight are comparable, yet EM?
significantly outperforms ComplexCoT in terms of
accuracy. The additional computational time for
EM? is attributed to the M-step in Section 4.3.3,
whereas the memory update does not involve costly
decoding processes, thus not incurring significant
overhead.

Analysis of Threshold e. In Figure 9, we an-
alyze the impact of variations in the threshold e
from Eq. 8 on model performance. The results
on datasets such as GSM8K and SVAMP indicate
that a lower threshold allows low-quality informa-
tion to enter the memory, which in turn degrades
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Figure 10: Impact of varying the number of clusters on
model performance.

the model’s performance. Conversely, setting the
threshold too high significantly reduces the amount
of information entering the memory, diminishing
the diversity of the stored data. Therefore, setting e
to 9 offers an optimal balance between high-quality
information and diversity within the memory.

Analysis of Number of Clusters. In Figure 10,
we evaluate the impact of different cluster counts
on model performance. The results on the GSM8K
and SVAMP datasets show that a smaller number of
clusters reduces the diversity of samples in the rep-
resentative validation set, which in turn can lower
model performance. Initially, when there are fewer
samples available, it is challenging to form a mean-
ingful number of clusters. Therefore, setting the
number of clusters to eight is found to be appropri-
ate for achieving a good balance between clustering
quality and the meaningful segmentation of data.

6 Conclusion

In this paper, we analyze the advantages of ex-
plicit memory over implicit memory and highlight
a critical limitation of the former: its inability to
ensure the effectiveness of updates as reliably as im-
plicit memory. To address this, we introduce EM?,
which treats memory as a latent variable and itera-
tively updates it using the EM algorithm, thereby
ensuring that updated memories are superior to
their predecessors. Experiments show that EM?
offers significant advantages over models without
memory and those with fixed memory. Importantly,
the performance of EM? scales with the model’s
capabilities, suggesting that more powerful models
can leverage EM? to achieve even greater benefits.
Additionally, EM?is model-agnostic, which allows
for the transfer and sharing of memory across dif-
ferent models. Analyses reveal that weaker LLMs
can significantly benefit from high-quality memo-
ries derived from larger counterparts.
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Limitations

Generalization to a Broader Range of Tasks.
While we have analyzed EM? across three distinct
types of tasks, there is potential to extend this ap-
proach to a wider array of generative tasks (Gozalo-
Brizuela and Garrido-Merchan, 2023), such as code
generation (Jiang et al., 2024b), machine transla-
tion (Ganesh et al., 2023), and various agent-based
tasks (Wang et al., 2024c). Additionally, the form
of memory could also be diversified to include
structured data, triplets, user historical informa-
tion, and more. Our current scope has not yet ex-
plored these domains, and we see the exploration of
EM?’s potential in more diverse tasks as an avenue
for future work.

Application to Commercial Models. EM? re-
quires access to internal model information, such as
perplexity, to assess the effectiveness of new mem-
ories. However, for commercial models that only
provide text outputs, such as OpenAI’s GPT mod-
els (Achiam et al., 2023) or Anthropic’s Claude
models (Anthropic, 2024), despite their powerful
capabilities, applying EM? remains challenging.

Incorporating Human Supervision. As men-
tioned in Section 5.4, higher-quality memories can
significantly enhance model performance. This pa-
per primarily focuses on memories constructed au-
tonomously by the model. An intriguing question is
whether human-supervised memory enhancement
and correction could further improve performance.
Additionally, how to effectively incorporate human
supervision (Wu et al., 2022), such as step-by-step
guidance (Lightman et al., 2023), remains an open
question for future research.

Ethics Statement

Data Privacy. Our approach constructs memory
from the model’s own outputs and does not require
the collection or acquisition of personal data. The
prompts and data used in our experiments do not in-
volve any personal or privacy-sensitive information,
ensuring compliance with privacy standards.

Environmental Protection. The construction of
large language models and the generation of data
and memory are likely to become more prevalent,
consuming significant computational resources and
potentially increasing carbon emissions. We advo-
cate for sustainable Al development, emphasizing
the reduction of carbon footprints and the promo-

tion of green Al initiatives to mitigate environmen-
tal impacts.

Adherence to Ethical Guidelines. We adhere to
ethical guidelines and ensure that our data usage
complies with the corresponding dataset licenses.
Detailed statistics about the datasets and their re-
spective licenses is listed in Table 2.
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A Statistics and Details of Datasets

In our experiments, we selected 14 datasets across
three different task categories. These tasks share
the common requirement that the model must en-
gage in reasoning and analysis before generating
answers. Detailed statistics for each dataset, includ-
ing the type of answers, the number of evaluation
samples, the number of CoT prompting (Wei et al.,
2022b) demonstrations used, and the correspond-
ing licenses, are provided in Table 2.

B Implementation Details

Baseline Implementation. In our main experi-
ments, we compare EM? against several baseline
methods: ZS-CoT (Kojima et al., 2022), CoT (Wei
et al., 2022b), and ComplexCoT (Fu et al., 2023).
For ZS-CoT, the phrase “Let’s think step by step” is
appended to each question to activate the model’s
reasoning process, a method also adopted for EM?
in Table 1. For CoT and ComplexCoT, we used
the official prompts. The prompts used for CoT
also serve as the memory initialization for EM?*,
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DATASET | TASK | ANSWER FORMAT | # EX. | # EVAL. |  LICENSE
GSMBS8K (Cobbe et al., 2021) WMP Number 8 1,319 MIT License
MultiArith (Roy and Roth, 2015) WMP Number 8 600 Unspecified
SingleEq (Koncel-Kedziorski et al., 2016) WMP Number 8 508 Unspecified
AddSub (Hosseini et al., 2014) WMP Number 8 395 Unspecified
SVAMP (Patel et al., 2021) WMP Number 8 1,000 MIT License
AQUA (Ling et al., 2017) WMP Multi-choice 4 254 Apache-2.0
MATH (Hendrycks et al., 2021) WMP Multi-choice 8 5,000 MIT license
StrategyQA (Geva et al., 2021) Commonsense T/F 6 2,290 MIT license
CommonsenseQA (Talmor et al., 2019) Commonsense Multi-choice 7 1,221 Unspecified
BoolQ (Clark et al., 2019) Commonsense T/F 4 3,270 CCBY-SA 3.0
ARC-c (Clark et al., 2018) Commonsense Multi-choice 4 299 CCBY-SA 4.0
Date Understanding (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license
Penguins in a Table (Suzgun et al., 2023) Symbolic Multi-choice 3 146 MIT license
Colored Objects (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license
Object Counting (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license

Table 2: Detailed statistics of the datasets utilized in our experiments.

# EX. indicates the number of CoT

prompting demonstrations used from each dataset. # EVAL. denotes the total number of evaluation samples in each
dataset. The datasets are categorized by task type: WMP (Word Math Problem), Commonsense QA, and Symbolic

Understanding, as discussed in Section 5.1.

with the number of prompts per dataset detailed in
Table 2.

For multiple inference setting, we employ the
Self-Consistency method (Wang et al., 2023c) to
select the final answer. For MoT (Li and Qiu, 2023)
and AutoCoT (Zhang et al., 2023), we replicated
results on LLaMA-3 (Dubey et al., 2024) using the
official implementation provided by the original
authors.

Generation Setting. During our experiments, we
obverse that different tasks and LLMs required
specific temperature settings to achieve optimal
performance. For the LLaMA-3-8B model, ZS-
CoT perform better with greedy decoding, while
CoT necessitated a higher temperature, typically
around 0.5, for best results. For larger models,
such as LLaMA-3-70B, setting the temperature to
approximately 0.7 was found to be more suitable
to foster superior outputs.

For multiple sampling settings, we established
the number of samplings at five. We set the mem-
ory capacity at 20. To construct a representative
validation set, we use the same number of clusters
as in AutoCoT (Zhang et al., 2023). Specifically,
we select ten samples from each cluster. Clustering
ensures the diversity of selected samples while re-
ducing the computational overhead for each update.
Initially, when the number of samples is less than
50, we select all samples not already in memory
to serve as the validation set. The clustering is
performed using the KMeans algorithm with the
number of clusters set to eight. We set the threshold
e in Eq 8 to 9. We utilize GitHub Copilot for assist-

ing in the code writing process. Further details and
ablation analysis can be found in Section C.

C Further Analysis

In this section, we delve into the impact of var-
ious hyperparameters on the performance of our
algorithm. Additionally, we expand our analysis
to include a broader range of clustering algorithms
and embedding models to provide a comprehen-
sive understanding of how these factors influence
the effectiveness of our approach. All analyses are
conducted using the LLaMA-3-8B (Dubey et al.,
2024).

Memory Size. In Figure 11, we assess the impact
of varying memory sizes on both performance and
computation time, using datasets from three differ-
ent tasks. The experimental results indicate that
increasing memory size contributes to improved
performance; however, the marginal gains decrease
as the memory size continues to expand. Concur-
rently, there is a significant increase in computa-
tional overhead, as evidenced by the increase in pro-
cessing time measured on a single RTX 4090. The
results, displayed in the bar graph within the figure,
clearly show that larger memory sizes substantially
extend run times. Considering the costs associated
with memory retrieval and updates, choosing an
appropriate memory size is crucial. Therefore, we
set an upper limit of 20 for memory size to balance
performance and computational efficiency.

https://openai.com/index/new-embedding-models-and-
api-updates
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GSM8K MultiArith SingleEq AddSub SVAMP AQuA Average

EM? 82.63 97.77 92.71 86.32 83.91 4527 8143
Cluster Algorithm

DBSCAN 83.47 96.50 93.50 85.82 8345  44.09 81.13
Embedding Models

Sentence Bert 81.65 94.67 91.73 84.81 82.62 46.85 80.38

Ada-002 82.78 94.33 92.32 88.86 83.70 45.66  81.27
Update Mechanism

Random 76.42 93.00 83.85 84.81 79.25 40.16  76.25

FIFO 74.37 91.83 85.23 85.06 80.09 39.37  76.00

Table 3: Ablation analysis on six word math problem datasets.
tering algorithms, embedding models, and updating mechanisms on performance.

“text-embedding-ada-002” model.

[ GSM8K Time ENARC Time EZIDate Time

We evaluate the impact of different clus-
“Ada-002” refers to the
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Figure 11: Impact of memory size on performance and
running time. The bar graph represents running time,
while the line graph indicates accuracy.

Validation Set Size. In Figure 12, we examine
the effects of validation set size on both perfor-
mance and computation time, employing the same
evaluation metrics used for memory size assess-
ment. Our analysis across representative datasets
such as GSM8K, ARC, and Date Understanding
shows that increasing the size of the validation
set can lead to performance improvements. How-
ever, these improvements are not substantial; for
instance, on the GSM8K dataset, increasing the
number of validation samples beyond 80 does not
yield significant performance gains. Similarly to
the increase in memory size, a larger validation
set also leads to longer run times, although not as
dramatically. Considering the trade-offs between
performance gains and computational costs, it is
crucial to select an appropriate validation set size.
Therefore, we set the upper limit for validation sam-
ples to ten times the number of classes to maintain
a balance between effectiveness and efficiency.

1
Validation Number

Figure 12: Impact of the number of validation set sam-
ples. The bar graph illustrates running time, while the
line graph shows accuracy.

Cluster Algorithm and Embedding Models.
In Table 3, we assess the impact of different
clustering algorithms and embedding models on
model performance. Our experiments conducted
across six math word problem datasets demon-
strate that EM? is robust to the choice of clus-
tering algorithm and embedding models. Specifi-
cally, when replacing the KMeans clustering al-
gorithm with DBSCAN, using the default set-
tings of DBSCAN, we observe no significant
changes in performance across the datasets. Simi-
larly, substituting text-embedding-3-large with
Sentence-BERT (Reimers and Gurevych, 2019)
or text-embedding-ada-002 dose not result in
any noticeable performance degradation across the
datasets. Interestingly, text-embedding-ada-002
even shows a slight average performance improve-
ment over text-embedding-3-large. This phe-
nomenon suggests that the choice of clustering al-
gorithm and embedding models primarily influ-
ences the construction of the representative valida-
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Figure 13: Comparison of the EM? method with Retrieval Memory on (a) commonsense question answering and

(b) symbolic understanding tasks.

tion set and does not severely impact the memory
updating mechanism of EM?2,

Analysis of Memory Updating Mechanism. In
Section 5.4, we analyze the impact of altering the
memory updating mechanism to Random and FIFO
(First-In-First-Out) on the MATH dataset. The re-
sults presented in Table 3 demonstrate that similar
significant performance declines occur on other
math word problem datasets when employing Ran-
dom and FIFO updating mechanisms. This under-
scores the importance of designing effective mem-
ory updating strategies.

Comparison of Memory Retrieval Method. In
Figure 13, we extend our comparison of EM? with
the Memory Retrieval Method to additional tasks.
Maintaining the same experimental settings as in
Section 5.4, we conducted experiments on Com-
monsense QA and Symbolic Understanding tasks.
The results indicate that EM? demonstrates a clear
advantage on the majority of the datasets, showing
an average improvement of 2.82% over AutoCoT.
This highlights the effectiveness of the dynamic
memory updating strategy of EM?.
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