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Abstract

Knowledge editing technology is crucial for
maintaining the accuracy and timeliness of
large language models (LLMs) . However, the
setting of this task overlooks a significant por-
tion of commonsense knowledge based on free-
text in the real world, characterized by broad
knowledge scope, long content and non instan-
tiation. The editing objects of previous meth-
ods (e.g., MEMIT) were single token or en-
tity, which were not suitable for commonsense
knowledge in free-text form. To address the
aforementioned challenges, we conducted ex-
periments from two perspectives: knowledge
localization and knowledge editing. Firstly, we
introduced Knowledge Localization for Free-
Text(KLFT) method, revealing the challenges
associated with the distribution of common-
sense knowledge in MLP and Attention lay-
ers, as well as in decentralized distribution.
Next, we propose a Dynamics-aware Editing
Method(DEM), which utilizes a Dynamics-
aware Module to locate the parameter posi-
tions corresponding to commonsense knowl-
edge, and uses Knowledge Editing Module to
update knowledge. The DEM method fully ex-
plores the potential of the MLP and Attention
layers, and successfully edits commonsense
knowledge based on free-text. The experimen-
tal results indicate that the DEM can achieve
excellent editing performance. The code and
dataset file in URL 1.

1 Introduction

Large-scale Language Models (LLMs) have
demonstrated remarkable performance in various
natural language processing tasks. Nevertheless, er-
rors or outdated knowledge are inevitable in LLMs
(Meng et al., 2022a). Directly fine-tuning a large
language model demands significant computational
resources (Gupta et al., 2023), making it econom-

*Corresponding authors.
1URL: https://github.com/Huangxiusheng/DEM

Fig. 1: An example with factual knowledge and com-
monsense knowledge, and obtaining the correct answer
by editing the model.

ically prohibitive and limiting its popularity as a
preferred approach (Ding et al., 2023).

Knowledge editing serves as an effective ap-
proach to update LLMs. Existing knowledge edit-
ing methods predominantly concentrate on edit-
ing triple-based facts such as entity-relation pairs
(Meng et al., 2022b), events (multiple triplets)
(Peng et al., 2024; Liu et al., 2024). These
approaches commonly utilize strategies involv-
ing neuron localization and editing (Meng et al.,
2022a), assuming that entities and phrases within
factual triplets are stored in a limited set of neurons.
By manipulating these select neurons, knowledge
editing can be accomplished. As shown in Figure 1,
factual knowledge editing involves rectifying out-
dated triplets like <America, President, Trump> to
accurate ones like <America, President, Biden>.

However, in real-world scenarios, structured
entity-relation triplets often fall short in ade-
quately describing many knowledge pieces, es-
pecially when it comes to commonsense knowl-
edge (Hwang et al., 2021). The data characteristics
of commonsense knowledge are broad knowledge
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scope, long content and non instantiation, which
limits the effectiveness of traditional knowledge
editing methods. In addition, when using LLMs,
users often need to obtain commonsense knowl-
edge in the form of free-text, rather than structured
entity level information. This user preference indi-
cates that commonsense knowledge editing based
on triplet forms does not meet their needs. There-
fore, we propose a more challenging commonsense
knowledge editing task based on free-text, which
has wider practicality.

Compared to previous methods, commonsense
knowledge editing based on free-text presents some
new challenges, as shown below: (1) The previous
knowledge localization methods (e.g. Causal Trac-
ing (Meng et al., 2022a)) typically used the prob-
ability value of the editing target as the response
value of the knowledge storage location. The suc-
cess of this method is based on the fact that the edit-
ing target is a single token or entity. However, the
editing target of commonsense knowledge based on
free-text editing has multiple tokens, which limits
the effectiveness of previous methods. (2) Previ-
ous knowledge editing methods typically assumed
that factual knowledge was stored on a single or
small number of neurons, and knowledge editing
could be achieved through operations on a small
number of neurons. However, the experiments con-
ducted in Section 3 indicate that commonsense
knowledge based on free-text does not conform to
this assumption. Commonsense knowledge based
on free-text has a wide range of storage locations,
is more dispersed, and is less prone to localization.
Therefore, previous knowledge editing methods are
insufficient for handling commonsense knowledge
editing based on free-text.

To address the aforementioned challenges, we
conducted experiments from two perspectives:
knowledge localization and knowledge editing.
Firstly, we introduce a Knowledge Localization for
Free-Text(KLFT) method that include knowledge
location and recall. Specifically, knowledge loca-
tion experiments are utilized to determine whether
commonsense knowledge is stored in the local hid-
den states of transformers, as well as to explore the
form of storage. The knowledge recall experiment
is used to verify whether specific hidden states stor-
ing commonsense knowledge have a significant
contribution to that knowledge. Two experiments
together indicate that, in comparison to triple facts,
commonsense knowledge predominantly resides in

the MLP layers and Attention (Attn) layers, the stor-
age of knowledge is not local but rather dispersed
throughout. This means that the previous editing
methods (e.g., editing local layers in ROME(Meng
et al., 2022a) and PMET (Li et al., 2024)) were
unreasonable.

Secondly, we propose a Dynamics-aware Edit-
ing Method(DEM). Specifically, we introduce a
Dynamic-aware module for real-time detection of
the storage location of each commonsense knowl-
edge, and selected the layer with the highest con-
tribution to knowledge as the editing layer. Subse-
quently, we employ a Knowledge Editing module
to perform targeted knowledge editing on specific
MLP and Attn layers. The experimental results
validated the effectiveness of the method.

To address the issue of insufficient commonsense
knowledge datasets for editing based on free-text,
we have developed Commonsense Knowledge Edit-
ing Benchmark (CKEBench) . This dataset has
15600 samples and six evaluation indicators, which
is more challenging than the existing dataset. To
the best of our knowledge, we are the first to intro-
duce an Commonsense Knowledge Editing Bench-
mark. Additionally, we investigate the storage and
recall of commonsense knowledge and propose an
effective editing method. Our contributions can be
summarized as follows:

• We constructed a Commonsense Knowledge
Editing Benchmark (CKEBench) dataset that
provides a benchmark for editing Common-
sense knowledge based on free-text.

• Through Knowledge Localization for Free-
Text (KLFT), we found that compared to
triple facts, commonsense knowledge predom-
inantly resides in the MLP layers and Attn
layers, the storage of knowledge is not local
but rather dispersed throughout.

• To edit commonsense knowledge based on
free-text, we propose a Dynamics-aware Edit-
ing Method(DEM). Specifically, the DEM
includes a Dynamic-aware Module and a
Knowledge Editing Module. The experimen-
tal results validated the effectiveness of the
method.

2 Constructing CKEBench Dataset

In this section, we constructed an Commonsense
Knowledge Editing Benchmark(CKEBench). This
datasets consist of 15,600 samples.
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Commonsense Knowledge Editing Benchmark(CKEBench) < ATOMIC Data Source >
IDx Commonsense Prompt Target Answer

Sample 1 PersonX about to get married, as a result, PersonX wants to live happily ever after
Sample 2 PersonX accepts PersonY appointment, resulting in personX travels to appointment

Sample 3
PersonX can tell PersonY that PersonY is being solipsist
and insolent, as a result,

others want to to stop what they’re doing

Table 1: An example of converting source data from ATOMIC database into directly generated(DG), multiple-choice
questions(MQ), and true/false questions(T/F).

2.1 Dataset Construction

Based on the ATOMIC (Sap et al., 2019)
database, we constructed a Commonsense Knowl-
edge Editing Benchmark(CKEBench). ATOMIC
is a well-known commonsense database that was
developed by Allen Institute and subsequently op-
timized for its version (Hwang et al., 2021). The
CKEBench contains 23 types of relationships and
describes commonsense knowledge based on free-
text, they fall into three natural categories based on
their meaning: physical-entity, social- interaction
and event-centered commonsense.

2.2 Dataset Preparation

In ATOMIC, the data format is <
Event1,Relationship,Event2 >, which con-
tains some unrecognized markers (e.g. ___, etc.)
and invalid characters (e.g. &, etc.), which we
manually filter out. In addition, the relationship
types in ATOMIC are abbreviated and not easily
understood by humans. Even if ATOMIC provides
corresponding annotations, it is still not enough to
form a smooth statement when constructing the
prompt. as shown in the Appendix A, we have
rewritten the 23 relationship categories in ATOMIC
into templates that can be read by humans and
counted their sample sizes. Afterwards, we will
use the reorganized dataset dataset as the initial
data to construct the CKEBench dataset.

2.3 Dataset Analysis

After filtering and rewriting, we obtained a total
of 15600 high-quality samples, of which "xAttr"
had the highest number of samples, totaling 3224.
The average length of "Commonsense Prompt" is
72 tokens, and the average length of Target An-
swer is 16 tokens. After testing on LLaMA-3 (8B)
(Touvron et al., 2023a), the Perplexity (PPL) of the
dataset is 7.3, indicating that the text of the entire
dataset is smoother and the quality of the dataset is
higher. The appendix C shows an example.

3 Knowledge Localization for Free-Text

To locate commonsense knowledge based on
free-text within LLMs, we propose a Knowledge
Localization for Free-Text (KLFT) method, which
involves two experiments : knowledge location and
recall.

3.1 KLFT Method
Inspired by causal tracing (Meng et al., 2022a),

we adopt KLFT method to explore the way knowl-
edge is stored. Similar to the causal tracing, a clean
run that predicts the fact, a corrupted run where
the prediction is damaged, and a corrupted-with-
restoration run that tests the ability of a single state
to restore the prediction.

• In the clean run, we pass a commonsense
prompt x = [x1, ..., xT ] into model Fθ

and collect all hidden activations {hli|i ∈
[1, T ], l ∈ [1, L]}, L represents the number of
hidden layers in the model. Table 1 provides
an Sample 1 illustration with the common-
sense prompt: " PersonX about to get married,
as a result, PersonX wants to", the expected
target answer is "live happily ever after".

• In the corrupted run, there are 23 relation-
ship categories in the CKEBench. We con-
sider the text before the relationship as the
subject, and the text after the relationship as
the object. The subject is obfuscated from Fθ

before the network runs. Concretely, imme-
diately after x is embedded as [h01, h

0
2, ..., h

0
T ],

we set h0i = h0i + δ for all indices i that
correspond to the subject entity, where δ ∈
N (0, σ2). Fθ is then allowed to continue nor-
mally, giving us a set of corrupted activations
{hli∗|i ∈ [1, T ], l ∈ [1, L]}. Because Fθ loses
some information about the subject, it will
likely return an incorrect answer.

• In the corrupted-with-restoration run, we
have the Fθ run calculations on noise embed-
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Fig. 2: Storing Factual and Commonsense Knowledge
in LLMs.

dings, except in some tokens xi′ and layers
l′. Afterwards, we hook Fθ and forced it to
output clean state hl

′
i′ . Future calculations can

continue without intervention. Afterwards,
The ability of a few clean states to restore
correct facts afterwards indicates their impor-
tance in the calculation graph.

The probability value Pl′ of restoring the tar-
get answer will be used as the contribution of this
layer l′ to common sense knowledge. The larger
Pl′ , the greater the probability that commonsense
knowledge is stored in this layer. For commonsense
knowledge based on free-text , the target answer is
usually a complete sentence with multiple tokens,
and Pl′ cannot be directly obtained. We utilize
GPT-4 (Achiam et al., 2023) and LLaMA-3 (8B)
(Touvron et al., 2023a) to evaluate the semantic
similarity Sl′

1 and Sl′
2 between the text output of

the model and the target output, and then make

Pl′ =
Sl′
1 +Sl′

2
2 .

3.2 Knowledge Location

3.2.1 Locating commonsense knowledge
before decoupling

We compared the differences between factual
and commonsense knowledge in storage locations
by KLFT method. As show in the Figure 2, the fact
prompt is "Beats Music is owned by", the target
answer is "Apple", the commonsense knowledge is
sample 3 in Table 1. The horizontal axis represents
the layers in LLMs, and the vertical axis represents
the tokens xi of different knowledge. The depth of
color is determined by Pl′ , and the larger Pl′ , the
darker the color, indicating a higher probability of
storing knowledge in that layer.

Fig. 3: The storage of commonsense knowledge after
decoupling factual knowledge. The Single Layers refers
to the transformers block layer, which includes MLP
and Attn layers.

Unlike factual knowledge, which is typically
stored in fixed MLP layers(Meng et al., 2022a),
commonsense knowledge is not limited to specific
layer neurons. Evidence of storage can be observed
in both the MLP and Attn layers.

3.2.2 Locating commonsense knowledge after
decoupling

Commonsense knowledge is non instantiation
and is often abstractly represented. By contrast,
facts are usually instanciated. To more accurately
locate commonsense knowledge and decouple it
from factual elements, we perform multiple same-
type text replacements for the factual elements that
may be contained in free text. For example, we
replace "personX" in free-text with multiple per-
son names and take the intersection of the located
results.

As shown in Figure 3, we obtained the storage
situation of commonsense knowledge decoupled
from factual knowledge (The "Mean" column). Un-
like factual knowledge, which is stored in the mid-
dle and front layers of MLP in LLMs, we found
that commonsense knowledge is dispersed in the
MLP and Attn layers, which poses a challenge for
commonsense knowledge editing.

3.2.3 Locating commonsense knowledge of
the entire dataset

We conducted KLFT experiment on each rela-
tionship category, selecting 100 samples for each
relationship category, totaling 2300 samples. The
experiment selected top k=3 layers as the storage
location of knowledge. As shown in the Figure 4,
the storage location of the MLP layer is mainly in
the middle and front layers, but other layers also
store some knowledge. Unlike the experimental
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Fig. 4: Display the storage location of samples for each
relationship category in the MLP and Attn layers. The
horizontal axis represents the parameter layer of the
model, and the vertical axis represents the relationship
category. The darker the color, the more knowledge
stored in that layer.

results of MLP, the knowledge storage in the Attn
layer is relatively scattered, with most layers stor-
ing knowledge.

3.3 Knowledge Recall

To verify the conclusions of commonsense
knowledge based on free-text in localization, we
recorded the contribution of MLP and Attn layers
to knowledge during the recall process.

Experimental design. After passing through
each layer of parameters in the model, the informa-
tion flow undergoes certain changes, which we con-
sider as an indicator to evaluate the contribution of
parameter layers to knowledge. We hook model Fθ

and obtain the hidden states {hlin, hlout|l ∈ [1, L]}.
Specifically, we directly compare the hidden states
hlin and hlout passing through the l-th parameter
layers , utilizing cosine similarity as the evaluation
metric. At the same time, we utilize the hlin and
hlout as the input for the final prediction lm_head
layer of the model, then obtain the corresponding
predicted token probabilities plin and plout. We take
tokens with top k=50 as candidate sets, and use
the Simpson algorithm to calculate the similarity
between the plin and plout.

Simpson_Similarity ==
|plin ∩ plout|

min(|plin|, |plout|)
(1)

Data selection. For factual and commonsense
knowledge, we selected 1150 samples each to ex-
plore the process of knowledge recall. Among
them, there are a total of 23 relationship categories
for commonsense knowledge, with 50 samples se-
lected for each relationship category. We assume
that the similarity is inversely proportional to the
contribution of corresponding knowledge. When

Fig. 5: The comparison of activation response results
between factual and commonsense knowledge in knowl-
edge recall process. Among them, the green line rep-
resents the MLP layer, the orange line represents the
Attention layer. The horizontal axis represents different
layers, and the vertical axis represents the numerical
value of similarity.

the similarity is close to zero, it indicates that the
layer has the greatest impact on knowledge during
the knowledge recall process.

Result analysis. As shown in the Figure 5, The
similarity is close to zero, indicating that the pa-
rameter layer is not very helpful for the final pre-
diction. For the MLP layer, the similarity of factual
knowledge is much greater than zero in the middle
part and close to zero in the rest, while the sim-
ilarity of commonsense knowledge is only close
to zero in the middle and front parts. For the Attn
layer, the similarity between factual knowledge and
commonsense knowledge is close to zero at most
layer, but there is also a certain difference in values.
The experimental results show that the localization
results of the KLFT method are consistent with
the parameter layer response of knowledge recall
process. For commonsense knowledge based on
free-text, which is mainly stored in the middle and
front layers of MLP as well as most Attn layers.

4 Dynamics-aware Editing Method

To edit commonsense knowledge based on
free-text, we propose a Dynamics-aware Editing
Method(DEM). Specifically, the DEM includes a
Dynamics-aware Module and Knowledge Editing
Module.
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Fig. 6: The overall architecture of the Dynamics-aware
Editing Method.

4.1 Dynamics-aware Module

Through section 3, we conclude that unlike fac-
tual knowledge, commonsense knowledge is stored
in the MLP and Attn layers, and the storage loca-
tions of knowledge are relatively scattered. The
existing knowledge editing methods always edit
all factual knowledge at fixed parameter layer. For
example, when editing all samples on GPT-J (6B)
(Wang and Komatsuzaki, 2021) model, the edited
layers for the ROME (Meng et al., 2022a) and
PMET (Li et al., 2024) methods are fixed [5] and
[3,4,5,6,7,8], respectively, which is obviously un-
reasonable for editing commonsense knowledge.

As shown in the Figure 6, we propose a
Dynamics-aware module for selecting MLP and
Attn layers for editing. When commonsense
prompts x = [x1, ..., xT ] input to model Fθ, the
information flow will change after passing through
parameters layer. We hook Fθ to obtain the last
token’s hidden state {h(T )lin, h(T )lout|l ∈ [1, L]}.
The h(T )lin and h(T )lout represent the hidden states
of the token’s input and output in l-th layer, respec-
tively. Then we utilize Cosine Similarity as an
indicator for selecting editing layers:

Cosine_Similarity =
h(T )lin · h(T )lout

∥h(T )lin∥∥h(T )lout∥
(2)

the closer the Cosine Similarity is to zero, the
greater the contribution of this layer to knowledge.
Select layers with top k=3 for editing.

4.2 Knowledge Editing Module

We edit the selected layers l̂ of the dynamic per-
ception module in section 4.1. For a given question
x = [x1, ..., xT ], where xi represents the i-th to-
ken of the question, and T represents the number
of question tokens. The model Fθ generates text
by iteratively sampling from a conditional token

distribution P(o1, ..., on|x1, ..., xT ), where oj rep-
resents the j-th token of the output. We utilize
{hli|i ∈ [1, T ], l ∈ [1, L]} to represent the hidden
state of xi in the l-th layer.

4.2.1 Step1: Obtaining Incremental Weights
DEM first computes the target answer repre-

sentations in the selected layers l̂ of MLP and
Attn by simultaneously optimizing the TC (Trans-
former Component, namely MLP and Attn) hidden
states. Secondly, DEM updates both MLP and Attn
weights in the critical layers through target answer
oj representations. Overall, DEM optimizes an
objective function to obtain target weights (Meng
et al., 2022b):

WMLP,WAttn ≜ argmin
W

((
n∑

i=1

(∥Wki − vi)∥2+

n+u∑

i=n+1

(∥Wki − vi)∥2))
(3)

where ki ≜ kl̂i and vi ≜ v l̂i represent the sets of
keys and values, respectively, encoding the com-
monsense prompt in l̂-th layer.

∑n
i=1(∥Wki −

vi)∥2 indicates that we want to retain n pieces
of knowledge, while

∑n+u
i=n+1(∥Wki − vi)∥2 in-

dicates that we want to modify u >> 1 pieces of
knowledge. We represent the keys and val- ues as
matrices stacked horizontally: [k1|k2|...|kn] ≜ K
and [v1|v2|...|vn] ≜ V , and we consider the target
weight WMLP and WAttn as the sum of the origi-
nal weight WMLP

0 and WAttn
0 , and the incremen-

tal weight △ (i.e. WMLP = WMLP
0 + WMLP

△ and
WAttn = WAttn

0 + WAttn
△ ). Based on the deriva-

tion from MEMIT (Meng et al., 2022b), the formal
expression for the incremental weight is:

△MLP = RMLP (kMLP
1 )T (CMLP

0 + kMLP
1 (kMLP

1 )T )−1

△Attn = RAttn(kAttn
1 )T (CAttn

0 + kAttn
1 (kAttn

1 )T )−1

(4)

where RMLP ≜ V MLP
1 − WMLP

0 KMLP
1 rep-

resents the residual between the values V MLP
1

(namely target answer representations) correspond-
ing to the keys KMLP

1 of the target knowledge
and the model original knowledge WMLP

0 KMLP
1 .

CMLP
0 ≜ kAttn

0 (kAttn
0 )T = µE[kkT ] is an esti-

mate of the set of previously memorized keys ob-
tained through sampling. Here, µ is a hyperparam-
eter which balances the degree of model modifica-
tion and preservation.

We consider modifying the original answers re-
lated to commonsense prompts x = [x1, ..., xT ]
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in LLMs to target answers o = [o1, ..., on]. As-
suming that the set of previously memorized keys
CMLP
0 has already been obtained through sam-

pling, and knowledge clues xi have been inputed
into the original model to obtain WMLP

0 KMLP
1 ,

we then need the sets of keys and values for the
target knowledge, denoted as K1 and V1, respec-
tively. Similar to MEMIT (Meng et al., 2022b), we
calculate the target answer set of the edited layer
L = max(RMLP ). The relevant parameters of
Attn and MLP layers are similar.

4.2.2 Step2: Updating Weights
As shown in the Figure 6, ali and ml

i are the
hidden states of the Attn and MLP of the l-th layer
and the i-th token, respectively. The general forms
of the Attn and MLP at the l-th layer and the i-th
token xli are given by:

al
i = W l

oattnAttnl(γ(hl−1
1 , hl−1

2 , ..., hl−1
i )),

ml
i = W l

omlpΦ(W
l
Iγ(h

l−1
j ))

(5)

Where W l
oattn and W l

omlp are the output weights
of the Attn and MLP at the l-th layer, respectively.
W l

I are the input weights of the MLP at the l-th
layer. The Φ represents the non-linear activation
function.

DEM adds optimizable parameters δmi and δai to
hidden states vmi and vai at the l-th layer, respec-
tively. DEM retains the optimized hidden state of
MLP and Attn to update their weights separately,
denoted as vmi = ml

i + δmi = argminL(vmi ) and
vai = ali + δai = argminL(vai ). The formulas
L(vmi ) and L(vai ) are similar, with the main dif-
ference being their application in MLP and Attn
calculations. The L(vmi ) is defined as follows:

L (vmi ) = α ·DKL

(
PF†

θ
[ym | pm] |PFθ [y

m|pm]
)

+ β · 1

P

P∑

j=1

− log PF†
θ

[
yZt
i | prefj ⊕p (xm

i )
]
.

(6)

Where F†
θ

△
= Fθ(a

l
i+ = δai ) represents the op-

timizable parameters δai is added to the hidden
states of Attn at the l-th layer of the model Fθ.
The α and β are hyperparameters used to balance
reliability and specificity. prefj ⊕p (xm

i ) is uti-
lized to enhance the prefix of target knowledge
generalization and commonsense knowledge gen-
eralization (such as randomly replacing person
names).Simultaneously calculate KL divergence
and stack the calculation results into matrix V1.

With this, DEM follows the same algorithm steps
as PMET (Li et al., 2024) to update MLP and Attn
weights.

5 Experiments

In the section, we investigated the effectiveness
of DEM method and existing editing methods in
editing commonsense knowledge based in free-
text.

5.1 Experimental Setup
Baselines and Datasets. Our experiments are
conducted on GPT-J (6B) (Wang and Komat-
suzaki, 2021) and LLaMA-2 (7B) (Touvron et al.,
2023b). The baseline methods include the learning-
based method MEND, and locating and editing the
methods Fine-Tuning (FT+W) (Zhu et al., 2020),
MEND (Mitchell et al., 2021), MEMIT (Meng
et al., 2022b) and PMET (Li et al., 2024). We
chose the CKEBench dataset we constructed as the
benchmark.

Evaluation. For CKEBench datasets, the target
answer is an free-text that contains multiple tokens.
Therefore, we utilize the GPT-4 (Achiam et al.,
2023) model to determine the similarity between
the generated text and the original text as the ex-
perimental result. Similar to the factual knowledge,
the evaluation metrics include Score, Efficiency,
Generalization, Specificity, Fluency and Consis-
tency. In addition, we have added a Commonsense
indicator to evaluate the ability of the method to
edit commonsense knowledge. The data in the
"sub_neighborhood_prompts" at Appendix C is uti-
lized to evaluate this indicator.

5.2 Overall Results
We conduct experiments on commonsense

knowledge datasets to verify the effectiveness of
our method DEM.

Results on the GPT-J (6B). The Table 2 shows
that DEM performs better than baselines methods.
Specifically, DEM built upon GPT-J (6B), is +4.5
better on indicator Score than PMET, and obtains
a new state-of-the-art(SOTA) result. Meanwhile,
our method achieves 13.8% improvements of Com-
monsense score on the true/false questions dataset.
The significant performance gain of our method
over the baselines demonstrates that the proposed
DEM is very effective for this task.

Results on the LLaMA-2 (7B). As show in Ta-
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Editor Score Efficacy Generalization Specificity Fluency Consistency Commonsense
GPT-J (6B) 12.4 14.5 12.1 9.4 605.3 20.9 7.2
FT-W 22.7 39.3 20.4 21.5 313.5 25.7 11.8
MEND 25.8 29.5 22.7 31.3 501.2 27.8 14.7
MEMIT 31.6 45.6 21.8 35.6 556.9 33.7 21.8
PMET 39.8 56.8 53.3 48.8 619.7 44.7 27.9
DEM(ours) 44.3(↑4.5) 60.3(↑3.5) 57.4(↑4.1) 50.3(↑1.5) 611.3 45.6(↑0.9) 41.7(↑13.8)
LLaMA-2(7B) 13.7 18.7 13.5 12.3 617.7 19.9 9.2
MEMIT 33.5 42.9 27.3 36.3 600.8 33.5 23.8
PMET 40.5 58.7 55.9 47.3 615.5 47.2 27.7
DEM(ours) 43.5(↑3.0) 62.2(↑3.5) 57.3(↑1.4) 52.9(↑5.6) 609.8 50.3(↑3.1) 43.4(↑15.7)

Table 2: The main results directly generated in the CKEBench dataset. The performance of our method is followed
by the improvements (↑) over the previous method.

Model Efficacy Commomsense
GPT-J (6B)(DEM) 60.3 41.7

w/o DA 57.6 (↓ 2.7) 31.5 (↓ 10.2)
w/o EM 18.8 (↓ 41.5) 9.3 (↓ 32.4)
w/o EA 58.5 (↓ 1.8) 40.1 (↓ 0.6)

Table 3: Ablation study of DEM. We turn off different
components of the model one at a time.

ble 2, Our method improves upon the basic PMET
method by 15.7% and 5.6% in term of F1 Common-
sense score and Specificity score on the LLaMA-2
(7B), respectively. Meanwhile, our DEM achieves
3.0% improvements of Score. We attribute the im-
provements to that our method DEM takes advan-
tage of Dynamics-aware and Knowledge Editing
Module, thus achieving superior performance than
the previous model PMET.

5.3 Ablation Study

To show the efficacy of our proposed techniques,
we conduct an ablation study experiment by turning
off one component at a time. 1) w/o DA, which
removes the Dynamics-aware module; 2) w/o EM,
which does not edit MLP layers in the Knowledge
Editing module, only the Attn layers; 3) w/o EA,
which does not edit Attn layers in the Knowledge
Editing module, only the MLP layers; . We present
the results of ablation study in Table 3. From the
results, we can observe that:

(1) Effectiveness of Dynamics-aware module.
When we remove the Dynamics-aware module
from the DEM, the Score drops by 10.2% on
commonsense knowledge dataset. It proves the
Dynamics-aware module is very effective for the
task.

(2) Effectiveness of not editing MLP layers.
Not editing the MLP layer, the performance drops

significantly. Specifically, the Efficacy score drops
from 60.3% to 18.8% on the commonsense dataset.

(3) Effectiveness of not editing Attn layers.
Compared without editing Attn layers, our method
DEM achieves 1.8% improvements of Efficacy
score on the commonsense dataset. It demonstrates
that the Attn layer is crucial for editing common-
sense knowledge.

6 Related Work

The existing knowledge editing dataset can be
divided into triplet form and event form. In triplet
format dataset, commonsense knowledge dataset
includes PEP3k and 20Q (Porada et al., 2021;
Gupta et al., 2023), factual knowledge includes
ZsRE (Levy et al., 2017), CounterFact (Meng et al.,
2022a), Fact Verification (Mitchell et al., 2022) ,
Calibration (Dong et al., 2022), MQuAKE (Zhong
et al., 2023) and RaKE (Wei et al., 2023). In event
format dataset, datasets with only factual knowl-
edge, including ELKEN (Peng et al., 2024) and
EVEDIT (Liu et al., 2024).

The previous editing methods mainly focused
on editing knowledge in the form of triples, with
a small amount of knowledge in the form of edit-
ing events. The methods for editing triplet forms
mainly include : (1)Locate-Then-Edit method (Dai
et al., 2021; Meng et al., 2022a,b; Li et al., 2024),
(2) Memory-based method (Mitchell et al., 2022;
Madaan et al., 2022; Zhong et al., 2023; Zheng
et al., 2023), (3) Hyper-network method (Mitchell
et al., 2021; De Cao et al., 2021; Tan et al., 2023).
The method for editing event forms is Self-Edit
(Liu et al., 2024).

7 Conclusion

In this paper, we aim to edit commonsense
knowledge based on free-text. Firstly, we con-
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structed CKEBench dataset that provides a bench-
mark for editing Commonsense knowledge based
on free-text. Additionally, we propose a KLFT
method, and concluded that commonsense knowl-
edge is dispersed in the MLP and Attn layers. Fi-
nally, we propose the DEM method to edit com-
monsense knowledge, and the experimental results
verify the effectiveness of this method.

8 Limitations

Due to limitations in computing resources, we
did not conduct relevant experiments on larger lan-
guage models.
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A Appendix A

B Appendix B: Effects of the existing
methods

Fig. 7: Examples of commonsense knowledge editing
using existing methods.

We conducted experiments to evaluate the effi-
cacy of existing methods in editing commonsense
knowledge based on free-text. As show in Figure 7,
"One edit" refers to editing the sample once, while
"Multiple edits" involves editing the sample five
times. It is observed that both the original output

Relations Human Readable Template Size

oWant
as a result, personY want to

7775
as a result, others want to *

xEffect
as a result, PersonX will

13862
resulting in *

xIntent
because PersonX wanted

8558
which means *

xNeed which means PersonX need 13734
xWant as a result, PersonX wants 7775
xReact which indicates that personX 10689

oEffect
resulting in personY

5181
resulting in others *

oReact
and personY’s reaction is

4740
and others’s reaction is *

xAttr
which means that PersonX

19441
which means that *

AtLocation located in the 234
ObjectUse are used to 311
Desires desires 271
HasProperty has the property of 428
NotDesires have no desire to 287
Causes causes 322
HasSubEvent The sub event of E1 is to E2 118
xReason The reason for E1is E2 290
CapableOf is/are capable of 512
MadeUpOf made up of 291
isAfter happens after 465
isBefore happens before 164
isFilledBy blank can be filled by 174
HinderedBy can be hindered by 612

Table 4: The correspondence between relationships and
rewriting templates in the ATOMIC database. Among
them, "*" represents that the token "personX/personY"
in < Event1,Relationship,Event2 > is not in Event1
or Event2. "E1" and "E2" represent Event1 or Event2.

and the utilization of MEMIT (Meng et al., 2022b)
methods (including One and Multiple edits) fail to
effectively edit commonsense knowledge. Further-
more, multiple edits lead to repeated instances of
partial target answers. These experimental findings
highlight the limitations of existing methods in edit-
ing commonsense knowledge based on free-text.

C Appendix C
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    {
        "case_id": 9313
        "requested_rewrite": {
            "prompt": "{}, as a result, others want to to stop what they're doing",
            "subject": "PersonX can tell PersonY that PersonY is being solipsist and insolent",
            "subsubject": "PersonX",
            "target_new": {
                "str": "to stop what they're doing"
            },
        },
        "paraphrase_prompts": [
            "PersonX can inform PersonY that they are acting solipsistic and disrespectful, as a result, personY want to to 

stop what they're doing",
            "PersonX has the ability to inform PersonY about their solipsistic and insolent behavior, as a result, personY 

want to to stop what they'redoing",
],

        "neighborhood_prompts": [
            "PersonX breaks the enemy 's ___, as a result, others want to to stop what they're doing",
            "PersonX asks the neighbors, as a result, others want to to stop what they're doing",

],
        "sub-neighborhood_prompts": [
            "James can tell PersonY that PersonY is being solipsist and insolent, as a result, personY want to to stop 

what they're doing",
            "David can tell PersonY that PersonY is being solipsist and insolent, as a result, personY want to to stop what 

they're doing",
],

        "sub-neighborhood_prompts_rewrite": [
        ],
        "generation_prompts": [
            "PersonX can tell PersonY that PersonY is being solipsist and insolent,  and personY's reaction is to stop 

what they're doing",
            "PersonX can tell PersonY that PersonY is being solipsist and insolent,  resulting in personY to stop what 

they're doing",
],

    }

Fig. 8: Sample id:9313 of CKEBench dataset. Due to
space constraints, this sample only displays the structure
rather than the entirety
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