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Abstract

BERT and TFIDF features excel in capturing
rich semantics and important words, respec-
tively. Since most existing clustering meth-
ods are solely based on the BERT model, they
often fall short in utilizing keyword informa-
tion, which, however, is very useful in clus-
tering short texts. In this paper, we propose a
CO-Training Clustering (COTC) framework
to make use of the collective strengths of BERT
and TFIDF features. Specifically, we develop
two modules responsible for the clustering of
BERT and TFIDF features, respectively. We
use the deep representations and cluster assign-
ments from the TFIDF module outputs to guide
the learning of the BERT module, seeking to
align them at both the representation and cluster
levels. Reversely, we also use the BERT mod-
ule outputs to train the TFIDF module, thus
leading to the mutual promotion. We then show
that the alternating co-training framework can
be placed under a unified joint training objec-
tive, which allows the two modules to be con-
nected tightly and the training signals to be
propagated efficiently. Experiments on eight
benchmark datasets show that our method out-
performs current SOTA methods significantly.

1 Introduction

Short text clustering aims to group short text seg-
ments with similar semantics into the same clusters
without leveraging external label information. It
is widely used in various real-world applications,
such as topic discovery (Kim et al., 2013), news rec-
ommendation (Bouras and Tsogkas, 2017), spam
detection (Wu and Liu, 2018), etc. Traditionally,
TFIDF feature, which is computed as a kind of
re-weighted word frequency, was the main text fea-
ture used for clustering, in which low-dimensional
representations were first learned from the features
and then fed into a clustering head like K-Means or
deep embedded clustering (DEC) (Xie et al., 2016)
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(Yang et al., 2017; Guo et al., 2017; Xu et al., 2017;
Hadifar et al., 2019). However, due to the lack
of deep semantic information of texts in TFIDF
features, these methods are generally not very com-
petitive. Inspired by the great success of the BERT
model (Devlin et al., 2019), some recent methods
have proposed to apply a clustering head over the
features output from BERT, i.e., BERT features.
For instance, (Huang et al., 2020; Zhang et al.,
2021) proposed to use the classic DEC loss on top
of the BERT features to encourage the emergence
of cluster structure. Following the work (Zhang
et al., 2021), (Yin et al., 2022) further proposed
to use the cluster centers to reconstruct the texts,
encouraging more information to be preserved in
the learned centers. In (Zheng et al., 2023), in-
stead of employing the DEC loss, it proposed to
first pseudo-label the texts and then use the pseudo-
labels to train the clustering model like a classifier.

Despite the substantial performance improve-
ment observed in the BERT-based clustering meth-
ods, it does not mean that the BERT features are
overwhelmingly superior to the TFIDF ones in the
context of clustering. One of the limitations of
BERT feature is exhibited by its weak ability in cap-
turing the keyword information for texts from some
professional fields (Schick and Schütze, 2020; Ha-
ley, 2020; Chen and Su, 2023). That is because
BERT is trained mainly on general texts, making
it not sensitive to the professional words that are
rarely seen. As shown in Figure 1, for a dataset in-
volving the domain of QT programming, words like
QT, XYZ, QMAKESPEC, CURSOR can largely
determine which topic or cluster a text belongs
to. But since these words rarely appear in the pre-
training corpus, their accurate meanings cannot
be well captured by the pre-trained BERT model.
Thus, if we solely use the BERT features to per-
form clustering, the performance could be highly
restricted. By contrast, since TFIDF features are
word-frequency features, keyword information can
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Qt Creator: “XYZ does not
name a type”

Hardcoded QMAKESPEC
in Qt Creator?

Does qt 4.5 have any skins?

Why "Follow symbol under
cursor" does not work in
QT Creator for Mac OS X?

texts with topic QT

Figure 1: T-SNE of BERT features of 5000 random sam-
ples from a domain-specific dataset StackOverflow with
backbone distilbert-base-nli-stsb-mean-tokens. The
three green-star texts are the top-3 nearest neighbors
of the black-star one in TFIDF features, and they all
come from the same topic. But we can see that their
BERT features are far away from each other.

actually be well captured by them. These keywords
are closely related to the topics of the texts, thus it is
helpful to connect in-cluster samples for clustering
short texts (Zhao et al., 2012; Habibi and Popescu-
Belis, 2015). Given that BERT and TFIDF features
possess different strengths (i.e., deep semantics and
keyword signals), it is thereby of great value to use
them together. But how to leverage their collective
strengths is still under-explored. An intuitive way
to make use of the two features is to fuse them into
one feature, e.g., concatenating them, adding them,
etc., and then feed the fused feature into a current
SOTA clustering model. However, due to the in-
trinsically different natures of the two features, we
observe that simply fusing them together cannot
bring too much improvement.

To harvest the respective strengths of BERT
and TFIDF features, in this paper, a CO-Training
Clustering (COTC) framework comprised of
BERT and TFIDF modules is developed. In the
BERT module, we propose to learn the semantic-
rich representations and cluster assignments from
BERT features with the help of contrastive learning
and pseudo-labelling techniques. Furthermore, spe-
cific methods are developed to explicitly encourage
the deep representations and cluster assignments to
align with those learned in the TFIDF module. As
for the TFIDF module, we further introduce a gen-
erative model VAE for TFIDF features and use it to
output the TFIDF-induced representations and clus-
ter assignments, with alignment with outputs from
the BERT module also considered. By making use
of outputs from the other module, the two modules
can be trained to mutually promote each other’s
performance progressively. We finally show that

the alternating co-training framework can be placed
under a more unified joint training objective which
connects the two modules more tightly and allows
a more efficient propagation of the training signals
between modules. Extensive experiments on eight
datasets demonstrate that COTC achieves superior
clustering performance than current state-of-the-art
methods by a significant margin.

2 Related Work

Short text clustering is challenging due to very
few words within short texts. Early studies (Baner-
jee et al., 2007; Hu et al., 2009) enrich texts with
Wikipedia and apply K-Means or hierarchical ag-
glomerative clustering to BoW features. Since
these features are too sparse to convey enough infor-
mation, some works (Yang et al., 2017; Guo et al.,
2017) thus use neural networks to learn better rep-
resentations, and others (Xu et al., 2017; Hadifar
et al., 2019) instead use dense Word2Vec embed-
dings (Mikolov et al., 2013) for clustering with the
DEC loss (Xie et al., 2016). Given that shallow
Word2Vec embeddings are unable to capture deep
semantic information, recent methods prefer BERT
features (Devlin et al., 2019) due to their successes
in numerous tasks. (Huang et al., 2020) is the first
to fine-tune the BERT model with the masked lan-
guage model loss and the DEC loss, but the subse-
quent ones believe that contrastive learning (Chen
et al., 2020) can learn better representations. Thus,
(Zhang et al., 2021) combines this idea with DEC to
achieve clustering, and (Yin et al., 2022) is based on
it with a topic modeling module to enhance the se-
mantics of the representations. (Zheng et al., 2023)
points out that DEC prones to assign all samples to
one cluster, and instead employs pseudo-labelling
(YM. et al., 2020) for clustering, leading to the best
performance to date. Different from these methods
using only one type of imperfect text features, we
develop a co-training clustering framework to lever-
age the complementary strengths of BERT features
and seemingly outdated but easily available TFIDF
features.

3 Method

3.1 Overall Framework of COTC
Existing works mostly focus on how to leverage ei-
ther BERT features bi = B(xi) or TFIDF features
ti = T (xi) to cluster a text dataset D = {xi}Ni=1,
where B(·) and T (·) denote the BERT and TFIDF
transformations. Since the two features possess
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Figure 2: The overall architecture of the co-training clustering framework COTC.

complementary strengths, in this paper, we pro-
pose to develop a co-training framework to exploit
their strengths simultaneously. Specifically, sup-
pose a low-dimensional representation ht

i and clus-
ter probability pt

i over the K clusters have been
learned from the TFIDF feature ti. Then, we learn
the BERT-induced representation hb

i and cluster
probability pb

i from the BERT feature bi as

hb
i ,p

b
i = FB

(
bi, {ht

i}Ni=1, {pt
i}Ni=1

)
, (1)

where FB(·) means the mapping function. Simi-
larly, we also make use of hb

i and pb
i to learn the

TFIDF-induced representation ht
i and cluster prob-

ability pt
i from the TFIDF feature ti as follows

ht
i,p

t
i = FT

(
ti, {hb

i}Ni=1, {pb
i}Ni=1

)
. (2)

The two modules FB(·) and FT (·) can be updated
alternately to mutually promote each other. The
overall architecture of the co-training clustering
framework COTC is shown in Figure 2.

3.2 Implementation of Module FB(·)
Since BERT representations {hb

i}Ni=1 and TFIDF
representations {ht

i}Ni=1 lie in two totally different
representation spaces, directly requiring them to be
globally aligned is unreasonable. But if two texts
look similar in the TFIDF representation space,
they should also be similar in the BERT repre-
sentation space, i.e., the local topological struc-
tures of the two spaces should be aligned. To
exploit this alignment, we first construct a simi-
larity graph Gt(V, E t) with TFIDF representations
{ht

i}Ni=1, where V = {1, 2, · · · , N} is the set of
texts and E t = {(i, j)|i ∈ V, j ∈ N t

i } is the set of

edges; and

N t
i={j|j ̸= i &cos(ht

i,h
t
j) is top-L largest} (3)

denotes the set of top-L nearest neighbors of the
text xi. Then, we propose to learn the BERT repre-
sentation hb

i under the contrastive learning frame-
work (Chen et al., 2020) by making use of this simi-
larity graph. Specifically, in addition to augmenting
the text xi into two augmentations x(1)

i and x
(2)
i by

utilizing contextual augmenter (Kobayashi, 2018;
Ma, 2019), we generate one more augmentation of
xi by randomly selecting a sample from its neigh-
bor set N t

i , with the third augmentation denoted as
x
(3)
i . By viewing the samples {x(1)

i ,x
(2)
i ,x

(3)
i } as

the positives, we define a contrastive loss

LContr = −
1

N

N∑

i=1

3∑

j=2

log ℓij , (4)

where ℓij≜ ∆(h
b(1)
i ,h

b(j)
i )

∆(h
b(1)
i ,h

b(j)
i )+

∑
k ̸=i,m∈{1,j} ∆(h

b(1)
i ,h

b(m)
k )

;

and
h
b(m)
i = f(b

(m)
i ) = f(B(x(m)

i )) (5)

denotes the representation of the m-th (m =
1, 2, 3) augmentation of the text xi, with f(·)
and B(·) representing an MLP neural network
and the BERT backbone, respectively; and
∆(h

b(1)
i ,h

b(j)
i ) = ecos(h

b(1)
i ,h

b(j)
i )/τ measures the

similarity between the vectors hb(1)
i and h

b(j)
i , with

τ meaning the temperature parameter. Due to view-
ing neighbors in N t

i as positives, minimizing the
loss LContr will encourage the similarity structures
in the BERT and TFIDF representation spaces to
be aligned.
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Given BERT features {bi}Ni=1 with similarity
structure learned in the BERT representation space,
we further compute the cluster probability pb

i by
applying a clustering head over BERT features,
such as K-Means, Gaussian mixture model (GMM),
deep embedded clustering (DEC), etc. Here, we
propose to directly apply an MLP neural netwrok
and a softmax function over the BERT feature bi
and then use pseudo-labelling technique to self-
train the clustering head (i.e., classifier). Specifi-
cally, we compute the cluster probability as

pb
i = δ(g(bi)) = δ(g(B(xi))), (6)

where δ(·) means the softmax function; and g(·)
and B(·) represent an MLP neural network and
the BERT backbone, respectively. To train the
model, we propose to first infer the pseudo-labels
from the predicted probability pb

i and then use the
pseudo-labels to train the clustering head as well
as the backbone with a cross-entropy loss. There
are different ways to infer the pseudo-labels, such
as treating the cluster index corresponding to the
maximum probability as the pseudo-label. In our
experiments, we follow recent works (YM. et al.,
2020; Zheng et al., 2023) to infer the pseudo-labels
by solving an optimal transport (OT) problem over
the predicted probabilities {pb

i}Ni=1. Please refer to
Appendix A.1 for details on the OT problem. By
denoting the pseudo-label obtained for the text xi

as qi, which is a one-hot vector, we train the model
by minimizing the following cross-entropy loss

LCE = − 1

N

N∑

i=1

3∑

m=1

qTi log δ(g(b
(m)
i )), (7)

where b
(m)
i = B(x(m)

i ). Note that the model
is encouraged to predict the same pseudo-label
for all of the three augmented texts x

(1)
i , x

(2)
i

and x
(3)
i . Moreover, to ensure the robustness of

pseudo-labelling technique (Englesson and Az-
izpour, 2021), we also encourage the model to
output consistent probability distribution for the
original text xi and its augmentions x(m)

i by mini-
mizing the loss

LConsist

=
1

N

N∑

i=1

3∑

m=1

DKL(δ(g(bi))||δ(g(b(m)
i ))), (8)

where DKL(·) means the KL-divergence.

In addition to the consistency constraints among
neighbors, the predicted probability inferred from
the BERT feature B(xi) should also be aligned
with that inferred from the TFIDF feature T (xi) to
achieve the cluster-level alignment between mod-
ules. This goal can be reached by minimizing the
loss

LAlign =
1

N

N∑

i=1

DKL(δ(g(bi))||pt
i), (9)

where pt
i denotes the cluster probability inferred

from the TFIDF feature ti, and the method to obtain
it will be presented in the next section. The whole
module is trained by minimizing the loss

LB = LContr + LCluster + λLAlign, (10)

where LCluster ≜ LCE + LConsist is the loss re-
sponsible for clustering; and λ is the weighting
parameter.

3.3 Implementation of Module FT (·)
This module aims to learn the TFIDF representa-
tion ht

i and cluster probability pt
i from the TFIDF

feature ti = T (xi). Different from FB(·) estab-
lished on contrastive learning and pseudo-labelling
techniques, we propose to use a VAE to model ti,
so that keyword information can be preserved dur-
ing reconstruction. We then use the VAE’s encoder
to output the TFIDF representation ht

i and cluster
probability pt

i. In order to align with BERT repre-
sentations {hb

i}Ni=1, similar to FB(·), we first use
{hb

i}Ni=1 to construct a similarity graph Gb(V, Eb),
where Eb = {(i, j)|i ∈ V, j ∈ N b

i } represents the
set of edges with

N b
i={j|j ̸= i &cos(hb

i ,h
b
j) is top-Llargest}. (11)

Then, to achieve the alignment in the representation
space, we require ht

i responsible for the generation
of the TFIDF feature ti as well as the similarity
graph Gb. Moreover, to facilitate clustering, we
encourage the TFIDF representation ht

i to exhibit
cluster structure by using a latent Gaussian mixture
prior distribution. Thus, we build the generative
model as the following form

p({ti}Ni=1,Gb, {ht
i}Ni=1, {ci}Ni=1)

=
N∏

i=1

p(ti|ht
i)p(Gbi |{ht

i}Ni=1)p(h
t
i|ci)p(ci), (12)
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where ci is randomly drawn from {1, 2, · · · ,K}
and p(ci) = Cat(ci;π) with a K-dimensional vec-
tor π denoting the class prior distribution; and
p(ht

i|ci) = N (ht
i;µci , diag(σ

2
ci)) with µci and

σ2
ci denoting the mean and variance; and p(ti|ht

i)
is the decoder responsible for the generation of
the TFIDF feature ti (see Appendix A.2); and
p(Gbi |{ht

i}Ni=1) is the decoder responsible for the
generation of the similarity graph, and is defined as

p(Gbi |{ht
i}Ni=1) =

∏

j∈N b
i

∆(ht
i,h

t
j)∑

k ̸=i∆(ht
i,h

t
k)
, (13)

where ∆(ht
i,h

t
j) = ecos(h

t
i,h

t
j)/τ measures the sim-

ilarity between the vectors ht
i and ht

j .
The generative model can be trained by mini-

mizing the negative evidence lower bound (ELBO)
LELBO = 1

N

∑N
i=1 ℓ

elbo
i

(
q(ht

i, ci|ti)
)
, where

ℓelboi

(
q(ht

i, ci|ti)
)
=

− Eq

[
log

p(ti|ht
i)p(Gbi |{ht

i}Ni=1)p(h
t
i|ci)p(ci)

q(ht
i, ci|ti)

]
,

(14)
and Eq[·] means the expectation w.r.t. the varia-
tional posterior q(ht

i, ci|ti), which can be defined
in different forms. By restricting q(ht

i, ci|ti) to the
form q(ht

i, ci|ti) = q(ht
i|ti)p(ci|ht

i), we obtain

ℓelboi

(
q(ht

i|ti)p(ci|ht
i)
)
=

− Eq(ht
i|ti)

[
log

p(ti|ht
i)p(Gbi |{ht

i}Ni=1)p(h
t
i)

q(ht
i|ti)

]
,

(15)
where q(ht

i|ti) = N (ht
i;µ(ti), diag(σ

2(ti))),
with µ(·) and σ2(·) denoting the outputs of two
neural networks; and p(ci|ht

i) =
p(ht

i|ci)p(ci)∑
c p(h

t
i|c)p(c)

=

πciN (ht
i;µci ,diag(σ

2
ci
))∑

c πcN (ht
i;µc,diag(σ2

c ))
, which is the posterior dis-

tribution of the joint prior p(ht
i|ci)p(ci). After the

VAE is trained, we can use its encoder to output the
TFIDF representation ht

i and cluster probability pt
i

as

ht
i=Eq(ht

i|ti)[h] = µ(ti), (16)

pt
i[c]=Eq(ht

i|ti)

[
πcN(ht

i;µc,diag(σ
2
c ))∑

cπcN(ht
i;µc,diag(σ2

c ))

]
, (17)

where µ(ti) is the mean defined in q(ht
i|ti); and

pt
i[c] represents the c-th element of pt

i. In practice,
the expectation in pt

i[c] can be approximated by a
sample drawn from q(ht

i|ti).
Moreover, since the two predicted probabili-

ties inferred from BERT and TFIDF features of

the text xi should be largely identical, similar
to that done in the module FB(·), we further en-
courage the alignment between the two predicted
probabilities by minimizing the alignment loss
LAlign = 1

N

∑N
i=1DKL(p

b
i ||pt

i). Thus, the whole
module can be trained by minimizing the loss

LT = LELBO + λ′LAlign, (18)

where λ′ is the weighting parameter.

3.4 A Unified Training Objective
The entire model can be trained by optimizing the
losses LB = LContr + LCluster + λLAlign and
LT = LELBO+λ′LAlign in an alternating manner.
But in practice, we can directly minimize the joint
loss LJoint = LB + λ1LT , that is,

LJoint=LContr+LCluster+λ1(LELBO+λ2LAlign),
(19)

where λ1 and λ2 are the two weighting parameters.
We can show that

ℓelboi

(
q(ht

i|ti)p(ci|ht
i)
)
+ ℓaligni

≤ ℓelboi

(
q(ht

i|ti)pb
i [c]
)
, (20)

where ℓaligni = DKL(p
b
i ||pt

i); and pb
i [c] denotes

the c-th element of pb
i . Detailed derivation is

provided in Appendix A.2. Comparing with the
ELBO ℓelboi

(
q(ht

i|ti)p(ci|ht
i)
)
, we can see that in

the ELBO ℓelboi

(
q(ht

i|ti)pb
i [c]
)
, the cluster proba-

bility pb
i [c] from the BERT module is used as the

variational posterior in the TFIDF module. From
the inequality, we have

LELBO + LAlign ≤ L′ELBO, (21)

where L′ELBO ≜ 1
N

∑N
i=1 ℓ

elbo
i

(
q(ht

i|ti)pb
i [c]
)
.

By setting λ2 = 1 in (19), with the inequality,
we can obtain a new joint training loss

L′Joint = LContr+LCluster+λ1L′ELBO. (22)

By using the loss L′Joint, the cluster probability
pb
i [c] output from the BERT module FB(·) is

directly used as the variational posterior to train
the TFIDF module FT (·). Hence, the gradient in
the module FT (·) can be directly backpropagated
into the module FB(·) via the variational posterior
pb
i [c], enabling the training signal to be propa-

gated between the two modules more efficiently.
Moreover, according to the property of the
KL-divergence, directly optimizing the alignment
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term LAlign = 1
N

∑N
i=1DKL(p

b
i ||pt

i) tends to
encourage the distribution pt

i to allocate some
probabilities over all of the K clusters, otherwise
it is risky to incur a very large loss. Thus, if the
loss LJoint is used, it is difficult to yield sharp
predicted probabilities pt

i and pb
i . But by using the

loss L′Joint, the problem can be circumvented since
it does not involve the term explicitly. In addition,
when the loss L′Joint is employed, the Gumbel-
Softmax trick (Jang et al., 2017) can be employed
to approximate the expectation Epb

i [ci]
[·] over the

categorical variable ci in ℓelboi

(
q(ht

i|ti)pb
i [ci]

)
=

−Eq(ht
i|ti)pb

i [ci]

[
log

p(ti|ht
i)p(Gb

i |{ht
i}Ni=1)p(h

t
i|ci)p(ci)

q(ht
i|ti)pb

i [ci]

]
.

Together with the Gaussian re-parameterization
trick that is used to approximate the expectation
Eq(ht

i|ti)[·] over the variable ht
i, the loss L′Joint

can be optimized efficiently. After the model is
trained, the predicted cluster probability pb

i is used
to obtain the final clustering result.

4 Experiment

4.1 Experimental Setup

Datasets We assess our method on eight bench-
mark datasets for short text clustering including Ag-
News (Rakib et al., 2020), SearchSnippets (Phan
et al., 2008), StackOverflow, Biomedical (Xu
et al., 2017), GoogleNews-TS, GoogleNews-T,
GoogleNews-S, Tweet (Yin and Wang, 2014). The
details are described in Appendix B.

Baselines We compare our method with the fol-
lowing baselines, similar to (Zheng et al., 2023).
TFIDF-K-Means and BERT-K-Means apply K-
Means to TFIDF and BERT features respectively.
K-Means_IC (Rakib et al., 2020) applies K-Means
to TFIDF features with iterative classification algo-
rithm. STC2-LPI (Xu et al., 2017) uses Word2Vec
to fit codes pre-obtained with LPI (He and Niyogi,
2003) through a CNN. Then, the deep represen-
tations are clustered with K-Means. Self-Train
(Hadifar et al., 2019) uses an autoencoder to model
Word2Vec enhanced with SIF (Arora et al., 2017).
Then, the encoder network is fine-tuned with DEC
loss. SCCL (Zhang et al., 2021) performs con-
trastive learning on BERT features and achieves
clustering with DEC loss. RSTC (Zheng et al.,
2023) performs pseudo-labelling on BERT features,
where pseudo-labels are obtained by solving the
OT problem (YM. et al., 2020). We also include
GMVAE to model TFIDF features via VAE with
Gaussian mixture prior (Jiang et al., 2017) as a com-

parison to the TFIDF module FT (·) in our method.
Following previous works, the BERT model is set
as distilbert-base-nli-stsb-mean-tokens by default.

For comprehensive comparison, we include
some simple methods that combine BERT and
TFIDF features intuitively as additional baselines.
RSTCBERT-TFIDF-Linear uses an autoencoder to re-
duce the TFIDF feature from t to t̂ with the same
dimensionality as the BERT feature b. Then, b
and t̂ are linearly combined as ωb+ (1− ω)t̂ with
ω = 0.5 and fed into the previous SOTA clustering
method RSTC. RSTCBERT-TFIDF-Concat-1 concate-
nates the BERT feature and the reduced TFIDF fea-
ture as [b; t̂] and feeds the combined one into RSTC.
RSTCBERT-TFIDF-Concat-2 is a similar method to
RSTCBERT-TFIDF-Concat-1, except that the original
TFIDF feature is chosen to concatenate as [b; t].

Evaluation Metrics We evaluate our method
with the clustering accuracy (ACC) and normalized
mutual information (NMI) metrics. We average re-
sults over 5 different random runs. Each run stops
when the change rate of the clustering assignments
between two consecutive epochs is less than 0.01 or
the number of epochs reaches 25. We left training
details in Appendix C.

4.2 Experimental Result

4.2.1 Performance Comparison
The clustering performance of the baselines and
our method COTC on eight benchmark datasets
is presented in Table 1. Compared with the base-
lines, COTC obtains promising performance across
all datasets in terms of the ACC and NMI met-
rics. Furthermore, several observations are note-
worthy. Shallow clustering methods applying K-
Means to raw features, i.e. TFIDF-K-Means and
BERT-K-Means, do not produce satisfactory per-
formance. Deep clustering methods using TFIDF
features, e.g. K-Means_IC, seem to be underper-
forming, and those using Word2Vec like STC2-LPI
and Self-Train perform slightly better but not very
well either. In contrast, methods using BERT fea-
tures such as SCCL and RSTC outperform previous
methods by a large margin, validating the power
of BERT features. However, although TFIDF fea-
tures do not show any potential when clustered with
K-Means, they show decent performance beating
most baselines when modeled with GMVAE, val-
idating that seemingly outdated TFIDF features
are still valuable. This can be further verified
in methods combining BERT and TFIDF such
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Table 1: The clustering performance of the baselines and our method COTC on eight benchmark datasets. The
results of the baselines are quoted from (Zheng et al., 2023). The best results are bolded and the second ones are
underlined.

Method
AgNews SearchSnippets StackOverflow Biomedical

ACC NMI ACC NMI ACC NMI ACC NMI
TFIDF-K-Means 34.39 12.19 30.85 18.67 58.52 59.02 29.13 25.12
BERT-K-Means 65.95 31.55 55.83 32.07 60.55 51.79 39.50 32.63

K-Means_IC 66.30 42.03 63.84 42.77 74.96 70.27 40.44 32.16
STC2-LPI - - 76.98 62.56 51.14 49.10 43.37 38.02
Self-Train - - 72.69 56.74 59.38 52.81 40.06 34.46

SCCL 83.10 61.96 79.90 63.78 70.83 69.21 42.49 39.16
RSTC 84.24 62.45 80.10 69.74 83.30 74.11 48.40 40.12

GMVAE 82.62 55.76 80.11 58.96 82.90 71.44 48.17 40.57
RSTCBERT-TFIDF-Linear 84.45 60.86 83.21 71.17 78.79 76.14 50.17 45.18

RSTCBERT-TFIDF-Concat-1 85.79 63.26 80.90 69.99 82.41 78.45 49.34 45.00
RSTCBERT-TFIDF-Concat-2 85.80 63.11 82.54 70.74 78.55 73.95 49.24 43.15

COTC 87.56 67.09 90.32 77.09 87.78 79.19 53.20 46.09

Method
GoogleNews-TS GoogleNews-T GoogleNews-S Tweet
ACC NMI ACC NMI ACC NMI ACC NMI

TFIDF-K-Means 69.00 87.78 58.36 79.14 62.30 83.00 54.34 78.47
BERT-K-Means 65.71 86.60 55.53 78.38 56.62 80.50 53.44 78.99

K-Means_IC 79.81 92.91 68.88 83.55 74.48 88.53 66.54 84.84
SCCL 82.51 93.01 69.01 85.10 73.44 87.98 73.10 86.66
RSTC 83.27 93.15 72.27 87.39 79.32 89.40 75.20 87.35

GMVAE 83.37 93.48 79.98 90.25 80.65 90.04 73.23 88.86
RSTCBERT-TFIDF-Linear 83.72 93.26 74.29 88.67 81.57 91.17 78.20 89.42

RSTCBERT-TFIDF-Concat-1 83.74 93.79 79.31 91.06 82.91 91.55 75.61 88.50
RSTCBERT-TFIDF-Concat-2 84.03 93.55 74.46 87.70 81.23 90.60 83.62 90.30

COTC 90.50 96.33 83.53 92.07 86.10 93.49 91.33 95.09

as RSTCBERT-TFIDF-Linear, RSTCBERT-TFIDF-Concat-1
and RSTCBERT-TFIDF-Concat-2. That is to say, by in-
troducing TFIDF features to complement BERT
features via simple linear combination or direct
concatenation, the performance can be improved
in some datasets. However, these methods cannot
always fully exploit TFIDF features, as some are
even behind RSTC in some cases. This is possibly
because simple fusion do not consider the charac-
teristics of TFIDF features when modeling them
with the same techiques as BERT features.

Instead, with proper techniques to model BERT
and TFIDF respectively and co-train them to learn
from each other, our method leverages the collec-
tive strengths of deep semantics from BERT and
keyword signals from TFIDF. Compared with other
methods using only one type of imperfect text fea-
tures or intuitively combining different features,
COTC obtains the best performance, demonstrat-
ing the effectiveness of leveraging complementary

strengths of BERT and TFIDF features.

4.2.2 Ablation Study
To study the effects of several components in our
method, we compare the ACC results of the ba-
sic variants for BERT features (i.e. results from
pb
i ) in Table 2. (i) Basis (M) is a basic method

performing contrastive learning and pseudo-la-
belling on BERT features with consistency con-
straint LConsist. (ii) w/ ht

i (MGraph) utilizes the
TFIDF representations {ht

i}Ni=1 to construct the
similarity graph Gt for the learning of the BERT
module, i.e. using them as neighborhood augmen-
tations to support contrastive learning and pseu-
do-labelling. (iii) w/ pt

i (MAlign) further utilizes
the cluster probabilities {pt

i}Ni=1 from TFIDF fea-
tures and requires the cluster-level alignment be-
tween pb

i and pt
i with LAlign. This model is trained

by minimizing LJoint with the KL-divergence.
(iv) COTC (MJoint) is our final method, which
connects the BERT and TFIDF modules tightly
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Table 2: The ACC results of the basic variants for BERT features. vs Last means the average improvement
comparing the current row with the last one.

Variant AN SS SO Bio GN-TS GN-T GN-S Tw vs Last
Basis (M) 85.55 80.78 83.23 50.97 83.25 74.79 79.98 83.32 -
w/ ht

i (MGraph) 86.06 88.30 86.35 52.16 87.08 81.76 82.13 87.27 +3.66
w/ pt

i (MAlign) 86.56 89.03 87.22 52.55 89.85 82.73 85.23 90.64 +1.59
COTC (MJoint) 87.56 90.32 87.78 53.20 90.50 83.53 86.10 91.33 +0.81
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Figure 3: The sensitivity of the number of neighbors L.
Pre. means precision, which is the ratio of the neighbors
in the same class as the anchor.

Table 3: Different keywords revealed by the cluster
centers in the TFIDF module on SearchSnippets.

clusters keywords topics

#1
business, market,

services, financial, finance
Business

#2
computer, software,

programming, linux, web
Computers

#3
movie, music,

com, movies, film
Culture-Arts-Entertainment

#4
edu, research,

science, university, theory
Education-Science

#5
electrical, car,

motor, engine, products
Engineering

#6
health, medical,

information, disease, gov
Health

#7
political, party,

democracy, government, democratic
Politics-Society

#8
sports, football,

news, games, com
Sports

and trains the two modules with the final joint train-
ing loss L′Joint. Viewing the results from the top
down, the improvement is obvious. Comparing
MGraph withM, the performance gap validates
the value of learning the similarity structure exhib-
ited by the TFIDF representations. Furthermore,
MAlign performs better thanMGraph, which may
result from the cluster-level alignment between pb

i

and pt
i. Our method (COTC)MJoint outperforms

MAlign, demonstrating the superiority of the uni-
fied joint training objective L′Joint that enables the
BERT and TFIDF modules to be connected tightly.
More relevant results are described in Appendix D.

4.2.3 Hyperparameter Sensitivity

To investigate how the number of neighbors L af-
fects the performance, we test it with different val-

Original

1

2

3

4
5

6
7

8

Trained

Figure 4: The visualization on SearchSnippets.

ues. Figure 3 shows that a proper number of neigh-
bors can benefit BERT features in the clustering
performance compared with the case L = 0 flagged
as stars in the figure. However, for some datasets,
e.g. GoogleNews-TS, with the increase of L, the
precision decreases, which introduces much noise
and thus hurts the performance. To balance the
performance, we set L to 10 in all datasets. Sensi-
tivities of weighting parameter λ1 and temperature
parameter τ are shown in Appendix D.

4.2.4 Case Study
To understand what keywords are learned, we
map the cluster centers in the TFIDF module to
the vocabulary space with the embedding matrix
E ∈ R|W×128| in the decoder of VAE (A.2), where
W is the vocabulary and 128 is the dimensionality
of the TFIDF representations. A center µi ∈ R128

can be mapped to Eµi ∈ R|W|, with each element
meaning the relevance between the center and the
word. We list the top-5 relevant keywords of each
cluster on SearchSnippets in Table 3. The corre-
sponding visualization is also shown in Figure 4.
Due to the space limitation, we show the case study
on StackOverflow in Appendix D.

4.2.5 Investigation of Other Features and
Base Models

We investigate whether TFIDF features can be re-
placed by other features reflecting keywords. We
choose BoW and Word2Vec as alternatives. The
experimental results are shown in Table 4. It can
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Table 4: The ACC results using BoW or Word2Vec
instead of TFIDF features. COTCBERT-TFIDF is our final
method.

dataset AN SO Bio GN-TS Tw
RSTCBERT 84.24 83.30 48.40 83.27 75.20

COTCBERT-W2V 34.24 28.06 27.50 74.06 14.36
COTCBERT-BoW 87.41 84.91 52.68 89.15 88.43
COTCBERT-TFIDF 87.56 87.78 53.20 90.50 91.33

Table 5: The ACC results using different base models
instead of the default sentence-distilbert.

dataset AN GN-TS Tw
RSTCXLNet-base-uncased 71.75 34.47 10.07
COTCXLNet-base-uncased 84.60 80.21 71.97
RSTCBERT-base-uncased 82.23 77.45 73.87
COTCBERT-base-uncased 87.83 89.10 89.81

RSTCRoBERTa-base 85.76 75.63 71.08
COTCRoBERTa-base 87.44 88.32 90.45

be seen that COTCBERT-BoW performs on par with
COTCBERT-TFIDF, showing that BoW features can
also work very well in our proposed co-training
framework. Differently, COTCBERT-W2V performs
badly in our method. We conjecture that Word2Vec
is more like BERT features than frequency-based
features, and it strongly relies on its pre-training
corpus.

Moreover, we also investigate different base
models rather than merely the default sentence-
distilbert in our method. We test XLNet-base-
cased, BERT-base-uncased and RoBERTa-base.
The experimental results are shown in Table 5. By
comparing every two lines, it is obvious that the per-
formance of RSTC is strongly dependent on the ini-
tial quality of the backbone representations, espe-
cially on Tweet with XLNet-base-uncased. In con-
trast, with the help of TFIDF features, our method
is relatively stable and still works well when using
different base models.

4.2.6 Clustering with Noisy Data
To observe the stability of COTC, we conduct some
experiments with noisy data as an exploration. We
use the StackOverflow dataset as the base, and add
random samples from the Biomedical dataset as the
noise. We then perform clustering with our method
on the contaminated data. The experimental re-
sults are listed in Table 6. As the percentage of the
noisy samples increases, the performance gradu-
ally declines, which is predictable and reasonable.
However, it can be observed that our method still
maintains a certain level stability even when cluster-

Table 6: The clustering results when our method per-
forms clustering under noisy data condition, i.e., Stack-
Overflow contaminated by Biomedical.

percentage of
noisy samples

0% 1% 2% 3% 4%

ACC 87.78 87.13 84.32 83.59 81.72
NMI 79.19 78.54 77.29 77.20 76.60

ing data contaminated by noise from a completely
different domain, which validates the robustness of
our method.

5 Conclusion

In this paper, we rediscover the value of seemingly
outdated TFIDF features and use them to comple-
ment BERT features for short text clustering. To
leverage BERT and TFIDF, we develop two mod-
ules to model them and propose a co-training frame-
work to enable them to learn from each other, where
their deep representations and cluster assignments
are fully communicated and aligned. We show
that the framework can be achieved by a unified
joint training objective, which empirically benefits
the clustering performance. Extensive experiments
show the superiority of our method over previous
methods.

Limitations

As previous works, our method requires that the
number of clusters is known. Furthermore, due
to the huge difference between BERT and TFIDF
features (the former are low-dimensional and dense
while the latter are high-dimensional and sparse),
the neural networks of the related modules require
different learning rates, which requires some ef-
forts to tune them to make the training work. Also,
compared with other works using only BERT fea-
tures, the introduction of TFIDF features requires
extra time and space to train the TFIDF module. In
the future, we are going to explore a more compact
and efficient way to learn the collective strengths
of different text features without incurring much
extra cost.
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A Derivation Details

A.1 Optimal Transport
Following the recent works (YM. et al., 2020;
Zheng et al., 2023), we infer the pseudo-labels
{qi}Ni=1 by solving the optimal transport prob-
lem over the predicted probabilities {pb

i}Ni=1. De-
noting P = [pb

1, ..,p
b
N ]T ∈ [0, 1]N×K , we use

C = − logP as the cost matrix and optimize

min
r,b
⟨r,C⟩ − ϵ1H(r) + ϵ2U(b),

s.t. r1=a, rT1=b, bT1=1, r≥0, b≥0,
(23)

where r ∈ [0, 1]N×K is the transport matrix be-
tween samples and classes, a = 1

N 1 is the uniform
marginal distribution over samples, b is the adap-
tive marginal distribution over classes, H(r) =
−∑N

i=1

∑K
j=1 rij(log rij − 1) is the entropy regu-

larization, U(b) = −∑K
j=1(log bj + log(1− bj))
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is the penalty function and ϵ1, ϵ2 are two weighting
parameters. To be more specific, the element rij in
r means the probability of transporting sample i to
class j, b is set to be adaptive over classes due to
the class imbalance problem and U(b) encourages
b to be uniform to avoid collapsing. With Lagrange
Multiplier Method, it is equivalent to optimize

min
r,b

L = ⟨r,C⟩ − ϵ1H(r) + ϵ2U(b)

−fT (r1−a)−gT (rT1−b)−h(bT1−1),
(24)

where f , g and h are multipliers.
For variables r, f and g, by fixing b, h and

computing ∂L
∂rij

= 0, we have

rij = exp

(
fi + gj − Cij

ϵ1

)
. (25)

Combined with the constraints r1 = a and rT1 =
b, we have

exp

(
fi
ϵ1

)
=

ai
∑K

j=1 exp
(
gj−Cij

ϵ1

) , (26)

exp

(
gj
ϵ1

)
=

bj
∑N

i=1 exp
(
fi−Cij

ϵ1

) . (27)

For variables b and h, by fixing r, f , g and
computing ∂L

∂bj
= 0, we have

(gj − h)b2j + (−gj + h− 2ϵ2)bj + ϵ2 = 0, (28)

∆j = (gj − h)2 + 4ϵ22 > 0, (29)

bj =
gj − h+ 2ϵ2 −

√
∆j

2(gj − h)
, (30)

where ∆j is the discriminant of the equation (28)

and b̃j =
gj−h+2ϵ2+

√
∆j

2(gj−h) is discarded because

b̃j > 1 when gj − h > 0 and b̃j < 0 when
gj − h < 0, which are beyond the domain of
the definition of bj . Combined with the constraint
bT1 = 1, we need to solve f(h) = 0 with

f(h)=bT1−1=
K∑

j=1

gj−h+2ϵ2−
√
∆j

2(gj−h)
−1. (31)

We use Newton’s Method to compute the root h of
f(h) = 0, i.e.,

h← h− f(h)

f ′(h)
, (32)

with

f ′(h) =
K∑

j=1

(
2ϵ2 −

√
∆j

2(gj − h)2
+

1

2
√
∆j

)
. (33)

In practice, we set u = exp(f/ϵ1), v =
exp(g/ϵ1) and W = exp(−C/ϵ1). Thus, initial-
izing u(0) = 1, v(0) = 1 and b(0) = 1

K1, the
update process is

u(t+1) ← a

Wv(t)
, (34)

v(t+1) ← b(t)

W Tu(t)
, (35)

b(t+1) ← g − h+ 2ϵ2 −
√
∆

2(g − h)
, (36)

where ∆ = [∆1, ..,∆K ] (see (29)) and h is com-
puted by the above Newton’s Method (see (32)).
After several optimization iterations, we can obtain
the transport matrix

r = uTWv. (37)

Finally, the pseudo-labels {qi}Ni=1 are obtained by

qij = 1 if argmax
j′

rij′ = j else 0. (38)

A.2 Variational Autoencoder

We build the generative model for the TFIDF fea-
tures {ti}Ni=1 and the similarity graph Gb as

p({ti}Ni=1,Gb, {ht
i}Ni=1, {ci}Ni=1)

=

N∏

i=1

p(ti|ht
i)p(Gbi |{ht

i}Ni=1)p(h
t
i|ci)p(ci).

(39)

The negative evidence lower bound (ELBO)
LELBO =

∑N
i=1 ℓ

elbo
i

(
q(ht

i|ti)p(ci|ht
i))
)

is mini-
mized to train the model, where

ℓelboi

(
q(ht

i|ti)p(ci|ht
i)
)

=−Eq(ht
i|ti)

[
log

p(ti|ht
i)p(Gbi |{ht

i}Ni=1)p(h
t
i)

q(ht
i|ti)

]
.

(40)
We also minimize the alignment loss LAlign =
1
NDKL(p

b
i [ci]||pt

i[ci]) to encourage the consis-
tency between the predictions from the BERT and
TFIDF features, where

pb
i [ci] = δ(g(bi)), (41)

pt
i[ci] = Eq(ht

i|ti)[p(ci|h
t
i)]. (42)
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Here pb
i [ci], p

t
i[ci] denote the predictions from the

BERT and TFIDF features respectively, g(·) means
the clustering head and δ(·) means the softmax
function.

To see the derivation of (20), we first compute
the term in the alignment loss as

DKL(p
b
i [ci]||pt

i[ci])

=
∑

c′
pb
i [c

′] log
pb
i [c

′]
Eq(ht

i|ti)[p(c
′|ht

i)]

≤Eq(ht
i|ti)

[∑

c′
pb
i [c

′] log
pb
i [c

′]
p(c′|ht

i)

]

=Eq(ht
i|ti)pb

i [ci]

[
log

pb
i [ci]

p(ci|ht
i)

]
,

(43)

where Jensen’s inequality is used. Combined with
the term in the negative ELBO, we then have

ℓelboi

(
q(ht

i|ti)p(ci|ht
i)
)
+DKL(p

b
i [ci]||pt

i[ci])

≤−Eq(ht
i|ti)

[
log

p(ti|ht
i)p(Gbi |{ht

i}Ni=1)p(h
t
i)

q(ht
i|ti)

]

+ Eq(ht
i|ti)pb

i [ci]

[
log

pb
i [ci]

p(ci|ht
i)

]

=−Eq

[
log

p(ti|ht
i)p(Gbi |{ht

i}Ni=1)p(h
t
i)p(ci|ht

i)

q(ht
i|ti)pb

i [ci]

]

=−Eq

[
log

p(ti|ht
i)p(Gbi |{ht

i}Ni=1)p(h
t
i|ci)p(ci)

q(ht
i|ti)pb

i [ci]

]

≜ℓelboi

(
q(ht

i|ti)pb
i [ci]

)
,

(44)
where the expectation Eq[·] is taken w.r.t the poste-
rior q(ht

i, ci|ti) = q(ht
i|ti)q(ci|ti) with q(ci|ti) =

pb
i [ci]. Thus, we have the inequality

L′ELBO =

N∑

i=1

ℓelboi

(
q(ht

i|ti)pb
i [ci]

)

≥LELBO + LAlign.

(45)

Decoder p(ti|ht
i) We have described most com-

ponents of the VAE in the main text. Here, we
clarify the definition of the decoder p(ti|ht

i). We
regard ti as a set of words {wj ∈ ti}, with wj

a one-hot representation in vocabularyW . To be
more specific, if a text contains the 1-st, 3-rd and
5-th word inW , it is represented as {w1,w3,w5}.
Thus, denoting E ∈ R|W|×128 as the embedding
matrix, i.e. the decoder network (128 is the dimen-

sion of ht
i), we define

p(ti|ht
i)

=
∏

wj∈ti
p(wj |ht

i)=
∏

wj∈ti

exp(ht
i
T
Ewj)∑|W|

k=1 exp(h
t
i
T
Ewk)

.

(46)

Approximation L′ELBO We have obtained the
new negative ELBO L′ELBO for the joint training
loss. Here, we clarify how to compute it. We
factorize the term in the negative ELBO as

ℓelboi

(
q(ht

i|ti)pb
i [ci]

)

=−Eq

[
log

p(ti|ht
i)p(Gbi |{ht

i}Ni=1)p(h
t
i|ci)p(ci)

q(ht
i|ti)pb

i [ci]

]

=−Eq[log p(ti|ht
i)]−Eq[log p(Gbi |{ht

i}Ni=1)]

+Eq[log q(h
t
i|ti)]−Eq

[
log

p(ci)

pb
i [ci]

]
−Eq[log p(h

t
i|ci)].

(47)
The five factorized subterms can be computed sep-
arately. We use the Gaussian re-parameterization
trick to approximate −Eq[log p(ti|ht

i)] as

− Eq(ht
i|ti)[log p(ti|h

t
i)]

≈−
∑

wj∈ti
log

exp(h̃tT
i Ewj)∑|W|

k=1 exp(h̃
tT
i Ewk)

,
(48)

where h̃t
i = µ(ti) + ϵTσ(ti) and ϵ ∼ N (ϵ;0,1).

As for −Eq[log p(Gbi |{ht
i}Ni=1)], we approximate it

as
− Eq(ht

i|ti)[log p(G
b
i |{ht

i}Ni=1)]

≈−
∑

j∈N b
i

log
∆(h̃t

i, h̃
t
j)∑

k ̸=i∆(h̃t
i, h̃

t
k)
.

(49)

Differently, Eq[log q(h
t
i|ti)] can be analytically

computed as

Eq(ht
i|ti)[log q(h

t
i|ti)]

=− 1

2

128∑

j=1

(log 2π + 1 + logσ2(ti)|j),
(50)

where 128 is the dimension of ht
i and σ2(ti)|j

is the j-th element of σ2(ti). With the Gumbel-
Softmax trick, ci ∼ pb

i [ci] can be achieved by first
sampling gik ∼ Gumbel(gik; 0, 1) and then com-
puting c̃ ∼ argmaxk(gik + log pb

i [k]). By using
softmax to approximate argmax, we obtain a prob-
ability vector c̃i and the k-th element is

c̃ik =
exp((gik + log pb

i [k])/τ)∑K
j=1 exp((gij + log pb

i [j])/τ)
, (51)
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where τ is the temperature parameter controlling
the sharpness of ci. Thus, we can approximate
−Eq

[
log p(ci)

pb
i [ci]

]
and −Eq[log p(h

t
i|ci)] as

−Epb
i [ci]

[
log

p(ci)

pb
i [ci]

]
≈−

K∑

k=1

c̃ik log
p(k)

pb
i [k]

, (52)

− Eq(ht
i|ti)pb

i [ci]
[log p(ht

i|ci)]

≈1

2

K∑

k=1

c̃ik




128∑

j=1

log 2π + logσ2
k|j

+
(µ(ti)|j − µk|j)2 + σ2(ti)|j

σ2
k|j

)
.

(53)

B Dataset Details

The statistics of the datasets are summarized in
Table 7 and the details of the datasets are described
as follows.

• AgNews1 is a subset of news articles collected
from more than 2000 news sources2. 8000
news titles from 4 topic categories are ran-
domly selected by (Rakib et al., 2020).

• SearchSnippets3 is a subset of snippets ex-
tracted from the web search results. 12340
snippets from 8 domains are carefully selected
by (Phan et al., 2008) from search transactions
using domain-specific phrases.

• StackOverflow4 is a subset of data published
in Kaggle5. 20000 question titles from 20 tags
are randomly selected by (Xu et al., 2017).

• Biomedical4 is a subset of data published in
BioASQ6. 20000 paper titles from 20 cate-
gories are randomly selected by (Xu et al.,
2017).

• GoogleNews7 contains titles and snippets
of 11109 news articles corresponding to
152 events, constructed by (Yin and Wang,
2014). GoogleNews-TS, GoogleNews-T and

1https://github.com/rashadulrakib/short-text-clustering-
enhancement

2http://groups.di.unipi.it/~gulli/AG-corpus-of-news-
articles.html

3https://jwebpro.sourceforge.net/data-web-snippets.tar.gz
4https://github.com/jacoxu/STC2
5https://www.kaggle.com/competitions/predict-closed-

questions-on-stack-overflow
6http://participants-area.bioasq.org
7https://github.com/jackyin12/GSDMM

Table 7: The statistics of the datasets. N : the number of
texts; Len: the average length of texts; K: the number
of classes; L/S: the size ratio of the largest class versus
the smallest one.

Dataset N Len K L/S

AgNews 8000 23 4 1
SearchSnippets 12340 18 8 7
StackOverflow 20000 9 20 1

Biomedical 20000 13 20 1
GoogleNews-TS 11109 28 152 143
GoogleNews-T 11109 6 152 143
GoogleNews-S 11109 22 152 143

Tweet 2472 9 89 249

GoogleNews-S are three subsets with both ti-
tles and snippets, titles only and snippets only
respectively.

• Tweet7 contains 2472 tweets from 89 queries,
constructed by (Yin and Wang, 2014).

C Training Details

We implement our method with PyTorch (Paszke
et al., 2019), and obtain 2048-dimensional TFIDF
features using TfidfVectorizer from scikit-learn (Pe-
dregosa et al., 2011) and 768-dimensional BERT
features using distilbert-base-nli-stsb-mean-tokens
(Reimers and Gurevych, 2019) from HuggingFace
(Wolf et al., 2020). We use ContextualAugmenter
(Kobayashi, 2018; Ma, 2019) to generate data aug-
mentations with 10% word substitution and solve
the optimal transport problem (YM. et al., 2020;
Zheng et al., 2023) to generate pseudo-labels. In
our experiments, we use Adam optimizer and set
the batch size to 128. We set the learning rate to
5e-6 for BERT backbone, 5e-4 for BERT projec-
tion and clustering heads, 1e-5 for TFIDF Gaus-
sian mixture parameters and 1e-3 for TFIDF en-
coder decoder parameters. For all datasets, the
number of neighbors for each sample L is fixed
to 10, the temperature in both contrastive learning
and Gumbel-Softmax trick τ is fixed to 0.5, and
weighting parameter λ1 is fixed to 0.1.

The data flows and network architectures are de-
scribed in Table 10 and 11. In practice, we first
pre-train VAE with static graph constructed by raw
TFIDF features for 50 epochs. We then perform K-
Means (for AgNews, SearchSnippets, StackOver-
flow and Biomedical) or hierarchical agglomerative
clustering (for GoogleNews-TS, GoogleNews-T,
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Figure 5: The sensitivity of the weighting parameter λ1.
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Figure 6: The sensitivity of the temperature parameter
of Gumbel trick τ .

GoogleNews-S and Tweet) to obtain the clustering
assignments as the initialized labels to pre-train
the clustering head g(·) for 100 iterations. After
pre-training, the two modules can be trained with
our final joint training loss L′Joint. Following the
recent works (YM. et al., 2020; Zheng et al., 2023),
we spread out the update process of the nearest
neighbors and pseudo-labels throughout the whole
training process in a logarithmic distribution.

D Result Details

Metric Definition The clustering accuracy, i.e.
ACC, is defined as

ACC =

∑N
i=1 1yi=map(ŷi)

N
, (54)

where yi and ŷi are the ground-truth and predicted
labels of the i-th sample respectively, and map(·)
is obtained by Hungarian algorithm and maps pre-
dicted labels to the corresponding ground-truth la-
bels. The normalized mutual information, i.e. NMI,
is defined as

NMI =
2I(Y ; Ŷ )

H(Y ) +H(Ŷ )
, (55)

where Y and Ŷ are the ground-truth and predicted
labels respectively, and I(·; ·) is mutual informa-
tion and H(·) is entropy.

Table 8: Different keywords revealed by the cluster
centers in the TFIDF module on StackOverflow.

clusters keywords topics
#1 excel, vba, cell, macro, data excel
#2 haskell, type, function, scala, list haskell
#3 mac, os, osx, application, app osx
#4 linq, sql, query, using, join linq
#5 ajax, jquery, javascript, request, php ajax
#6 visual, studio, 2008, 2005, project visual-studio
#7 cocoa, using, file, use, text cocoa
#8 hibernate, mapping, criteria, query, hql hibernate
#9 sharepoint, web, site, 2007, list sharepoint
#10 bash, script, command, shell, file bash
#11 apache, rewrite, mod, htaccess, redirect apache
#12 wordpress, posts, post, page, blog wordpress
#13 svn, subversion, repository, files, commit svn
#14 drupal, node, views, module, content drupal
#15 qt, widget, window, creator, application qt
#16 scala, java, class, type, actors scala
#17 magento, product, products, page, admin magento
#18 matlab, matrix, plot, array, function matlab
#19 oracle, sql, table, pl, database oracle
#20 spring, bean, hibernate, security, using spring

Original Trained

Figure 7: The visualization on StackOverflow.

Ablation Study The remaining results of the ab-
lation study are described in Table 12, 13 and 14.
In Table 12,M is a basic method performing con-
trastive learning and pseudo-labelling on BERT fea-
tures with additional consistency constraint LAlign;
MGraph introduces the TFIDF representation ht

i

for the learning of the BERT module andMAlign

further aligns pb
i with the cluster probability pt

i.
In Table 13 and 14,M is basic method modeling
TFIDF features via VAE with a Gaussian mixture
prior, i.e. GMVAE;MGraph introduces the BERT
representation hb

i for the learning of the TFIDF
module andMAlign further aligns pt

i with the clus-
ter probability pb

i . MJoint is our final method
(COTC) which connects the two modules tightly,
and the results in Table 12 are from pb

i and those in
Table 13 and 14 are from pt

i. Generally, comparing
MGraph withM, it can be seen that the introduc-
tion of the similarity structure from another mod-
ule greatly improves the clustering performance,
validating the importance of learning the comple-
mentary strengths from each other. Furthermore,

14911



Table 9: The clustering results of LLM for zero-shot
short text clustering on AgNews.

ACC NMI
Qwen2-7B-Instruct-zero-shot 75.28 48.27

COTC 87.56 67.09

fromMGraph toMAlign, the further alignment at
the cluster level can further boost both the BERT
and TFIDF modules. Our method (COTC)MJoint

outperforms other variants, demonstrating the ben-
efit from the unified joint training objective L′Joint
that trains the BERT and TFIDF modules jointly
and connects the two modules tightly.

Hyperparameter Sensitivity We investigate
how the weighting parameter λ1 and the temper-
ature parameter of the Gumbel-Softmax trick τ
affects the clustering performance. Figure 5 shows
that it is necessary to search a proper weighting
parameter to balance the losses LB and L′ELBO for
the BERT and TFIDF modules respectively since
they possess different network architectures. How-
ever, it can be seen that λ1 in the range from 0.04 to
0.16 does not incur huge fluctuation. We set λ1 to
0.1 for all datasets to avoid excessive tuning. Figure
6 shows that utilizing Gumbel-Softmax trick with
the temperature parameter τ can generally enhance
the clustering performance, which may be due to
the exploration nature of the trick. We simply set τ
to 0.5 for all datasets.

Case Study There are 20 classes in StackOver-
flow. Due to the limited space in the main text,
we show a similar case study on StackOverflow
as in Section 4.2.4. The keywords revealed by the
cluster centers in the TFIDF module are listed in
Table 8. We also visualize the corresponding result
of the example illustrated in Figure 1. As shown in
Figure 7, the four star texts are finally clustered to-
gether and the decision boundaries within different
clusters are more clear than before.

Comparison with LLM Zero-Shot Clustering
Witnessing the rapid development of the large lan-
guage models, we are also interesting in whether
LLM can be used for short text clustering. As a
naive attempt, the following is a toy experiment
that uses Qwen2-7B-Instruct for zero-shot cluster-
ing on the AgNews dataset with a designed prompt,
where 4 category names (World, Sports, Business
and Sci/Tech) are required for helping LLM answer.
The prompt is shown below.

You are very good at judge the category of a text. Below, I
will give you a short text, and you should think carefully
and answer me its category.
An example is:
—
INPUT TEXT: The Lakers wins the finals.
OUTPUT CATEGORY: **Sports**
—
You should remember that you can choose only from
**World**, **Sports**, **Business**, and **Sci/Tech**.
Now, start:
—
INPUT TEXT: {input_text}

The result is listed in Table 9. Although the
exact category names are required for clustering,
Qwen2-7B-Instruct has obtained a very strong per-
formance given its zero-shot setting. We think this
is quite compelling since the size 7B is acceptable
to cluster a large dataset. However, currently a
specialized model for clustering like our method is
still competitive.

Computation Budget The number of parameters
in our model is 77M. On average for all datasets,
our method takes about 30 minutes to complete the
training process with a GeForce RTX 3090 GPU.
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Table 10: The data flows and network architectures for BERT features. K is the number of clusters, 768 is the
dimension of BERT features and 128 is the dimension of BERT representations.

Data Flow - Network Architecture
Raw Text x - -

BERT Transformation
b = B(x) B(·) BERT Backbone

Projection Head
hb = f(b)

f(·) Linear(768, 768); ReLU(); Linear(768, 128); Normalize().

Clustering Head
pb = g(b)

g(·) Dropout(); Linear(768, 768); ReLU();
Dropout(); Linear(768, 768); ReLU(); Linear(768, K); Softmax().

Table 11: The data flows and network architectures for TFIDF features. K is the number of clusters, 2048 is the
dimension of TFIDF features and 128 is the dimension of TFIDF representations.

Data Flow - Network Architecture
Raw Text x - -

TFIDF Transformation
t = T (x) T (·) TFIDF Vectorizer

Encoder Network
µ=Enc-µ(t), σ=Enc-σ(t)

Enc-µ(·) Linear(2048, 2048); ReLU(); Linear(2048, 128); Tanh().
Enc-σ(·) Linear(2048, 2048); ReLU(); Linear(2048, 128); Exp().

Sample Process
ϵ∼N (ϵ;0,1), ht=µ+ϵTσ

- -

Decoder Network
t̃ = Dec(ht)

Dec(·) Linear(128, 2048); Softmax().

Class Distribution - π ∈ [0, 1]K ,
∑K

i=1 πi = 1

Gaussian Components - {µi,σi}Ki=1

Table 12: The NMI results of the basic variants for BERT features. vs Last means the average improvement
comparing the current row with the last one.

Variant AN SS SO Bio GN-TS GN-T GN-S Tw vs Last
Basis (M) 62.97 68.95 76.12 43.23 93.28 87.65 90.18 89.94 -
w/ ht

i (MGraph) 63.88 73.57 78.89 45.64 95.22 91.42 92.04 92.89 +2.65
w/ pt

i (MAlign) 66.13 75.68 78.33 44.90 96.22 91.62 93.14 94.27 +0.84
COTC (MJoint) 67.09 77.09 79.19 46.09 96.33 92.07 93.49 95.09 +0.77

Table 13: The ACC results of the basic variants for TFIDF features. vs Last means the average improvement
comparing the current row with the last one.

Variant AN SS SO Bio GN-TS GN-T GN-S Tw vs Last
Basis (M) 82.62 80.11 82.90 48.17 83.37 79.98 80.65 73.23 -
w/ hb

i (MGraph) 84.89 87.41 84.12 49.68 85.07 80.82 82.11 74.99 +2.26
w/ pb

i (MAlign) 85.83 88.95 85.04 51.55 87.86 81.68 84.40 87.65 +2.98
COTC (MJoint) 87.26 90.00 86.87 52.41 90.35 83.36 86.03 91.05 +1.80

Table 14: The NMI results of the basic variants for TFIDF features. vs Last means the average improvement
comparing the current row with the last one.

Variant AN SS SO Bio GN-TS GN-T GN-S Tw vs Last
Basis (M) 55.76 58.96 71.44 40.57 93.48 90.25 90.04 88.86 -
w/ hb

i (MGraph) 60.57 71.91 78.77 44.25 94.44 91.13 91.17 89.70 +4.07
w/ pb

i (MAlign) 63.94 74.80 75.07 43.39 94.33 90.83 92.29 92.85 +0.70
COTC (MJoint) 66.16 76.53 78.97 45.69 96.19 91.91 93.41 94.72 +2.01
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