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Abstract

The prolific use of Large Language Models
(LLMs) as an alternate knowledge base re-
quires them to be factually consistent, ne-
cessitating both correctness and consistency
traits for paraphrased queries. Recently, sig-
nificant attempts have been made to bench-
mark datasets and metrics to evaluate LLMs
for these traits. However, structural simplicity
(subject-relation-object) and contemporary as-
sociation in their query formulation limit the
broader definition of factuality and consistency.
In this study, we introduce TeCFaP, a novel
Temporally Consistent Factuality Probe task
to expand the consistent factuality probe in the
temporal dimension. To this end, we propose
TEMP-COFAC, a high-quality dataset of prefix-
style English query paraphrases. Subsequently,
we extend the definitions of existing metrics to
represent consistent factuality across temporal
dimension. We experiment with a diverse set of
LLMs and find most of them performing poorly
on TeCFaP. Next, we propose a novel solution
CoTSeLF (Consistent-Time-Sensitive Learning
Framework) combining multi-task instruction
tuning (MT-IT) with consistent-time-sensitive
reinforcement learning (CTSRL) to improve tem-
porally consistent factuality in LLMs. Our ex-
periments demonstrate the efficacy of CoTSelLF
over several baselines.

1 Introduction

Large Language Models (LLMs) are pivotal in pro-
pelling the advancement of Artificial General In-
telligence (AGI) by acquiring self-learning capa-
bilities for complex tasks (Ge et al., 2023). A key
development within LLMs is the ability for tem-
poral reasoning - comprehending, processing, and
reasoning about time-related concepts, temporal
dependencies, chronological sequences, and the nu-
anced, consistent temporal relationship of events.
This ability is vital for a myriad of domain-specific

*Equal contribution

tasks, including but not limited to summarizing
timelines, tracking disease progression (medical),
scheduling events (planning), managing contracts
(legal), historical analysis (archaeology), and iden-
tifying tasks dependencies (project management).

Why is consistent factuality important?
Knowledge bases (KBs) were the foremost choice
in factual knowledge retrieval tasks before the ap-
pearance of LLMs. A KB is a structured database
containing a collection of facts (subject, relation,
object) (Lan et al., 2021). There has been a surge
of interest in using pre-trained LLMs as KBs.
AlKhamissi et al. (2022) presented an extensive
review on significant developments (Petroni et al.,
2019) (Dhingra et al., 2022) (Heinzerling and Inui,
2021) in this direction. One of the biggest appeals
of using LLMs as KBs is that a query can be writ-
ten in natural language instead of relying on a spe-
cific KB schema (Elazar et al., 2021). Due to the
complex nature of language, the semantic meaning
can be expressed in multiple surface forms. Accu-
rate and consistent retrievals, despite a change in
surface form, are two fundamental traits required
from LLMs to replace KBs. Built on a manually
engineered schema that dictates the possible set
of entities and relations, KBs ensure factual and
consistent answers (AlKhamissi et al., 2022). On
the contrary, inconsistent factuality is reported as a
widespread problem in LLMs, especially in autore-
gressive setting (Tam et al., 2022).

Probing consistent factuality. Usually, factu-
ality (accuracy) is used as a widespread metric in
probing LL.Ms to check linguistic capabilities such
as commonsense (Zhang et al., 2020; Forbes et al.,
2019) and reasoning (Talmor et al., 2020; Kassner
et al., 2020). On the other hand, an increase in pub-
lic access of LLMs requires them to consistently
respond to user-specific diversities in surface forms
of a query. Ravichander et al. (2020) measured con-
sistency through paired probes. Elazar et al. (2021)
extended the work by investigating and improving
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the consistency of LLMs behavior across different
factual knowledge types.

Our novel task and dataset. So far, the consis-
tent factuality probing in LLMs has been predom-
inantly contemporary — the existence of a subject
and an object associated via a relation is coeval,
i.e., atypical query from PARAREL dataset (Elazar
etal., 2021) is — X was born in Y in which subject X
(person) and object Y (location) are connected via
relation born-in. Note that the subject and object
are contemporaneous; both exist simultaneously.
As information keeps on getting generated, main-
tained and lost over time, the above formulation is
insufficient in capturing the temporal association
between the queried entity (subject) and expected
value entity (object), therefore providing a poor
representation of the overall consistent factuality
of LLMs.

To address this, we present Temporally
Consistent Factuality Probe (TeCFaP), a novel
task accompanied by a new dataset, TEMP-COFAC.
TeCFaP seeks to exploit the temporal association
among entities via a subject-relation pair to rep-
resent temporally consistent factuality of LLMs.
It defines the query structure in the form of
(key_object, subject-relation, value_object). The
proposed formulation expands the probe in the tem-
poral dimension. As we observe in Figure 1, the
space is three-dimensional — subject, relation, and
time. Since time has a directional attribute, we ex-
pect temporal association to be either in a forward
or backward direction. For example, the query
Hybrid Theory was released by linkin park just be-
fore [Meteora] is a forward direction probe where
a key_object (Hybrid Theory) placed at time 7 is
temporally associated with a value_object (Mete-
ora) in time-space at (¢ + 1) via a subject (Linkin
Park) and a relation (release-by). At present, our
probe is limited to only strict associations where
the expected value_object is either located at (t+1)
or (t — 1) step in temporal space w.r.t key_object
at time ¢t. Inspired by Pustejovsky et al. (2005),
strict association is achieved via trigger words such
as immediately before, right after, soon after, etc.
We observe the destitute performance of LLMs
on TeCFaP metrics (defined in Section 3) — tem-
poral factuality, temporal consistency, and tempo-
rally consistent factuality are in [0.95% - 3.63%],
[13.28% - 64.87%] and [0% to 2%] range, respec-
tively in zero-shot setting.

Our proposed model. We present CoTSeLF, a

(Value-Object)
(t+1): Minutes to Midnight @
Ad
.=*" Forward Temporal
Association
. (Key-Object) [Linkin Park released Meteora just
Time (): Meteora @) before Minutes to demghd
Backward Temporal ' .
Association ‘.(Value-Object)
[Linkin Park released Meteora just (t-1): Hybrid Theory
after Hybrid Theory]
Relation Subject

Release Linkin Park

Figure 1: Symbolic representation of the TeCFaP objec-
tive. An entity key_object holds a temporal relationship
with another entity value_object via a subject-relation
pair in either direction — forward or backward.

Consistent-Time-Sensitive Learning Framework,
built on a multi-task instruction-tuned (MT-IT)
framework followed by consistent-time-sensitive
reinforcement learning (CTSRL) to improve tempo-
rally consistent factuality in LLMs. We compare
CoTSeLF with several baselines and show it out-
performing the best baseline (Tan et al., 2023) by
12.7%, 10.9% and 90.4%, respectively, for tempo-
ral factuality, temporal consistency, and temporally
consistent factuality.

Contributions. In short, we make the following
contributions through this study":

* We establish the need for temporally consistent
factuality in LLMs and propose TeCFaP, a novel
task (Section 3).

* We create TEMP-COFAC, a novel dataset consist-
ing of 66 diverse subject-relation pairs and 8
paraphrase samples each for forward and back-
ward temporal association for a given subject-
relation pair (Section 2).

* We experiment with a diverse set of LLMs. Our
experiments and analyses highlight how LLMs
poorly perform on TeCFaP (Section 5).

* We propose CoTSelLF, a framework to improve
temporally consistent factuality in LLMs (Sec-
tion 4). Our experiments highlight that CoTSeLF
surpasses the recent baseline models (Section 5).
We further analyze how the probabilistic space
evolves under CoTSeLF (Appendix A.2.4).

2 The TEMP-COFAC Dataset

Here, we present a novel English prefix-style
TEMP-COFAC dataset with a temporal range of 1526-
2022. Inspired by Elsahar et al. (2018), we semi-

*Source code and dataset are available at https://
github.com/ab-iitd/tecfap
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Entities (E) Patterns (P)
- Sub-Rel (1) Pi1: Linkin Park released Hybrid Theory just before [ ]* « Sub-Rel (1)
o Pi2: Hybrid Theory was released by Linkin Park just before [ ]*
- Sub-Rel (i) Forward Temporal Association - Sub-Rel (i)
« to-Hybrid Theory « Forward
s fi-Meteora- - - - (Key-Obj, Subject-Relation(i), Value-Obj) < Pit
* t2-Minutes to Midnight ..
- * Pir
- « Backward
« t5-The Hunting Party Backward Temporal Association - Pit
+ -One More Light e — T
Pi1: Meteora was released by Linkin Park immediately after [ ]* * Pis
* Sub-Rel (m) Pi2: Linkin Park released Mateora immediately after [ |* * Sub-Rel (m)

Candidates (C) {Sub-Rel (1) [C1, C2,... C] ....

Sub-Rel (i) /A, Hybrid,..., Light] ....

Sub-Rel (m) [C1, C2... CK] }

Figure 2: The architectural framework of TEMP-COFAC — (1) a set of diverse subject-relation pairs, (2) a sequence of
entities which are temporally connected via a given subject-relation pair, (3) a set of paraphrase templates with a
placeholder for key_object and value_object developed from subject-relation pairs, and (4) a closed vocabulary
candidate set developed from possible entity space for a given subject-relation pair.

automatically” curate a diverse set of base subject
and relations pairs subject-relation. Next, we de-
fine F;, a strict temporally ordered set of entities
associated with i*" subject-relation pair. An en-
tity can act as a key_object or a value_object rel-
ative to the role of another entity positioned right
next/before it. We then create base_patterns for
both forward and backward directions following
Petroni et al. (2019). Afterwards, a set of patterns
P; is constructed by employing paraphrasing tech-
niques (Bhagat and Hovy, 2013) on base_patterns
in forward and backward directions followed by a
candidate set C;.

Construction approach. The TEMP-COFAC re-
source is constructed by three NLP experts” with
a mean cross-annotator agreement of 4.84 + 0.39
and 4.86 £ 0.49 out of 5 maximum on Likert scale
(Likert, 1932) for factuality and consistency, re-
spectively (refer Appendix A.1 for more details).
Following Elazar et al. (2021), our construction
process broadly follows a four-step procedure de-
scribed in Figure 2.

(1) First, we define a set of m diverse subject-
relation pairs randomly collected from varied do-
mains — entertainment, technology, politics, auto-
mobiles and corporate. Using annotators’ linguistic
expertise, we then define base_patterns for forward
and backward directions, i.e., Linkin Park released
[X] just before [Y] and, Linkin Park released [X]
just after [Y] are two base_patterns examples of the

"We leverage GPT-4 to extend manually constructed initial
set of base subject-relation pairs.

All of them are male with their ages ranging between
25-35 years.

forward and backward temporal associations, re-
spectively, where [X] and [Y] are the placeholders
for a key_object and a value_object, respectively.

(i) Next, we manually curate a set of entities
E; (Vi = 0,...,m) for the i*" subject-relation
pair such that they have temporal association with
it in ascending temporal sequence t = 0,...,7,
where, entity e! precedes ef‘l and is followed by
eﬁ“ in the temporal space. The cardinality of E;,
represented by j, varies for each subject-relation
pair.

(iii) A set of paraphrased patterns P; (Vi =
0,1,...,m) is constructed through an applica-
tion of an online paraphraser tool, Quillbot™ on
base_patterns. Set P; defines r and s number of
paraphrases in the forward and backward direc-
tions, respectively. For simplicity, here we consider
uniform values of r and s to be 8.

(iv) Finally, a constrained candidate set C; is
developed as an unordered set of words from F;.

Table 1 summarizes the statistics of TEMP-COFAC.
Readers can refer to Appendix A.1 for more detail
about TEMP-COFAC, including annotation quality,
temporal and entity type distributions.

3 TeCFaP Task Structure

We pose TeCFaP as a sentence completion task
that aligns with the general objective of an LM.
With prefix style, paraphrase templates for a sub-
Jject_relation pair are filled with only key_object,
and we expect the model to generate value_object.
Next, we define TeCFaP metrics to evaluate LLMs.

*https://quillbot.com/
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# Subject-Relation pairs 66
# Paraphrase patterns 1056
# Forward patterns 528
# Backward patterns 528
Avg # pattern per relation-subject 18
# Entities 700
#Unique entity types 11
Min # entities per relation-subject 2
Max # Entities per relation-subject 16
Avg # entities per relation-subject 10.6
# Unique samples in dataset 10144

Table 1: High-level statistics of the TEMP-COFAC dataset.

Temporal factuality and temporal consistency.
We extend the metrics defined by Elazar et al.
(2021) to TeCFaP. The first metric, temporal-
factuality, captures the accuracy of a model across
the temporal direction. In contrast with their defini-
tion of exact-match accuracy, we define factuality
as soft accuracy, a ratio of the number of contin-
uous matches of words in actual and generated
value_object for a sample. It helps capture the par-
tially correct generation as well. Next, we define
its sub-classification across temporal directions.
The forward temporal-factuality measures the ac-
curacy in the forward temporal direction where
value_object is located at t 41 time step for a given
key_object at t. In backward temporal-factuality,
the value_object is located at ¢ — 1 time step for a
given key_object at t.

The second metric is temporal-consistency.
Given a pair of prefix-style paraphrases for a sub-
ject_relation filled with an identical key_object, an
identical value_object should be generated. The
metric estimate is binary (one or zero) for a given
pair of such paraphrases if the model’s responses
are identical or different. Forward and backward
directions paraphrases contribute to forward and
backward temporal-consistency, respectively.

Temporally consistent factuality. The third
composite metric, temporally-consistent-factuality,
is a stricter version of temporal-factuality, re-
quiring a model to be consistent and factual
across the temporal direction. It reports the
temporal-factuality only if the responses are iden-
tical from all prefix-style paraphrases for a given
subject_relation and key_object in a particular tem-
poral direction. Paraphrases in forward and back-
ward directions contribute to forward and backward
temporally-consistent-factuality, respectively.

Other metrics. The quality of patterns is mea-
sured using temporal-succ_patt, indicating the per-
centage of patterns yielding a correct value_object
at least once during the probe. Furthermore,

temporal-succ_objs is introduced to measure the
model’s temporal knowledge by reporting the per-
centage of value_objects accurately generated at
least once. Further, we define temporal-know_cons
and temporal-unk_cons as metrics to measure
temporal-consistency of the fraction of patterns
which generated correct value_object at least once
and the fraction of patterns which never responded
with a correct value_object for a subject_relation,
respectively. All four metrics are then classified
into forward and backward temporal directions.

4 Consistent-Time-Sensitive Learning
Framework (CoTSeLF)

Equipped with the advancements in model fine-
tuning combined with the recent baseline in tem-
poral reasoning, We begin with a base pre-trained
LLM and apply supervised multi-task instruction-
tuning to develop a multi-task instruction-tuned
(MT-IT) model. Subsequently, we apply time and
consistency-sensitive reinforcement learning to the
MT-IT model to enhance its temporally consistent
factuality capabilities.

Motivation. Instruction tuning (IT) (Zhang
et al., 2023) is a cost-effective, efficient technique
for developing specialized models, as evidenced by
the parameter-efficient fine-tuning (PEFT) (Man-
grulkar et al., 2022) approach such as low-rank
adaptation (LoRA) (Hu et al., 2021), which of-
fers significant benefits for instruction tuning in
LLMs within low-cost infrastructures. Addition-
ally, the combination of RL and supervised fine-
tuning enhances model performance in several
domain-specific tasks, notably temporal reasoning
(Tan et al., 2023). Furthermore, advances in multi-
task learning led to several breakthroughs in model-
ing multiple objectives simultaneously (Zhang and
Yang, 2022).

Multi-Task Instruction-Tuning (MT-IT). We
consider a multi-objective optimization problem
that simultaneously improves model’s factuality
and consistency, denoted by tasks k1 and k2, re-
spectively. In k1, we apply a standard sentence
completion task where an incomplete sentence
filled with key_object, augmented with a context
and task instruction, is passed as input to allow
the model complete the sentence with expected
value_object. Whereas k2 is a binary task predict-
ing true or false if two sentences are paraphrased.
We start with transforming the TEMP-COFAC dataset
into an instruction-based dataset in line with the
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Instruction: Complete the given sentence with correct phrase

input: Here is the list of albums released by linkin park-
meteora, a thousand suns, minutes to midnight, the hunting}
party, one more light, hybrid theory, living things.
a thousand suns was released by linkin park immediately after

Task k1
Context

Output: a thousand suns was released by linkin park immediately
after minutes to midnight

instruction: Predict if the given sentences are paraphrased or
similar in context

input:
sentence 1: Meteora was launched by LP band followed by
minutes to midnight
sentence 2: American band LP released album meteora right
before album minutes to midnight

Task k2

Output: True

Figure 3: An instruction-based sample from training
data for MT-IT model. Task k1: Generative sentence
completion; Task k2: Binary paraphrase prediction.

formats proposed by Wang et al. (2023); Taori
et al. (2023) (Figure 3). Next, we consider
a base pre-trained LLM with parameter 6 and
then apply LoRA instruction-based supervised
fine-tuning where the objective is to maximize
p(oFt|s*t iK1 ¢) for improving model’s factual ca-
pability, where skl iK1 ¢ and, o*! are instruction,
input, context and output, respectively for task k1.
We further add another objective of maximizing
p(0¥?|s*2 ik2) to improve the model’s consistency
in extending the framework to multi-task learning
setup (Figure 3), where i*2 is a pair of sentences
randomly sampled positively and negatively to pre-
dict the output 0*? as true or false, respectively.

Consistent Time-Sensitive Reinforcement
Learning (CTSRL). Multiple value_objects for a
given key_object are possible by excluding the tem-
poral direction. We introduce CTSRL, aimed at mod-
eling consistent sensitivity towards time and over-
coming the limitations of the binary temporal char-
acterization inherent in TSRL (Tan et al., 2023).
CTSRL is employed to further fine-tune 6 through
the joint modeling of both k1 and k2. The reward
mechanism is devised as a linear amalgamation of
temporal and consistence sensitivities aspects. Ini-
tially, CTSRL pjscrete 1S conceptualized in alignment
with TSRL’s binary reward framework, awarding a
positive discrete reward of one for accurate predic-
tions and zero for incorrect responses. Additionally,
« is defined to act as the weighting parameter for
the consistence sensitivity reward component.

Ry(z) = (1 — a)Ry(z) + aRg(z) (1)

Ao JPi(), ifO4(6(x)) = Oia),
Ri(z) = Nj‘(a;), otherwise. @

For a given input z, the overall reward function
Ry(x) in the CTSRL piscrete Setting is presented in
Equation 1, where RY,(z) and R§(z) are reward
contribution for tasks k1 and k2, respectively. In
Equation 2, A is used as a task indicator where
P (z) is a positive reward score for consistence
sensitivity component if A equals to c. Similarly,
N2(z) is a negative reward score. Oy(f(x)) and
O;(z) are the generated value_object and ground-
truth label value_object, respectively for given in-
put . In the case of CTSRL pjscrete, @ pOSitive re-
ward score equal to one is assigned in case of cor-
rectly generated output and zero otherwise for both
tasks k1 and k2.

We further define another variant, CTSRL 5,00tk
to model continuous and relative properties of time.
The temporal sensitivity reward is a continuous
function where a positive reward has a maximum
function value equal to one. However, the nega-
tive reward is proportional to the relative distance
of the predicted answer from the correct answer
in the temporal axis. The goal is to penalize in-
correct answers that are distant from the correct
answer more severely than the incorrect predic-
tions that are nearby on the temporal axis. There is
no change in the reward component for consistence
sensitivity except for releasing the constraint of
the parameter alpha, indicating that CTSRL g,,,00th
is an unweighted linear combination of continu-
ous temporal and discrete consistence sensitivity
reward components.

Ry(z) = Ry(x) + Ri() A3)
to, —t
M? iftOg > tOl,
Ni@)={ o @)
’ lto, — to,| .
———  otherwise
to,

Equation 3 presents reward function Rs(z) in
CTSRL $1mooth for a given input x, where RE(z) and
RS(x) are the reward contribution for tasks k1 and
k2, respectively. For the temporal sensitivity task
(k1), the positive reward score is assigned as a
value equal to one in case of correctly generated
output, and the negative reward score is the rel-
ative distance of the wrong prediction from the
correct prediction in the temporal axis as presented
in Equation 4. The symbol ¢, is the time step of
the ground-truth label, to, represents the time step
for generated output, and ¢,, is the end time step of
entity sequence for that subject-relation pair.

15868



Temp-fact Temp-cons Temp-cons-fact

Models Avg Bwd Fwd Avg Bwd Fwd Avg Bwd Fwd
GPT-J [6B] 3.63 6.88 0.37 64.87 66.29 63.46 1.48 2.73 0.22
Falcon [7B] 2.99 5.74 0.24 41.52 40.42 42.63 1.08 2.03 0.13
LLaMA [7B] 1.48 0.89 2.07 13.28 12.52 14.03 0 0 0

LLaMA [13B] 1.11 1.01 1.21 15.65 16.33 14.96 0.2 0.17 0.24
LLaMA2 [7B] 0.95 0.73 1.17 22.34 21.95 22.73 0.08 0 0.17
LLaMA2 [13B] 1.13 0.97 1.27 13.34 14.41 12.26 0.09 0 0.19

Table 2: Zero-shot performance in open vocabulary setting on TeCFaP across various LLMs. Temp-fact: temporal
factuality (in %), Temp-cons: temporal consistency (in %), Temp-cons-fact: temporally consistent factuality (in %).
Fwd and Bwd are the forward and backward direction probe, respectively (Avg, an average of both directions).

£2.01 =t Y

= .____.__-——-— \

+— -~

E 1.5 73
(%]

€ 1.01 o Bwd
(]

6.0_5 Fwd
I -@- Avg

* 2 3

Shots

Figure 4: Results for temporally consistent factuality
(Temp-cons-fact) in k-shot (k=1,2,3) ICL setup with
LLaMA[13B] in an open vocabulary setting.

5 Experimental Results

Experimental setup. The families of GPT-J",
Falcon (Almazrouei et al., 2023), and LLaMA (Tou-
vron et al., 2023) are considered for evaluation on
TeCFaP. Primarily, we evaluate LLMs in an open
vocabulary setting where the next token is sampled
from the entire vocabulary. Next, we conduct exper-
iments in an in-context learning setup, followed by
a closed vocabulary setting. Finally, the CoTSeLF
efficacy evaluation is conducted.

Temporally consistent factuality on TeCFaP.
We start with a comparison of various LLMs in
zero-shot setting. The task is to correctly complete
a sentence with the expected value_object given
an instruction followed by an input, i.e., "complete
the given sentence with the correct phrase: Me-
teora was released by Linkin Park immediately
after". We observe the destitute performance of
all the experimented LLMs over both temporal-
factuality and temporally-consitent-factuality in the
range of [0.95% — 3.63%] and [0% — 1.48%)], re-
spectively (Table 2). We notice that GPT-J and
Falcon tend to be highly consistent in the range of
[41.52% — 64.87%] while being miserably factu-
ally incorrect compared to the LLaMA model in the
same range of parameters size. Additionally, vari-
ous families of LLMs behave differently regarding
their sensitivity towards temporal direction, but it

*https ://huggingface.co/EleutherAl/gpt-j-6b
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Figure 5: Average temporally consistent factuality and
temporal factuality (second y-axis) in an open vocabu-
lary and two-shot setting across temporal bins of Entities
(bin size: 10 years) with LLaMA[13B].

doesn’t significantly correlate with temporal consis-
tency. Further, a preliminary evaluation of TeCFaP
in zero-shot setting for commercial LLMs such as
GPT-4 (OpenAl et al., 2023) and Claude-3 is (An-
thropic, 2024) presented in Appendix A.4.

In-context setup. In-context Learning (ICL)
helps off-the-shelf LLMs solve unseen tasks with-
out the requirement of fine-tuning (Dong et al.,
2023). We provide k randomly-drawn examples
from the same subject_relation pair as supplemen-
tary context in a k-shot ICL setting, i.e., a one-
shot example is as follows: "complete the given
sentence with the correct phrase: Meteora was
released by Linkin Park immediately after => Hy-
brid Theory. American band LP released Minutes
to Midnight immediately after =>". This test eval-
uates LLaMA[13B] and varies k in the range [1-
3]. In a two-shot setup, we observe absolute per-
centage points improvement of 1.76 in temporally-
consistent-factuality (Figure 4). At the same time,
the improvements of 7.01 and 18.22 percentage
points are noted in contributory metrics temporal-
factuality and temporal-consistency, respectively
(refer to Appendix A.2.1 for more details).

Figure 5 presents temporal-factuality across the
temporal distribution of entities. Findings reveal
that remporal-factuality for entities belonging to
the historical period (1500-1800) is significantly
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Figure 6: Qualitative results in an open vocabulary with
two-shot ICL setup across LLaMA variants. Error bars
represent divergence across temporal directions — for-
ward and backward.

higher, with an average of 25.27% compared to
9.08% for the entities in the contemporary period
(after 1800). At the same time, the presence of
multiple sources of the same information in LLMs
pre-trained dataset for the contemporary period
leads to better temporally-consistent-factuality.

Additionally, in Figure 6, qualitative analy-
sis reveals that LLaMA[7B] attains best temporal-
know_cons at 43.29% with a divergence of 10.00
percentage points between known and unknown
temporal consistencies across LLaMA variants. On
the other hand, 35.04% patterns yield a correct
value_object at least once in contrast to only
16.18% value_objects, which were predicted cor-
rectly once in the entire probe for a model.

Closed vocabulary setup. The next word gener-
ated by an LM can still be the right placement given
its general objective to maximize the semantic ex-
pectation irrespective of the expected value_object.
Therefore, we also conduct experiments in a closed
vocabulary setting where the sample space is re-
duced to a candidate set” (defined in Section 2)
during generation. This approximation helps set
up the probe as KB fact extraction from a given
possible facts space, thus maximizing the behav-
ioral expectation of LM as KBs. With an improve-
ment in the range [1.77% - 2.08%], LLaMA[13B]
has best scores of 1.97% and 3.51% for temporally-
consistent-factuality in one and two shots setting,
respectively, across variants of LLaMA under closed
vocabulary setting (Figure 7). We observe a sim-
ilar trend for temporal-factuality and temporal-
consistency, presented in Appendix A.2.2.

Improvements with CoTSeLF. We conduct all
experiments in an open vocabulary setting (assum-

*A set of restricted tokens are generated by employing byte
pair encoding (Sennrich et al., 2016) on candidate set.

mmm 0-shot-ClosedVocabulary
= 2-shot-ClosedVocabulary

0-shot-OpenVocabulary
2-shot-OpenVocabulary

LLAMA LLAMA LLAMA2 LLAMA2
[78] [138] [78] [13B]

Models

Now e
o o w

Temp-cons-fact (in %)
5 & 5

o o
o u

Figure 7: A comparison of average temporally-
conistent-factuality between open and closed vocabulary
settings across LLaMA variants in zero-shot and 2-shot.

ing no access to candidate sets during inferences)
with LLaMA[13B]. First, TEMP-COFAC is vertically
split (test ratio: 0.3) to produce a train set and a
test set containing 46 and 26 subject-relation pairs,
respectively. The random vertical split ensures
the stricter evaluation of CoTSelLF as the test set
contains only unseen subject-relation pairs. We
broadly categorize this evaluation into four cate-
gories: (i) the default performance of the model
in zero-shot and two-shot (ICL) setup, (ii) vari-
ants of instruction-tuned (IT) models based on the
presence of a context along with the novel multi-
task IT model, (iii) IT (with context) followed by
TSRL; a strong baseline model, and (iv) CoTSelF,
a combined strategy of MT-IT followed by vari-
ants of novel CTSRL method. Empirically, we set
as 0.66 in formulating a discrete variant of CTSRL
(significance of « is presented in Appendix A.2.5).

In Table 3, the additional context provided with
an input improves temporal-factuality by 5.22
percentage points for an IT model. The MT-
IT model improves temporal-factuality, temporal-
consistency and temporally-consitent-factuality by
7.7%, 6.4% and 90.2%, respectively, compared
to the IT model. We further observe improve-
ments of 12.7%, 10.9% and 90.4% in temporal-
factuality, temporal-consistency and temporally-
consitent-factuality, respectively, with CoTSeLF
over the baseline, indicating that improving a
model’s temporal consistency also positively im-
pacts its temporal factuality. However, the inacces-
sibility of GPT-4 architecture limits us to assess the
efficacy of CoTSeLF’s on this model. (the proba-
bilistic space evolution under CoTSeLF including
the ablations for scalability are presented in Ap-
pendix A.2.4, & A.3).

Significance of CTSRL over TSRL. We perform
this ablation in two different scenarios by immo-
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Temp-fact Temp-cons Temp-cons-fact

Models Setting (open vocab) Avg Bwd Fwd Avg Bwd Fwd Avg Bwd Fwd
Default Zero-shot 0-40i0400 0.28 0.52 16.31i0,00 15.22 17.40 0~00i0.00 0.00 0.00

Two-shot [ICL] 4.954040 426 5.63 31.57+1.50 29.23 3391 0.53+0.18 0.50 0.57
IT Without context 11.534+0.08 10.36 12.69  25.08+0.06 26.76 2341 2591030 2.67 2.50

+ Context 16.87+0.17 16.79 1696  34.39410.92 34.45 3431 1.7540.15 2.11 1.38
MT-IT + Context 18.17+0.15 17.83 1852  36.60+0.36 36.49 36.70  3.3310.41 2.82 3.85
Aa 1.31 2211 1.58 1
Baseline IT (+context) + TSRL ~ 16.60+0.51 17.04 16.15  33. 23io 38 33.28 33.18 2. 28i0 44 2.88 1.67
CoTSelF MT-IT+CTSRL piscrete 18.72;10'25 19.16 18.29  36. SSiO 49 37.58 36.17 4. 34ﬁEO 97 445 422

MT-IT+CTSRL s1mo0th 18.16+0.05 18.11 1821  36.07+0.4s8 37.09 35.04 3.891092 3.74 4.05
Ab 2.12 1 3.65 1 2.06 T

Py = 0.003, P, = 0.003, P3 = 0.003

Table 3: Experimental results of CoTSeLF across — temporal-factuality, temporal-consistency, and temporally-
consistent-factuality (in %), in comparison to multiple baselines on test data with LLaMA[13B] (average scores over
three runs). Aa: improvements of MT-IT over an IT model, Ab: improvements of CoTSeLF over a baseline model.
(Py, Py, Ps3): p-values at CoTSeLF’s best scores compared to baseline model with n = 3 and one-tailed test.

Model Temp-fact Temp-cons Temp-cons-fact =
= 400- == Mean [Temp-fact] == Mean [Temp-cons-fact] L15.0 Z
Base SFT Model: IT £ 3001 5
-2 i -10.0 &
TSRL 16.60 33.23 2.28 38 &
CTSRL 17.6 34.27 2.74 g 2007 mmmmmmes i -------- 5o 8
CRINEETCES St S | B | g
Base SFT Model: MT-IT 00! n l i o0
Movie Location Game Album Person  Satellite Software
TSRL 17.55 34.5 3.68 Entity types
CTSRL 18.72 36.88 4.34

Table 4: Comparison of CTSRL p;screte and TSRL by
immobilizing the SFT model across two settings: IT
and MT-IT model.

bilizing the SFT model. In the first scenario, an
IT model serves as the foundation [comparing
(IT + TSRL) with (IT + CTSRL p;screte)], While
in the second scenario, the basis is the MT-IT
model [comparing (MT-IT + TSRL) with (MT-IT
+ CTSRLpjscrete)]- These experiments are metic-
ulously executed under identical conditions, as
meticulously outlined in Table 3.

The findings are delineated in Table 4.
CTSRL pjserete €Xhibits superior performance over
TSRL on all metrics: temporal-factuality,
temporal-consistency, and temporally-consistent-
factuality in both experimental settings. Results
from this ablation study further underscore the
distinct advantage of a preference of CTSRL over
TSRL.

6 Error Analysis

A causal analysis is conducted to determine any
correlation between data characteristics and failure
cases. Figure 8 shows a strong correlation between
entity-type and temporally-consistent-factuality.
Entity types not exclusively attached to a subject-
relation pair, such as movie names and geographi-
cal locations, perform poorly compared to other
entities, such as satellite, person, and software

Figure 8: Temporally consistent factuality across vari-
ous entity-types present in test data for CTSRL p;screte-

names. It would be interesting to enhance both
TEMP-COFAC and CTSRL formulation to include
such data characteristics explicitly. For more detail
on this, readers can refer to Appendix A.2.3.

7 Related Work

A noteworthy advancement in temporal factuality
involves analyzing and updating LLMs to address
the obsolescence of their factual knowledge over
time (Hu et al., 2024; Vu et al., 2023). These ap-
proaches concentrate on amending the factuality of
evolving temporal relationships without rectifying
the current inaccuracies and inconsistencies. On
the other hand, consistency in KBs was extensively
studied, with developments around data and meth-
ods to benchmark the degree of inconsistencies
(Hansen and Jaumard, 2000; Andersen and Pre-
tolani, 2001; Thimm, 2013) across several tasks;
QA (Kassner et al., 2020), reading comprehension
(Antol et al., 2015; Rajpurkar et al., 2016; Ribeiro
et al., 2019), summarizing (Xie et al., 2021; Roit
et al., 2023) and NLI (Li et al., 2019).

Notable works in temporal information extrac-
tion include TimeBank (Pustejovsky et al., 2003)
and TimeEval (Verhagen et al., 2010). The an-
notations defined in these datasets are primarily
for time-event and events relationships such as be-
fore/after. The remarkable advancement in study-
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ing temporal reasoning over KGs led to the devel-
opment of datasets such as TEQUILA (Jia et al.,
2018a), TimeQuestions (Jia et al., 2021), and Cron-
Quesions (Saxena et al., 2021), probing KG’s re-
sponse in ranking entities for a given temporal
query. Subsequently, datasets like TEMPLAMA
(Dhingra et al., 2022) and StreamingQA (LiSka
et al., 2022) were curated for temporal reasoning
in LMs. The TSQA (Chen et al., 2021) dataset has
addressed the drawback of the limited time span
of queries, but it defines only time-event relation-
ships. TEMP-REASON (Tan et al., 2023) captures
multiple facets of temporal reasoning — time-time,
time-event, and event-event relationships over a
longer time span. Our dataset, TEMP-COFAC, ad-
dresses the lack of consistent temporal reasoning
evaluation and improves upon TEMP-REASON
by offering a diverse set of anchor queries through
sixty-six unique sub-rel-obj triplets across eleven
entity types, overcoming TEMP-REASON’s limi-
tation of single-entity-type anchors and coverage
of only six entity types. (Appendix A.1).

8 Conclusion

This paper presented a new task TeCFaP with a
novel resource, TEMP-COFAC, to evaluate tempo-
rally consistent factuality in large language mod-
els. The contribution continued to present a novel
solution CoTSeLF based on multi-task instruction
tuning (MT-IT) combined with consistent-time-
sensitive reinforcement learning (CTSRL) to im-
prove LLMs temporally consistent factuality. We
observed that CoTSeLF outperforms the baselines to
improve temporally-consistent-factuality in LLMs.
The contribution and findings in this paper would
help better understand and enhance LLMs’ under-
lying capabilities around the tasks which require
consistent temporal reasoning and deductions.

9 Limitations

The scope of TEMP-COFAC is to evaluate LLMs for
their temporally consistent factuality capabilities.
TEMP-COFAC comprehensively covers entity-entity
temporal relations but falls short of stating entity-
time and time-time aspects of temporal relations.
Therefore, it should be applied along with other
prominent datasets to estimate the overall temporal
reasoning capabilities of LLMs.

Moreover, the underlying rationale for the
smooth variant of CTSRL posits that a fundamen-
tal characteristic of time is its relativity. The ob-

jective is to impose greater penalties on incor-
rect responses that significantly deviate from the
correct answer compared to those incorrect pre-
dictions that are proximal on the temporal scale.
This premise suggests that such a formulation will
compel the model to assimilate the relative as-
pect of time, thereby enhancing its efficiency in
addressing queries necessitating relative temporal
responses (before/after). While the smooth variant
of CoTSeLF appears promising at the conceptual
level, it has not surpassed the performance of its
discrete counterparts. A comprehensive ablation
study on smooth variants is earmarked for future
investigation.

While temporal relation settings such as t+/-1
scenarios necessitate precision, as only a single
correct response is viable for any given query con-
trary to the open temporal relation settings (one-
to-many), it is our fervent hope that the insights
derived from this study will inspire further research
to test TeCFaP toward addressing multi-hop tem-
poral queries (t+/-n) in forthcoming endeavors. On
the other hand, the challenges related to computa-
tional assets to stack LLMs continue. Due to as-
set limitations, we may not utilize more extensive
or commercially accessible LLMs to comprehen-
sively evaluate on TeCFaP and approve on the off
chance that the preferences of CoTSeLF are also
advantageous to those models.

Furthermore, despite efforts to apply higher qual-
ity standards, TEMP-COFAC relies on human anno-
tation and is therefore prone to annotation errors.
Moreover, the base language of TEMP-COFAC is En-
glish; therefore, it falls short in measuring consis-
tent temporal factuality for other languages, particu-
larly low-resource ones. Extensions to multilingual
setting or resource-poor languages are left to future
research.

10 Ethics Statement

The TEMP-COFAC is based on the Wikipedia
and open world wide web knowledge sources.
Wikipedia articles are licensed under a Creative
Commons Attribution-ShareAlike 4.0 International
License” (CC BY-SA 4.0) and its knowledge base is
in the public domain. We will release TEMP-COFAC
under same licence too. The experiments are con-
ducted with all open source LLMs. Authors do not
intend to introduce biases in any form to LLMs

*https://en.wikipedia.org/wiki/Wikipedia:
FAQ/Copyright
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While applying fine-tuning methods.

The subjects and entities selected to be part of
TEMP-COFAC are prone to unintended human biases
during construction. The authors do not propa-
gate any views/opinions, products, or representa-
tions of these subjects or entities in any form. The
fact that women do not find representation dur-
ing TEMP-COFAC annotations should be seen as a
symptom of the gender disparity in research and
innovation worldwide, but this is not the authors’
view. We support gender and racial equality in
research and innovation with the utmost sincerity.
Furthermore, no generative Al-based content cre-
ation tools or applications were used to create this
artifact, except for specialized support for spell
checking, grammar correction, and paraphrasing.
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A Appendix

A.1 Extended Description for TEMP-COFAC

In this section we continue to present details
on TEMP-COFAC dataset. TEMP-COFAC is the first
dataset of its kind in the temporal consistency do-
main, providing a strictly homogeneous sequence
of entities for diverse subject-relation pairs. The
conditioning on events that occurred without recur-
rence for strict temporal relationships along with
the prefix formulation of key-object, sub-rel, value-
object posed a severe challenge and required sig-
nificant human evaluations at the level of subject-
relation pairs during construction.
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Figure 9: Entity types distribution in TEMP-COFAC re-
source as % of overall entities in data and representation
across subject-relation (subject-relation) pairs.

Entity Types Distribution. We present the over-
all entity types distribution across different subject-
relation pairs in Figure 9. TEMP-COFAC has broader
representations for various entity types such as per-
son names, countries, books, movie and album
names, satellites, vehicles, and software.

Temporal Distribution. The temporal distribu-
tion of entities is presented in Table 5. We observe
that the entities have a more comprehensive range
of temporal representations in TEMP-COFAC dataset
spanning in the range of 1500 to 2022. Most of
the pre-training datasets that LLMs are trained on
have a cutoff year of 2020, with few exceptions.
Therefore, we consider that 99% of all entities in
TEMP-COFAC dataset must belong to a year equal
to or less than 2020. It can be observed that there
is a skewed temporal distribution of entities in fa-
vor of entities in the contemporary period (the year
1800-) compared to the historical period (the year
1500-1800). It is noted that 57% of all entities are
from 1991 to 2020.

Bins (year) | #Entities | Bins (year) | #Entities
1521-1530 0.08 | 1881-1890 1.42
1531-1540 0.16 | 1891-1900 1.34
1551-1560 0.16 | 1901-1910 2.52
1601-1610 0.16 | 1911-1920 3.79
1621-1630 0.16 | 1921-1930 3.31
1651-1660 0.16 | 1931-1940 2.76
1701-1710 0.32 | 1941-1950 0.55
1711-1720 0.08 | 1951-1960 3.00
1731-1740 0.24 | 1961-1970 6.07
1741-1750 0.16 | 1971-1980 5.60
1751-1760 0.32 | 1981-1990 6.86
1761-1770 0.32 | 1991-2000 11.75
1781-1790 2.05 | 2001-2010 19.79
1791-1800 0.39 | 2011-2020 25.39
1871-1880 0.87 | 2021-2030 0.24

Table 5: Temporal distribution of entities (in %) in
TEMP-COFAC with a bin size of 10 years.

Evidences from Pre-training Data. TeCFaP is
a novel task of evaluating the consistent temporal
relationship between entities in LLMs. Here, we
present a few manually extracted evidence from
pre-training data to support that the objective of
TeCFaP is fairly expected from LLMs. We con-
sider Wikipedia for this test as it is a part of the
pre-training dataset for most of the recent LLMs,
including LLaMA. Evidences are manually extracted
from Wikipedia for an entity pair hybrid-theory
and meteora for a subject-relation pair Linkin Park
and Release. Figure 10 presents the evidence with
their sources in the pre-training dataset. Given
these sentences, a human can easily find the tem-
poral relation between hybrid-theory and meteora.
Therefore, it is a fair ask from LLMs to learn the
temporal relation between entities given such sen-
tences.

Annotations Quality. We ensure the high qual-
ity of TEMP-COFAC resource by applying it to ex-
ecute cross-annotator agreement experiment. To
assess the qualitative measure of factuality, We ran-
domly select a hundred samples of filled patterns
across different subject-relation pairs. The two re-
viewers split the data in half and reviewed the sam-
ples that the other annotator produced during con-
struction. They score the agreements on a scale of
5-point (1-lowest agreement and 5-complete agree-
ment on factuality of filled pattern) Likert scale
(Likert, 1932). Similarly, to give the qualitative
measure for consistency of patterns created, we
again randomly sample hundreds of filled patterns
and pair these positively with another paraphrased
filled pattern sampled randomly from respective
subject-relation. The reviewers repeat the similar
scoring methodology in factuality assessment (1-
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e Hybrid Theory (2000) was certified diamond by
the RIAA in 2005. The band's second
album, Meteora (2003), reached number one on
the Billboard 200 album chart, as did its third
album, Minutes to Midnight (2007). Ref - https://
en.wikipedia.org/wiki/Chester_Bennington

e The sound of later Linkin Park albums would involve
experimentation with classical instruments such
as strings and piano, both of which, along with the
same elements of electronica from Hybrid Theory,
are prominently included in the band's second studio
album, Meteora. Ref- https://en.wikipedia.org/
wiki/Hybrid_Theory

e Formed in 1996, Linkin Park rose to international
fame with their debut studio album, Hybrid
Theory (2000) Their second
album, Meteora (2003), continued the band's
success. The band explored experimental sounds on
their third album, Minutes to Midnight (2007). Ref-
https://en.wikipedia.org/wiki/Linkin_Park

Figure 10: A few extracts from Wikipedia for a subject-
relation pair (linkin park - release-by). We find the
presence of sentences in pre-training data (Wikipedia) of
LLMs, which defines the temporal relationship among
entities associated with the given subject-relation pair.

lowest agreement and 5-complete agreement if the
two patterns are paraphrased). We observe a mean
agreement of 4.84 + 0.39 out of 5 maximum for
factuality and a mean agreement of 4.86 + 0.49 on
similar lines for consistency.

TEMP-COFAC Coverage. We present the
TEMP-COFAC comparison with prior datasets in Ta-
ble 6. Some of the columns data reused from Tan
et al. (2023) comparison of datasets. TEMPREA-
SON is one of the most comprehensive temporal
reasoning datasets, with 21K queries of event-event
probe type in the QA setting. Here are the six types
of entities it has considered during automatic con-
struction from Wikipedia: Person, School, Political
party, Company, Position, and Sports team. A sig-
nificant drawback of TEMP-REASON is that all
the queries are anchored around just person names,
either as a subject or as an object. L.e., Which team
did <subject> play for before/after oj? or Who
was the head of the government of <subject> be-
fore/after oj?.

In comparison, the proposed TEMP-COFAC has
10.1K prefix-style queries and covers eleven di-
verse entity types from several domains: Movies,
Geographical location, Games, Albums, Persons,
Satellites, Software, Books, Vehicles, Songs, and
Elements. Here, the queries are anchored around
eleven entity types via sixty-six diverse subject-
relation pairs, such as Linkin Park released Hybrid
Theory just before ___ or The FIFA U-17 World

Cup was hosted by Canada immediately after __.

The dataset will facilitate the further develop-
ment around various aspects of consistent tempo-
ral reasoning such as consistent event sequencing,
multi-hop sequence-based QA, consistent multi-
reasoning QA, and architectural study of LLMs
through temporal explainability of inconsistent be-
haviour via paraphrased queries.

A.2 Extended Results
A.2.1 ICL Setting Cont.

Here, we continue from the result section
and present results for temporal-factuality and
temporal-consistency in ICT setting (Figure 11).

25. o
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Figure 11: Results for k-shot (k=1,2,3) ICL setup with
LLaMA[13B] in an open vocabulary setup across — (a)
Temp-fact: temporal factuality, (b) Temp-cons: temporal
consistency.

A.2.2 Closed Vocabulary Setting Cont.

We continue from the Section 5 to present the re-
sults for metrics temporal-factuality and temporal-
consistency in closed vocabulary setting in Figure
12. Three-shot with closed vocab setting signifi-
cantly outperforms by attaining maximum scores
of 12.79% and 55.06% for temporal-factuality and
temporal-consistency respectively across various
variants and settings.

A.2.3 Error Analysis Cont.

The positive case is presented in Table 7 where
CoTSeLF improves the temporal consistent factual-
ity over a baseline model. It can be observed that
The temporal consistency-driven factual improve-
ment makes substantial changes both in the model
temporal consistency and factuality.

A.2.4 Probabilistic Space Analysis

We conduct an exploration for the evidences
of improvement in model consistency through
its probabilistic space analysis. The divergence
in probability distribution for the next word
shall be minimal for identical intent paraphrases
to generate consistent value_object for given
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Dataset Format Knowledge Paraphrases Temporal Sequence of Time Size
Source Homogeneously Grouped Coverage
Entities
TEMPCOFAC Prefix-Style:Language Human Annotated/Open Web v v 1526-2022 10.1K
TEMPREASON(Tan et al., 2023) QA:Language Wikipedia/Wikipedia X X 634-2023 52.8K
TEMPLAMA(Dhingra et al., 2022) QA:Language Wikipedia X X 2010-2020 50k
Time-SensitiveQA(Chen et al., 2021) QA:Language Wikipedia/Wikipedia X X 1367-2018 41.2k
StreamingQA(Liska et al., 2022) QA:Language WMT X X 2007-2020 147k
TempQuestions(Jia et al., 2018b) QA:KG Freebase X X NA 1.2k
TimeQuestions(Jia et al., 2021) QA:KG Wikipedia X X NA 16.1k
CronQuestions(Saxena et al., 2021) QA:KG Wikipedia X X 34-2021 410k
Table 6: Comparison of TEMPCOFAC with prior datasets.
S.No. Paraphrases Baseline Model CTSRLDjscrete

1 the academy award for best picture was won by the departed immediately before no country for old men no country for old men

2 the departed won the best picture academy award just before the reader no country for old men

3 the departed won the oscar for best picture right before the curious case of benjamin no country for old men

4 the departed won the best picture academy award succeeded by the curious case of benjamin no country for old men

5 movie the departed won the academy award for best picture right before the curious case of benjamin the artist

6 the departed won the oscar for best picture immediately prior to the curious case of benjamin no country for old men

7 the academy award for best picture was won by the departed soon before the curious case of benjamin no country for old men

8 the departed was awarded the academy award for best picture immediately prior to the curious case of benjamin the departed

Table 7: A comparison of output generated by a baseline model and the discrete variant of CTSRL model for the
sentence completion task. Where, subject-relation pair is "academy award for best picture - win by", key_object is
"the departed," and an expected value_object is "no country for old men." The rest of the settings are similar as in

the case of Table 3.
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Figure 12: A comparison between open and closed (us-
ing restricted candidate set) vocabulary settings across
variants of LLaMA model in zero-shot and in-context
learning setup with k-shot (k=3).

key_object. Similarly, the divergence shall be
wider for different intent paraphrases. We use
positive and agnostic paraphrases as notations
to denote paraphrases with identical intent and
paraphrases with different intent. We apply
random hard negative sampling while considering
the agnostic paraphrases. Here is an example of a

positive and agnostic paraphrases.

Positive paraphrases

P1: hybrid theory was released by linkin
park just before

P2: linkin park released hybrid theory im-
mediately before
Agnostic paraphrases

PI1: hybrid theory was released by linkin
park just before

P2: linkin park released hybrid theory im-
mediately after

The KL divergence metric is widely used to
compare probabilistic distributions. We calculate
the KL divergence of subsequent word’s proba-
bility distribution between positive and agnostic
paraphrases, respectively. The objective is to
maximize the difference between these two scores.
We perform this experiment on all the entities for
randomly selected ten subject-relation from test
data. We randomly sample five pairs of positive
and respective agnostic sentences. The scores
are then averaged over a subject-relation pair,
presented in Table 8. We compare the scores
between the default LLaMA[13B] model and
CTSRL pjserete model.

It is evident from Table 8 that the CoTSeLF im-
proves the average difference between the KL di-
vergence scores of positive paraphrase and agnostic
paraphrase by the value of 0.18 nats. We also ob-
serve a positive change in eight subject-relation
pairs out of a total ten in the experiment. This anal-
ysis helps explain why the CoTSeLF achieves better
temporally-consistent-factuality.
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Subject-Relation Default

CTSRLDjscrete A

(D) PP AP DIt (A) PP AP Ditt (B) A-B

34 1.42 1.52 0.09 1.67 2.10 043 0.34
1 5.01 4.95 -0.06 5.51 5.19 -0.32 -0.26
19 1.99 2.01 0.03 2.77 291 0.14 0.11
42 1.79 1.72 -0.07 2.89 3.36 0.47 0.54
28 3.98 4.07 0.09 4.07 4.6 0.54 0.45
49 1.62 1.64 0.02 2.07 2.13 0.05 0.03
36 1.14 1.29 0.15 2.96 291 -0.05 -0.20
53 3.09 292 -0.17 2.26 2.17 -0.08 0.08
9 221 222 0.02 322 342 0.20 0.18
8 243 2.41 -0.02 2.15 2.65 0.50 0.51
Average 2.47 2.48 0.01 2.96 3.15 0.19 0.18

Table 8: The results present a comparison between the default LLaMA[13B] model and CTSRL p;screte Variant (a
fine-tuned LLaMA[13B] model) of CoTSeLF in probabilistic space. Where PP and AP are the KL divergence score
between the next word’s probability distribution of positive paraphrases and agnostic paraphrases, respectively, Diff
is the score difference between agnostic paraphrases (AP) and positive paraphrases (PP), and A is the difference
between the two models differentials outcome. A positive value of A represents that the CoTSeLF has a broader
separation of divergence in agnostic paraphrases compared to positive paraphrases, reflecting a more consistent

model.
A.2.5 Significance Test for Alpha

We carry out the experiment on significance of pa-
rameter «v used in CTSRL pjserete formulation. The
experimental and data setting is the same as in sec-
tion 5 for MT-IT + CTSRL p;screte formulation. The
results are presented in Figure 13 for three different
values of o (= 0.5, 0.66 and 0.75) across all three
metrics temporal-factuality, temporal-consistency
and temporally-consitent-factuality respectively.
We observe the optimal performance at a=0.66
for temporal-factuality and temporally-consitent-
factuality. Whereas temporal-consistency further
improves as we increase the value of . We have
selected « as 0.66 for the main results presented in
Table 3 based on the outcome of this ablation.

A.2.6 Significance Test for Sample Size

in Section 5, we analyzed sampling efficiency
across temporal variations in entity size and their
corresponding performance, as depicted in Figure
5. Furthermore, an additional experiment was un-
dertaken to examine the relationship between the
distribution of entity types and their respective per-
formance within the test data set. Our findings
indicate a notable negative correlation, quantified
as -0.61, between the distribution of entity types
and temporal-factuality. Likewise, a negative cor-
relation, valued at -0.42, was observed in relation
to the distribution of entity types and temporally-
consistent-factuality. It was discerned that perfor-
mance pertaining to domain-specific entity types,
such as Software, Satellites, and Games, surpassed
that of more general entity types, like Location and
Person, with the data distribution being inversely
skewed towards the latter.

A.3 Discussion on CoTSeLF’s Scalability

In the majority of instances, the solutions that rely
on parameters fine-tuning, regardless of the specific
large language model (LLM) architecture involved,
demonstrate scalability and adaptability to diverse
models without being constrained by the number
of parameters. This ablation study is performed to
investigate the scalability of the proposed solution,
CoTSelLF, specifically its capacity to scale accord-
ing to the model parameter size. For this purpose,
the CoTSeLF is implemented in two different LLMs
configurations, one with a reduced parameter size,
LLaMA[7B] and another with an increased param-
eter size, LLaMA[30B]. However, it was necessary
to adjust the quantization from 8-bit to 4-bit for
LLaMA[30B] and MT-IT’s LoRA adapter both due
to computational resource constraints. The experi-
ment is conducted in same conditions as outlined
in Table 3

The findings from Table 9 reaffirm CoTSeLF’s
efficacy for models across a spectrum of parameter
sizes, inclusive of those with large dimensions. A
pronounced correlation between CoTSeLF’s perfor-
mance and the sizes of the parameters was noted.
Moreover, it was observed that enhancements at-
tributed to CoTSeLF are significant across all eval-
uated metrics with LLaMA[30@B] despite an incre-
ment in quantization level.

A.4 Discussion on Commercial LLMs

This section presents the evaluation results for
two prominent commercial LLMs, GPT-4 and
Claude-3. We conducted this experiment with a
limited randomly selected 100 samples from the
TEMP-COFAC test set due to financial limitations.
We set up the probe in zero-shot, where the task
is to complete a sentence with the correct phrase.
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Figure 13: The results present the significance of a parameter alpha («) in the formulation of CTSRL p;screte aCTOSS
three metrics: (a) temporal factuality, (b) temporal consistency, and (c) temporally consistent factuality respectively
in percentages. The rest of the settings for this experiment are the same as in the case of Table 3.

Model [Parameter Size] [Quantization] Temp-fact Temp-cons Temp-cons-fact
LLaMA[7B][8-bit] 8.10 24.07 0.00
LLaMA[13B][8-bit] 18.72 36.88 4.34
LLaMA[30B][4-bit] 23.05 46.55 6.04

Table 9: CoTSeLF’s (CTSRL p;screte) results across various parameter sizes of LLaMA.

To this purpose, an instruction (Instruction: "com-
plete the given sentence with the correct phrase")
is provided along with the input to the model. Sub-
sequently, we provide a concise examination of the
potential for employing CoTSeLF within the realm
of commercial LLMs applications.

A.4.1 GPT-4 Evaluation Results

We use 'GPT-4-0125-preview’ version of GPT-4
for this experiment. In a zero-shot setting, the
temporal-factuality stands at 36.00% (Table 10).
Trained with a trillion of parameters, in abso-
lute terms, the temporal-factuality in GPT-4 is not
very impressive, and requires interventions such
as CoTSeLF to improve it. An example of each of
the positive and negative responses is mentioned in
Table 11.

A.4.2 Claude-3 Evaluation Results

In conducting a parallel investigation with another
leading commercial LLM, Claude-3, under identi-
cal conditions, we operationalized the ’"CLAUDE-
3-OPUS-20240229’ version for this assessment.
The temporal-factuality of Claude-3 is noted at
20.00% (Table 10), marking a notable decline in
performance relative to GPT-4.

Due to a minimal sample set, we are short of re-
porting either the temporally-consistent-factuality
or temporal-consistency for this test. Metrics like
temporal consistency and temporally consistent fac-
tuality require a sufficient number of pair of sam-
ples for a subject-relation to calculate those. The

other factors are temporal direction and entity pairs,
which are to be considered while calculating. The
100 individual samples might be enough to gauge
the preliminary assessment of temporal factuality
but statistically insufficient for reporting temporally
consistent factuality.

Model Settings Temp-fact
GPT-4 GPT-4-0125-preview 36.00
Claude-3  Claude-3-Opus-20240229 20.00

Table 10: Temporal factuality (in %) of two commer-
cial LLMs, GPT-4 and Claude-3 through the minimal
sample set.

A.4.3 CoTSeLF’s Applicability

Applicability across commercial LLMs. Com-
mercial model’s such as GPT-4 and Claude-3’s
temporal-factuality remains suboptimal, thus neces-
sitating strategies like CoTSeLF or similar enhance-
ments to augment its remporal-factuality. CoTSeLF
advances an RL-based fine-tuning methodology
that refines the model’s parameters via a custom-
made fine-tuning procedure. Almost universally,
advancements in parameter fine-tuning methodolo-
gies are contingent upon access to the model’s
architecture. GPT-4 and Claude-3, by restrict-
ing direct architectural access, necessitate that
such methodologies could demonstrate their effec-
tiveness only on open-source models. Thus, we
could not assess CoTSelLF’s efficacy on GPT-4 or
Claude-3 models due to the inaccessibility of its
architecture for open fine-tuning.
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S.No. Prompt

Correct Answer GPT-4 Response

1 Android Gingerbread was released by google immediately after android Froyo Froyo

2 Indian band Euphoria released album Sharnagat right after album Item

MeHFuz

Table 11: An example of each of the positive and negative response from GPT-4 in zero-shot setting.

Considering that GPT-4 adhered to a decoder-
based transformer architecture (up to GPT-2) be-
fore the later versions transitioned to a commer-
cial model, there is an intense anticipation that
CoTSelLF, particularly CTSRL, will serve as an effi-
cacious approach to augmenting the closed-source
model’s capabilities in improving temporally-
consistent-factuality as in case of various versions
of LLaMA model under experimentation.

An alternative approach involves examining
methods that do not necessitate access to the
model’s architecture for parameter updates, ac-
knowledging that typically, strategies not involving
parameter modifications exhibit suboptimal perfor-
mance compared to those that do, like CoTSeLF.
Future research should focus on enhancing the
temporally-consistent factuality of commercial
LLMs through techniques that might bypass the
need for gradient updates.

Applicability across domains. The establish-
ment of consistent temporal reasoning capabilities
is poised to profoundly influence their applicabil-
ity across a spectrum of complex fields, includ-
ing healthcare and the legal sector. Specifically,
within the legal domain, the temporally reliant na-
ture of case precedents and statutory amendments
demands the reliable and precise retrieval of in-
formation. LLMs must avoid offering divergent
interpretations of precedents for specific case types
to prevent severe repercussions and undermine trust
in the judicial system. The precedence of rules, ar-
ticles, and cases, being temporally bound, demands
their consistent retrieval when employing LLMs in
legal settings. Similarly, in healthcare, the prog-
nostication of diseases is time-sensitive, mandating
consistent and precise forecasts for diagnosing and
formulating treatment plans, leading to enhanced
trust in the usage of Al-based medical solutions.
Techniques like CoTSeLF could be tailored to meet
such requirements.

A.5 Hyperparameters

All codes were composed utilizing PyTorch. We
utilized the Huggingface™ repository for stacking
the open-source LLMs. The implementation of
RL is carried out through trlX, a python-based

*https ://huggingface.co/

library (Castricato et al., 2023). A PEFT-based
method LoRA with 8-bit quantization is used for
both instruction-tuned and PPO-based RL models.
We apply minimal pre-processing on generated out-
puts from LLMs such as filtering of articles or spe-
cial characters (at max up to one word) before re-
trieving the value_object. The maximum sequence
length of 256 is used across all experiments. An
NVIDIA A100 GPU (80 GB)" was used to train
the model.

*https: //www.nvidia.com/en-in/data-center/
alee/
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