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Abstract

The Matthew effect is a big challenge in Rec-
ommender Systems (RSs), where popular items
tend to receive increasing attention, while less
popular ones are often overlooked, perpetuating
existing disparities. Although many existing
methods attempt to mitigate Matthew effect in
the static or quasi-static recommendation sce-
narios, such issue will be more pronounced
as users engage with the system over time.
To this end, we propose a novel framework,
Multi-Hypergraph Boosted Multi-Interest Self-
Supervised Learning for Conversational Rec-
ommendation (HiCore), aiming to address
Matthew effect in the Conversational Recom-
mender System (CRS) involving the dynamic
user-system feedback loop. It devotes to learn
multi-level user interests by building a set of
hypergraphs (i.e., item-, entity-, word-oriented
multiple-channel hypergraphs) to alleviate the
Matthew effec. Extensive experiments on four
CRS-based datasets showcase that HiCore at-
tains a new state-of-the-art performance, un-
derscoring its superiority in mitigating the
Matthew effect effectively. Our code is avail-
able at https://github.com/zysensmile/HiCore.

1 Introduction

Engaging users in ongoing conversations for
personalized recommendations, Conversational
Recommendation Systems (CRSs) (Qin et al.,
2023; Mishra et al., 2023) have become a prevalent
strategy utilized in diverse fields (Liu et al., 2023;
Epure and Hennequin, 2023). However, CRSs
often face a big challenge known as Matthew effect
(Liu and Huang, 2021), captured by the adage "the
privileged gain more privilege, while the under-
privileged fall further behind." This observation
underscores that well-received items or categories
in past records garner heightened visibility in
future suggestions, whereas less preferred ones
frequently face neglect or marginalization.

†Corresponding author.

Lately, a multitude of studies have focused
on investigating the Matthew effect in relatively
unchanging offline recommendation scenarios
(Liu and Huang, 2021; Anderson et al., 2020),
identifying two root causes for its occurrence. One
cause (Liang et al., 2021; Zheng et al., 2021a;
Hansen et al., 2021; Anderson et al., 2020) is
the heightened vulnerability of individuals with
narrower and uniform preferences or interests
to succumb to the pervasive influence of the
Matthew effect. This susceptibility often stems
from a tendency towards familiarity and comfort,
leading to a reinforcement of existing patterns
and a limited exploration of diverse alternatives.
Another cause (Zheng et al., 2021b) arises from
the pervasive favoritism towards mainstream items,
resulting in a perpetual reinforcement of their
prominence, while lesser-known alternatives linger
in the shadows. This bias towards popular choices
not only perpetuates existing trends but also limits
the discoverability of niche or underappreciated
options. Thus, the amplification of visibility for
widely favored items can overshadow the potential
value and diversity offered by less popular but
equally deserving alternatives.

Despite their effectiveness, most existing
methods still suffer from two major limitations. 1)
Interactive Strategy. While many methods have
offered valuable insights into the Matthew effect,
they often overlook the adverse effects originating
from the dynamic user-system feedback loop
(Zhang et al., 2021), as they primarily focus on
mitigating the Matthew effect in relatively stable
offline recommendation settings. In fact, the
Matthew effect can intensify as users interact more
actively with the system over time, potentially
exacerbating concerns such as echo chambers
(Ge et al., 2020) and filter bubbles (Steck, 2018).
Hence, it is important to address the Matthew effect
in the CRS. 2) Interest Exploration. Considering
that the root cause of the Matthew effect lies in
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the confinement of user interests (Zheng et al.,
2021a; Liang et al., 2021; Hansen et al., 2021;
Anderson et al., 2020), most existing methods
focus on leveraging hypergraphs to unveil complex
high-order user relationship patterns for exploring
user interests. However, these hypergraphs often
remain single-channel, constraining their capacity
to capture diverse user relation patterns since each
hypergraph can only represent a specific type of
user patterns. Moreover, these single-channel
hypergraphs may risk evolving into traditional
Knowledge Graphs (KGs) due to the scarcity of
user-item interaction data. Thus, the construction
of multi-channel hypergraphs is paramount for
exploring multi-level user interests.

To address these limitations, we propose the
novel framework, Multi-Hypergraph Boosted
Multi-Interest Self-Supervised Learning for
Conversational Recommendation (HiCore), which
aims to mitigate the negative impact of Matthew
effect when users engage with the system over time
in the CRS. It is comprised of Multi-Hypergraph
Boosted Multi-Interest Self-Supervised Learning
and Interest-Boosted CRS. The former devotes
to construct multi-hypergraph (i.e., item-oriented,
entity-oriented, and word-oriented triple-channel
hypergraphs) to learn multi-level user interests (i.e.,
item-level, entity-level, word-level triple-channel
interests), where triple channels contain the group,
joint, and purchase channels. The latter aims to
utilize the multi-level interests to enhance both
conversation and recommendation tasks when
users chat with system over time. Concretely,
multi-level user interests are used to effectively
generate next utterances in the conversational task,
and accurately predict users’ interested items in
the recommendation task. Extensive experimental
results on four benchmarks show that HiCore
achieves a new state-of-the-art performance
compared all the baselines, and the effectiveness
of mitigating Matthew effect in the CRS.

Overall, our main contributions are included:
• To the best of our knowledge, this is the first work

to build multi-hypergraph from triple-channel
settings for learning multi-interest to mitigate
Matthew effect in the CRS.

• We proposed a novel end-to-end framework
HiCore, aiming to use multi-interest enhance
both recommendation and conversation tasks.

• Quantitative and qualitative experimental results
show the effectiveness of HiCore and the superi-
ority of HiCore in mitigating Matthew effect.

2 Related Work

2.1 Matthew Effect in Recommendation

The Matthew effect poses a formidable challenge
in recommendation systems. To combat this issue,
there are two primary research lines. One line of re-
search focuses on understanding a diverse range of
user interests to enhance recommendation diversifi-
cation (Anderson et al., 2020; Hansen et al., 2021;
Liang et al., 2021; Zheng et al., 2021a). The other
line of research (Zheng et al., 2021b) is dedicated
to mitigating popularity bias to ensure a balanced
exposure of items across various categories. For ex-
ample, Wang et al. (Wang et al., 2019) conducted
a meticulous quantitative analysis, providing valu-
able insights into the quantitative characteristics
of the Matthew effect in collaborative-based rec-
ommender systems. Liu et al. (Liu and Huang,
2021) have confirmed the presence and impact of
the Matthew effect within the intricate algorithms
of YouTube’s recommendation system. However,
these methods primarily concentrate on exploring
the Matthew effect in static recommendation envi-
ronments, overlooking the crucial interplay of the
user-system feedback loop.

2.2 Conversational Recommender System

Conversational Recommendation System aims to
uncover users’ genuine intentions and interests
through natural language dialogues, thereby offer-
ing top-notch recommendations to users. Currently,
CRS-based methods can be categorized into two
main groups. 1) Attribute-based CRS (Deng et al.,
2021a; Lei et al., 2020a,b; Ren et al., 2021; Xu
et al., 2021), which seeks to delve into user in-
terests by posing queries about items or their at-
tributes. However, this approach primarily relies
on predefined templates for response generation,
often falling short in producing fluent, human-like
natural language expressions. 2) Generated-based
CRS (Chen et al., 2019; Deng et al., 2023; Li et al.,
2022; Zhou et al., 2020a, 2022; Shang et al., 2023),
which can address the shortcomings of attribute-
centric CRS by utilizing the Seq2Seq architecture
(Vaswani et al., 2017a) to integrate a conversa-
tion component and a recommendation component,
resulting in the creation of smooth and coherent
human-like responses. Despite their effectiveness,
they face challenges in grasping the varied inter-
ests of users because of the restricted and scarce
character of user-item interaction data.
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Figure 1: Overview of our HiCore framework. It consists of Multi-Hypergraph Boosted Multi-Interest Self-
Supervised Learning and Interested-Boosted CRS. The former aims to learn multi-level user interests, while the
latter devotes to generate responses in the conversation module and predict items in the recommendation module.

3 HiCore

Most existing methods (Hussein et al., 2020; Liu
et al., 2021a; Nguyen et al., 2014) have consistently
revealed that individuals with constrained interests
are greatly impacted by Matthew effect. Thus,
we propose a novel framework, HiCore, which
is comprised of Multi-Hypergraph Boosted Multi-
Interest Self-Supervised Learning and Interest-
Boosted CRS. The overall pipeline of the proposed
HiCore is illustrated in Fig.1.

3.1 Multi-Hypergraph Boosted Multi-Interest
Self-Supervised Learning

In this section, we will establish multi-hypergraph
to learn multi-level user interests to mitigate
Matthew effect in the CRS.

3.1.1 Multi-Hypergraph Boosts Multi-Interest
Instead of linking only two nodes per edge as in
traditional KGs, hypergraphs extend the notion of
edges to connect more than two nodes. By utiliz-
ing diverse hypergraphs to encode various high-
order user relation patterns, we construct multiple
knowledge-oriented triple-channel hypergraphs.
Item-oriented triple-channel Hypergraphs. We
first build item-oriented hypergraphs from triple
channels, i.e., ‘Group Channel (g)’, ‘Joint Chan-
nel (j)’ , and ‘Purchase Channel (p)’ via the Motif

Figure 2: Triangle motifs used in our proposed HiCore.

(Milo et al., 2002; Yu et al., 2021), a commonly
utilized tool for capturing complex local structures
involving multiple nodes, as illustrated in Fig.2.

Group-channel hypergraph. Group-channel
hypergraphs aim to analyze users’ social relations
to unveil the dynamics among individuals based
on their shared interests, preferences, and char-
acteristics. Understanding group preferences not
only consolidates individual tastes but also facil-
itates collective decisions that benefit the entire
group. Formally, we utilize a set of triangular mo-
tifs (Milo et al., 2002; Yu et al., 2021) to build the
item-oriented group-channel hypergraphs G(i)

g as:

G(i)
g = (V(i)

g ,N (i)
g ,A

(i)

Mg
k
). (1)
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Here V(i)
g represents the set of items derived

from the historical conversations, while N (i)
g =

{M g
k|1 ≤ k ≤ 7} denotes the collection of hy-

peredges, with each hyperedge representing an
occurrence of the specified motif M g

k in Fig.2.
A

(i)

Mg
k
∈ |V(i)

g | × |N (i)
g | is the group-motif-induced

adjacency matrices. Firstly, we need to define the
matrix computation of each type of motif. Let H(i)

k

be the matrix computation of the motif M g
k, then

we can obtain:




H
(i)
1 = (ITJ)⊗ IT + (JI)⊗ I + (IIT )⊗ J ,

H
(i)
2 = (IJ)⊗ I + (JIT )⊗ IT + (IT I)⊗ J ,

H
(i)
3 = (II)⊗ I + (IIT )⊗ I + (IT I)⊗ I,

H
(i)
4 = (JJ)⊗ J ,

H
(i)
5 = (JJ)⊗ I + (JI)⊗ J + (I · J)⊗ J ,

H
(i)
6 = (JI)⊗ IT + (IJ)⊗ IT + (II)⊗ J ,

H
(i)
7 = (II)⊗ IT ,

(2)
where ⊗ is the element-wise product, S denote
the relation matrix (Yu et al., 2021). J = S ⊗ S,
and I = S − J specify the adjacency matrices of
the bidirectional and unidirectional social networks
(i.e., group motif), respectively. Then, the group-
motif-induced adjacency matrices A(i)

Mg
k

is:

A
(i)

Mg
k
=





H
(i)
1 , if M g

1,

H
(i)
2 , if M g

2,

H
(i)
3 + (H

(i)
5 )T , if M g

3,

H
(i)
4 , if M g

4,

H
(i)
5 + (H

(i)
3 )T , if M g

5,

H
(i)
6 + (H

(i)
2 )T , if M g

6,

H
(i)
7 + (H

(i)
1 )T , if M g

7.

(3)

If (A
(i)

Mg
k
)n,r = 1, it signifies that the node

n and the node r co-occur in a single in-
stance of M g

k. When two nodes appear in
multiple instances, it turns to be (A

(i)

Mg
k
)n,r =

#(n, r occur in the same instance of M g
k).

Joint-channel hypergraph. The joint channel
reflects the scenario of shared behaviors among
friends in a social network. When friends purchase
the same items, it not only suggests similarities in
tastes and interests but also hints at deeper levels of
interaction and trust. This phenomenon of "friends

purchasing the same item" may facilitate informa-
tion dissemination and interaction within the social
network, strengthening social relationships, and to
some extent, reflecting influence and collective be-
havior within the social network. Therefore, by
identifying and analyzing the joint motifs, the item-
oriented joint-channel hypergraph G(i)

j is:





G(i)
j = (V(i)

j ,N (i)
j ,A

(i)

Mj
k

),

H
(i)
8 = (RRT )⊗ J ,

H
(i)
9 = (RRT )⊗ I,

A
(i)

Mj
k

= H
(i)
8 , if M j

8,

A
(i)

Mj
k

= H
(i)
9 + [H

(i)
9 ]T , if M j

9,

(4)

where V(i)
j , and N (i)

j = {M j
k |8 ≤ k ≤ 9} denote

the item set, and the hyperedge set, respectively.
Each hyperedge is induced from each type of joint
motif, depicted in Fig.2. R is a binary matrix that
records user-item interactions, and A

(i)

Mj
k

denotes

the joint-motif-induced adjacency matrices.
Purchase-channel hypergraph. Additionally,

we should also take into account users who do not
have explicit social connections. Therefore, the
analysis is non-exclusive and delineates the im-
plicit higher-order social relationships among users
who lack direct social ties but still purchase the
same items. By considering these users without
overt social links, we can uncover hidden patterns
of social influence and affiliation that transcend tra-
ditional network structures. Thus, the item-oriented
purchase-channel hypergraph G(i)

p can be induced
from the purchase motif Mp

10 as follows:

G(i)
p = (V(i)

p ,N (i)
p ,A

(i)

Mp
k
),

A
(i)

Mp
k
= H

(i)
10 = RRT , if Mp

10,
(5)

here V(i)
p and N (i)

p = {Mp
k |k = 10} are the item

set and hyperedge set, respectively. Specifically,
the hyperedge set, depicted in Fig.2. A(i)

Mp
k

is the
purchase-motif-induced adjacency matrices.
Entity-oriented triple-channel hypergraphs. To
tackle the sparsity and constraints inherent in his-
torical user-item interaction data, we leverage the
rich DBpedia KG (Auer et al., 2007) to build an
entity-oriented hypergraph. More precisely, we
identify individual items referenced in historical
conversations as entities and their k-hop neighbors

1458



to construct each hyperedge. This method enables
us to capture shared semantic nuances among the
broader network of neighbors. Similar to item-
oriented triple-channel hypergraphs, we build the
entity-oriented hypergraphs from triple channel set-
ting. Formally, the entity-oriented hypergraphs
G(e)

c from triple-channel c can be given as:

G(e)
c = (V(e)

c ,N (e)
c ,A

(e)
Mc

k
). (6)

Here c ∈ {g, j, p} represents triple channels (i.e.,
group, joint, and purchase channel). V(e)

c denotes
the entities from triple-channel setting. These enti-
ties are k-hop neighbors extracted from the histor-
ical conversations. N (e)

c means the hyperedge set
induced from different motifs. Each hyperedge is
an instance of the Motif. A(e)

Mc
k

represents the group-
channel, joint-channel, and purchase-channel adja-
cency matrices, they are defined as Eq.(3), Eq.(4),
and Eq.(5), respectively.
Word-oriented triple-channel hypergraphs. The
significance of keywords exchanged during con-
versations is paramount in grasping users’ require-
ments. By scrutinizing notable words, we can pin-
point specific inclinations, a critical aspect in mod-
eling an array of user tastes. To realize this ob-
jective, we construct a lexeme-centric hypergraph
utilizing the lexicon-focused ConceptNet (Speer
et al., 2017) KG to unveil semantic associations
such as synonymy, antonyms, and co-occurrence.
Based on these analysis, the word-oriented hyper-
graphs from group-, joint-, and purchase-channel
can be expressed as:

G(w)
c = (V(w)

c ,N (w)
c ,A

(w)
Mc

k
), (7)

where V(w)
c is the words from k-hop neighbors.

N (w)
c denotes the hyperedge set from different mo-

tifs, including group, joint, purchase motifs. A(w)
Mc

k

are the word-oriented adjacency matrices induced
from triple channels, illustrated in Eq.(3) ∼ Eq.(5).

3.1.2 Multi-Interest Self-Supervised Learning
After constructing a series of hypergraphs from
triple-channel setting, we will construct multi-level
user interests via the hypergraph convolution net-
work (Yu et al., 2021), which can be written as:

P (l+1)
c = D−1

c KcL
−1
c KT

c P
(l)
c = D̂

−1

c A(i)
c P (l)

c ,
(8)

where P
(l)
c and P

(l+1)
c represent the output of the

l-th and (l+1)-th layers, respectively. Specifically,

the base user embedding is P
(0)
c = f c

gate(P
(0)),

and f c
gate(·) is self-gating units (SGUs) to control

the information flow to different channel from the
base user embedding P (0). Dc is the degree matrix
of Ac, which is the summation of the motifs with-
out considering self-connections (Yu et al., 2021).
In terms of the group motifs, it can be defined
as A

(i)
c =

∑7
k=1A

(i)
Mk

, in terms of joint motifs,

A
(i)
c = A

(i)
M8

+ A
(i)
M9

, and from the point of the

purchase motifs, A(i)
c = A

(i)
M10

− (A
(i)
M8

+A
(i)
M9

).
Based on these analysis, the item-level interests
from triple channel setting (i.e., X(i)

g , X(i)
j , X(i)

p ),
the entity-level interests from triple channel set-
ting (i.e., X(e)

g , X(e)
j , X(e)

p ), the word-level inter-

ests from triple channel setting (i.e., X(w)
g , X(w)

j ,

X
(w)
p ) can be defined as:

X(h)
g = D̂

−1

g (
7∑

k=1

A
(h)

Mg
k
)P (L)

g ;

X
(h)
j = D̂

−1

j (A
(h)

Mj
8

+A
(h)

Mj
9

)P
(L)
j ;

X(h)
p = D̂

−1

p (A
(h)

Mp
10
− (A

(h)

Mj
8

+A
(h)

Mj
9

))P (L)
p .

(9)
Here h ∈ {i, e, w}, and L is the last hypergraph
convolution layer. Then, we adopt the attention
network Atta(·) and graph convolution GConv(·)
to learn final multi-interest Xm as:

Xi = GConv(Atta(X(i)
g ;X

(i)
j ;X(i)

p )),

Xe = GConv(Atta(X(e)
g ;X

(e)
j ;X(e)

p )),

Xw = GConv(AttaX(w)
g ;X

(w)
j ;X(w)

p )),

Xm = Atta(Xi;Xe;Xw).

(10)

Here ; is the concatenation operation. Finally, we
use InfoNCE (Yu et al., 2021) as our learning ob-
jective to conduct the self-supervised learning as:

Ls =−
∑

h

{∑

u∈U
logσ(f(Xm), zhu)− f(Xm, ẑhu))

+
∑

u∈U
logσ(f(zhu ,kh)− f(ẑhu ,kh)

}
.

(11)
Here zhu = fh

gate(fs(Xh;ph
u), fs(·) is the sum op-

eration, ẑhu is the negative example by shuffling
both rows and columns of zhu , and h is defined as
Eq.(9). f(·) ∈ Rd×d serves as the discriminator,
evaluating the alignment between two input vectors.
Specifically, kh = fout(Zh), where Zh and Xm

are ground truths for each other, and fout(·) aims
to perform permutation invariant (Yu et al., 2021).
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3.2 Interest-Boosted CRS
To mitigate Matthew effect in the CRS, we employ
multi-interest Xm to enhance both recommenda-
tion and conversation tasks.

3.2.1 Recommendation Module
Recommendation module is to precisely forecast
items for users via dynamic natural conversations.
To improve recommendation diversity, we use Xm

to select target items as Prec = Xm × V cand,
where V cand is the embeddings of all candidate
items. Finally, we adopt cross-entropy loss (Shang
et al., 2023) to learn the recommendation task:

Lrec = −
B∑

b=1

|I|∑

a=1

{
− (1− Yab) · log(1− P(b)

rec(a))

+ Yab · log(P(b)
rec(a))

}
,

(12)
where Yab ∈ {0, 1}, B, and |I| are the target label,
mini-batch size, the size of item set, respectively.

3.2.2 Conversation Module
Conversation module centers on crafting appropri-
ate dialogue responses. Next, we use multi-interest
Xm to fed into Transformer MHA(·) to produce
informative responses. Suppose Yn−1 is the output
of the last time unit, then the current one Yn is:

An
0 = MHA(Yn−1,Yn−1,Yn−1),

An
1 = MHA(An

0 ,Xm,Xm),

An
2 = MHA(An

1 ,Xcur,Xcur),

An
3 = MHA(An

1 ,Xhis,Xhis),

An
4 = β ·An

2 + (1− β) ·An
3 ,

Yn = FFN(An
4 ),

(13)

where Xcur and Xhis are the current and historical
conversations, respectively. β is hyper-parameters
to control the information flow. Then, we use cross-
entropy loss to learn the conversation task:

Lconv = −
B∑

b=1

T∑

t=1

log(Pconv(st|{st−1})),

Pconv(·) = p1(st|Yi) + p2(st|Prec) + p3(st|Prec),

(14)
where Pconv(·) is the probability of the next token
when given a sequence {st−1} = s1, s2, · · · , st−1,
where st signifies the t-th utterance. p1(·), p2(·),
and p3(·) denote the vocabulary probability, vocab-
ulary bias, and copy probability, respectively. T is
the truncated length of utterances.

3.3 Challenges Discussion

Throughout the developmental journey of hyper-
graphs, we surmounted several significant chal-
lenges, elaborated upon below:

1) Hypergraph Construction Challenge: During
the project’s initial stages, the real-time construc-
tion of hypergraphs presented a bottleneck, result-
ing in delays. Through the strategic repositioning
of this operation to the data preprocessing phase,
we adeptly extracted essential subgraphs, leading
to a noteworthy reduction in training time. This
adjustment enhanced efficiency, streamlined pro-
cesses, and improved performance.

2) Graph Storage Challenge: The transition to
sparse graph storage mechanisms is pivotal in en-
hancing efficiency, streamlining computation time,
and optimizing memory utilization. Embracing this
shift not only boosts the system’s performance but
also establishes a robust foundation for scalable
and resource-efficient operations.

3) Model Training Challenge: With the emer-
gence of a series of hypergraphs, optimizing the
efficiency of model training becomes paramount.
Consequently, we redefined our strategy by dispers-
ing hypergraphs across multiple computing cards,
enabling parallel computation and achieving a sig-
nificant boost in the model’s runtime speed.

4 Experiments and Analyses

To fully evaluate the proposed HiCore, we conduct
experiments to answer the following questions:

• RQ1: How does HiCore perform compared with
all baselines in the recommendation task?

• RQ2: How does HiCore perform compared with
all baselines in the conversation task?

• RQ3: How does HiCore mitigate Matthew effect
in the CRS?

• RQ4: How do parameters affect our HiCore?
• RQ5: How do different hypergraphs contribute to

the performance?

4.1 Experimental Protocol

Datasets. We assess the effectiveness of our pro-
posed HiCore through comprehensive evaluations
on four CRS-based benchmarks: REDIAL (Li
et al., 2018b), TG-REDIAL (Zhou et al., 2020b),
OpenDialKG (Moon et al., 2019), and DuRecDial
(Liu et al., 2021b). The REDIAL dataset com-
prises 11,348 dialogues involving 956 users and
6,924 items, while the TG-REDIAL dataset en-
compasses 10,000 dialogues with 1,482 users and
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Model REDIAL TG-REDIAL
R@10 R@50 M@10 M@50 N@10 N@50 R@10 R@50 M@10 M@50 N@10 N@50

TextCNN 0.0644 0.1821 0.0235 0.0285 0.0328 0.0580 0.0097 0.0208 0.0040 0.0045 0.0053 0.0077
SASRec 0.1117 0.2329 0.0540 0.0593 0.0674 0.0936 0.0043 0.0178 0.0011 0.0017 0.0019 0.0047
BERT4Rec 0.1285 0.3032 0.0475 0.0555 0.0663 0.1045 0.0043 0.0226 0.0013 0.0020 0.0020 0.0058
KGSF 0.1785 0.3690 0.0705 0.0796 0.0956 0.1379 0.0215 0.0643 0.0069 0.0087 0.0103 0.0194
TG-ReDial 0.1679 0.3327 0.0694 0.0771 0.0924 0.1286 0.0110 0.0174 0.0048 0.0050 0.0062 0.0076
ReDial 0.1705 0.3077 0.0677 0.0738 0.0925 0.1222 0.0038 0.0165 0.0012 0.0017 0.0018 0.0045
KBRD 0.1796 0.3421 0.0722 0.0800 0.0972 0.1333 0.0201 0.0501 0.0077 0.0090 0.0106 0.0171
BART 0.1693 0.3783 0.0646 0.0744 0.0888 0.1350 0.0047 0.0187 0.0012 0.0017 0.0020 0.0048
BERT 0.1608 0.3525 0.0597 0.0688 0.0831 0.1255 0.0040 0.0194 0.0011 0.0017 0.0018 0.0050
XLNet 0.1569 0.3590 0.0583 0.0677 0.0811 0.1255 0.0040 0.0187 0.0011 0.0017 0.0017 0.0048
KGConvRec 0.1819 0.3587 0.0711 0.0794 0.0969 0.1358 0.0220 0.0524 0.0088 0.0102 0.0119 0.0185
MHIM 0.1966 0.3832 0.0742 0.0830 0.1027 0.1440 0.0300 0.0783 0.0108 0.0129 0.0152 0.0256
HiCore* 0.2192 0.4163 0.0775 0.0874 0.1107 0.1558 0.0270 0.0769 0.0880 0.1074 0.0152 0.0225

Table 1: Recommendation results on REDIAL and TG-REDIAL datasets. * indicates statistically significant
improvement (p < 0.05) over all baselines.

33,834 items. To provide a holistic evaluation
of our proposed methodology, we integrate two
cross-domain datasets, OpenDialKG and DuRec-
Dial, which cover a wide array of domains includ-
ing movies, music, books, sports, restaurants, news,
and culinary experiences.
Baselines. We compared our HiCore with the fol-
lowing state-of-the-art methods TextCNN (Kim,
2014), SASRec (Kang and McAuley, 2018),
BERT4Rec (Sun et al., 2019), KBRD (Chen et al.,
2019), Trans. (Vaswani et al., 2017b), ReDial (Li
et al., 2018a), KGSF (Zhou et al., 2020a), KG-
ConvRec (Sarkar et al., 2020), XLNet (Yang et al.,
2019), BART (Lewis et al., 2020), BERT (Devlin
et al., 2019), DialoGPT (Zhang et al., 2020), Uni-
CRS (Deng et al., 2021b), GPT-3 (Brown et al.,
2020), C2-CRS (Zhou et al., 2022), LOT-CRS
(Zhao et al., 2023), MHIM (Shang et al., 2023),
and HyCoRec (Zheng et al., 2024).

4.2 Recommendation Performance (RQ1)

In accordance with (Shang et al., 2023), we uti-
lize Recall@K (R@K), MRR@K (M@K), and
NDCG@K (N@K) (K=1, 10, 50) to assess the rec-
ommendation task. Analyzing the results presented
in Table 1 and Table 2, it is evident that our pro-
posed method, HiCore, consistently outperforms
all the comparison baselines.

There exist multiple crucial facets contribut-
ing to the advancement of our proposed HiCore
method: (a) Diversification of hypergraphs: we
introduced a diverse set of hypergraphs, including
item-oriented, entity-oriented, and word-oriented
hypergraphs. This expansion aims to go beyond
the traditional pairwise interactions, broadening

Model OpenDialKG DuRecDial
R@1 R@10 R@1 R@10

KBRD 0.1448 0.3162 0.0618 0.3971
KGSF 0.0626 0.1757 0.1395 0.4367
ReDial 0.0008 0.0134 0.0005 0.0336
TGReDial 0.2149 0.4035 0.0956 0.4882
HyCoRec 0.2742 0.4490 0.1279 0.4750
HiCore* 0.2628 0.4526 0.1735 0.5471

Model OpenDialKG DuRecDial
Dist-2 Dist-3 Dist-2 Dist-3

KBRD 0.3192 1.7660 0.5180 1.5500
KGSF 0.1687 0.5387 0.1389 0.3862
ReDial 0.1579 0.5808 0.1095 0.3981
TGReDial 0.4836 2.1430 0.5453 2.0030
HyCoRec 2.8190 4.7710 1.0820 2.4440
HiCore* 2.8430 4.8120 1.0940 2.4280

Table 2: Results on both recommendation and conver-
sation tasks on OpenDialKG and DuRecDial datasets
involving various domains. * indicates statistically sig-
nificant improvement (p < 0.05) over all baselines.

the scope of user interest modeling by incorpo-
rating interactions among multiple nodes. (b)
Exploration of hypergraph configurations: mov-
ing beyond the conventional triple-channel model,
we delved into various hypergraph configurations
like group-channel, joint-channel, and purchase-
channel. These configurations were designed to
cater not only to social connections but also indi-
vidual preferences, enhancing the system’s adapt-
ability. (c) Integration of multi-level user interests:
transitioning from the triple-channel structure, we
integrated these hypergraphs to capture multi-level
user interests. This strategic shift helps alleviate the
Matthew effect in the CRS involving the dynamic
user-system feedback loop. This comprehensive
approach highlights the innovation and adaptabil-
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Model REDIAL TG-REDIAL
Dist-2 Dist-3 Dist-4 Dist-2 Dist-3 Dist-4

ReDial 0.0214 0.0659 0.1333 0.2178 0.5136 0.7960
Trans. 0.0538 0.1574 0.2696 0.2362 0.7063 1.1800
KGSF 0.0572 0.2483 0.4349 0.3891 0.8868 1.3337
KBRD 0.0765 0.3344 0.6100 0.8013 1.7840 2.5977
DialoGPT 0.3542 0.6209 0.9482 1.1881 2.4269 3.9824
GPT-3 0.3604 0.6399 0.9511 1.2255 2.5713 4.0713
UniCRS 0.2464 0.4273 0.5290 0.6252 2.2352 2.5194
C2-CRS 0.2623 0.3891 0.6202 0.5235 1.9961 2.9236
LOT-CRS 0.3312 0.6155 0.9248 0.9287 2.4880 3.4972
MHIM 0.3278 0.6204 0.9629 1.1100 2.3520 3.8200
HiCore* 0.5871 1.1170 1.7500 2.8610 5.7440 8.4160
Table 3: Conversation results on REDIAL and TG-
REDIAL datasets. * indicates statistically significant
improvement (p < 0.05) over all baselines.

ity of HiCore in addressing the intricacies of user
interest modeling and enhancing recommendation
system performance.

4.3 Conversational Performance (RQ2)

For the conversation task, we use Distinct n-gram
(Dist-n) (Shang et al., 2023) (n=2,3,4) to estimate
the conversation task. Table 2 and Table 3 indicate
a significant performance superiority of our HiCore.
For example, HiCore gains 123.83%, 138.27%,
77.26%, 65.75%, 62.90%, and 79.10% improve-
ments on Dist-2 against the strong baselines in-
cluding, C2-CRS, UniCRS, LOT-CRS, DialoGPT,
GPT-3, and MHIM on the REDIAL dataset, respec-
tively. It also gains 446.51%, 357.61%, 208.07%,
140.80%, 133.46%, and 157.75% improvements
on Dist-2 against the strong baselines including,
C2-CRS, UniCRS, LOT-CRS, DialoGPT, GPT-3,
and MHIM on the REDIAL dataset, respectively.

The improvement in HiCore can be attributed to
the following reasons: (a) Our HiCore focuses on
constructing a diverse set of hypergraphs, encom-
passing item-oriented, entity-oriented, and word-
oriented triple-channel hypergraphs. These struc-
tures effectively capture intricate local patterns
through motif analysis, enabling the exploration
of high-order user behaviors. This proves invalu-
able in generating informative and high-quality re-
sponse utterances. (b) HiCore is dedicated to miti-
gating the Matthew effect that may occur as users
engage with the system over time. By learning
multi-level user interests from the hypergraphs, the
system can adapt to users’ evolving preferences.
This strategic approach enables the CRS to pro-
vide a varied array of responses that align with the
diverse interests of the users.

Figure 3: Coverage results of C@k metric.

Model OpenDialKG DuRecDial
A@5 A@15 A@30 A@5 A@15 A@30

KBRD 0.0025 0.0025 0.0088 0.0318 0.0562 0.0938
KGSF 0.0051 0.0108 0.0182 0.0276 0.0534 0.0952
ReDial 1.0000 0.9375 0.8333 1.0000 0.8824 0.9677
TGReDial 0.0022 0.0043 0.0070 0.0137 0.0399 0.0796
MHIM 0.0022 0.0044 0.0075 0.0228 0.0434 0.0789
HiCore 0.0017 0.0043 0.0065 0.0226 0.0423 0.0751

Model OpenDialKG DuRecDial
L@5 L@15 L@30 L@5 L@15 L@30

KBRD 0.2921 0.2782 0.2782 0.3758 0.4149 0.3406
KGSF 0.2398 0.2482 0.3343 0.3314 0.4243 0.3302
ReDial 1.0000 0.8750 0.8333 1.0000 0.8235 0.9677
TGReDial 0.2737 0.2482 0.2757 0.3654 0.3803 0.3846
MHIM 0.1919 0.2343 0.2617 0.3315 0.3488 0.2706
HiCore* 0.1906 0.2092 0.2343 0.3122 0.3267 0.2666
Table 4: Results of Average Popularity (A@K) and
Long Tail Ratio (L@K).

4.4 Study on Matthew Effect (RQ3)

Given our goal of mitigating the Matthew effect
that may arise as users interact with the system
over time, we engage in a series of experiments
comparing the proposed method with the most
robust baselines. This investigation seeks to de-
termine the efficacy of HiCore in effectively alle-
viating the Matthew effect. Considering the key
strategy to mitigate Matthew effect is to improve
the recommendation diversification, and thus we
use the diversify-based evaluation metrics Cover-
age@k (C@k), Average Popularity (A@K) of Rec-
ommended Items and Long Tail Recommendation
Ratio (L@K) to comprehensively evaluate the ef-
ficacy of our proposed method in mitigating the
Matthew Effect.

Fig.3 illustrates the experimental outcomes,
showcasing the consistent superiority of HiCore
in achieving the highest levels of Coverage across
all datasets in comparison to the most robust base-
lines. The heightened coverage metric highlights
its exceptional ability to encompass a broad spec-
trum of the recommendation space by incorporat-
ing items from diverse categories. Additionally, as

1462



Figure 4: Impact of different hyperparameteres.

outlined in Table 4, our proposed method demon-
strates the lowest values for Average Popularity and
Long Tail Ratio. This evidence suggests that our
method effectively mitigates the adverse effects of
item popularity on recommendation outcomes and
successfully addresses the long tail distribution of
items. These results validate the effectiveness of
our proposed approach in combating the Matthew
effect in the CRS as users interact with the system
over time, attributed to its capability to learn multi-
level user interests through a series of hypergraphs
from triple-channel setting, including group, joint,
and purchase channels.

4.5 Hyperparameters Analysis (RQ4)

Hyperparameters are parameters in a machine
learning algorithm that need to be manually set
and tuned to optimize model performance, distinct
from the parameters that the model learns during
training. Next, we will delve into the research on
how various hyperparameters influence the perfor-
mance of recommendations, including the embed-
ding dimension d, comparative learning weight β,
hypergraph convolution layers N , and the hyper-
edge threshold P . From Fig.4, we can obtain: (1)
Elevating the feature dimensionality enhances out-
comes, as higher dimensions can encapsulate more
intricate features effectively; (2) Having too few hy-
peredges may hinder the capture of intricate local
patterns, whereas an excess of hyperedges could
impede the model’s convergence; (3) A lower beta
value signifies a reduced weight for the comparison
term, which show that the recommendation term
exerts a more significant influence on the results;
(4) A two-layer hyperconv network is sufficient to

Model REDIAL TG-REDIAL
R@10 R@50 R@10 R@50

HiCore 0.2192 0.4163 0.0270 0.0769
w/o G(i)

g 0.2075 0.4160 0.0234 0.0742
w/o G(i)

j 0.2012 0.4026 0.0217 0.0706
w/o G(i)

p 0.1939 0.4096 0.0220 0.0739
w/o G(e)

g 0.2067 0.4044 0.0247 0.0713
w/o G(e)

j 0.2142 0.4122 0.0253 0.0756
w/o G(e)

p 0.1971 0.4110 0.0243 0.0693
w/o G(w)

g 0.2067 0.4142 0.0264 0.0761
w/o G(w)

j 0.2151 0.4145 0.0223 0.0733
w/o G(w)

p 0.2067 0.3974 0.0263 0.0759

Table 5: Ablation studies on the recommendation task.

encode high-level features for enhancing recom-
mendation performance.

4.6 Ablation Studies (RQ5)

To assess the efficacy of each component within the
proposed method, we perform ablation experiments
using various iterations of Hicore, including: 1)
w/o Gi

g, w/o Gi
j , w/o Gi

p: removing item-oriented
group-channel, joint-channel, purchase-channel
hypergraph, respectively; 2) w/o Ge

g, w/o Ge
j ,

w/o Gi
p: removing entity-oriented group-channel,

joint-channel, purchase-channel hypergraph, re-
spectively; 3) w/o Gw

g , w/o Gw
j , w/o Gw

p : remov-
ing word-oriented group-channel, joint-channel,
purchase-channel hypergraph, respectively.

Table 5 outlines the experimental findings, in-
dicating that the removal of any hypergraph type
results in a performance decrease. This highlights
the effectiveness of each hypergraph type and un-
derscores the superiority of HiCore in learning
multi-level user interests through a collection of
hypergraphs to mitigate Matthew effect in the CRS.

5 Conclusion

The Matthew effect poses a significant challenge in
the CRS due to the dynamic user-system feedback
loop, which tends to escalate over time as users
engage with the system. In response to these chal-
lenges, we proposed a novel framework, HiCore,
aimed at mitigating the Matthew effect by capturing
multi-level user interests through a variety of hy-
pergraphs, including item-oriented, entity-oriented,
and word-oriented triple-channel hypergraphs. Ex-
tensive experiments validate that HiCore outper-
forms all baselines, demonstrating the effectiveness
of HiCore in addressing the Matthew effect as users
chat with the system over time in the CRS.
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6 Limitations

While our HiCore has achieved a remarkable state-
of-the-art performance, it does come with certain
limitations. Firstly, triple-channel hypergraphs may
present challenges due to their computational com-
plexity, interpretational intricacies, and potential
issues with sparse data. Secondly, scaling these
hypergraphs to larger datasets could introduce scal-
ability hurdles, with a risk of overfitting when the
model becomes excessively fine-tuned to the train-
ing data. Furthermore, ensuring generalizability
and handling resource-intensive computations are
crucial factors to consider when leveraging multi-
channel hypergraphs.
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