Revisiting Supertagging for Faster HPSG Parsing

Olga Zamaraeva and Carlos Gomez-Rodriguez
Universidade da Coruna, CITIC
Departamento de Ciencias de la Computacién y Tecnologias de la Informacién
Campus de Elvina s/n, 15071, A Coruiia, Spain
{olga.zamaraeva, carlos.gomez}@udc.es

Abstract

We present new supertaggers trained on En-
glish grammar-based treebanks and test the ef-
fects of the best tagger on parsing speed and
accuracy. The treebanks are produced auto-
matically by large manually built grammars
and feature high-quality annotation based on a
well-developed linguistic theory (HPSG). The
English Resource Grammar treebanks include
diverse and challenging test datasets, beyond
the usual WSJ section 23 and Wikipedia data.
HPSG supertagging has previously relied on
MaxEnt-based models. We use SVM and neu-
ral CRF- and BERT-based methods and show
that both SVM and neural supertaggers achieve
considerably higher accuracy compared to the
baseline and lead to an increase not only in
the parsing speed but also the parser accuracy
with respect to gold dependency structures. Our
fine-tuned BERT-based tagger achieves 97.26%
accuracy on 950 sentences from WSJ23 and
93.88% on the out-of-domain technical es-
say The Cathedral and the Bazaar (cb)). We
present experiments with integrating the best
supertagger into an HPSG parser and observe
a speedup of a factor of 3 with respect to the
system which uses no tagging at all, as well
as large recall gains and an overall precision
gain. We also compare our system to an exist-
ing integrated tagger and show that although
the well-integrated tagger remains the fastest,
our experimental system can be more accurate.
Finally, we hope that the diverse and difficult
datasets we used for evaluation will gain more
popularity in the field: we show that results
can differ depending on the dataset, even if it
is an in-domain one. We contribute the com-
plete datasets reformatted for Huggingface to-
ken classification.

1 Introduction

We present new supertaggers for English and use
them to improve parsing efficiency for Head-driven
Phrase Structure Grammars (HPSG). Grammars

have been gaining relevance in the natural language
processing (NLP) landscape (Someya et al., 2024),
since it is hard to interpret and evaluate the output
of NLP systems without robust theories.

Head-Driven Phrase Structure Grammar (Pol-
lard and Sag, 1994, HPSGQG) is a theory of syntax
that has been applied in computational linguistic
research (see Bender and Emerson 2021 §3-84). At
the core of such research are precision grammars
which encode a strict notion of grammaticality —
their purpose is to cover and generate only gram-
matical structures. They include a relatively small
set of phrase-structure rules and a large lexicon
where lexical entries contain information about the
word’s syntactic behavior. HPSG treebanks (and
the grammars that produce them) encode not only
constituency but also dependency and semantic re-
lations and have proven useful in natural language
processing, e.g. in grammar coaching (Flickinger
and Yu, 2013; Morgado da Costa et al., 2016, 2020),
natural language generation (Hajdik et al., 2019),
and as training data for high precision semantic
parsers (Lin et al., 2022; Chen et al., 2018; Buys
and Blunsom, 2017). Assuming a good parse rank-
ing model, a treebank is produced automatically
by parsing text with the grammar, and any updates
are encoded systematically in the grammar, with
no need of manual treebank annotation. '

HPSG parsing, which is typically bottom-up
chart parsing, is both relatively slow and RAM-
hungry. Often, more than a second is required to
parse a sentence (see Table 7), and sometimes the
performance is prohibitively bad for long sentences,
with a typical user machine requiring unreasonable
amounts of RAM to finish parsing with a large
parse chart (Marimon et al., 2014; Oepen and Car-
roll, 2002). It is important to emphasize that this
is the state of the art in HPSG parsing, and its

"For a good parse ranking model, it is necessary to select
“gold” parses from a potentially large parse forest at least once.
This can be done semi-automatically (Packard, 2015).

11359

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 11359-11374
November 12-16, 2024 ©2024 Association for Computational Linguistics

speed is one of the reasons why the true potential of
HPSG parsing in NLP remains not fully realized de-
spite the evidence that it helps create highly precise
training data automatically. Approaches to speed
up HPSG parsing include local ambiguity packing
(Tomita, 1985; Malouf et al., 2000; Oepen and Car-
roll, 2002), on the one hand, and forgoing exact
search and reducing the parser search space, on
the other (Dridan et al., 2008; Dridan, 2009, 2013).
Here we contribute to the second line of research,
aka supertagging, a technique to discard unlikely
interpretations of tokens. Dridan et al. (2008) and
Dridan (2009, 2013) used maximum entropy-based
models trained on a combination of gold and au-
tomatically labeled data from English, requiring
large-scale computation. They report an efficiency
improvement of a factor of 3 for the parser they
worked with (Callmeier, 2000) and accuracy im-
provements with respect to the ParsEval metric.

We present new models for HPSG supertagging,
an SVM-based one, a neural CRF-based one, and
a fine-tuned-BERT one, and compare their tag-
ging accuracy with a MaxEnt baseline. We now
have more English gold training data thanks to
the HPSG grammar engineering consortium’s tree-
banking efforts (Flickinger, 2000; Oepen et al.,
2004; Flickinger, 2011; Flickinger et al., 2012).2 It
makes sense to train modern models on this wealth
of gold data. Then we use the supertags to filter
the parse chart at the lexical analysis stage, so that
the parser has fewer possibilities to consider. We
report the results of parsing all of the test data as-
sociated with the English HPSG treebanks (Oepen
and Carroll, 2002) in comparison with parsing the
same data with the same parsing algorithm but with
no tagging at all, as well as with the integrated
MEMM-based tagger. If we use the tagger with
some exceptions, our system is the most accurate
one (using the partial dependency match metric).
It is not faster that the MEMM-based tagger in-
tegrated into the parser for production mode, al-
though it is of course much faster than parsing
without tagging (by a factor of 3).

The paper is organized as follows. In §2, we
give the background necessary for understanding
the provenance of our training data. §3 presents the
methodology, starting from previous work (§3.1).
We then describe our training and evaluation data
(83.2), and finally how we trained the new supertag-

The data is available as part of the 2023 release of the En-
glish Resource Grammar (the ERG): https://github.com/
delph-in/docs/wiki/RedwoodsTop.

gers (§3.3). In §4, we present the results: first for
the accuracy of the supertagger (§4.1) and then for
the parsing experiments, including parsing speed
and parsing accuracy (§4.2).

We trained the neural models with NVIDIA
GeForce RTX 2080 GPU, CUDA version 11.2.
The SVM model and the MaxEnt baseline were
trained using Intel Core 17-9700K 3,60Hz CPU.
The parser was run on the same CPU. The code
and configurations for the reported results as well
as the datasets are online.® The original data we
used is publicly available.? Further details can be
found in the Appendix.

2 Background

Below we explain HPSG lexical types (§2.1),
which serve as the tags that we predict, and in §2.2,
we give the background on the English treebanks
which served as our training and evaluation data.
§2.3 is a summary for HPSG parsing and the spe-
cific parser that we are using for the experiments.

2.1 Lexical types

Any HPSG grammar consists of a hierarchy of
types, including phrasal and lexical types, and of
a large lexicon which can be used to map surface
tokens to lexical types. Each token in the text is
recognized by the parser as belonging to one or
more of the lexical entries in the lexicon (assuming
such an orthographic form is present at all). Lexi-
cal entries, in turn, belong to lexical types (Figure
1). Lexical types are similar to POS tags but are

sign

word

/\

verb noun
[LOCAL |HEAD verb| ~[LOCAL|HEAD noun]

main verb mass-count noun
[NONLOCAL | QUE ()] [INDEX | DIV +]

bark-v1 bark-nl

bark bark

Figure 1: Part of the HPSG type hierarchy (simplified;
adapted from ERG). NB: This is not a derivation.

3https: //github.com/olzama/
neural-supertagging

11360

https://github.com/delph-in/docs/wiki/RedwoodsTop
https://github.com/delph-in/docs/wiki/RedwoodsTop
https://github.com/olzama/neural-supertagging
https://github.com/olzama/neural-supertagging

more fine grained (e.g. a precision grammar may
distinguish between multiple types of proper nouns
or multiple types of wh-words, etc). Figure 1 shows
the ancestry of two senses of the English word bark,
a verb (to bark) and a noun (tree bark). The types
differ from each other in features and their values.
For example, the HEAD feature value is different
for nouns and verbs; one of the characteristics of
the main verb type is that it is not a question word;
the noun subtype denotes divisible entities, etc. The
token bark will be interpreted as either a verb or a
noun during lexical analysis parsing stage. After
the lexical analysis, the bottom-up parser runs a
constraint unification-based algorithm (Carpenter,
1992) to return a (possibly empty) set of parses. To
emphasize, a parser in this context is a separate
program implementing a parsing algorithm. The
grammar is the type hierarchy which the parser
takes as input along with the sentence to parse.

2.2 The ERG treebanks

The English Resource Grammar (ERG; Flickinger,
2000, 2011) is a broad-coverage precision grammar
of English implemented in the HPSG formalism.
The latest release is from 2023.* Its intrinsic evalu-
ation relies on a set of English text corpora. Each
release of the ERG includes a treebank of those
texts parsed by the current version. The parses
are created automatically and the gold structure is
verified manually. Treebanking in the ERG con-
text is the process of choosing linguistically (se-
mantically) correct structures from the multiple
trees corresponding to one string that the grammar
may produce. Fast treebanking is made possible
by automatically comparing parse forests and by
discriminant-based bulk elimination of unwanted
trees (Oepen, 1999; Packard, 2015). The treebanks
are stored as databases that can be processed with
specialized software e.g. Pydelphin’.

The 2023 ERG release comes with 30 tree-
banked corpora containing over 1.5 million tokens
and 105,155 sentences. In principle, there are
43,505 different lexical types in the ERG (cf. 48
tags in the Penn Treebank POS tagset (PTB; Mar-
cus et al., 1993)) however only 1299 of them are
found in the training portion of the treebank. The
genres include well-edited text (news, Wikipedia
articles, fiction, travel brochures, and technical es-
says) as well as customer service emails and tran-
scribed phone conversations. There are also con-

4https ://github.com/delph-in/docs/wiki/ErgTop
Shttps://pydelphin.readthedocs.io/

structed test suites illustrating linguistic phenom-
ena such as raising and control. The ERG treebanks
present more challenging test data compared to the
conventional WSJ23 (which is also included). The
ERG 2023’s average accuracy (correct structure)
over all the corpora is 93.77%; the raw coverage
(some structure) is 96.96%. The ERG uses PTB-
style punctuation tokens and includes PTB POS
tags in all tokens, along with a lexical type (§2.1).

2.3 HPSG parsing

Several parsers for different variations of the HPSG
formalism exist. We work with the DELPH-IN for-
malism (Copestake, 2002) which is deliberately
restricted for theoretical and performance consid-
erations; it only encodes the unification operation
natively (and not e.g. relational constraints). Still,
the parsing algorithms’ worst-case complexity is in-
tractable (Oepen and Carroll, 2002). Carroll (1993,
§3.2.3) (cited in Bender and Emerson 2021, p.1109)
states that the worst-case parsing time for HPSG
feature structures is proportional to C2n?*1 where
p is the maximum number of children in a phrase
structure rule and C is the (potentially large) maxi-
mum number of feature structures. The unification
operator takes two feature structures as input and
outputs one feature structure which satisfies the
constraints encoded in both inputs. Given the com-
plex nature of such structures, implementing a fast
unification parser is a hard problem. As it is, the ex-
isting parsers may take prohibitively long to parse
a long sentence (see e.g. Marimon et al. 2014 as
well as §4.2 of this paper).

3 Methodology

Supertagging (Bangalore and Joshi, 1999) reduces
the parser search space by discarding the less likely
interpretations of an orthography. For example, the
word bark in English can be a verb or a noun, and in
The dog barks it is a lot less likely to be a noun than
a verb (see also Figure 1). In principle, there are
at least two possible interpretations of the sentence
The dog barks, as can be seen in Figure 2. With
supertagging, the pragmatically unlikely second
interpretation would be discarded by discarding the
noun lexical type (mass-count noun in Figure 1)
possibility for the word barks. In HPSG, there are
fine-grained lexical types within the POS class (e.g.
subtypes of common nouns or wh-words), so the
search space can be reduced further.

In precision grammars, supertagging comes at a

11361

https://github.com/delph-in/docs/wiki/ErgTop
https://pydelphin.readthedocs.io/

np_frg_c

sp-hd_n_c
sh-hd_mc_c
the_1 n-hdn_cpd_c
sp-hd_n_c v_3s-fin_olr ‘
‘ the dog nl n_pl olr

the_1 n_sg_ ilr bark_v1
the dog_nl barks dug baﬂf‘L—nl

dog barks

Figure 2: Two interpretations of the sentence The dog
barks. The second one is an unlikely noun phrase frag-
ment, which would be discarded with the supertagging
technique. (Trees provided by the English Resource
Grammar Delphin-viz online demo.)

cost to coverage and accuracy; selecting a wrong
lexical type even for one word means the entire
sentence will likely not be parsed correctly. Thus
the accuracy of the tagger is crucial. Related to this
is the matter of how many possibilities to consider
for supertags: the more are considered, the slower
the parsing, but the higher the accuracy. In this
paper, we experiment with a single, highest-scored
tag for each token. However, we combine this
strategy (which prioritizes parsing speed) with a
list of tokens exempt from supertagging (which
increases accuracy).

3.1 Previous and related work

Bangalore and Joshi (1999) introduced the concept
of supertagging. Clark and Curran (2003) showed
mathematically that supertagging improves parsing
efficiency for a lexicalized formalism (CCG). They
used a maximum entropy model; Xu et al. (2015)
introduced a neural supertagger for CCG. Vaswani
et al. (2016) and Tian et al. (2020) further improved
the accuracy of neural-based CCG supertagging
achieving an accuracy of 96.25% on WSJ23. Liu
et al. (2021) use finer categories within the CCG
tagset and report 95.5% accuracy on in-domain test
data and 81% and 92.4% accuracy on two out-of-
domain datasets (Bioinfer and Wikipedia). Prange
et al. (2021) have started exploring the long-tail
phenomena related to supertagging and strategies
to not discard rare tags. Kogkalidis and Moort-
gat (2023) have shown how supertagging, through
its relation to underlying grammar principles, im-
proves neural networks’ abilities to deal with rare

(“out-of-vocabulary”) words.%

Supertagging experiments with HPSG parsing
speed using hand-engineered grammars are sum-
marized in Table 1. In addition, there were experi-
ments on the use of supertagging for parse ranking
with statistically derived HPSG-like grammars (Ni-
nomiya et al., 2007; Matsuzaki et al., 2007; Miyao
and Tsujii, 2008; Zhang et al., 2009, 2010; Zhang
and Krieger, 2011; Zhang et al., 2012). These sta-
tistically derived systems are principally different
from the ERG as they do not represent HPSG the-
ory as understood by syntacticians. In the context
of the ERG, Dridan et al. 2008 represents our base-
line SOTA for the tagger accuracy. Dridan 2013 is
a related work on “ubertagging”, which includes
multi-word expressions. Specifically, an ubertag-
ger considers various multi-word spans, whereas a
supertagger relies on a standard tokenizer. We use
the ubertagger that was implemented for the ACE
parser for the parsing speed experiments, as the
baseline (§4.2). Dridan’s (2013) parsing accuracy
results, however, are not comparable to ours; she
used a different dataset, a different parser, and a
different accuracy metric.

3.2 Data

We train and evaluate our taggers, both for the base-
line (§4.1.1) and for the experiment (§3.3), on gold
lexical types from the ERG 2023 release (§2.2).
We use the train-dev-test split recommended in the
release.” There are 84,894 sentences in the training
data, 2,045 in dev, and 7,918 in test. WSJ section
23 is used as test data, as is traditional, but so are
a number of other corpora, notably The Cathedral
and the Bazaar (Raymond, 1999), a technical essay
which serves as the out-of-domain test data. See
Table 2 for the details about the test data. The col-
umn titled “training tokens” shows the number of
tokens for the training dataset which is from the
same domain as the test dataset in the row. For ex-
ample, WSJ23 has 23K tokens and WSJ1-22 have
960K tokens in the ERG treebanks.

3.3 SVM, LSTM+CREF, and fine-tuned BERT

We train a liblinear SVM model with default param-
eters (L2 Squared Hinge loss, C=1, one-v-rest, up
to 1,000 training iterations) using the scikit-learn

®These works do not report experiments on parsing speed;
they are concerned with tagging accuracy issues only.

"Download redwoods.xls from the ERG repository for de-
tails and see https://github.com/delph-in/docs/wiki/
RedwoodsTop. This split is different than in Dridan 2009.

11362

https://github.com/delph-in/docs/wiki/RedwoodsTop
https://github.com/delph-in/docs/wiki/RedwoodsTop

model grammar training tok tagset size speed-up factor
N-gram (Prins and van Noord, 2004) Alpino (Dutch) 24 min 1,365 2
HMM (Blunsom, 2007, p. 167) ERG (English) 113K 615 8.5
MEMM (Dridan, 2009, p. 169) ERG (English) 158K 676 12

Table 1: Supertagging effects on HPSG parsing speed.

dataset description sent tok traintok | MaxEnt SVM NCRF++ BERT | D2009
cb technical essay 713 17,244 0 88.96 89.53 91.94 93.88 | 74.61
ecpr e-commerce 1,088 11,550 24,934 91.80 91.99 95.09 96.09

jh*tg* ps* ron* travel brochures 2,116 34,098 147,166 90.45 91.21 9544 96.11 | 91.47
petet textual entailment 581 7,135 1,578 92.88 95.31 96.93 97.71

vm32 phone conv. 1,000 8,730 86,630 93.57 94.29 95.62 96.64
ws213-214 Wikipedia 1,470 29,697 161,623 91.31 92.02 93.66 95.59

wsj23 Wall Street J. 950 22,987 959,709 9427 94.72 96.05 97.26

all all test sets asone 7,918 131,441 1,381,645 91.57 92.28 94.46 96.02

all average 7918 131,441 1,381,645 91.89 92.72 9496 96.18

speed (sen/sec) average 7918 131,441 1,381,645 ‘ 1,024 7,414 125 346 ‘

Table 2: Baseline (MaxEnt) and experimental supertaggers’ accuracy and speed on test data; tagset size is 1,299.

model top mistaken token | top underpredicted top overpredicted

all not closely rel | all not closely rel
BERT i n-pn adj-i n-pn-gen d-poss-my
NCRF++ fo n-c adj-i v-np adj-i
SVM to n-pn v-np* n-pn-gen adj-i
MaxEnt have n-pn v-np* n-pn-gen adj-i

Table 3: A summary of taggers’ errors

library (Pedregosa et al., 2011). To train an LSTM
sequence labeling model, we use the NCRF++ li-
brary (Yang and Zhang, 2018). We choose the
model by training and validating 31 models up
to 100 iterations with the starting learning rate of
0.009 and the batch size of 3 (the latter parameters
are the largest that are feasible for the combina-
tion of our data and the library code). The best
NCRF++ model is described in the Appendix in Ta-
ble 10. To fine-tune BERT, we use the Huggingface
transformers library (Wolf et al., 2019) and Pytorch
(Paszke et al., 2017). We try both ‘base-bert-cased’
and ‘base-bert-uncased’ pretrained models which
we fine-tune for up to 50 epochs (stopping once
there is no improvement for 5 epochs) with weight
decay=0.01. The ‘cased’ model with learning rate
2e-5 achieves the best dev accuracy (Table 14).
We construct feature vectors similarly to what
is described in Dridan 2009 and ultimately in Rat-
naparkhi et al. 1996. The training vector consists
of the word orthography itself, the two previous
and the two subsequent words, the word’s POS tag,
and, for autoregressive models, the two gold lexical
type labels for the two previous words. Nonautore-
gressive models simply do not have the previous
tag features. The test vector is the same except, for

autoregressive models, instead of the gold labels
for the two previous tokens, it has labels assigned
to the two previous tokens by the model itself in
the previous evaluation steps (an autoregressive
model). The word orthographic forms come from
the treebank derivation terminals obtained using
the Pydelphin library.® The PTB-style POS tags
come from the treebanks and they were automati-
cally assigned by an HMM-based tagger that is part
of the ACE parser code. The POS tags provided
by the parser are per token, not per terminal, so for
terminals which consist of more than one token,
we map the combination of more than one tag to a
single PTB-style tag using a mapping constructed
manually by the first author for the training data.
Any combination of tags not in the training data
are at test time mapped to the first tag based on
that being the most frequently correct prediction
in the training data.® We only saw 15 unknown
combinations of tags in the entire dev and test data.

3.4 The ACE HPSG Parser

We work with ACE (Crysmann and Packard, 2012),
which has seen regular releases since the publica-

8ht’cps: //pydelphin.readthedocs.io/
“The first tag is the correct tag in about 1/3 of the cases.

11363

https://pydelphin.readthedocs.io/

tion date and remains the state-of-the-art HPSG
parser. It is intended for settings which include
individual use, including with limited RAM. This
parser has default RAM settings'® which can be
modified, and also an in-built “ubertagger”. While
the ubertagger is based on Dridan 2013, it is not
the same thing and its performance has never been
published before. In particular, its tagging accu-
racy is unknown and we did not seek to evaluate
it (evaluating a different MaxEnt model instead).
The ubertagger was integrated into the ACE parser
code with great care, optimizing for performance.
We also do not seek to compete with such optimiza-
tions in our experiments. For our experiments, we
provide ACE with the tags predicted by the best
supertagger (the BERT-based supertagger) along
with the character spans corresponding to the to-
ken for which the tag was predicted.!! We then
prune all lexical chart edges which correspond to
this token span but do not have the predicted lexical
type. As such, we follow the general idea of using
supertagging for reducing the lexical chart size but
we do not use the same code that the integrated
ubertagger uses for this procedure. We assume that
our code could be further optimized for production.

3.5 Exceptions for supertagging

As already mentioned, mistakes in supertagging
are very costly for precision grammar parsing; one
wrongly predicted lexical type means the entire
sentence will not be parsed correctly. After the
maxent-based supertaggers were trained by Dridan
2009 and Dridan 2013, the developer of the English
Resource Grammar Flickinger experimented with
them and has come up with a list of lexical types
which the supertagger tended to predict wrong. The
list included fine-grained lexical types representing
words such as do, many, less, hard (among many
others).!? Using such exception lists counteracts
the effects of supertagging and slows down the
parsing, while increasing accuracy. We include this
exception list methodology into our experiments,
but we compile our own list based on the top mis-
takes our supertaggers made on the dev data.

101.2GB for chart building plus 1.5 for “unpacking”, which
is a lexical disambiguation procedure.

""The speed of the tagging itself is negligible because the
tagger tags 346 sentences per second (0.003 sec/sen) while
HPSG parsing is an order of magnitude slower.

"2The full list can be found in the release of the ERG in the
folder titled ‘ut’ (ubertagging).

4 Results

4.1 Tagger accuracy and tagging speed
4.1.1 Tagging accuracy baseline

For our baseline, we use a MaxEnt model similar
to Dridan 2009. While Dridan (2009) used off-the-
shelf TnT (Brants, 2000) and C&C (Clark and Cur-
ran, 2003) taggers, we use the off-the-shelf logis-
tic regression library from scikit-learn (Pedregosa
et al., 2011) which is a popular off-the-shelf tool for
classic machine learning algorithms. The baseline
tagger accuracy is included in Table 2. The details
on how the best baseline model was chosen are in
Appendix A. The results are presented in Table 2.

4.1.2 Tagger accuracy results

Table 2 shows that the baseline models achieve sim-
ilar performance to Dridan 2009 (D2009 in Table 2)
on in-domain data and are better on out-of-domain
data. This may indicate that these models are close
to their maximum performance on in-domain data
on this task but adding more training data still helps
for out-of-domain data. Dridan’s (2009) models
were trained on a subset of our data. Dridan (2009,
p.84) reports getting 91.47% accuracy on the in-
domain data (which loosely corresponds to row
h*, tg*, ps*’) using the TnT tagger (Brants, 2000).

The SVM and the neural models are better than
the baseline models on all test datasets, and fine-
tuned BERT is the best overall. On the portion of
WSJ23 for which we have gold data, fine-tuned
BERT achieves 97.26%. The neural models are
slower than the baseline models (using GPU for
decoding); on the other hand, SVM is remarkably
fast (at over 7000 sen/sec).

All models make roughly the same mistakes (Ta-
ble 3), with prepositions, pronouns, and auxiliary
verbs being the most misclassified tokens, and the
proper noun being the least accurate tag.'?

4.2 Results: Parsing Speed and Accuracy

We measure the effect of supertagging on parsing
speed and accuracy using the ACE parser (§3.4).
Recall that HPSG parsing is chart parsing, and for
a large grammar, the charts can be huge. The goal

3In Table 3, the “not closely related” column represents
mistakes where the true label and the predicted label differ in
their general subcategory; in this column, we did not count
nouns mistaken for other types of nouns, etc. We use the ERG
lexical type naming convention to filter the errors. The “n-c”
type is a subtype of common noun; the “n-pn” and “n-pn-gen”
types are subtypes of proper nouns; “v-np*” is a subtype of
verbs that take clausal complements; “adj-i” is a subtype of
intersective adjectives, “d-poss” is a possessive determiner.

11364

of supertagging is to reduce the size of the lexical
chart. This can make parsing faster, however if a
good lexical analysis is thrown out by mistake (due
to a wrong tag), the entire sentence is likely to be
lost (not parsed or parsed in a meaningless way).
The parser speed and the parser accuracy are there-
fore in tension: the more time we give the parser
the more chances it will have to build the correct
structure in a bigger chart. For accuracy, we report
two metrics: exact match with the gold semantic
structure (MRS) and partial match Elementary De-
pendency Match metric (EDM; Dridan and Oepen,
2011). The exact match is less important because
it usually can only be achieved on short, easy sen-
tences. The EDM (and similar) is the usual practice.
The results are presented in Tables 4-9, which are
also summarized in Figure 3.

BERT Supertagger with Exceptions

0.74 Ubertagger with Exceptions o N9 Tagging

F1 Score

Ubertagger No Exceptions

o BERT Supertagger No Exceptions

0.5 10 15 2.0 2.5 3.0 3.5
Speed sec/sent

Figure 3: Pareto Frontier (Speed and F-score)

4.2.1 Baseline

We compare our system with two systems: ACE
with no tagging at all and ACE with the in-built
“ubertagger”. The system with no tagging at all is
the baseline for parsing speed and, theoretically,
the upper boundary for the parsing accuracy (as
the parser could have access to the full lexical
chart). However, in practice it is difficult to obtain
this upper bound because it requires at least 54GB
of RAM (see §A.5) and the parsing takes unrea-
sonably long (up to several minutes per sentence).
With realistic settings, the system with no tagging
fails to parse some of the longer sentences because
the lexical chart exceeds the RAM limit. It is pre-
cisely the problem that ubertagging/supertagging
is supposed to solve: reduce the size of the lexical
chart so that the parsing can be done with realistic
RAM allocation and in reasonable time.

The ubertagger is a MEMM tagger based on Dri-
dan 2013. It was trained on millions of sentences
using large computational resources (the Titan sys-

tem at University of Oslo) and as such is not easily
reproducible. In contrast, our BERT-based model is
fairly easy to fine-tune and reproduce on an individ-
ual machine. For the purposes of parsing accuracy
and speed, rather than comparing our system to
other experimental taggers presented in §4.1, we
compare it to the ubertagger because the ubertag-
ger is integrated into the ACE parser for production
and as such is a more challenging baseline.

Below we present the results in two settings:
(1) default settings, and (2) default RAM with tag
exceptions. In Tables 4 and 7, the best result is
bolded, and the experimental result is italicized in
the cases where it is not the best but much closer
to the ubertagger than to the no-tagging baseline.

4.2.2 Default parsing

Tables 4, 5, and 6 present the results for the ACE
parser default RAM limit setting (1200MB). On
the ubertagger and the supertagger side, we use all
the predictions and do not exclude any tags from
the pruning process.

The results show that while we can parse faster
with tagging (the ubertagger being the fastest), both
the ubertagger and the supertagger suffer from the
high cost of each tagging mistake: while the new
BERT-based supertagger is more accurate, its ac-
curacy is still not 100%, and even at 99% tagger
accuracy, the likelihood of losing an entire sentence
due to one incorrect tag is high. Dridan (2013) com-
ments on this, too, and suggests taking into account
the top mistakes that the tagger makes to achieve
higher recall. This is what we do below.

4.2.3 Parsing with exceptions lists

Tables 7-9 present the results for parsing with
ubertagging and supertagging with exceptions. The
no-tagging system’s results are the same as before;
we repeat them for convenience.

We have looked at the most common mistakes
in the supertags in the training data and have com-
piled a list of 15 tags which BERT tends to predict
wrong.'* On the ubertagger side, there was already
a list of exceptions. The ubertagger’s exception list
is a list of 1715 lexical entries (words, e.g. “my”),
whereas ours is a list of 15 lexical types (tags, e.g.
”d-poss-my”’, which is a supertype for “my” in the
grammar). The ubertagger’s list includes some of

“The list includes: some punctuation/quotation marks, the
tags for out-of-vocabulary proper names, the verb is, the pro-
nouns my and me, and types for denoting times and dates. Cf.
Table 3 which shows similar findings on the test data, which
we did not take into account.

11365

sec/sen
dataset description sent tok | Notagging Ubertagging BERT-based supertags
cb technical essay 713 17,244 6.15 0.42 0.76
ecpr e-commerce 1,088 11,550 0.55 0.05 0.52
jh* tg* ps*, ron* travel brochures 2,116 34,098 2.40 0.13 0.32
petet textual entailment 581 7,135 1.93 0.10 0.23
vm32 phone conv. 1,000 8,730 0.73 0.04 0.06
ws214 Wikipedia 598 12,395 5.68 0.42 1.24
wsj23 Wall Street J. 950 22,987 6.27 0.46 3.60
all average 7918 131,441 3.38 0.24 0.97

Table 4: Effects of supertagging on DEFAULT parsing speed (ACE Parser)

dataset description sent tok No tagging Ubertagging BERT-based supertags
Precision Recall Fl1 Precision Recall Fl1 Precision Recall Fl
cb technical essay 713 17,244 | 0.89 0.40 0.55 | 0.86 0.39 0.53 | 0.91 0.27 0.41
ecpr e-commerce 1,088 11,550 | 0.95 093 094|093 0.67 0.78 | 0.94 0.88 0.91
jh*,tg*,ps*, ron* travel brochures 2,116 34,098 | 0.91 0.74 0.81 | 0.89 0.61 0.71 | 0.91 0.69 0.78
petet textual entailment 581 7,135 | 0.93 078 0.85| 093 0.67 0.78 | 0.94 0.47 0.63
vm32 phone conv. 1,000 8,730 | 0.92 0.88 0.90 | 0.93 0.75 0.83 | 0.94 052 0.67
ws214 Wikipedia 598 12,395 | 0.89 0.45 0.60 | 0.88 0.54 0.66 | 0.92 0.42 0.58
wsj23 Wall Street J. 950 22,987 | 0.92 038 0.54 | 0.90 049 0.64 | 091 044 0.60
all average 7918 131,441 | 0.92 0.65 0.74 | 0.90 059 071093 0.53 0.65

Table 5: Effects of supertagging on DEFAULT parsing accuracy (EDM metric)

exact match
dataset description sent tok | No tagging Ubertagging BERT-based supertags
cb technical essay 713 17,244 0.13 0.15 0.10
ecpr e-commerce 1,088 11,550 0.50 0.47 0.47
jh*tg* ps* ron* travel brochures 2,116 34,098 0.33 0.31 0.29
petet textual entailment 581 7,135 0.46 0.52 0.23
vm32 phone conv. 1,000 8,730 0.55 0.58 0.49
ws214 Wikipedia 598 12,395 0.23 0.25 0.14
wsj23 Wall Street J. 950 22,987 0.13 0.15 0.14
all average 7,918 131,441 0.33 0.35 0.26

Table 6: Effects of supertagging on DEFAULT parsing accuracy (exact match over MRS)

sec/sen
dataset description sent tok | Notagging Ubertagging BERT-based supertags
cb technical essay 713 17,244 6.15 0.46 0.91
ecpr e-commerce 1,088 11,550 0.55 0.05 0.52
jh*.tg* ps*, ron* travel brochures 2,116 34,098 2.36 0.16 0.40
petet textual entailment 581 7,135 1.93 0.11 0.27
vm32 phone conv. 1,000 8,730 0.73 0.05 0.08
ws214 Wikipedia 598 12,395 5.68 0.46 1.48
wsj23 Wall Street J. 950 22,987 6.27 0.55 4.04
all average 7918 131,441 3,38 0.27 1.10

Table 7: Effects of supertagging WITH EXCEPTIONS on parsing speed (ACE Parser)

dataset description sent tok No tagging Ubertagging BERT-based supertags
Precision Recall F1 Precision Recall F1 Precision Recall F1
cb technical essay 713 17,244 | 0.89 0.40 0.55 | 0.87 0.43 0.58 | 0.92 0.49 0.65
ecpr e-commerce 1,088 11,550 | 0.95 0.93 0.94 | 0.93 0.81 0.87 | 0.95 0.90 0.92
jh*tg* ps*, ron* travel brochures 2,116 34,098 | 0.91 0.74 0.81 | 0.89 0.65 0.75 | 0.93 0.80 0.86
petet textual entailment 581 7,135 | 0.93 0.78 0.85 | 0.92 0.69 0.79 | 0.97 0.69 0.81
vm32 phone conv. 1,000 8,730 | 0.92 0.88 0.90 | 0.93 0.79 0.86 | 0.94 0.85 0.89
ws214 Wikipedia 598 12,395 | 0.89 0.45 0.60 | 0.88 0.54 0.67 | 0.93 0.56 0.70
wsj23 Wall Street J. 950 22,987 | 0.92 0.38 0.54 | 0.89 0.53 0.67 | 0.94 0.69 0.80
all average 7,918 131,441 | 0.92 0.65 0.74 | 0.90 0.63 0.74 | 0.94 0.71 0.80

Table 8: Effects of supertagging WITH EXCEPTIONS on parsing accuracy (EDM metric)

the words that we expect would be tagged with
some of our excluded types, although in principle,
the two models may of course make different mis-
takes. We did not modify the existing ubertagger
nor consulted its exceptions for our list. From the
speeds that we are seeing, we conclude that our su-

pertagger is less aggressive than the ubertagger and
excludes more words from pruning, losing more
in speed but winning considerably in accuracy as
a result. This is what we would expect since we
exclude entire lexical types and not just individual
lexical items. The goal is a balanced tradeoff be-

11366

sec/sen
dataset description sent tok | Notagging Ubertagging BERT-based supertags
cb technical essay 713 17,244 0.13 0.17 0.21
ecpr e-commerce 1088 11,550 0.55 0.56 0.48
jh*.tg*,ps* ron* travel brochures 2,116 34,098 0.33 0.32 0.38
petet textual entailment 581 7,135 0.46 0.54 0.66
vm32 phone conv. 1,000 8,730 0.55 0.61 0.67
ws214 Wikipedia 598 12,395 0.23 0.26 0.22
wsj23 Wall Street J. 950 22,987 0.13 0.17 0.27
all average 7918 131,441 0.33 0.37 0.42

Table 9: Effects of supertagging WITH EXCEPTIONS on parsing accuracy (exact match over MRS)

tween accuracy and speed. We want the supertag-
ger to be noticeably faster than the baseline and
much more accurate than the ubertagger. This is
what we observe in Tables 7-9.

Because pruning the lexical chart may and often
will result in wrongly sacrificing the correct lexical
type for a word, we expect the recall for the tagging
systems to be lower compared to the no-tagging
system. On the other hand, the no-tagging system
will often run out of resources and so its overall
accuracy may be lower for that reason. What we
see in Table 8 is that our supertagging system is the
most precise one on most datasets and shows large
recall gains on Wikipedia, Wall Street Journal Sec-
tion 23, and the technical essay data. It is strictly
better than the no-tagging system on WSJ23 as well
as on Wikipedia and The Cathedral and the Bazaar,
and it is strictly better than the ubertagger across
the board on the partial match EDM metric. While
the recall difference is partially explained by the
supertagger being less aggressive in pruning, the
precision has to be due to the higher accuracy of the
tagging model (BERT). On the exact match metric,
the ubertagger wins on two datasets: e-commerce
and Wikipedia. The supertagger wins on the rest.

Our system is strictly faster than the baseline, by
a factor of 3, although on two datasets (e-commerce
and WSJ) it fails to achieve a speedup factor of 2.
The ubertagger is still the fastest overall, remark-
ably by a factor of 12, on average across all datasets.
This is not too surprising because the supertagger
is experimental and it is hard for it to compete with
the ubertagger which was integrated into the parser
for production, with the focus on performance. We
believe that the supertagger could be integrated bet-
ter into the parser’s C code in the future. In other
words, its current speed is in part a purely C en-
gineering problem. On the other hand, clearly the
exceptions list would have an effect. Since we are
excluding 15 types of words from pruning, the su-
pertagger’s lexical chart is likely to be bigger than

the ubertagger’s. This is the expected tension be-
tween speed and accuracy that we expected to see,
and our supertagger system shows overall benefits
in both speed and accuracy. The only dataset on
which our system is not the best in accuracy is the
e-commerce (ecpr). It appears that for this type of
data, tagging is the least effective; we gain a 6%
speed increase with the supertagger at the cost of
3% F-score, while the more aggressive ubertagger
parses this data very fast but at the cost of 16%
F-score. We note particularly large recall gains on
the WSJ data, but this may be related to the fact
that statistical systems have been overtrained on
WSJ so much that the effects are seen throughout
the field (Hovy and Sggaard, 2015).

5 Conclusion and future work

We used the advancements in HPSG treebanking to
train more accurate supertaggers. The ERG is a ma-
jor project in syntactic theory and an important re-
source for creating high quality semantic treebanks.
It has the potential to contribute to NLP tasks that
require high precision and/or interpretability in-
cluding probing of the LLMs, and thus making
HPSG parsing faster is strategic for NLP. We tested
the new supertagging models with the state-of-the-
art HPSG parser and saw improvements in parsing
speed as well as accuracy. We consider the results
on multiple domains, well beyond the WSJ Section
23. We show promising results but also confirm
that domain remains important, and purely statisti-
cal systems are brittle and often require rule-based
additions in real-life scenarios. We contribute the
ERG datasets converted to huggingface transform-
ers format intended for token classification, along
with the code which can be adapted for other pur-
poses.

6 Limitations

Our paper is concerned with training supertagging
models on an English HPSG treebank. The lim-

11367

itations therefore are associated mainly with the
training of the models including neural networks,
and with the building of broad-coverage grammars
such as the English Resource Grammar. Crucially,
while our method does not require industry-scale
computational resources, training a neural classi-
fier such as ours still requires a certain amount
of training data, and this means that our method
assumes that a large HPSG treebank is available
for training. The availability of such a treebank,
in turn, depends directly on the availability of a
broad-coverage grammar. While choosing the gold
trees for the treebank can be done relatively fast
using treebanking tools once the grammar parsed
the corpus, building a broad-coverage grammar it-
self requires an investment of years of expert work.
At the moment, such an investment was made only
for a few languages (English, Spanish, Japanese,
Chinese), English being the largest one. Further-
more, the coverage of a precision grammar is never
perfect and regular grammar updates are needed. A
limitation related to using neural networks is that
while the NCRF++ library can in principle be very
efficient on some tasks (e.g. POS tagging), with our
data and large label set it proved relatively slow,
and so ideally a more efficient neural architecture
may be required for future work in this direction.

Acknowledgments

We acknowledge the European Union’s Horizon
Europe Framework Programme which funded
this research under the Marie Sktodowska-Curie
postdoctoral fellowship grant HORIZON-MSCA-
2021-PF-01 (GAUSS, grant agreement No
101063104); and the European Research Council
(ERC), which has funded this research under
the Horizon Europe research and innovation
programme (SALSA, grant agreement No
101100615). We also acknowledge grants
SCANNER-UDC (PID2020-113230RB-C21)
funded by MICIU/AEI/10.13039/501100011033;
GAP (PID2022-1393080A-100) funded by
MICIU/AEI/10.13039/501100011033/ and ERDF,
EU; LATCHING (PID2023-1471290B-C21)
funded by MICIU/AEI/10.13039/501100011033
and ERDF, EU; and TSI-100925-2023-1 funded
by Ministry for Digital Transformation and Civil
Service and “NextGenerationEU” PRTR; as well
as funding by Xunta de Galicia (ED431C 2024/02),
and Centro de Investigacién de Galicia “CITIC”,
funded by the Xunta de Galicia through the

collaboration agreement between the Conselleria
de Cultura, Educacion, Formacion Profesional e
Universidades and the Galician universities for
the reinforcement of the research centres of the
Galician University System (CIGUS).

References

Lasse F. Wolff Anthony, Benjamin Kanding, and
Raghavendra Selvan. 2020. Carbontracker: Tracking
and predicting the carbon footprint of training deep
learning models. ICML Workshop on Challenges in
Deploying and monitoring Machine Learning Sys-
tems. ArXiv:2007.03051.

Srinivas Bangalore and Aravind Joshi. 1999. Supertag-
ging: An approach to almost parsing. Computational
linguistics, 25(2):237-265.

Emily M Bender and Guy Emerson. 2021. Compu-
tational linguistics and grammar engineering. In
Stephan Miiller, Anne Abeillé, Robert D. Borsley,
and Jean-Pierre Koenig, editors, Head-Driven Phrase
Structure Grammar: The handbook.

Philip Blunsom. 2007. Structured classification for mul-
tilingual natural language processing. Ph.D. thesis,
University of Melbourne.

Thorsten Brants. 2000. TnT-a statistical part-of-speech
tagger. arXiv preprint cs/0003055.

Jan Buys and Phil Blunsom. 2017. Robust incremental
neural semantic graph parsing. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1215-1226.

Ulrich Callmeier. 2000. PET-a platform for experi-
mentation with efficient hpsg processing techniques.
Natural Language Engineering, 6(1):99-107.

Robert Carpenter. 1992. The logic of typed feature
structures: with applications to unification gram-
mars, logic programs and constraint resolution, vol-
ume 32. Cambridge University Press.

John Carroll. 1993. Practical unification-based pars-
ing of natural language. Ph.D. thesis, University of
Cambridge.

Yufei Chen, Weiwei Sun, and Xiaojun Wan. 2018. Ac-
curate SHRG-based semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 408—418, Melbourne, Australia. Association
for Computational Linguistics.

Stephen Clark and James R Curran. 2003. Log-linear
models for wide-coverage CCG parsing. In Proceed-
ings of the 2003 conference on Empirical methods in
natural language processing, pages 97—104.

11368

https://doi.org/10.18653/v1/P18-1038
https://doi.org/10.18653/v1/P18-1038

Ann Copestake. 2002. Definitions of typed feature struc-
tures. In Stephan Oepen, Dan Flickinger, Jun-ichi
Tsujii, and Hans Uszkoreit, editors, Collaborative
Language Engineering, pages 227-230. CSLI Publi-
cations, Stanford, CA.

Berthold Crysmann and Woodley Packard. 2012. To-
wards efficient HPSG generation for German, a non-
configurational language. In COLING, pages 695—
710.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171-4186.

Rebecca Dridan. 2009. Using lexical statistics to im-
prove HPSG parsing. Ph.D. thesis, University of
Saarland.

Rebecca Dridan. 2013. Ubertagging: Joint segmenta-
tion and supertagging for english. In Proceedings
of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1201-1212.

Rebecca Dridan, Valia Kordoni, and Jeremy Nichol-
son. 2008. Enhancing performance of lexicalised
grammars. In Proceedings of ACL-08: HLT, pages
613-621.

Rebecca Dridan and Stephan Oepen. 2011. Parser eval-
uation using elementary dependency matching. In
Proceedings of the 12th International Conference on
Parsing Technologies, pages 225-230, Dublin, Ire-
land. Association for Computational Linguistics.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types. Natural Language
Engineering, 6(01):15-28.

Dan Flickinger. 2011. Accuracy v. robustness in gram-
mar engineering. In Emily M. Bender and Jennifer E.
Arnold, editors, Language from a Cognitive Perspec-
tive: Grammar, Usage and Processing, pages 31-50.
CSLI Publications, Stanford, CA.

Dan Flickinger and Jiye Yu. 2013. Toward more preci-
sion in correction of grammatical errors. In Proceed-
ings of the Seventeenth Conference on Computational
Natural Language Learning: Shared Task, pages 68—
73.

Dan Flickinger, Yi Zhang, and Valia Kordoni. 2012.
Deepbank. a dynamically annotated treebank of the
wall street journal. In Proceedings of the 11th In-
ternational Workshop on Treebanks and Linguistic
Theories, pages 85-96.

Valerie Hajdik, Jan Buys, Michael W Goodman, and
Emily M Bender. 2019. Neural text generation from
rich semantic representations. In Proceedings of
NAACL-HLT, pages 2259-2266.

Dirk Hovy and Anders Sggaard. 2015. Tagging perfor-
mance correlates with author age. In Proceedings of
the 53rd annual meeting of the Association for Com-
putational Linguistics and the 7th international joint
conference on natural language processing (volume
2: Short papers), pages 483-488.

Konstantinos Kogkalidis and Michael Moortgat. 2023.
Geometry-aware supertagging with heterogeneous
dynamic convolutions. In Proceedings of the 2023
CLASP Conference on Learning with Small Data
(LSD), pages 107-119.

Zi Lin, Jeremiah Zhe Liu, and Jingbo Shang. 2022. To-
wards collaborative neural-symbolic graph semantic
parsing via uncertainty. Findings of the Association
for Computational Linguistics: ACL 2022.

Yufang Liu, Tao Ji, Yuanbin Wu, and Man Lan. 2021.
Generating CCG categories. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 13443-13451.

Robert Malouf, John Carroll, and Ann Copestake. 2000.
Efficient feature structure operations without compi-
lation. Natural Language Engineering, 6(1):29-46.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. University of
Pennsylvania Department of Computer and Informa-
tion Science Technical Report No. MS-CIS-93-87.

Montserrat Marimon, Nuria Bel, and Lluis Padré. 2014.
Automatic selection of hpsg-parsed sentences for

treebank construction. Computational Linguistics,
40(3):523-531.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2007. Efficient hpsg parsing with supertagging and
cfg-filtering. In Proceedings of the 20th international
Jjoint conference on Artifical intelligence, pages 1671—
1676.

Yusuke Miyao and Jun’ichi Tsujii. 2008. Feature forest
models for probabilistic HPSG parsing. Computa-
tional linguistics, 34(1):35-80.

Luis Morgado da Costa, Francis Bond, and Xiaoling He.
2016. Syntactic well-formedness diagnosis and error-
based coaching in computer assisted language learn-
ing using machine translation. In Proceedings of the
3rd Workshop on Natural Language Processing Tech-
niques for Educational Applications (NLPTEA2016),
pages 107-116.

Luis Morgado da Costa, Roger VP Winder, Shu Yun Li,
Benedict Christopher Lin Tzer Liang, Joseph Mack-
innon, and Francis Bond. 2020. Automated writing
support using deep linguistic parsers. In Proceed-
ings of The 12th Language Resources and Evaluation
Conference, pages 369-377.

Takashi Ninomiya, Takuya Matsuzaki, Yusuke Miyao,
and Jun’ichi Tsujii. 2007. A log-linear model with
an n-gram reference distribution for accurate hpsg

11369

https://aclanthology.org/W11-2927
https://aclanthology.org/W11-2927

parsing. In Proceedings of the 10th International
Conference on Parsing Technologies, pages 60—68.
Citeseer.

Stephan Oepen. 1999. [incr tsdb ()] competence and
performance laboratory. User and reference manual.

Stephan Oepen and John Carroll. 2002. Efficient pars-
ing for unification-based grammars. In Stephan
Oepen, Dan Flickinger, Jun-ichi Tsujii, and Hans
Uszkoreit, editors, Collaborative Language Engineer-
ing. CSLI Press.

Stephan Oepen, Dan Flickinger, Kristina Toutanova, and
Christopher D Manning. 2004. LinGO Redwoods.
Research on Language and Computation, 2(4):575—
596.

Woodley Packard. 2015. Full-forest treebanking. Mas-
ter’s thesis, University of Washington.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. Studies in Contempo-
rary Linguistics. The University of Chicago Press and
CSLI Publications, Chicago, IL and Stanford, CA.

Jakob Prange, Nathan Schneider, and Vivek Srikumar.
2021. Supertagging the long tail with tree-structured
decoding of complex categories. Transactions of the
Association for Computational Linguistics, 9:243—

260.

RP Prins and GJM van Noord. 2004. Reinforcing parser
preferences through tagging. Traitement Automa-
tique des Langues, 3:121-139.

Adwait Ratnaparkhi et al. 1996. A maximum entropy
model for part-of-speech tagging. In EMNLP, vol-
ume 1, pages 133-142. Citeseer.

Eric Raymond. 1999. The cathedral and the bazaar.
Knowledge, Technology & Policy, 12(3):23-49.

Taiga Someya, Ryo Yoshida, and Yohei Oseki. 2024.
Targeted syntactic evaluation on the chomsky hierar-
chy. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 15595-15605.

Yuanhe Tian, Yan Song, and Fei Xia. 2020. Supertag-
ging combinatory categorial grammar with attentive
graph convolutional networks. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6037-6044.

Masaru Tomita. 1985. An efficient context-free parsing
algorithm for natural languages. In IJCAI, volume 2,
pages 756-764.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with Istms. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 232—
237.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG supertagging with a recurrent neural network.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
250-255.

Jie Yang and Yue Zhang. 2018. NCRF++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics.

Deniz Yuret, Aydin Han, and Zehra Turgut. 2010.
Semeval-2010 task 12: Parser evaluation using tex-
tual entailments. In Proceedings of the 5th Inter-

national Workshop on Semantic Evaluation, pages
51-56.

Yao-Zhong Zhang, Takuya Matsuzaki, and Jun’ichi Tsu-
jii. 2012. Structure-guided supertagger learning. Nat-
ural Language Engineering, 18(2):205-234.

Yao-Zhong Zhang, Takuya Matsuzaki, and Jun’ichi Tsu-
jii. 2009. HPSG supertagging: A sequence labeling
view. In Proceedings of the 11th International Con-
ference on Parsing Technologies (IWPT’09), pages
210-213.

Yao-Zhong Zhang, Takuya Matsuzaki, and Jun’ichi Tsu-
jii. 2010. A simple approach for HPSG supertagging
using dependency information. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 645—648.

Yi Zhang and Hans-Ulrich Krieger. 2011. Large-scale
corpus-driven PCFG approximation of an HPSG. In
Proceedings of the 12th international conference on
parsing technologies, pages 198-208.

A Appendix A

A.1 Tuning ranges

BERT (Devlin et al., 2019) was fine-tuned us-
ing transformers (Wolf et al., 2019) and pytorch
(Paszke et al., 2017) using 4 learning rates: le-5,

11370

http://aclweb.org/anthology/P18-4013
http://aclweb.org/anthology/P18-4013

Parameter value default/tuned range
Istm layers 2 tuned 1-4
hidden dim. 800 tuned 100-1200
word embeddings glove840B pretrained

word emb. dim. 300 N/A

char emb. dim. 50 tuned 30-50
momentum 0 default

dropout 0.5 default

12 18 default

Table 10: NCRF++ model parameters

2e-5, 3e-5, and 5e-6. Cased and uncased pretrained
BERT models were tried.

A.2 Computational resources

We trained the neural models with a single NVIDIA
GeForce RTX 2080 GPU, CUDA version 11.2.
The SVM model and the MaxEnt baseline were
trained using Intel Core 17-9700K 3,60Hz CPU (us-
ing single core processing for each model). We
have experimented with Stochastic Gradient De-
scent (SGD) optimizer along with AdaGrad, Adam,
and AdaDelta. The ranges for parameter values
can be found in Table 10. The decoding time (sen-
tences per second) for the models can be found in
Table 2. The training times are presented in this Ap-
pendix in Table 11. The energy costs as estimated
by the Python library carbontracker (Anthony et al.,
2020)' are in Table 12.

A.3 Development accuracies

The development (validation set) accuracies are pre-
sented in Tables 13, 14, and 15. The best models
are bolded. NCRF++ has nondeterministic com-
ponents, and the average dev accuracy of the best
(bolded) model in Table 14; the average accuracy
18 95.15%; standard deviation 0.07088.

A4 MaxEnt model

Below we describe in detail how we trained the
baseline MaxEnt models.

A.4.1 MaxEnt model selection

Rather than comparing our experimental numbers
with numbers obtained by Dridan (2009),'° we

15https ://pypi.org/project/carbontracker/

'Dridan (2009, p.84) reports getting 91.47% accuracy on
in-domain data using the TnT off-the-shelf tagger (Brants,
2000); as a sanity check, we obtain 91.94% using an autore-
gressive one-versus-rest L1 SAGA MaxEnt model trained with
the scikit-learn library (Pedregosa et al., 2011) on training and
test datasets very similar to the ones used by Dridan (2009).
On The Cathedral and the Bazaar with the same setup, we
obtain 73.85% compared to Dridan’s (2009) 74.61%. We at-
tribute the slight differences to the differences between TnT

create our own baseline because we want to be able
to compare classic models with neural models with
the same amount of training data.

We experimented with autoregressive and non-
autoregressive MaxEnt models and in the end chose
one MaxEnt as the baseline.

A.4.2 MaxEnt classifiers

We use scikit learn Python library (Pedregosa et al.,
2011) to train the baseline MaxEnt classifiers.!”
The scikit learn classifiers are optimized for pro-
cessing a large number of observations. For that
reason, we organized our evaluation data (dev and
test) so as to maximize the number of observa-
tions passed to the classifier at each step. Dridan’s
(2009) models were autoregressive; we also im-
plemented autoregressive baseline models, and in
order to make them faster at test time, we organized
the evaluation data by the word’s position in the
sentence. So the classifier would first process all
the first words in all sentences, then all the second
words, etc. For nonautoregressive models, which
we also tried in order to find the best-performing
baseline model, we just pass the classifier the entire
list of observations in their original order.

We choose the single baseline MaxEnt model
from the following types of models, by validation
on the dev set: (1) MaxEnt autoregressive mod-
els which at test time, if more than one sentence
is passed to the classifier, first classify all first to-
kens in all sentences, then all second tokens, etc;
(2) MaxEnt nonautoregressive models where the
observation tokens are organized in the same way
as in (1); (3) MaxEnt nonautoregressive models
where tokens are not reordered in any way and are
stored consecutively. The best model happens to
be of type (3).

All models achieve above 91% accuracy on the
dev set. The validation (dev) data consists of one
Wikipedia section and one e-commerce corpus
(2267 sentences and 25,076 tokens total), with both
domains represented also in the training data. Our
best performing MaxEnt baseline model is a nonau-
toregressive ‘One-versus-rest’ (OVR) model with
L1 regularization and SAGA optimizer (92.21%
accuracy on the dev set).'8

and scikit-learn.

17ht’cps: //scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LogisticRegression.html

"We tried multinomial and OVR models, L1 and L2 reg-
ularization, and SAG and SAGA solvers on the dev set. The
autoregressive models were not strictly better than the nonau-

11371

https://pypi.org/project/carbontracker/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Model type

models trained for tuning

total time for all models in this row (sec)

SVM Scikit-learn 1
MaxEnt Scikit-learn 14
NCRF++ 31
BERT 5

3664

106,922

955,500 (approx.)
100,000 (approx.)

Table 11: Training times for models used to choose the best baseline and best experimental models

Measurement Value NCRF++ Value BERT
Process used 5.55 kWh 3.5 kWh
Carbon emissions 1.63 kg CO2 5.5kg CO2
Equivalent km driven 13 km 5.5 km

Table 12: Energy cost estimate for training the final NCRF++ model in 38 epochs (31 were trained in total, number

of epochs varied) and for BERT 50 epochs

Model

multinomial L2 SAG 91.59
multinomial L2 SAG autoreg 91.41
OVR L2 SAG 91.18
OVR L2 SAG autoreg 91.27
multinomial L2 SAGA 91.53
multinomial L2 SAGA autoreg 88.56
OVR L2 SAGA 91.17
OVR L2 SAGA autoreg 91.26
OVR L1 SAGA 92.17
OVR L1 SAGA autoreg 92.12
multinomial L1 SAGA 92.12
multinomial L1 SAGA autoreg 91.17
liblinear SVM 92.88

Table 13: Development (validation) set accuracies for
MaxEnt and SVM

A.5 Parsing with more RAM

To give the baseline system an opportunity to build
the full lexical chart, more than 50GB RAM is re-
quired (24+30), according to our experiments with
a subset of the WSJ training data that includes 25
sentences some of which are very long and ambigu-
ous (Yuret et al., 2010), presented below in Table
16. On this dataset, even with 54GB RAM, 100%
coverage is not achieved, and the parsing speed
becomes intractable (77 sec/sen).

Since spending 77 sec/sen is not viable, we did
not run the full experiments with 54GB RAM. We
present below a subset of experiments, showing
the baseline F-score gain due to higher recall. The
ubertagger and the supertagger do not end up with
toregresms, achieving very similar accuracies on the

dev set. They were also much slower, being able to process
only 2 sentences per second.

dev accuracy(%) such large lexical charts and thus do not benefit

from more RAM, so we do not repeat the results
from Tables 4.2-8 in Table 18.

The “Verbmobil’ (phone conversations) and the
‘ecpr’ (e-commerce) datasets are easy to parse fast
(as we see from Table 7) and on such data, us-
ing more RAM may be justified with the baseline
system, however other types of data lead to the
parsing time increasing noticeably. On the travel
brochures data (‘jhk’), the baseline system achieves
an F-score of 87% at the cost of spending 8.68 sec-
onds per sentence, while our supertagger achieves
86% with only 0.78 seconds/sentence and with only
2.7GB of RAM. Figure 3 summarizes the results
presented in Tables 4-8, showing that if we opti-
mize for both speed and F-score, the best models
include our model and the ubertagger models.

11372

optimizer Istm layers char embed hid dim embed epochs (up to 100) dev accuracy(%)

SGD 1 30 200 pretrained (NCRF++) 17 92.14
SGD 4 30 200 pretrained (NCRF++) 23 93.20
SGD 1 30 200 random 19 92.82
SGD 1 30 200 glove840 17 93.69
SGD 4 30 200 glove840 23 94.27
SGD 1 30 250 glove840 20 93.86
SGD 4 30 400 glove840 18 94.68
SGD 4 30 100 glove840 19 93.07
SGD 2 30 200 glove840 20 94.04
SGD 4 30 1200 glove840 18 94.74
SGD 4 30 600 glove840 19 94.62
SGD 2 30 400 glove840 13 94.56
SGD 4 30 1400 glove840 16 94.68
SGD 5 30 1200 glove840 12 94.35
SGD 4 50 1200 glove840 21 94.66
SGD 3 30 1200 glove840 21 94.92
SGD 2 30 1200 glove840 19 95.01
SGD 1 30 1200 glove840 16 94.60
SGD 3 30 1400 glove840 14 94.65
SGD 3 30 600 glove840 15 94.86
SGD 2 50 1200 glove840 19 95.00
SGD 2 30 1400 glove840 8 94.57
SGD+0.3 momentum 3 30 1200 glove840 21 94.67
SGD 2 30 1200 glove840 12 94.69
SGD 2 30 1000 glove840 17 94.95
SGD 2 30 800 glove840 17 95.12
adagrad 1 30 200 glove840 17 92.00
adagrad 4 30 200 glove840 42 92.42
adam 1 30 200 glove840 1 86.85
adadelta 4 30 200 glove840 stuck on 73 did not finish
Table 14: Development (validation) set accuracies for neural models
Model dev accuracy(%)

BERT cased LR 2e-5 96.46
BERT cased LR 1e-5 96.37
BERT cased LR 3e-5 96.31
BERT cased LR 5e-6 96.34
BERT uncased LR 2e-5 95.97

Table 15: Development (validation) set accuracies fine-

tuned BERT models
2.7GB RAM (default) 54GB RAM
baseline coverage 11/25 (44%) 19725 (76%)
baseline speed (sec/sen) 0.77 77

Table 16: Baseline (no tagging) coverage gain with
more RAM on the PETE dataset (ERG version)

2.7GB RAM (default) 54GB RAM
dataset coverage F-score speed ‘ coverage F-score speed
ecpr 0.99 0.94 0.54 0.99 0.95 0.68
jhk 0.87 0.78 2.61 0.98 0.87 8.68
petet 0.92 0.85 1.96 0.99 0.92 434
vm32 098 0.90 0.74 0.99 0.92 0.99

Table 17: Baseline (no tagging) recall gains and speed
loss with generous RAM

11373

No tagging Ubertagging BERT supertagging
dataset | coverage F-score speed | coverage F-score speed | coverage F-score speed
cb 0.86 0.77 59.3 0.58 0.58 0.66 0.63 0.64 8.58
ecpr 0.99 0.95 0.68 0.96 0.87 0.06 0.97 0.93 0.68
jhk 0.98 0.88 8.89 0.81 0.75 0.22 0.91 0.87 0.35
petet 0.99 0.92 434 0.79 0.79 0.12 0.85 0.85 0.32
vm32 0.99 0.92 0.99 0.87 0.86 0.05 0.94 0.90 0.10
wsj23 0.85 0.79 522 0.64 0.69 0.81 - - -

Table 18: Parsing with 54GB RAM

11374

