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Abstract
Prior works formulate the extraction of event-
specific arguments as a span extraction prob-
lem, where event arguments are explicit — i.e.
assumed to be contiguous spans of text in a
document. In this study, we revisit this defini-
tion of Event Extraction (EE) by introducing
two key argument types that cannot be modeled
by existing EE frameworks. First, implicit ar-
guments are event arguments which are not
explicitly mentioned in the text, but can be
inferred through context. Second, scattered
arguments are event arguments that are com-
posed of information scattered throughout the
text. These two argument types are crucial to
elicit the full breadth of information required
for proper event modeling.

To support the extraction of explicit, implicit,
and scattered arguments, we develop a novel
dataset, DiscourseEE, which includes 7,464
argument annotations from online health dis-
course. Notably, 51.2% of the arguments are
implicit, and 17.4% are scattered, making Dis-
courseEE a unique corpus for complex event
extraction. Additionally, we formulate argu-
ment extraction as a text generation problem to
facilitate the extraction of complex argument
types. We provide a comprehensive evaluation
of state-of-the-art models and highlight criti-
cal open challenges in generative event extrac-
tion. Our data and codebase are available at
https://omar-sharif03.github.io/DiscourseEE.

1 Introduction

Event Extraction (EE) is a challenging yet crucial
NLP task required for event-centric information
extraction. EE is the composition of two tasks: (i)
Event Detection (ED), identifying if an event oc-
curs in a text and (ii) Event Argument Extraction
(EAE), extracting event-specific details or event ar-
guments according to a pre-defined event ontology.
Existing works in EE have two key limitations.

First, most prior works are focused on event ex-
traction from formal texts (e.g., news or Wikipedia

Figure 1: An example demonstrating complex event
arguments that are prevalent in online discourse. This
Reddit post is narrated by a newly diagnosed prostate
cancer patient who is seeking treatment information
from online peers on the r/ProstateCancer subreddit. In
addition to explicit arguments, it contains implicit and
scattered arguments that cannot be extracted using one
contiguous span of text.

articles) (Doddington et al., 2004; Tong et al., 2022;
Du and Cardie, 2020). This makes existing EE sys-
tems limited in their capacity to model other text
sources such as social media or other colloquial
text (Karimiziarani, 2022; Lei et al., 2024). In-
sufficient data for EE on social media limits the
ability of EE to facilitate downstream tasks such as
mining online discourse (Jain et al., 2016), track-
ing dynamic events, knowledge base construction,
rumor, and misinformation detection (Wu et al.,
2022), moral value understanding (Zhang et al.,
2024c), or characterization of user behaviors (Rosa
et al., 2020).

Second, existing works in EAE extract an argu-
ment as a span in the input text (Huang et al., 2024).
This is extremely limiting as many event arguments
are implicit and only discernible from subtext. In
Figure 1, we illustrate the need for complex argu-
ment types through the lens of a Reddit post written
by a newly diagnosed cancer patient. We find that
only a small fraction of crucial event-specific de-
tails can be tied to contiguous spans of text in the
post — demanding a more complex EE solution.
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For example, the patient’s consideration of prostate
removal surgery is only discernible through a men-
tion of the “da vinci route", which is in reference
to the Da Vinci Surgical Robot. Such implicit in-
formation is crucial to providing in-depth event
details and will improve the accuracy of large-scale
event-centric information aggregation efforts.

In this paper, we address these two limitations
by reformulating EE annotation as text generation
and introducing a novel dataset, DiscourseEE —
which contains EE annotation for health-related
discourse on Reddit. By focusing on health dis-
course, we can provide a nuanced understanding
of healthcare needs which has significant impli-
cations for public health research (Parekh et al.,
2024; Guzman-Nateras et al., 2022; Romano et al.,
2024; De Choudhury et al., 2013). DiscourseEE
introduces a novel EE annotation strategy that facil-
itates the extraction of the following three argument
types: (i) Explicit Arguments: event details that
are found directly in the document. (ii) Implicit
Arguments: event details which are not directly
mentioned in the document but can be inferred
using context. (iii) Scattered Arguments: event de-
tails which are the composition of multiple pieces
of information scattered throughout the document.

While there is significant prior work on the
extraction of explicit arguments, DiscourseEE is
the first to introduce implicit and scattered ar-
gument extraction. When compared to prior
work, our EE formulation adds significant depth
to the amount of event information that can be
extracted, making DiscourseEE well-suited to im-
prove a range of downstream tasks such as question-
answering (Jiang and Kavuluru, 2024), or rumor
(Li et al., 2019), conflicting information (Preum
et al., 2017b,a; Gatto et al., 2023), and misinfor-
mation (Wu et al., 2022) detection from complex,
online discourse. Additionally, by changing the
EAE paradigm from span extraction to text genera-
tion, we better align EE with the abilities of Large
Language Models (LLMs), which have been shown
to have limited capacity on extractive EE tasks in
prior work (Huang et al., 2024; Gao et al., 2023).
Our major contributions are as follows.

• We introduce DiscourseEE, a dataset for char-
acterizing event-level information in social
media discourse. In addition to explicit argu-
ments, we introduce two prevalent yet over-
looked argument types: implicit and scattered,
broadening the scope of accessible knowledge

in EE. DiscourseEE uses a novel event ontol-
ogy, with 7,464 event-argument annotations
leveraging relevant data from a health-related
subreddit, i.e., a topic-specific community on
Reddit. 51.2% of arguments in DiscourseEE
are implicit, and 17.4% are scattered. To the
best of our knowledge, this is the first large-
scale, annotated social media dataset on event
extraction with annotations for explicit, im-
plicit, and scattered arguments.

• We reformulate EE annotation as a text gener-
ation problem to enable the extraction of non-
explicit event information. We benchmark a
diverse set of state-of-the-art event-extraction
models on DiscourseEE, including both ex-
tractive models and several relevant LLMs.
We identify limitations of existing models on
DiscourseEE, motivating future works in EE.

2 Event Extraction via Text Generation

Generative Event Argument Extraction (EAE):
Prior works on EE have exclusively focused on ex-
tracting arguments, which are continuous spans
that can be found directly in the text (Du and
Cardie, 2020; Tong et al., 2022). In a real-world
setting, this problem formulation limits one’s abil-
ity to extract complex arguments such as those
which are the composition of scattered information
throughout a text, or implicit information with no
direct mention in a text. In this study, we argue
that implicit and scattered arguments are crucial to
understanding an event and that classic approaches
to EE can not capture these arguments. To address
this, we reformulate argument extraction as text
generation rather than span extraction tasks and
annotate arguments as natural texts.
Trigger-Free Event Detection (ED): Many prior
works perform Event Detection (ED) by identifying
event triggers — where the trigger is a word or
phrase that best indicates the occurrence of an event
(Du and Cardie, 2020; Lu et al., 2023). Recently,
various studies used trigger-free ED, where texts
are simply classified as containing an event without
specific grounding to a trigger phrase (Tong et al.,
2022; Liu et al., 2019a). We also adopt a trigger-
free ED formulation as DiscourseEE events can be
deeply implicit or the result of phrases scattered
throughout a document, making it difficult to tie an
event to a single trigger phrase.
Evaluating Generative Event Extraction (EE)
Outputs: A core challenge of implementing EE as
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Figure 2: Example annotation in DiscourseEE. Core arguments capture the key aspects of the advice, while
type-specific, subject-specific, and effect-specific arguments capture the fine-grained details. An argument can
be explicit, implicit, or scattered throughout the document, e.g., as the individual is tapering suboxone, the goal
dosage is ‘0mg.’ which is not directly mentioned in the text. We separately annotate the arguments from posts and
comments. However, due to label sparsity, we merge them during model evaluation. The argument value is set to

‘null’ if absent, and multiple values for a role are comma-separated.

a text generation problem is evaluating the quality
of generated arguments. In prior EE formulations,
all arguments correspond to start/end indices in a
text — thus, one can simply evaluate if the model
has produced the ‘exact match’ argument, i.e., iden-
tified the correct span (Huang et al., 2024). Unfor-
tunately, it is well established that ‘exact match’
evaluation is not well-suited for models that gener-
ate human-like responses, such as LLMs (Wadhwa
et al., 2023). Thus, if we attempt to translate the
exact match evaluation to the generative setting,
performance is severely underestimated as correct
outputs can vary from ground truth. For exam-
ple, if the ground truth argument for the role side
effect is “runny nose", a generative model may
correctly output one of [runny nose, drippy
nose, sniffly, nasal discharge] yet only
one answer would be accepted by exact match.

To solve this problem, we employ a relaxed
match approach based on semantic similarity to
achieve a more accurate evaluation. To account
for variations in text, we consider the generated
output and the ground-truth label for an argument
to be similar if the semantic similarity score ex-
ceeds 0.75. We compute BERT-based semantic
similarity (Reimers and Gurevych, 2019). This
threshold of 0.75 was determined through manual
observation of the outputs. We acknowledge that
changes in the threshold will affect the model’s re-

laxed match score and suggest setting the threshold
according to the downstream task. We also calcu-
late the ‘exact-match’ score for comparability with
previous evaluations. We consider two sentences
to be exactly matched when their semantic simi-
larity is 1.0. For evaluation, we calculate the F1
score based on both relaxed and exact matches and
denote them as RM_F1 and EM_F1, respectively.

3 Event Ontology Design

Event Types: Analyzing online discourse through
an event-argument framework can inform data min-
ing and knowledge discovery for several impact-
ful domains including but not limited to health-
care, politics, public policy, finance, and law. As
demonstrated in the motivating example in Figure
1, millions of patients across the world seek in-
formational and emotional support in online peer
communities (e.g., Reddit, Facebook) on different
conditions, e.g., mental health, pregnancy, recov-
ery from substance use disorder, cancer, and other
chronic diseases. While our proposed method can
be applied to any of these use cases, we found
only one labeled, large-scale event dataset for on-
line discourse / social media discussion, namely
TREAT-ISE (Sharif et al., 2024). This dataset cov-
ers health discourse regarding medications for opi-
oid use disorder (MOUD), a critical yet stigma-
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Figure 3: Event ontology of DiscourseEE dataset. Details of arguments provided in Table 11.

tized public health topic. OUD remains a leading
cause of mortality in the US, incurring a massive
economic toll, estimated at 1.02 trillion dollars an-
nually (Florence et al., 2021). There exists a lot of
misperception and knowledge gaps regarding OUD
treatment that impact treatment initiation and adher-
ence. Thousands of affected individuals seek treat-
ment information online among peers and make
critical treatment decisions due to stigma, distrust
on traditional healthcare, and lack of access to care.
Event-driven analysis of such online discourse can
inform MOUD-related public policy, patient com-
munication and education. The dataset introduced
by Sharif et al. (2024) comprises five information-
seeking events on medications for opioid use dis-
order (MOUD) from Reddit. These events include
Accessing MOUD, Taking MOUD, Psychophysical
effects, Relapse, Tapering. We select three of these
five event types as part of our event ontology: Tak-
ing MOUD (TM), Relapse (RL), and Tapering (TP).
We exclude Accessing MOUD as they lack rele-
vance to health advice. Additionally, we consider
psychophysical effects as an event role instead of
an event due to it’s prevalence in all classes. In
this work, we refer to ‘Relapse’ as Return to Usage
(RU) in the rest of the paper as the former term
can be stigmatizing1. Detailed descriptions of the
relevant event types are provided in Appendix A.

Capture Complex Arguments We have a total
of four types of arguments. (1) Core Arguments:
longer texts containing the details of the advice
event (e.g., subject receiving advice, advised treat-
ment, outcomes or side effects of the treatment).
The goal of annotating the core arguments is to

1https://tinyurl.com/axtrbwrd

get a high-level summary of the advice, which is
difficult to infer from traditional annotations of
short, discontinuous text spans. (2) Type-specific
Arguments: words or phrases highlighting an ad-
vice event’s specifics (e.g., advised treatment dura-
tion, medications). These arguments help to get a
nuanced understanding of the specific event type.
(3) Subject-specific Arguments: To understand
advice, it is crucial to know to whom advice is
given. These arguments are words or phrases pro-
viding details about the subject/patient (e.g., age,
gender, prior medical history, or other social deter-
minants of health). (4) Effect-specific Arguments:
are words or phrases providing details about psy-
chophysical effects (e.g., severity, duration) individ-
uals experience or can experience that are related
to an event, e.g., taking MOUD.

We defined 10 core, 23 type-specific, 3 subject-
specific, and 5 effect-specific arguments across
three event types. Figure 3 shows the event ontol-
ogy we followed to develop DiscourseEE. To our
knowledge, our dataset is the first discourse-level
event extraction dataset enriched with fine-grained
argument annotation capturing the real-world com-
plexity of health advice on social media, including
scattered spans and implicit arguments. Figure 2
shows a sample annotation of arguments for the ‘ta-
pering’ event. Short description of argument roles
for each event type provided in Table 11.

4 DiscourseEE Dataset Curation

4.1 Data Collection and Filtering

DiscourseEE expands the TREAT-ISE dataset
(Sharif et al., 2024; Basak et al., 2024) which con-
tains 5,412 information seeking Reddit posts on
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Step #Posts #Comments

Original dataset 5,412 39,300
Filtering target events 3,713 25,769
Filtering information-scarce
samples 932 6,214

Table 1: Dataset summary at different stages of filtering

TM RU TP
Avg. sample length (#words) 112.80 117.28 114.33
#Arguments (without null
arguments) 1492 1213 1140

Avg. #arguments per sample 8.38 10.27 11.4

# Explicit, implicit, scattered arguments

– explicit 462 449 295
– implicit 756 546 668
– scattered 274 218 177

Table 2: DiscourseEE statistics across three event types.
Here, TM, RU, and TP indicate ‘Taking MOUD’, ‘Re-
turn to Usage’, and ‘Tapering’ events, respectively. Ad-
ditional statistics of the dataset are shown in Table 7.

recovery treatment. We expand TREAT-ISE to in-
clude both information seeking and information
sharing data by sourcing advice-centric comments
on information seeking Reddit posts. We collect
the 39,300 comments associated with TREAT-ISE
dataset. We keep the posts/comments of our se-
lected event types and discard the rest. We obtained
3,713 post threads comprising 25,769 comments
and applied a two-step filtering process to discard
information-scarce post-comment discussions. (1)
Sufficient Discourse Filtering: We include only
threads with at least 4 comments, ensuring a certain
level of peer interaction. After excluding threads
failing to meet this criterion, we have 2,432 posts
with 23,101 comments. (2) Discourse Length Fil-
tering: We removed threads where the initial posts
(title and body) contained fewer than 10 words. We
also removed comments with fewer than 10 words.
We chose 10 as the filtering threshold here to en-
sure argument annotation quality as short samples
do not have sufficient arguments. After this fil-
tering process, we obtained 932 posts with 6,214
comments. These selected samples were then uti-
lized for advice and event argument annotation. Ta-
ble 1 illustrates data statistics on different filtering
stages.

4.2 Identifying Information Sharing Content

DiscourseEE aims to model event-centric infor-
mation from social discourse, which contains
information-seeking posts and information-sharing

comments. Prior work has established how to
source the former, but in this work, we introduce
a method of automatically sourcing information
sharing comments, i.e., containing advice. In other
words, we aim to identify comments that provide
answers to information-seeking content.

We follow the model in the loop (Chakrabarty
et al., 2022) annotation protocol for labeling post-
comment pairs as advice followed by human-level
verification. We apply different state-of-the-art
open-source (Mistral) and close-sourced (GPT-4,
GPT-3.5) LLMs to identify the advice in a com-
ment. Note that since the context of the comment
heavily depends on the post, we allow the model to
view post content when determining if a comment
contains advice. The GPT-4 model achieved the
highest precision of 0.94, and we employ it to iden-
tify advice samples. Out of 6,214 post-comment
pairs, the model categorized 2,934 as advice. This
question-advice (post-comment) pair is utilized in
the subsequent event argument annotation step. We
manually validate the advice labeling accuracy of
GPT-4 as discussed in Appendix B.

4.3 Argument Annotation
In DiscourseEE, 51.2% arguments are implicit, and
17.4% are scattered arguments. We focused on four
types of arguments (core, type-specific, subject-
specific, effect-specific) for each event. Figure 2
illustrates a sample annotation with associated ar-
gument values. Annotating such arguments takes
more effort and time than classification tasks or
span-based annotation. For the sake of feasibil-
ity, we randomly selected 396 post-comment pairs
for argument annotation. Previously, researchers
highlighted limitations of crowd-sourced annota-
tion for complex tasks (Zhang et al., 2024a), includ-
ing event detection from online discourse (Parekh
et al., 2024; Sharif et al., 2024). Generative argu-
ment annotation in such data is even more challeng-
ing. It requires domain knowledge and interactive,
progressive training sessions to ensure annotators
understand the nuances. We decided to engage both
domain experts and paid annotators recruited and
trained locally at the authors’ institution.

Annotators have to write the values for each ar-
gument. For each sample, we annotated the com-
ment and the corresponding post. The separated
post and comment annotations are sparse. There-
fore we merge the annotations and inspect both
posts and comments as a pair. Each sample (i.e.,
post-comment pair) has 19 arguments on average.
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Annotation process: To complete the annota-
tion, we formed a diverse group of 8 annotators:
4 graduate and 4 undergraduate students at the au-
thors’ institution. Each annotator underwent an
extensive, four-week training period involving trial
annotations to ensure proficiency in identifying
event arguments and understanding the annotation
guidelines. For each sample, at least two annota-
tors wrote the core, type-specific, subject-specific,
and effect-specific arguments. Note that all the
arguments are annotated separately for each post-
comment pair. The major challenges of such man-
ual annotation include domain-specific terms and
context, and identifying implicit and scattered argu-
ments. These complexities are discussed in detail
in Appendix C. A third annotator reviewed each
sample to correct potential errors and resolve any
disagreement to ensure the reliability of the anno-
tation process.

Inter-annotator Agreement: Traditional Co-
hen’s kappa is not suitable for our annotations due
to the unknown number of disagreements. Follow-
ing previous works (Sun et al., 2022; Thompson
et al., 2018), we choose the F1 score to measure
inter-annotator agreement (IAA). Specifically, we
used relaxed match F1-score (RM_F1) due to the
generative nature of our annotation, which is dis-
cussed in Section 2. We have two sets of annota-
tions for each sample. The F1 score is computed
by selecting one annotation set as a ‘reference’ to
another. Through progressive training and interac-
tive discussions, we achieve quality annotations (a
0.811 mean IAA score, which indicates substan-
tial agreement). Finally, we have DiscourseEE, a
novel discourse-level event extraction dataset com-
prising 7,464 event argument annotations.

4.4 DiscourseEE Summary Statistics

Table 2, shows the statistics of DiscourseEE.
Our dataset differs from other general do-
main (Doddington et al., 2004) and clini-
cal/pharmacovigilance (Ma et al., 2023; Sun et al.,
2022) EE datasets because of the higher average
length (≈ 115 words) and higher density of ar-
guments per document (≈ 10 words). Thus Dis-
courseEE is a reasonably sized EE dataset with
fairly dense event arguments. We also annotated
implicit and scattered arguments written as natural
text, providing a novel resource for such argument
(68.6% of the total arguments) extraction. More
dataset statistics are presented in Appendix D.

5 Benchmarking EE Models

In this section, we detail our experimental setup for
benchmarking a wide range of models on ED and
EAE for DiscourseEE.

5.1 Event Detection (ED) Models

We formulate ED as a multilabel classification
task, as each sample can provide information about
multiple events. We employ three transformer-
based models (BERT, RoBERTa, and MPNet), two
instruction-finetuned models (FLAN-T5-base and
FLAN-T5-large), and five large language models
(Gemma-7B, Mixtral-8x7B, Llama3-8B, Llama3-
70B, and GPT-4) for event detection. Our objective
is to assess the feasibility of ED using large models
and to examine the effects of scaling. Consequently,
we experimented with models ranging from 7B to
70B parameters, including the closed-source GPT-
4. These models demonstrated SOTA performance
across various event extraction (Zhang et al., 2024b;
Wang et al., 2023) and information extraction (Wad-
hwa et al., 2023) tasks. Detailed descriptions of
these models are provided in Appendix E.

5.2 Argument Extraction Models

We perform comprehensive experiments in three
distinct settings: Extractive-QA, Generative-QA,
and LLM-based generation with varying prompt
types. In this set of experiments, we assume knowl-
edge of the ground truth event type. We focus on a
question-answering (QA) based approach as previ-
ous works achieved SOTA results with this model
type (Du and Cardie, 2020; Hsu et al., 2022).

Extractive-QA: Following (Du and Cardie,
2020), we implement a span extraction EAE base-
line using question-answering. Specifically, the
model is trained to map (Question, Input Text)
→ (Argument), where each question is a function
of the role we wish to extract2. Note that since
DiscourseEE is formulated as a generative task,
we do not have span-level annotations. We thus
use a BERT model pre-trained on general question-
answering data (Rajpurkar et al., 2016) to extract
argument spans.

Generative-QA: We employ the instruction fine-
tuning approach (Zhou et al., 2023) to develop the
generative-QA models. The instruction set is cre-
ated from the training data and the format is shown
in Figure 7. To examine impact of model size

2Questions used for this baseline can be found here:
https://tinyurl.com/44e8u5fx
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Taking MOUD Return to Usage Tapering

Model C-A TS-A SE-A C-A TS-A SE-A C-A TS-A SE-A Mean (RM_F1)

Extractive-QA 4.98 19.26 16.08 14.95 29.15 15.39 19.98 18.65 15.74 17.13
Generative-QA
– FLAN-T5 (Base) 34.99 37.22 11.40 25.37 20.31 11.37 38.78 40.94 17.53 26.44
– FLAN-T5 (Large) 41.70 45.61 23.92 38.44 27.41 19.79 44.04 51.92 26.93 35.53

LLMs with Zero-Shot Description-guided Prompt

Gemma (7B) 26.84 39.11 31.83 20.48 31.75 28.66 31.24 28.64 30.26 29.87
Mixtral (8x7B) 34.19 30.70 33.94 33.77 33.73 31.80 40.55 41.51 39.47 35.52
Llama-3 (8B) 32.88 48.45 32.48 33.43 37.75 27.49 41.33 42.88 35.54 36.91
Llama-3 (70B) 41.35 39.39 25.28 35.20 38.80 30.78 41.54 40.57 28.83 35.75
GPT-4 37.88 46.34 30.50 43.56 41.94 39.68 42.90 38.43 43.15 40.49

LLMs with Zero-Shot Question-guided Prompt

Gemma (7B) 25.52 46.46 29.00 15.66 33.51 24.94 27.63 36.39 32.38 30.16
Mixtral (8x7B) 36.89 27.88 31.31 32.53 33.06 20.44 33.67 32.95 42.69 32.38
Llama-3 (8B) 34.88 42.19 27.64 33.31 32.38 31.48 25.82 45.89 41.09 34.96
Llama-3 (70B) 37.28 42.31 25.02 35.94 41.42 33.49 36.13 40.28 34.90 36.31
GPT-4 35.77 47.38 38.83 39.75 40.41 49.35 40.69 44.41 41.26 41.98

Table 3: Performance (avg. of 3 runs) of the models for event argument extraction across all argument types in
relaxed match F1-score (RM_F1). C-A, TS-A, and SE-A denote core, type-specific, and subject-effect arguments.
The mean RM_F1 is calculated by averaging the scores across all argument types for all three classes. The best
score in each column is underlined. Model superiority is determined based on the mean RM_F1 score. Models
performance based on exact match F1-score (EM_F1) presented in Table 8.

P R F1
Transformer-based Models

BERT 48.89 52.90 50.48
MPNet 47.91 65.88 54.95
RoBERTa 51.74 59.59 55.26

Instruction-tuned Models

FLAN-T5 (base) 54.12 53.48 51.26
FLAN-T5 (large) 57.61 54.78 55.63

LLMs with Zero-Shot Prompt

Gemma-7B 54.90 56.25 50.12
Mixtral-8x7B 55.09 54.31 51.75
Llama3-8B 60.62 59.29 55.42
Llama3-70B 61.21 62.38 59.84
GPT-4 62.36 64.62 61.40

Table 4: Performance comparison (avg. of 3 runs) of the
models for event detection (ED). P, R, and F1 indicate
precision, recall, and macro-F1 scores, respectively.

on performance, we fine-tune two smaller models:
FLAN-T5-base and FLAN-T5-large (Chung et al.,
2024), as they contain less than 1 billion parame-
ters.

LLM-based Generation: We conduct extensive
experiments using both open-source and closed-
source LLMs of various parameter sizes, including
Gemma (7B), Mixtral (8x7B), Llama-3 (8B and
70B), and GPT-4. Models are evaluated in a zero-
shot setting with two types of prompts: description-
guided and question-guided. In the description-
guided prompts, role descriptions guide the models

to extract arguments. In contrast, in the question-
guided prompts, questions are used to extract argu-
ments similar to generative-QA and extractive-QA
approaches. Since each event in DiscourseEE has
an average of 19 arguments, It will require a large
number of inferences if we extract arguments for
each role separately. On the other hand, extracting
all arguments from a sample with only one infer-
ence (a) results in noisy outputs that are difficult to
parse and (b) reduces accuracy. So, to manage pars-
ing complexity and inference costs, we employ a
divide-and-conquer strategy. We note that subject-
specific arguments are rare in DiscourseEE. To
manage experimental complexity we merge subject-
specific and effect-specific arguments roles during
evaluation. For the rest of the paper, we call it
subject-effect arguments. We extract core, type-
specific, and subject-effect arguments separately
for each sample and then merge them. The generic
prompt template is illustrated in Figure 8, with
further prompt details in Table 10. Details about
each model, instruction prompt, fine-tuning, and
hyperparameters are presented in Appendix E, F.

5.3 Experimental Setup

Data Splits: DiscourseEE is partitioned into three
mutually exclusive subsets: train (246 samples),
validation (50 samples), and test set (100 samples).
The same test set is used across all models for
both tasks to ensure unbiased evaluation. All the
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training and fine-tuning experiments were done on
the GPU-accelerated Google Colab platform.
Prompt Setting: Different LLMs require prompts
and in-context examples optimized specifically for
each model (Ziems et al., 2024). In practice, users
adopt a trial-and-error approach to find the opti-
mal prompt for a model (Zamfirescu-Pereira et al.,
2023). We evaluate a wide range of LLMs in a
zero-shot setting to mitigate biases and reduce com-
putational costs associated with finding the opti-
mal prompts in few-shot setting. We use the same
prompt across all models to (a) eliminate the con-
founding factor of prompt variation and (b) ensure
a fair comparison of the models.
Performance Metrics: We use macro F1-score to
evaluate ED performance. For EAE, we employ
the relaxed-match F1-score (RM_F1) to identify
the best models and also compute the exact match
F1-score (EM_F1). Scores are computed follow-
ing prior work (Peng et al., 2023). The details of
RM_F1 and EM_F1 are discussed in Section 2. Ad-
ditionally, for EAE, we report the overall F1 score
as well as the per-event type and per-argument type
F1 in Table 3.

6 Results and Discussion

Event Detection: Table 4 illustrates the ED re-
sults, where GPT-4 achieved the highest F1 score
of 61.40. Among the open-source LLMs, Llama-3
(70B) achieved the maximal score of 59.84. We no-
tice a linear relation between model size and perfor-
mance, with zero-shot performance improving as
the model size increases. Interestingly, instruction-
fine tuning enabled smaller FLAN-T5 models to
achieve comparable performance (55.63). Con-
versely, the transformer models performed poorly,
potentially indicating the complex nature of online
discourse and this task.
Event Argument Extraction: Table 3 shows
model performance for argument extraction. GPT-4
with question-guided prompting attained the high-
est mean RM_F1 score of 41.98. The instruc-
tion fine-tuned FLAN-T5 (large) model obtained
a 35.53 score, outperforming several larger mod-
els. This indicates that instruction-tuned models
achieve comparable performance when compute
resources are limited. The extractive model per-
formed poorly, achieving only a 17.13 RM_F1
score, highlighting their limited scope in captur-
ing implicit and scattered arguments.
Explicit, implicit, and scattered arguments: Ta-

Relaxed Match (Recall)

Model Explicit Implicit Scattered

Extractive-QA 32.40 9.40 13.44
Generative-QA
– FLAN-T5 (Base) 35.49 23.72 33.33
– FLAN-T5 (Large) 45.98 34.15 43.54

LLMs with Zero-Shot Description-guided Prompt

Gemma (7B) 37.96 24.13 28.31
Mixtral (8x7B) 52.26 27.53 48.20
Llama-3 (8B) 46.09 31.76 38.88
Llama-3 (70B) 52.67 26.99 43.36
GPT-4 53.39 33.46 54.12

LLMs with Zero-Shot Question-guided Prompt

Gemma (7B) 40.02 25.01 27.77
Mixtral (8x7B) 47.83 26.85 50.53
Llama-3 (8B) 41.35 30.67 36.91
Llama-3 (70B) 53.49 28.35 41.21
GPT-4 55.14 36.53 49.82

Table 5: Performance comparison of explicit, implicit,
and scattered argument extraction. Model performance
(avg. of 3 runs) is reported based on recall, showing
how many explicit, implicit, and scattered arguments
are extracted correctly.

ble 5 compares the performance of various models
in extracting explicit, implicit, and scattered argu-
ments. All models achieved low scores in implicit
argument identification, with the best-performing
GPT-4 model reaching only 36.53. The extractive
model performed poorly, identifying only 9.40% of
implicit and 13.44% of scattered arguments. This
weak performance is due to implicit arguments
lacking direct mentions and scattered arguments
consisting of discontinuous spans.
Impact of exact-match evaluation: We also eval-
uate models’ performances using the ‘exact-match’
(EM_F1) metric. Due to space constraints, re-
sults are presented in the appendix (see Table 8,
9). These results show a significant performance
drop in extracting core and subject-effect argu-
ments, which are often implicit or scattered. To
investigate further, we conducted a qualitative hu-
man evaluation on a subset of the best-performing
GPT-4 outputs. The evaluation revealed that al-
though the outputs are semantically similar, the
exact-match evaluation frequently marked them as
incorrect, underestimating the performance of the
models. Addressing these evaluation issues is a
crucial future direction for generative EE research.

7 Related Work

Event extraction with generative models: Prior
studies have approached EE as a token-level classi-
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fication or extractive task (Nguyen et al., 2016; Du
and Cardie, 2020; Wang et al., 2021). Recently, EE
has been formulated as a text generation task us-
ing pre-trained language models, where the model
is prompted to fill in natural language templates
(Hsu et al., 2022; Lu et al., 2021). With the ad-
vent of LLMs, generation-based EE gained more
traction (Wang et al., 2023; Gao et al., 2023). How-
ever, most of these generative models are evaluated
using span-based annotated datasets, which can un-
derestimate their performance (Huang et al., 2024).
This is because the models’ predictions may differ
from the exact ground-truth spans yet still be accu-
rate. This work addresses this gap by proposing a
relaxed-match evaluation metric, and presenting a
new dataset and benchmarks to facilitate generative
event extraction.

Event extraction from social media: Existing re-
search on social media primarily addresses event
detection and often overlooks argument extraction,
a gap DiscourseEE addresses. For instance, Parekh
et al. (2024) detected epidemic-related events from
tweets, while Guzman-Nateras et al. (2022) identi-
fied suicide-related events on Reddit. Arguments
in social media data vary in span and are often am-
biguous, implicit, and scattered. Our approach to
implicit and scattered argument formulation differs
from existing works. We define implicit arguments
as those not directly mentioned in the document
but can be inferred from the context and scattered
arguments composed of information throughout the
text. In contrast, existing works define implicit ar-
guments as those that are explicitly mentioned but
outside the fixed sentence window of the event’s
trigger (Ebner et al., 2020; Zhang et al., 2020; Liu
et al., 2021). They overlook arguments that are en-
tirely implicit or scattered. The event argument ag-
gregation task done by (Kar et al., 2022) is aligned
with our work, but they do not model implicit and
scattered arguments. Moreover, they only focus on
six discrete argument roles (Time, Place, Casual-
ties, After Effects, Reason, and Participant) without
grounding them with specific events. In contrast,
our EE formulation adds significant depth to the
amount of event information that can be extracted.
We annotate 41 arguments from three events and
characterize four types of complex arguments: core,
type-specific, subject-specific, and effect-specific.
Our formulation better captures the complexity and
nuance of real-world EE applications.

8 Conclusion

This paper presents DiscourseEE, a discourse-level
EE dataset with fine-grained annotations of com-
plex event arguments and develops a novel pipeline
for extracting these arguments. DiscourseEE pro-
vides a new resource for studying implicit and scat-
tered arguments within complex social discourse,
which has not been previously explored. The best
performing GPT-4 model achieved only a 41.98%
overall F1 score, highlighting the challenges of
extracting such intricate arguments. Specifically,
the models accurately extracted only 36.53% of
implicit arguments and 54.12% of scattered argu-
ments, underscoring that effective argument ex-
traction remains an open challenge. We believe
DiscourseEE fills a critical gap in EE research and
provides a valuable, timely dataset and benchmark
for generative event extraction.

9 Limitations

One limitation of our benchmarking effort is the
reliance on relaxed matching (RM_F1) to as-
sess model performance. While we attempted
to select an appropriate threshold by comparing
model outputs with ground truth, some model out-
puts may still be inaccurate. Thus, we also re-
port performance using the exact match approach
(EM_F1). However, EM_F1 significantly underes-
timates model performance, highlighting the need
for a more robust evaluation metric in future gener-
ative EE research.

DiscourseEE contains 396 annotated pairs with
7,464 arguments, which might seem small. How-
ever, this size is comparable to similar works with
≈ 8,000 arguments (Doddington et al., 2004; Ma
et al., 2023). Unlike previous works (Tong et al.,
2022), our annotations require manually writing
values for each argument instead of selecting spans,
making scaling more difficult. We focused the use
of our annotation budget on having high annotation
quality, as this work lays the groundwork for future
research in the domain. We engaged with domain
experts, recruited students, and trained them for
the annotation. Each sample is annotated by two
annotators and reviewed by an expert. This rig-
orous process makes the scaling challenging and
annotation expensive. In future work, we plan to
extend the dataset size as more resources become
available.

Finally, we evaluate all models in a zero-shot set-
ting without tailoring prompts specifically for each
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one. While model-agnostic prompt optimization
or alternative prompting techniques could improve
performance, we did not pursue these experiments
due to the high computational cost. Our focus is on
benchmarking a broad range of models rather than
optimizing a single model’s output. Future research
can explore few-shot learning, chain-of-thought
prompting, and other techniques to increase model
performance.

Ethical Considerations

This research was approved by the author’s institu-
tion’s Institutional Review Board (IRB).

User Privacy: All data samples were collected
and annotated in accordance with the terms and
conditions of their respective sources. No identi-
fying personal information that could violate user
privacy was collected or shared.

Biases: Any biases in the dataset and model are
unintentional. Data annotation was performed by
experts and a diverse group of annotators follow-
ing comprehensive guidelines, and all annotations
were reviewed to mitigate potential biases. The
developed dataset and model can only be used to
detect events and identify arguments we discussed
in the paper. The scope of using these resources for
malicious reasons is minimal.

Intended Use: We intend to make our dataset and
models accessible to encourage further research on
generative event extraction.

Annotation: Annotation was conducted by ex-
perts and trained student annotators. Key charac-
teristics of our annotators include: (a) ages 22-30,
(b) a mix of native and non-native English speak-
ers, and (c) 1-5 years of research experience. We
provided detailed annotation guidelines, including
background knowledge of health advice, event ex-
traction, and the type of information we wanted to
extract to mitigate potential biases. All annotators
were compensated as per the standard paying rate
of the author’s institution.

Reproducibility The model, parameter, and im-
plementation details are presented in Appendix E,
F. Our code, evaluation and the dataset are available
at https://omar-sharif03.github.io/DiscourseEE.
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Appendix

A Details of Event Ontology

We select three event types in DiscourseEE, and the
definitions of selected event types are as follows.

Taking MOUD (TM): Events related to MOUD
regimen details, e.g., advice about timing, dosage,
frequency of taking a MOUD, suggestions about
splitting and missing a dose. Analyzing advice
from this event can surface potential misconcep-
tions and concerns about MOUD administration
that negatively impact treatment adherence.

Return to Usage (RU): Events related to relaps-
ing or using other substances during recovery. Such
substance use can be attributed to recreational pur-
poses or for self-medication (e.g., marijuana for
sleep). Advice in this event class can help unearth
specific information individuals provide concern-
ing recreational and medical usage of substances.

Tapering (TP): Events related to reducing the
dose or frequency of MOUD and eventually quit-
ting MOUD. Although the current standard of care
recommends consulting healthcare providers for
tapering MOUD, individuals often resort to self-
managed tapering strategies. Analyzing advice
from this class can inform addiction researchers
and clinicians about the context of self-managed
tapering strategies (e.g., why and when people
self-taper) and their effectiveness (what works for
whom).

B Advice Annotation

Figure 5 illustrates the DiscourseEE development
pipeline. Recent works have indicated that LLMs,
such as GPT and LLaMA, can be effective zero-
shot data annotation tools (He et al., 2024). LLMs
have demonstrated the ability to reliably clas-
sify texts in various domains without supervision
(Ziems et al., 2024). Therefore, we apply different
state-of-the-art open-source (Mistral) and close-
sourced (GPT-4, GPT-3.5) LLMs to identify po-
tential advice. We developed an evaluation set of
100 samples (post-comment pairs) annotated by hu-
man experts as advice and not-advice to select the
best model for our task. As our primary focus is
on identifying advice, the best model is selected
based on the precision in the ‘advice’ class. Ta-
ble 6 shows the results of advice classification for
various LLMs.

Advice Not-Advice
Model P R F1 P R F1
GPT-4 (gpt-4-
1106-preview) 0.94 0.62 0.75 0.45 0.88 0.60

GPT-4 (gpt-4-0613) 0.86 0.93 0.90 0.75 0.58 0.65
GPT-3.5 (gpt-3.5-
turbo-1106) 0.83 0.07 0.13 0.27 0.96 0.42

Mistral (7B-Instruct) 0.85 0.64 0.73 0.40 0.69 0.51

Table 6: Zero-shot advice classification of performance
of different LLMs.

We evaluate the zero-shot performance and do
not tailor prompts specifically for each model. In-
stead, we write a simple prompt and use it for all
the models. Figure 4 shows the structure of our
prompt. The GPT-4 model achieved the highest
precision of 0.94. While recognizing the potential
for enhancing other models’ performance through
prompt optimization or the utilization of alternative
prompting techniques (e.g., chain-of-thought, few-
shot), we refrain from exploring these avenues due
to the already high agreement observed between
the human annotator and the GPT-4 model in the
‘advice’ class. This aspect could be the focus of a
separate study.

Figure 4: Advice classification prompt template.

Final Annotation: As the false positive is very
low for advice class, we employed the GPT-4
model to identify advice samples. Out of 6,214
post-comment pairs, GPT-4 categorized 2,934 as
advice. This advice set is utilized in the subsequent
event argument annotation step.

Human Verification: To validate the labeling
accuracy of GPT-4, we conducted a second-level
verification. A human annotator manually reviewed
50 randomly selected samples labeled as ‘advice’
by the model. The human annotator confirmed
advice labels for 49 of the 50 samples, resulting in
a 98% precision for GPT-4 advice labeling.
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Figure 5: DiscourseEE development pipeline

C Annotation complexity

To achieve quality annotations, we held biweekly
meetings with the annotators to address challenges
and complexities. Major challenges annotators face
are,

• Misleading context: Commenters often share
long stories of their treatment journey when
giving health advice. Finding the correct ar-
guments from such descriptions can be chal-
lenging. For instance, multiple mentions of

‘treatment dosage’ may make it difficult to dif-
ferentiate between what is part of the current
advice and what is simply mentioned about
past conditions.

• Domain-specific terms and noisy short-
hands: Annotators struggle with understand-
ing domain-specific terms like ‘Jumping off’
or ‘cold turkey’ which refer to quitting or the
intention of not taking medications. Addi-
tionally, the presence of shorthand makes an-
notation challenging, such as ‘PWD’ for pre-
cipitated withdrawals and abbreviations like

‘percocet’, ‘meth’, ‘oxy’ representing different
substances.

• Inconsistency in finding scattered argu-
ments: Arguments can be scattered through-
out the document. For instance, for the core
argument of ‘tapering event’, components like

‘taper trigger,’ ‘current dosage,’ ‘taper start
time’ may be dispersed all over. The chance

of missing some parts of the arguments by
annotators increased due to this dispersion.

• Implicit arguments: Annotators face diffi-
culties identifying implicit arguments as they
require a deeper understanding of the context.
Such as the severity of an individual’s experi-
ence can be high, mild, low or none. Under-
standing all psychophysical effects the individ-
ual is experiencing is crucial for selecting the
severity when it is not explicitly mentioned.

We address these challenges to minimize annota-
tion disagreements through interactive and iterative
sessions, as well as multiple rounds of reviews.

D Dataset Statistics

Table 7 shows the number of explicit, implicit,
and scattered arguments across core, type-specific,
subject-effect types. 68.6% of the arguments are
implicit or scattered, with only 31.4% being ex-
plicit. The core arguments are predominantly im-
plicit or scattered. Implicit arguments are more
common in subject-effect categories, while type-
specific arguments have a higher proportion of ex-
plicit ones.

Figure 6 illustrates the distribution of type-
specific and subject-effect argument annotations.
For the ‘taking moud’ event, mentions of medica-
tions, dosage, and manner are frequent. For ‘return
to usage’, people often mention their substance use,
current-medications, condition and trigger of the
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Figure 6: Distribution of type-specific and subject-effect arguments in the dataset.

TM RU TP
Avg. #Words per argument
– Core 4.46 4.64 4.23
– Type-specific 1.70 1.95 1.93
– Subject-effect 2.28 2.09 2.21

#Sample 178 118 100
– train 117 67 62
– dev 20 16 14
– test 41 35 24

Explicit, implicit, and scattered arguments

#Explicit arguments
– Core 86 69 53
– Type-specific 252 266 151
– Subject-effect 124 114 91

#Implicit arguments
– Core 242 209 177
– Type-specific 321 190 346
– Subject-effect 193 147 145

#Scattered arguments
– Core 183 139 92
– Type-specific 39 45 51
– Subject-effect 52 34 34

Table 7: Explicit, implicit, and scattered arguments
distribution in DiscourseEE.

return to usage. In ‘tapering’, taper-medications,
intial-dosage, current-dosage, and type of tapering
are mostly mentioned. From subject-effect argu-
ment distribution, it is evident that people share

more side-effect information (side-effects, inter-
vention, severity) than personal information (age,
gender). All these arguments provide crucial in-
formation for understanding or comparing health
advice within social discourse.

E Models

We perform comprehensive experiments en-
compassing various methodologies, including
transformer-based, instruction-tuned, and large lan-
guage models. The details of each model are de-
scribed in the following.

Transformer Models: We employ three
transformer-based models to benchmark the event
detection task. These include Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2019), robust BERT architecture
trained with more training data for longer period
(RoBERTa) (Liu et al., 2019b), and the model with
permuted pre-training (MPNet) (Song et al., 2020).

Instruction-tuned Models: We choose FLAN-
T5 (Chung et al., 2024) as the backbone model
for instruction fine-tuning. It follows the stan-
dard T5 (Raffel et al., 2020) architecture and treats
each task as a sequence-sequence problem. The
model is fine-tuned on diverse task mixtures with
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instruction-following objectives and is available
in a wide range of sizes, from small (80M param-
eters) to UL2 (20B parameters). To explore the
feasibility of our task with smaller language mod-
els and reduce computational costs, we experiment
with the base (250M parameters) and large (780M
parameters) models.

Large Language Models: We used five LLMs
for the experimentation.

• Gemma (7B) (Gemma-Team, 2024) is an
open-source language model trained on 6T
tokens, following the architecture and train-
ing recipe of Gemini models (Gemini-Team,
2024). It outperformed similarly sized open-
source models on 11 out of 18 text-based tasks.
Gemma comes in two sizes, 2B and 7B pa-
rameters. We utilize the 7B version for our
experiments.

• Mixtral (8x7B) (Jiang et al., 2024) is a sparse
mixture of expert language models with the
similar architecture of Mistral 7B (Jiang et al.,
2023). In mixtral, each layer comprises 8
feedforward blocks or experts, enabling each
token to access 47B parameters while using
only 13B active parameters. Due to this archi-
tectural change, mixtral outperforms models
with higher parameters (e.g., Llama-2, GPT-
3.5) across several benchmarks.

• Llama-3 is a state-of-the-art open-source
language model pretrained and instruction-
fined with 8B and 70B parameters. It builds
upon the Llama-2 model (Touvron et al.,
2023), incorporating significant changes such
as grouped query attention (GQA) and an ex-
panded tokenizer vocabulary. The 8B and 70B
models outperform others within a similar pa-
rameter range.

• GPT-4 (OpenAI et al., 2024) is the best-
performing multimodal model that achieved
state-of-the-art performance on various pro-
fessional and academic benchmarks.

We employed the instruction-tuned version of
all the models as it aligns better with our task.
The HuggingFace inference strings for the open-
source LLMs are Gemma (google/gemma-1.1-7b-
it), Mixtral (mistralai/Mixtral-8x7B-Instruct-v0.1),
and Llama-3 (8B) (meta-llama/Meta-Llama-3-8B-
Instruct), Llama-3 (70B) (meta-llama/Meta-Llama-
3-70B-Instruct). Additionally, we investigate the

performance of the GPT-4 model via API (version
gpt-4o-2024-05-13) calls.

F Implementation Details and
Hyperparameters

Experimental details of our models are discussed
in the following subsections.

F.1 Event Detection Models

The transformer-based models (i.e., BERT,
RoBERTa, MPNet) used for event detection are
sourced from the HuggingFace library. All the
models are fine-tuned on our training set with batch
size 8 and learning rate 2e−05. For each model, the
version that achieves the best performance on the
validation set is saved for final predictions on the
test set.

Similar to transformer models, we also sourced
the FLAN-T5 models from Hugginface. We use
simple instructions for event detection. The in-
put text template is ‘Classify the following
post-comment pair. [Post] [Comment]’ and
the target text consists of corresponding event la-
bels ‘[Event labels]’. Instructions sets are cre-
ated from the training set. We fine-tuned base and
large models for 3 epochs with a learning rate of
3e−4 and batch size 4. The max input length is set
to 512 tokens, and the output length to 20 tokens.

We conduct open-source LLM experiments us-
ing LangChain3 and HuggingFace. To gener-
ate event types with LLMs, we employ the tem-
plate ‘<instruction> <class details> <post>
<comment>’. Table 10 provides a sample prompt
for event detection. This prompt template is uti-
lized across all open and closed-source models.

F.2 Argument Extraction Models

For argument extraction, we experimented with
three suites of models.

Extractive-QA: We implement the extractive-
QA model using the HuggingFace pipeline with the
BERT-base model (110M parameters) fine-tuned
on the SQuAD dataset. The model is fine-tuned
with a learning rate of 2e−05, a batch size of 8, for
3 epochs. We extract the argument for each role
separately. During inference, we pass a question
about the role along with the post-comment pair
as the context. The input is formatted as [CLS]
Question [SEP] Post-comment pair [SEP].

3https://python.langchain.com/v0.1/docs/modules/
model_io/prompts/
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Taking MOUD Return to Usage Tapering

Model C-A TS-A SE-A C-A TS-A SE-A C-A TS-A SE-A Mean (EM_F1)

Extractive-QA 1.25 7.83 1.50 3.36 14.85 6.47 5.11 4.20 4.00 5.40
Generative-QA
– FLAN-T5 (Base) 4.89 25.24 2.85 3.75 13.31 11.37 7.40 21.93 6.67 10.82
– FLAN-T5 (Large) 5.10 32.33 7.87 7.09 18.57 14.66 10.06 33.58 10.81 15.56

LLMs with Zero-Shot Description-guided Prompt

Gemma (7B) 2.35 20.88 14.21 1.11 16.33 12.65 8.45 17.76 12.57 11.81
Mixtral (8x7B) 7.25 18.34 11.41 3.80 13.12 12.17 8.79 19.01 11.68 11.73
Llama-3 (8B) 2.34 28.88 9.79 4.42 19.05 13.86 8.19 25.88 15.24 14.18
Llama-3 (70B) 6.75 25.39 9.70 5.63 21.04 13.17 11.09 22.14 15.30 14.47
GPT-4 2.36 27.30 14.79 7.39 23.04 21.04 8.42 20.35 16.77 15.72

LLMs with Zero-Shot Question-guided Prompt

Gemma (7B) 3.47 26.85 9.48 0.70 19.74 14.04 1.74 21.52 15.66 12.58
Mixtral (8x7B) 6.17 15.94 9.59 1.56 12.74 10.86 7.71 17.39 16.46 10.93
Llama-3 (8B) 1.85 21.72 6.99 4.92 18.88 11.77 5.81 25.75 14.31 12.45
Llama-3 (70B) 3.33 25.84 10.21 5.82 23.33 14.62 12.11 23.02 18.56 15.20
GPT-4 4.95 29.06 19.35 6.22 21.19 26.10 8.72 21.06 14.86 16.84

Table 8: Performance (avg. of 3 runs) of the models for event argument extraction across all argument types in exact
match F1-score (EM_F1).

Exact Match (Recall)

Model Explicit Implicit Scattered

Extractive-QA 20.67 0.40 0.0
Generative-QA
– FLAN-T5 (Base) 26.54 10.02 1.61
– FLAN-T5 (Large) 33.33 14.72 5.91

LLMs with Zero-Shot Description-guided Prompt

Gemma (7B) 26.74 7.43 0.89
Mixtral (8x7B) 34.77 6.54 2.86
Llama-3 (8B) 33.33 10.22 1.07
Llama-3 (70B) 40.02 6.95 3.94
GPT-4 37.96 10.77 3.22

LLMs with Zero-Shot Question-guided Prompt

Gemma (7B) 30.86 8.17 1.25
Mixtral (8x7B) 31.06 7.56 2.68
Llama-3 (8B) 30.65 8.58 1.61
Llama-3 (70B) 41.15 8.45 1.97
GPT-4 39.81 11.86 3.04

Table 9: Performance (avg. of 3 runs) comparison of
explicit, implicit, and scattered argument extraction in
exact-match setting. Performance drop is significant
in scattered arguments as these arguments are longer.
Models generate different outputs with slight variation,
which is not considered under exact match.

The output span is then decoded as the argument
for the specific role.

Generative-QA: We use the HuggingFace (Wolf
et al., 2020) Transformers library to develop the
instruction fine-tuned generative-QA models. An
instruction prompt is input to the model, which
is fine-tuned to generate the argument for a role.
Figure 7 illustrates the format of the instruction

Figure 7: Instruction template for fine-tuning. See the
sample instruction in table 10.

prompt. Here, post-comment pair and answers all
the values are filled from the training set. The
model is fine-tuned for 2 epochs with a learning
rate of 3e−04 and a batch size of 8. The input length
is fixed at 512 tokens while the output length is 128
tokens. Similar to the extractive-QA approach, the
argument for each role is generated separately. We
fine-tune both the FLAN-T5-base (250M) and large
(780M) models with the same hyperparameters on
Google Colab A100 GPU.

LLM-based Generation: Similar to event de-
tection, we perform argument extraction experi-
ments with LangChain and HuggingFace. We use
instruction-tuned versions of the models as they
align better with our task. To ensure the determin-
istic behavior of the model, we set the temperature
value to 0.01 across all experiments with open-
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Figure 8: Generic argument extraction prompt template
using LLMs.

source models since it only allows non-zero values.
The temperature is set to 0.0 for GPT-4. We ex-
perimented with all models using both description-
guided and question-guided prompts. The prompt
template for argument extraction is illustrated in
figure 8, and prompt examples are provided in table
10.

12079



Prompt template for
event detection

#Instruction: Classify the following post into ‘taking-moud’, ‘return to usage’, ‘tapering’
classes. #Class Descriptions:
taking-moud: post related to medications for opioid use disorder (MOUD) regimen details.
return to usage: post related to relapsing or using other substances during recovery. Such
substance use can be attributed to recreational purposes or for self-medication (e.g., marijuana
for sleep).
tapering: post related to reducing the dose or frequency of MOUD and eventually quitting
MOUD.
#Post: <post> //post from the dataset.
#Comment: <comment> //corresponding comment of the post.
#Output: <LLM outupt> //LLM generated event types.

Instruction template for
fine-tuning FLAN-T5
models for argument
extraction.

#Instruction: Concisely extract the following argument from the post comment pair. Do not use
more than 12 words to describe an argument. Return ’null’ if any argument is not present.
#Context:
Post: I am a 42-year-old male with severe back pain. I haven’t taken my 12 mg of suboxone
since Thursday. My last opioid was 3 days ago. My nose has been runny for the last 2 days, and
I feel like an 8/10. Will it kick in?
Comment: Yeah it will kick in. Withdrawals are coming. Suboxone just has an extremely long
half life which is why you are still feeling fine. It will catch up to you though. I definitely
wouldn’t recommend jumping off at 12mg!
#Question:
What are the tapering steps (drugs, start dosage, duration, goal dosage)?
#ANSWER:
have not taken 12mg of suboxone since Thursday.

Description-guided
argument extraction
prompt template for
LLMs. This is for
‘tapering’ event
‘type-specific’ argument
extraction.

#Instruction: Concisely extract the following argument from the post comment pair. Do not use
more than 12 words to describe an argument. Return ’null’ if any argument is not present.
Return arguments in JSON format.
#Post: I am a 42-year-old male with severe back pain. I haven’t taken my 12 mg of suboxone
since Thursday.......
#Comment: Yeah it will kick in. Withdrawals are coming. Suboxone just has an extremely long
half life which is why you are still feeling fine. .......
#Arguments Descriptions:
condition: Describe the state or situations of the subject before tapering,
trigger: Factors or events contribute to tapering,
start-time: Start-time of tapering,
type: Tapering type (self-tapering or prescribed tapering),
taper-medications: Drugs/medications used during tapering,
initial-dosage: Initial dosages of the drugs,
current-dosage: Current dosage of the drugs,
goal-dosage: Goal dosage the subject wants to achieve,
target-duration: Duration to go from the start to the intended dosage or quit.
#JSON:

Question-guided
argument extraction
prompt template for
LLMs. This sample is
for ‘tapering’ event
‘core’ type argument
extraction.

#INSTRUCTION: Concisely extract the following argument from the post comment pair. Do not
use more than 12 words to describe an argument. Return ’null’ if any argument is not present.
Return arguments in JSON format.
#Post: I am a 42-year-old male with severe back pain. I haven’t taken my 12 mg of suboxone
since Thursday.......
#Comment: Yeah it will kick in. Withdrawals are coming. Suboxone just has an extremely long
half life which is why you are still feeling fine. .......
#Arguments Questions:
subject/patient: How can you describe the individual or patient involved?,
effects: What are the outcomes or side effects of the treatments?,
tapering-event: What are the tapering steps (drugs, start dosage, duration, goal dosage).
#JSON:

Table 10: Sample instruction and prompt used in the argument extraction experiments. To illustrate the difference in
instruction, description-guided, and question-guided prompts, we used the same post-comment pair. For fine-tuned
models, we extract arguments for each role separately. Thus, for each sample, we performed approximately 19
inferences (one for each role) based on the event type. To reduce inference costs for LLMs, we adopt a divide and
conquer prompt approach (discussed in 5.2) . We extract all arguments of a specific type (i.e., core, type-specific,
subject-effect) together, reducing the number of inferences from 19 to 3. Finally, we merge the outputs to obtain the
predictions.
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Type Name Description

Taking MOUD (TM)

Core Arguments
Subject/Patient Describe the individual or patient involved.
Treatment Describe the treatments prescribed or undergoing.
Effects Describe the outcomes or side effects of the treatments.

Type-specific
Arguments

Medications Drugs/medications used in the treatment.

Dosage Current or previous dosage of the medications.
Treatment duration Duration of taking the medication.
Manner Manner of taking medication orally/ sublingually/ as injections.
Frequency Frequency of taking medication (per day, week, month)
Timing Timing of taking medication (night, morning, etc.)
Purpose Purpose of taking this medication.

Return to Usage (RU)

Core Arguments

Subject/Patient Describe the individual or patient experiencing the return to usage.
Return to usage event Describe the occurrence of taking or using addictive substances.

Resuming MOUD after RU
Describe the events the subject is doing or intends to follow after
the last return to usage dose.

Effects Describe the outcomes or side effects of the return to usage.

Type-specific
Arguments

Condition
Describe the substance use history/disorder from which the subject
had previously recovered/ was in the process of recovery

Trigger Factors or events contribute to return to usage.
Existing/Current
medications

Medications used before the return to usage.

Substance used in RU Substance was used in the return to usage.
RU duration Duration of the return to usage.
RU intervention Measures are taken to address or prevent the return to usage
Waiting time Waiting time after the last dose of return to usage.

Tapering (TP)

Core Arguments
Subject/Patient Describe the individual or patient involved.

Tapering Event
Describe the tapering steps (drugs, start dosage, duration, goal
dosage).

Effects Describe the outcomes or side effects of the tapering.

Type-specific
Arguments

Taper condition Describe the state or situations of the subject before tapering.

Trigger/motivation
/cause/reason

Factors or events contribute to tapering

Taper Type Tapering type (self-tapering or prescribed tapering)
Taper Drugs/ Medications Drugs/medications used during tapering
Initial dosage Initial dosages of the drugs.
Current dosage Current dosage of the drugs.
Goal dosage Goal dosage the subject wants to achieve.
Start time Start-time of tapering
Target Duration Duration to go from the start to the intended dosage or quit.

Taking MOUD / Return to Usage / Tapering
Subject-specific
Arguments

Age Age of the subject/patient

Gender Gender of the subject/patient
Pre-existing or comorbid
conditions Pre-existing or co-morbid conditions of the subject/patient

Effect-specific
Arguments

Side Effects Side effects the subject is experiencing or expects to experience

Severity Severity of the side effects
Start time Start time of experiencing the side effects
Duration Duration of the side effects
Intervention Measures are taken to address or reduce side effects

Table 11: Details of the argument roles for each event type in the DiscourseEE dataset. Subject-specific and
effect-specific arguments are the same across all event types.
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