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Abstract

Large language models (LLMs) can solve com-
plex multi-step problems, but little is known
about how these computations are implemented
internally. Motivated by this, we study how
LLMs answer multi-hop queries such as “The
spouse of the performer of Imagine is”. These
queries require two information extraction
steps: a latent one for resolving the first hop
(“the performer of Imagine”) into the bridge
entity (John Lennon), and another for resolving
the second hop (“the spouse of John Lennon”)
into the target entity (Yoko Ono). Understand-
ing how the latent step is computed internally
is key to understanding the overall computa-
tion. By carefully analyzing the internal com-
putations of transformer-based LLMs, we dis-
cover that the bridge entity is resolved in the
early layers of the model. Then, only after
this resolution, the two-hop query is solved in
the later layers. Because the second hop com-
mences in later layers, there could be cases
where these layers no longer encode the nec-
essary knowledge for correctly predicting the
answer. Motivated by this, we propose a novel
“back-patching” analysis method whereby a hid-
den representation from a later layer is patched
back to an earlier layer. We find that in up to
66% of previously incorrect cases there exists a
back-patch that results in the correct generation
of the answer, showing that the later layers in-
deed sometimes lack the needed functionality.
Overall, our methods and findings open further
opportunities for understanding and improving
latent reasoning in transformer-based LLMs.

1 Introduction

Despite groundbreaking performance in a multi-
tude of tasks, large language models (LLMs) still
struggle with complex knowledge queries (Press
et al., 2023; Dziri et al., 2023). For example, LLMs
often err when asked to complete multi-hop queries
such as “The spouse of the performer of Imagine
is”. Answering such queries requires composition
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Figure 1: An illustration of our findings: we observe
evidence of latent reasoning in two-hop queries where
1) During the early layers the first hop is resolved and
the source entity Imagine now encodes the bridge entity
John Lennon 2) During the middle layers critical infor-
mation propagates to the last position 3) During the later
layers the second hop is resolved and the last token now
encodes the target entity Yoko Ono. We additionally
illustrate back-patching: patching a hidden representa-
tion from a later layer back into an earlier layer in order
to fix cases where the pathway fails.

and reasoning skills, which have been the focus of
many recent works (Hou et al., 2023; Brinkmann
et al., 2024; Yang et al., 2024; Li et al., 2024a;
Wang et al., 2024; Petty et al., 2024). Besides the
general interest in compositional skills, the investi-
gation of latent multi-hop abilities of LLMs would
also have significant implications for areas such
as generalization (Lake and Baroni, 2018; Onoe
et al., 2023) and model editing (Zhong et al., 2023;
Cohen et al., 2024).

To strengthen the latent reasoning ability of
LLMs, it is essential to first understand the inter-
nal mechanism of how LLMs successfully com-
plete two-hop queries using latent multi-hop rea-
soning. While there have been several works that
investigate such a mechanism, a precise latent rea-
soning pathway has only been found in relatively
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small language models trained on synthetic datasets
(Brinkmann et al., 2024; Li et al., 2024a; Wang
et al., 2024) and has not been thoroughly investi-
gated in large pretrained models.

Throughout this work we consider and compare
two complementing settings, one where the model
correctly answers the two-hop query and the other
when it does not. To this end, in §2, we start
by creating and publishing a dataset containing
82,020 two-hop queries based on data from Wiki-
data (Vrandečić and Krötzsch, 2014).

Our approach to analyzing multi-hop reasoning
begins with the hypothesis that it involves activat-
ing the same “knowledge-extraction module” twice:
once for the first hop (“the performer of Imagine
is John Lennon”) and once for the second (“the
spouse of John Lennon is Yoko Ono”). The key
question we ask in this work is where are these two
procedures implemented in the LLM. A natural
way to answer this question is to seek the first point
in the network where the outputs of these two steps
appear. The typical approach to this would employ
vocabulary projections (nostalgebraist, 2020; Geva
et al., 2021; Sakarvadia et al., 2023; Yang et al.,
2024; Li et al., 2024a). However, we instead opt for
a more recent method named Patchscopes (Ghan-
deharioun et al., 2024) which has clear advantages
over the commonly used vocabulary projection.

Using this approach, in §3 we find that the out-
come of the first hop is clearly evident in the hidden
representation of the end-token of the first hop. We
further find that resolving the first hop happens dur-
ing the early layers, as depicted in Figure 1 (stage
1). Given the localization of the first hop, in §4
we then ask where the second hop is resolved. We
find that it typically appears in the last token of the
prompt only in layers after the resolution of the first
hop, as further illustrated in Figure 1 (stage 3).

These observations suggest a mechanism where
the first hop is resolved with the answer, that then
propagates to the last token to resolve the second
hop (as depicted by stage 2 in Figure 1). We explore
this propagation in §5. Moreover, they suggest why
this process may fail — If the two resolutions are
done by different groups of layers, it must be that
these two groups are both able to perform knowl-
edge extraction, be it via their attention or MLP
sublayers. However, since transformers have a lim-
ited amount of layers, and their functionality is
different (Meng et al., 2022; Geva et al., 2023), it is
quite likely that the layer at which the second hop
is performed will not have the desired functional-

ity. To verify this hypothesis, in §6, we propose an
analysis method named back-patching. The crux of
the method involves taking a hidden representation
from a later layer, patching it back into the same
position of the same prompt in an earlier layer, and
then continuing the forward pass. In a way, this
allows the model more layers to finish the computa-
tion without the need for additional parameters or
training (Petty et al., 2024). Unlike previous meth-
ods (Sakarvadia et al., 2023; Li et al., 2024a), back-
patching makes no assumption on the structure of
the prompt and does not require any knowledge of
the participating entities. Testing back-patching on
queries initially predicted incorrectly, we find that
up to 66% of incorrect cases have the potential to
be correctly predicted using back-patching when
choosing the optimal source and target layers.

Overall, our contributions can be summarized as
follows:

• We provide a novel dataset of two-hop queries,
which can serve to systematically study this
important setting.

• We employ Patchscopes to inspect entities en-
coded in hidden representations while process-
ing two-hop queries.

• We identify a sequential latent reasoning path-
way in LLMs, where the first hop query is
initially resolved into the bridge entity which
is then used to answer the second hop.

• We propose an analysis method named back-
patching, that verifies our results and could ad-
ditionally be used to improve the performance
of LLMs on multi-hop question answering.

We release our code and dataset at https://
github.com/edenbiran/HoppingTooLate.

2 Experimental Setup

2.1 Two-Hop Queries

We consider facts denoted by a triplet (e, r, e′)
where e is a source entity (e.g., John Lennon), r
is a relation (e.g., Spouse) and e′ is a target entity
(e.g., Yoko Ono). These facts can then be con-
verted to factual statements (e.g., “The spouse of
John Lennon is Yoko Ono”) and also into queries
by omitting e′ (e.g., “The spouse of John Lennon
is ”). We then prompt models with these queries in
order to test their knowledge and reasoning.
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We create two-hop queries by composing two
facts where one’s target entity is the other’s source
entity. Namely, ((e1, r1, e2) and (e2, r2, e3)). We
refer to e1 as the source entity, e2 as the bridge
entity, and e3 as the target entity. For example, the
two-hop query “The spouse of the performer of
Imagine is” can be decomposed into (Imagine, Per-
former, John Lennon) and (John Lennon, Spouse,
Yoko Ono).

We further define two tokens of specific inter-
est: the last token of e11 (e.g., “The spouse of the
performer of Imagine”) and the last token of the
whole two-hop prompt (e.g., “The spouse of the
performer of Imagine is”), which we denote as t1
and t2, respectively.

2.2 Dataset
We create a dataset containing 82,020 two-hop
queries based on data from Wikidata (Vrandečić
and Krötzsch, 2014). First, we sample entities with
a maximal amount of Wikidata statements from
a set of predefined Wikidata entity types. These
entities will act as e2. Second, we use a prede-
fined set of relations in order to construct the two
triplets (e1, r1, e2) and (e2, r2, e3). Finally we con-
vert both triplets into a single natural language
phrase using manually crafted templates per re-
lation. We refer to our codebase for further details
including entity types and relations2.

We next attempt to filter out cases where no la-
tent reasoning is performed. Given a two hop query
((e1, r1, e2), (e2, r2, e3)) we test two prompts con-
structed to detect and filter out cases where the
model performs reasoning shortcuts (Xu et al.,
2022; Wang et al., 2023a; Ju et al., 2024). The first
prompt is the query (("", r1, e2), (e2, r2, e3)) (i.e.,
the query without e1), aimed at filtering out cases
where the model predicts generally popular entities.
The second prompt is ((e1, "", e2), (e2, r2, e3))
(i.e., the query without r1), aimed at filtering out
cases where the model predicts correctly due to a
high correlation between e1 and e3. For example,
given the two-hop query “The spouse of the per-
former of Imagine is” we filter out cases where the
model predicts Yoko Ono for either “The spouse
of the performer is” or “The spouse of Imagine
is”. We perform this filtering for each model using
greedy decoding creating a per model subset of the
dataset. Table 1 displays the amount of examples
left after this filtering process.

1This token is also the last token of the first hop.
2All data was retrieved during April 2024.

Model Post Filtering Cases Tested
Correct Incorrect

LLaMA 2 7B 70, 625 388 351

LLaMA 2 13B 70, 972 554 413

LLaMA 3 8B 71, 569 379 371

LLaMA 3 70B 70, 334 656 595

Pythia 6.9B 73, 058 173 202

Pythia 12B 74, 056 172 372

Table 1: The amount of examples post shortcut filtering
and the final amount used throughout all experiments.

We are specifically interested in understanding
the differences between cases where the model
completes the two-hop query correctly and incor-
rectly. Therefore we generate two dataset subsets
per model for these cases accordingly.

The first subset is made up of cases where the
model correctly answers both the two-hop query
and the first hop. For example, given the two-hop
query “The spouse of the performer of Imagine
is”, we verify that the model correctly predicts the
answer Yoko Ono when prompted with the two-
hop query and additionally correctly predicts John
Lennon when prompted with the first hop “The
performer of Imagine is”. We use the latter filter
to make sure that the model indeed “knows” the
answer to the first hop. We then randomly sample
100 examples of each bridge entity type, in order
to create a more balanced subset (if less than 100
examples of a specific type exist we take them all).

The second subset includes cases where the
model correctly answers both the first and second
hop in isolation, but fails to answer the full two-hop
query. As an example for the filtering procedure,
given the same query above, we verify that the
model correctly predicts John Lennon for the first
hop “The performer of Imagine is” and Yoko Ono
for the second hop “The spouse of John Lennon
is”, but fails to predict Yoko Ono for the two-hop
query “The spouse of the performer of Imagine is”.
We focus on these cases, because we are interested
in understanding why answering the two-hop query
fails despite the model “knowing” the two separate
facts. As we show later, this failure is likely due
to the first fact being resolved too late. In a sim-
ilar fashion to the first setting, we then randomly
sample 50 examples of each bridge entity type (in
order to keep the correct and incorrect subsets of
approximately the same size).

Table 1 reports the amount of examples used in
experiments by model and setting.
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2.3 Models

We analyze the following models: LLaMA 2 7B
and 13B (Touvron et al., 2023), LLaMA 3 8B and
70B (Meta AI, 2024), and Pythia 6.9B and 12B
(Biderman et al., 2023). The 6.9B, 7B and 8B
models have 32 layers, the 12B model has 36 layers,
the 13B model has 40 layers, and the 70B model
has 80 layers.

3 Localizing First Hop Resolution

One could imagine several possible ways for a
model to solve multi-hop queries. One such way
would be to effectively treat the two-hop query as a
single relation, enabling the extraction of the final
answer without the need to recall e2. Despite this,
if the model truly performs latent reasoning, the
most intuitive way to do so would start by resolving
the first hop at some point within the computation.
In order to localize where this happens, we use
the Patchscopes analysis method. Our results show
that the model indeed resolves the first hop during
the early layers, at the position of t1.

3.1 Interpreting Hidden Representations

We use the Patchscopes framework (Ghandehar-
ioun et al., 2024) to create a task that describes
the entity encoded in a specific hidden representa-
tion. Patchscopes maps a given representation to
a sentence in natural language, thus considerably
extending vocabulary projections which map to a
single token (nostalgebraist, 2020).

The procedure is as follows. First, given a source
prompt, a source token and a source layer, the
source prompt is passed through the model’s for-
ward computation and the hidden representation v
of the source token at the source layer is recorded.
This representation v is what we aim to probe in
search for an encoded entity. Second, we pass
the same prompt used by Ghandeharioun et al.
(2024): “Syria: Syria is a country in the
Middle East, Leonardo DiCaprio: Leonardo
DiCaprio is an American actor, Samsung:
Samsung is a South Korean multinational
corporation, x” through the model, replacing
the hidden representation of “x” with v at a specific
target layer. Finally, the forward pass is continued
and text is generated.

The chosen target prompt encourages the model
to generate a continuation that states the seman-
tic content (i.e., the entity name) encoded in the
source hidden representation, along with a short

Model Subset e2 from t1 e2 from t2 e3 from t2
Cases Layer Cases Layer Cases Layer

LLaMA 2 Corr. 56% 8.9 41% 15.3 73% 16.2
7B Incorr. 41% 9.1 36% 16.4 47% 17.5

LLaMA 2 Corr. 49% 7.7 34% 18.2 71% 16.9
13B Incorr. 48% 7.4 37% 17.9 33% 16.9

LLaMA 3 Corr. 46% 8.9 37% 14.3 74% 13.5
8B Incorr. 46% 11.9 25% 15.3 40% 17.2

LLaMA 3 Corr. 63% 27.1 46% 35.2 86% 30.7
70B Incorr. 57% 29.2 46% 34.5 50% 35.9

Pythia Corr. 75% 5.4 75% 11.4 80% 14.1
6.9B Incorr. 78% 4.9 67% 9.2 65% 13.6

Pythia Corr. 73% 5.0 66% 12.2 77% 13.5
12B Incorr. 61% 6.3 42% 12.9 52% 17.2

Table 2: The results of Patchscopes executions. The
table reports the percentage of cases where a target
entity was successfully decoded from a source position.
The table additionally reports the mean of the layer
where the target entity was first successfully decoded.

description of it. We find this task is better fitting
than other proposed probes such as vocabulary pro-
jections (nostalgebraist, 2020; Geva et al., 2022) or
training linear classifiers on hidden representations
(Belinkov and Glass, 2019; Belinkov, 2022). This
is because exhibiting the ability to extract informa-
tion from a hidden representation gives reason to
believe that the same information can be extracted
when answering the two-hop query. In addition
Patchscopes has the clear advantage of decoding a
representation into a natural language description.

3.2 Experiment

We run Patchscopes on t1, recording the hidden
representation at each source layer and then patch-
ing it into all target layers. Following each patch
we sample three generations. For each source layer
we check whether one of the generations is of e2,
and if so, we consider the representation to encode
the bridge entity at the source layer.

3.3 Results

Table 2 presents the percentage of cases where e2
was observed in the hidden representation of t1.
We refer to these as cases where e2 was success-
fully resolved. We note the non-trivial percentages
of 41%-78% across all models and settings. Ad-
ditionally, we note the general drop in resolved
cases when the model fails to correctly complete
the two-hop query, but that this setting still dis-
plays a surprisingly high success rate. Next, we
examine the mean layer at which e2 first appears
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Figure 2: Percentage of cases per layer where target en-
tities were first successfully decoded using Patchscopes.
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for LLaMA 2 13B.
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Figure 3: Heat-map of the layers where Patchscopes
successfully decodes e2 from the position of t1. The per-
centages are out of all successful decodings for LLaMA
2 13B run on correctly answered cases.

in both correct and incorrect cases. We find that
in the incorrect cases the resolving generally oc-
curs at higher layers than those of the correct cases.
This difference alludes to how early the resolving
happens potentially playing a part in successfully
answering two-hop queries. We further verify this
using the back-patching analysis method in §6.

Figure 2 displays the proportion of cases per
layer where e2 is first successfully decoded from t1
using Patchscopes. We observe that the resolving
occurs almost exclusively during the early layers.
Interestingly, this implies that the knowledge re-
quired for this resolution must reside in these ear-
lier layers. Similar figures for additional models
are provided in Appendix B. The plot additionally
shows the curve regarding the resolving of e3 from
t2, which is discussed in §4.

This finding can further be seen in Figure 3,
which displays a heat-map of the layers where
Patchscopes successfully decodes e2 from t1. Two
hot-spots are apparent. The first corresponds to
success cases with an early source layer, showing
that e2 generally appears at this position during the
early layers. The second hot-spot corresponds to
later source layers that display success almost ex-
clusively when patched after the final layer, which
is roughly equivalent to vocabulary projection (nos-
talgebraist, 2020). This is a clear advantage of
Patchscopes, as despite the entity not being among
the top tokens in the projection during early layers,
it is in fact encoded in the hidden representation.
See Appendix C for heat-maps of all models.

4 Second Hop is Resolved at Last Position

In §3, we observe that the first hop is often resolved
in position t1. Intuitively, one would expect the
computation to use this result towards resolving the
second hop (i.e., the final answer). In this section,
we study this proposition by finding where e3 first
emerges and how it relates to the first emergence
of e2. We find that e3 indeed emerges predomi-
nantly after e2 at the position of t2. Furthermore,
we search for the final part of the pathway, the pre-
dicted token. By projecting the residual updates
made by the attention and MLP sublayers on the
hidden representation of t2, we find that the MLP
sublayers play the larger part in conjuring the pre-
dicted token.

4.1 Method
Previous works (Geva et al., 2022, 2023) have
shown that the residual updates made by the MLP
and attention sublayers can be interpreted by pro-
jecting them to the vocabulary using the layer norm
and output embedding matrix. We use this method
in order to locate specific entities in the flow of
information by observing the rank of the entity
in the vocabulary projection. We additionally use
Patchscopes as presented in §3.

4.2 Experiment
We first employ Patchscopes on t2, this time check-
ing if the target entity e3 is encoded at this position.
Additionally, we project the sublayer updates per-
formed on t2, and check if the token with the high-
est probability in the projection is the first token
of the generated text. If so, we conclude that the
update of a particular sublayer promotes the final
prediction.
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Model Subset Attention MLP
Cases Layer Cases Layer

LLaMA 2 7B Correct 25.5% 24.7 33.2% 25.2
Incorrect 14.8% 23.4 28.4% 26.0

LLaMA 2 13B Correct 28.8% 32.0 68.5% 33.1
Incorrect 14.2% 27.0 51.5% 31.7

LLaMA 3 8B Correct 9.7% 26.7 17.6% 27.8
Incorrect 25.3% 27.4 11.8% 24.6

LLaMA 3 70B Correct 21.9% 56.3 48.1% 68.0
Incorrect 21.8% 65.7 36.1% 67.0

Pythia 6.9B Correct 11.5% 21.8 36.4% 20.5
Incorrect 28.2% 23.4 33.6% 21.2

Pythia 12B Correct 27.9% 22.2 38.9% 22.4
Incorrect 43.2% 23.6 47.0% 23.3

Table 3: Percentages and mean layers where for the first
time the predicted token is the most probable token in
the vocabulary projection of the sublayer update.

4.3 Results
Table 2 contains the percentage of cases e3 was de-
coded from t2, effectively resolving the second hop.
As expected, these percentages are high for cases in
which the model predicted correctly (71%-86%)3

and low for cases the model predicted incorrectly
(33%-65%). Additionally, it is apparent from both
Table 2 and Figure 2 that the target entity is re-
solved by the mid-upper layers at the position of
t2. This suggests that the information required to
perform the second hop exists in the parameters of
these layers.

Inspecting the sublayer projections in Table 3,
we find that the MLP sublayers play a larger role
in promoting the predicted token compared to
that of the attention sublayers. Despite this, the
non negligible percentages achieved by the atten-
tion sublayers could suggest multiple pathways, in
agreement with previous work (Geva et al., 2023;
Merullo et al., 2024) that considered both possi-
bilities. Looking at the mean layers at which the
prediction is first promoted, one can see that these
promotions occur in the upper layers, after the last
token has been resolved to e3.

5 Information Propagates to Last Token

As the model’s prediction is emitted from the last
position of the prompt, critical information regard-
ing the bridge entity must propagate to this token.
By using attention knockout, projection, and Patch-
scopes, we verify this claim. We find that in a large

3We attribute the gap from 100% to the approximations
involved in decoding a hidden representation.

majority of cases relevant information can indeed
be detected passing from t1 to t2.

5.1 Method

In similar fashion to previous work (Wang et al.,
2023b; Geva et al., 2023), we block hidden repre-
sentations from attending to other representations
at specific layers and test if the model’s final gener-
ation changes. We perform the knockout by setting
the mask of the attention from a source to a target
position at a specific layer to −∞, causing this at-
tention edge to contribute nothing to the residual
update performed on the source representation. We
experiment with blocking a window of layers as
previous work (Geva et al., 2023) shows that in-
formation propagation is spread among multiple
layers.

We additionally employ Patchscopes and sub-
layer vocabulary projections, as described in §3
and §4 respectively.

5.2 Experiment

We run attention knockout blocking information
originating at t1 from propagating to t2. We block a
window of 7 layers in order to capture information
flowing through multiple layers. If blocking a set
of layers causes the model to no longer correctly
predict the answer (in the incorrect setting we check
for a change in the generated text), we consider
these layers to contain information critical to the
prediction.

We additionally project the updates made by the
attention and MLP sublayers to the last token, as
described in §4. In the vocabulary projection we
check if e2 is the token with the highest probability,
and if so consider the update to “contain” the bridge
entity.

Finally, we run Patchscopes on the last token of
the prompt, as done in §3, checking if e2 is encoded
in t2. Each one of these experiments gives a unique
signal that information must have propagated from
t1 to t2.

5.3 Results

Table 4 shows the percentage of cases where we
detect critical information propagating from t1 to t2
using at least one of the methods stated above. We
note the relatively high percentages, indicating the
information indeed flows as expected. Additionally,
the table shows the that the layers relevant to the
propagation are mostly the middle layers.
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Model Subset Detected Mean Layer

LLaMA 2 7B Correct 85.82% 12.83
Incorrect 95.44% 8.10

LLaMA 2 13B Correct 81.94% 15.45
Incorrect 71.11% 16.99

LLaMA 3 8B Correct 78.36% 10.15
Incorrect 82.74% 7.45

LLaMA 3 70B Correct 90.39% 29.14
Incorrect 94.28% 20.06

Pythia 6.9B Correct 96.53% 11.94
Incorrect 95.04% 8.06

Pythia 12B Correct 94.18% 11.23
Incorrect 93.81% 9.28

Table 4: Percentages and mean layers of cases where
critical information was first detected propagating from
t1 to t2 using attention knockout, projection, or Patch-
scopes.

Table 2 contains the percentage of cases e2 was
decoded from t2, showing that this position indeed
represents the bridge entity in 25%-75% of all
cases. Comparing between the results of Patch-
scopes on t2 to those on t1, we observe a stark
difference in the successful source layers. The re-
sults show that the t2 first encodes e2 during the
mid-upper layers, while t1 does so in the lower
layers. This can further be seen in the Patchscopes
heat-maps in Appendix C. This gives additional
reason to believe that a sequential computation is
taking place.

After describing all major pathway stages, we
turn to a comparison between the correct and in-
correct cases and observe the following pattern.
Generally, in incorrect cases, the entities seem to
be resolved later while the information seems to
propagate and be extracted earlier. Figure 4 dis-
plays this pattern in LLaMA 3 8B, plotting the first
observed layers of each stage (we refer to Appendix
D for plots of additional models). This gives evi-
dence of the importance of how early the first hop
is resolved.

6 Back-patching Improves Two-Hop
Performance

Our results consistently display a sequential na-
ture of computation, where the first hop is resolved
into the bridge entity by the lower layers, which is
then used to answer the second hop in the upper
layers. These results suggest that when answering
two-hop queries fail, it could be because the first-
hop is resolved at layers that no longer contain the
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Figure 4: A comparison of the first layers of each stage
in the pathway between correct and incorrect cases for
LLaMA 3 8B.

information needed to resolve the second hop. In
order to verify this hypothesis, we test the follow-
ing intriguing conjecture. We know that the earlier
layers certainly contain knowledge, since they are
regularly used to resolve the first hop. Then, we
ask what will happen if we take a hidden represen-
tation from a later layer and “feed” it into these
earlier layers. Will the correct information now be
extracted? As our results next show, this is often
the case. This “back-patching” analysis thus pro-
vides strong support that the success in two hop
queries require the later layers to have the same
functionality as earlier ones.

Overall, this could point to an inherent limitation
of the transformer architecture, where the model
“runs out” of layers, propagates and extracts infor-
mation before it is fully resolved, or is forced to
use only the upper layers for knowledge extraction.

6.1 Method

Following our intuition above, we perform the fol-
lowing back-patching experiment. Given a prompt,
we first record a hidden representation v from a
source layer ℓs. Then, while rerunning the same
prompt, we patch v into the same position at a tar-
get layer ℓt such that ℓt < ℓs. The forward pass
then continues and text is generated using greedy
decoding. This effectively feeds ℓt with informa-
tion encoded in v that originated in ℓs.
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(b) Back-patching t2

Figure 5: Heat-map of the layers where back-patching succeeds. The percentages are out of all successful back-
patching instances for LLaMA 2 13B.

Model Subset t1 t2

LLaMA 2 7B Correct 100% 100%
Incorrect 41.02% 42.45%

LLaMA 2 13B Correct 100% 100%
Incorrect 32.44% 36.07%

LLaMA 3 8B Correct 100% 100%
Incorrect 38.81% 47.16%

LLaMA 3 70B Correct 100% 100%
Incorrect 57.31% 57.81%

Pythia 6.9B Correct 100% 100%
Incorrect 66.33% 56.43%

Pythia 12B Correct 100% 100%
Incorrect 63.17% 61.82%

Table 5: Back-patching success rates by setting and
back-patched token.

6.2 Experiment

We perform the back-patching experiment twice,
once on the token t1 and once on the token t2. In
order to quantify the potential of back-patching,
we check whether one of the source-target pairs
resulted in the generation of the correct answer. We
then perform an analysis of the successful source
and target layers.

6.3 Results

Table 5 presents the back-patching results. First
we note the high success rates, correctly answering
between 32%-66% of incorrect cases while keeping
the correct cases at 100% across models and token
positions. This means that in many cases rerunning
specific parts of the computation is enough in order
to successfully extract the target information. On a
more practical note, this also shows that significant
gains can be made by correctly choosing the source
and target layers, which we leave for future work.

One can additionally observe that in LLaMA
models back-patching t2 achieves a higher success
rate than back-patching t1, which may point at the
stages related to the last position of the prompt as
being the more dominant failure point in answering
two-hop queries. Moreover, this higher success
rate is achieved despite the fact that back-patching
t2 does not assume any information about the struc-
ture of the prompt. We believe that this displays an
additional strength of the method.

Figure 5a displays the heat-map of the layers
where back-patching t1 succeeds for LLaMA 2
13B (see Appendix E for additional models). We
first note the higher success rate when the source
layers are the model’s lower layers. These lower
layers correlate to the resolving of the first hop,
therefore back-patching them allows the model a
better chance at solving the first hop. Second, we
note the non existent success rate of the higher
target layers. Unsurprisingly, in this case the model
does not gain enough time to correctly complete
the pathway, resulting in a low success rate.

Figure 5b displays the heat-map of the layers
where back-patching t2 succeeds for LLaMA 2
13B. Unlike when back-patching t1, in this case
the higher success rate can be found in the the up-
per source layers. These layers correlate to the
resolving of the second hop at the last token posi-
tion. Hence, back-patching a hidden representation
taken from a later layer allows the model a better
chance at solving the second hop. Furthermore, we
note the higher success rate in lower target layers.
This allows the model to gain time to resolve the
second hop. This also gives the model access to
parametric knowledge that might only be encoded
in the lower layers, allowing the model to fully
utilize its whole knowledge-base.
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7 Related Work

Tracing and locating factual knowledge has been
the focus of many recent works aiming to under-
cover and control the way transformers make pre-
dictions. Several of these works are motivated by
knowledge editing (De Cao et al., 2021; Mitchell
et al., 2022; Meng et al., 2022; Zhang et al., 2024)
while others focus on understanding the inner work-
ings of transformers (Dai et al., 2022; Geva et al.,
2022, 2023). Our work follows and expands on
this second group by extending them to the more
complex case of two-hop queries, which require
multiple factual knowledge extractions and compo-
sitions.

The question whether models can implicitly rea-
son over stored parametric knowledge has also
gained recent popularity. One avenue of related
research includes circuit discovery (Nanda et al.,
2023; Wang et al., 2023b; Conmy et al., 2023;
Brinkmann et al., 2024), but these works focus
mainly on synthetic tasks. More closely related to
this paper, recent works (Sakarvadia et al., 2023;
Yang et al., 2024; Li et al., 2024a) have found ex-
istential evidence of latent reasoning in multi-hop
queries, albeit without accounting for the flow of
information throughout layers and positions. In a
concurrent work by Wang et al. (2024) a multi-hop
reasoning circuit similar to ours was discovered in
a small transformer language model trained on syn-
thetic data until grokking occurs. Our work finds
further proof of such latent reasoning in a more
practical setting that includes large language mod-
els, real world knowledge and a regular pretraining
setup. We additionally use different mechanistic
interpretability methods and account for the flow
of information during the forward pass.

Even without fully identifying the mechanism
behind latent reasoning, several works have tried
to address model’s shortcomings in this area. One
such work by Sakarvadia et al. (2023) assumes
prior knowledge of the bridge entity, whose hidden
representation is then strategically injected directly
into the computation. Likewise, recent work by Li
et al. (2024a) also assumes knowledge of the bridge
entity and then employs knowledge editing tech-
niques to improve performance, which is known
to have potentially disruptive effects on models
(Zhang et al., 2024; Hsueh et al., 2024; Li et al.,
2024b). Both these previously proposed methods
have drawbacks, which a potential method based
on back-patching would not share.

8 Conclusion

Our work uses mechanistic tools to study the latent
reasoning abilities of LLMs on two hop queries.
We observe strong evidence of a sequential latent
reasoning pathway in which the second hop is an-
swered in the mid-upper layers only after the first
hop is answered by the lower layers. We find that
this sequential nature could point to a possible lim-
itation of transformers, where the second hop must
be answered using only the knowledge encoded
in the upper layers. To further validate this, we
introduce and evaluate an analysis method named
back-patching, based on extracting hidden repre-
sentations from later layers and patching them back
into earlier layers. Finally, we show that back-
patching significantly improves performance on
previously incorrect queries. Overall, our methods
and findings open opportunities for understanding
and improving latent reasoning in LLMs.

Limitations

Several of our experiments rely on mechanistic
methods that decode hidden representations and
residual updates in various ways. While these meth-
ods have been widely used in many recent works
(Geva et al., 2022, 2023; Dar et al., 2023; Yang
et al., 2024; Li et al., 2024a), they can only be
seen as an approximation. However, using multi-
ple different techniques (such as both Patchscopes
and sublayer projections) helps alleviate this con-
cern. Additionally, our experiments are generally
designed to give positive signals that result in lower
bound results, hence we believe that these approxi-
mations do not undermine our findings.

In this work we study one prominent latent rea-
soning pathway, although others most likely exist
(McGrath et al., 2023; Yang et al., 2024). Addition-
ally, we do not account for all possible parts of the
discovered pathway (e.g., how the relations come
in to play). Despite this, by focusing on the most
relevant components we find sufficient proof for
our main finding regarding the sequential nature of
the computation.

Our work examines only two-hop queries, al-
though we expect queries with three or more
hops and even additional unrelated reasoning tasks
to involve similar mechanisms to those we ob-
served. This is due to previous (Wang et al., 2023b;
Brinkmann et al., 2024) and concurrent (Wang
et al., 2024) works in different (if sometimes small
or synthetic) settings observing pathways that can
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be broken down into concrete computational steps
that match intuitive reasoning steps. These results
resemble our finding that two-hop questions are
broken down and answered sequentially by LLMs.
We leave such expansion to additional settings for
future work.

Despite the promising results of back-patching,
our current proposed method is not a practical in-
ference method, as only a subset of back-patches
generate the correct answer. However, if one could
efficiently select a subset of source and target lay-
ers a priori, this could make for a viable method.
Although we believe that if achieving the best per-
formance in multi-hop question answering is the
sole goal, methods such as chain of thought prompt-
ing (Wei et al., 2022; Press et al., 2023) would be
far more effective.
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A Technical Details

We use the Baukit library (Bau, 2024) for several
of the experiments. Each experiment was run on
1-4 A100 or H100 GPUs and lasted at most 24
hours. The models were retrieved and run using
the HuggingFace Transformers library (Wolf et al.,
2020). When generating with sampling we use the
default parameters from the Transformers library.
We use half precision for the 70B model and full
precision for all other models.

B Patchscopes First Decoded Layers

Figure 6 depicts the percentage of cases per layer
where target entities were first successfully de-
coded using Patchscopes for all models (as de-
scribed in §3).

C Patchscopes Heat-maps

Figures 7 and 8 depict the heat-maps of Patchscope
success cases as introduced in §3. We report Patch-
scope experiments for decoding e2 from t1, e2 from
t2, and e3 from t2 for all models.

D First Observed Layers of Pathway
Stages

Figure 9 depicts a comparison of the first layers of
each stage in the observed pathway between correct
and incorrect cases (as shown in §5) for all models.

E Back-patching Heat-maps

Figures 10 and 11 depict the back-patching heap-
maps of successful source and target layers (as
shown in §6) for all models.
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Figure 6: Percentage of cases per layer where target entities were first successfully decoded using Patchscopes.
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Figure 7: Patchscopes success heat-maps for LLaMA models.
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0 8 16 24 32
Target Layer

0

8

16

24

32

So
ur

ce
 L

ay
er

0

2

4

6

8

10

12
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Figure 8: Patchscopes success heat-maps for Pythia models.
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Figure 9: A comparison of the first layers of each pathway stage between correct and incorrect cases for all models.
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(g) Source token is t1, LLaMA 3 70B
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(h) Source token is t2, LLaMA 3 70B

Figure 10: Back-patching heat-maps of successful source and target layers for LLaMA models.
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(a) Source token is t1, Pythia 6.9B
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(b) Source token is t2, Pythia 6.9B
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Figure 11: Back-patching heat-maps of successful source and target layers for Pythia models.
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