
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 10870–10887
November 12-16, 2024 ©2024 Association for Computational Linguistics

Diversity Over Size: On the Effect of Sample and Topic Sizes for
Topic-Dependent Argument Mining Datasets

Benjamin Schillera,b, Johannes Daxenbergera, Andreas Waldisb,c and Iryna Gurevychb

asummetix GmbH, bUbiquitous Knowledge Processing Lab,
Department of Computer Science, Technical University of Darmstadt, and

cInformation Systems Research Lab, Lucerne University of Applied Sciences and Arts
a{schiller, daxenberger}@summetix.com,

bwww.ukp.tu-darmstadt.de,
cwww.hslu.ch

Abstract

Topic-Dependent Argument Mining (TDAM),
that is extracting and classifying argument com-
ponents for a specific topic from large docu-
ment sources, is an inherently difficult task for
machine learning models and humans alike, as
large TDAM datasets are rare and recognition
of argument components requires expert knowl-
edge. The task becomes even more difficult if it
also involves stance detection of retrieved argu-
ments. In this work, we investigate the effect of
TDAM dataset composition in few- and zero-
shot settings. Our findings show that, while
fine-tuning is mandatory to achieve acceptable
model performance, using carefully composed
training samples and reducing the training sam-
ple size by up to almost 90% can still yield 95%
of the maximum performance. This gain is con-
sistent across three TDAM tasks on three dif-
ferent datasets. We also publish a new dataset1

and code2 for future benchmarking.

1 Introduction

Topic-Dependent Argument Mining (TDAM) is
the task of extracting argument components in doc-
uments or document collections (Lauscher et al.,
2022). Topic-dependence (or, as Stab et al. (2018)
refer to it, information-seeking argument mining)
means that argument components are directed to-
wards a given topic (Ein-Dor et al., 2020; Shnarch
et al., 2018). The topic is used in two ways: by a
machine learning model to learn topic-relevance
and as a query to retrieve input documents for auto-
matic argument search (Daxenberger et al., 2020).

While LLMs (large language models) show as-
tounding results (Touvron et al., 2023; OpenAI,
2024), task-related datasets are still important to
improve model performance (Dettmers et al., 2023;
Lv et al., 2024; Liu et al., 2022; van der Meer et al.,

1https://tudatalib.ulb.tu-darmstadt.
de/handle/tudatalib/4353

2https://github.com/UKPLab/
argument-topic-diversity

2022) and decrease certain undesirable behaviours
(Ouyang et al., 2022; Askell et al., 2021) via fine-
tuning, and to provide curated data for evaluation
purposes. To assemble large amounts of training
samples, it is common to use non-experts to anno-
tate datasets. However, in contrast to a task like sen-
timent analysis, the task of identifying arguments
is not naturally understood by non-experts and, due
to pitfalls like commonly used fallacies (Habernal
et al., 2018), needs a thorough training phase and
strict quality control of the crowdsourcing process.
Hence, crowdsourcing datasets for TDAM is not
only time-consuming but also expensive, as it re-
quires a large number of workers per sample for
satisfactory agreement. For instance, Stab et al.
(2018) report a sum of $2,774 for the annotation
of 25,492 samples, requiring seven annotators to
reach a satisfying inter-annotator agreement.

Due to the efficacy of transformers (Vaswani
et al., 2017), datasets for TDAM (as for many other
tasks) have grown in size over recent years (Stab
et al., 2018; Shnarch et al., 2018; Rinott et al., 2015;
Aharoni et al., 2014). Recent datasets for TDAM
contain up to 30,000 samples (Ein-Dor et al., 2020).
However, relying on large datasets has several dis-
advantages: (1) it is impractical to label such large
datasets by experts, (2) crowdsourcing them is
costly, and (3) training (as well as tuning) takes
longer and adds to the cost.

To tackle those disadvantages, we study if and
how dataset sizes for TDAM can be reduced and
what the composition (total number of topics,
samples, and samples per topic) of these datasets
should be to train high-performing models. In
contrast to simpler text classification tasks with
a single input (e.g. document categorization
or sentiment analysis), creating datasets for
cross-topic TDAM is more complicated, as it
requires controlling two or more inputs (e.g. topic
and argument component) and a diverse choice of
topics, which we show in this work.

10870

www.ukp.tu-darmstadt.de
www.hslu.ch
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4353
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4353
https://github.com/UKPLab/argument-topic-diversity
https://github.com/UKPLab/argument-topic-diversity


Our work is motivated by few-shot learning
(Wei et al., 2022; Schick and Schütze, 2021;
Rücklé et al., 2020; Vinyals et al., 2016) and diver-
sity sampling (Larson et al., 2019; Katharopoulos
and Fleuret, 2018; Chang et al., 2017) approaches.
Larson et al. (2019) show that unique samples
(similar to outliers in Chang et al. (2017)), i.e.
samples that differ strongly in structure or content
from other samples, can increase model robustness.
Thus, in addition to relying on models that are
able to learn with fewer samples, we increase the
diversity of samples in our dataset by integrating
a large number of distinct topics (i.e., outliers)
and, in turn, aim to increase the robustness of our
models.

As a testbed, we create a benchmark with two
datasets that have an equal number of training sam-
ples and only differ in the number of topics and
samples per topic. We research the influence of
these two compositional parameters on model per-
formance and costs of the annotation process, show-
ing that a largely increased number of topics im-
proves model performance by up to 4.1pp in this
scenario. We verify findings from the benchmark
datasets on two TDAM datasets from different do-
mains with a slightly different task and find that we
can save up to almost 90% of the annotation costs
if we are willing to sacrifice 5% of the maximum
model performance.

Our contributions are as follows: (1) We create
a new dataset for TDAM which differs from an
existing TDAM dataset, namely the UKP Senten-
tial Argument Mining Corpus (UKP Corpus) (Stab
et al., 2018), only in the number of topics and sam-
ples per topic, allowing for a deeper analysis of this
task and assumptions on how future datasets can
be composed (diversity sampling), (2) we analyze
zero- and few-shot experiments on the new dataset,
giving recommendations on efficient dataset com-
position, (3) we evaluate findings on dataset effi-
ciency on two different TDAM tasks from another
domain, and (4) we present state-of-the-art results
on the UKP Corpus.

2 Related Work

TDAM The task of Discourse-level Argument Min-
ing aims to classify argument components (Rocha
et al., 2023; Ajjour et al., 2017; Stab and Gurevych,
2014; Goudas et al., 2014) and their relations (Eger
et al., 2017; Nguyen and Litman, 2016) within iso-

lated documents. Topic-Dependent Argument Min-
ing (Lauscher et al., 2022), however, describes the
task of searching large, heterogeneous document
collections for argument components relevant to a
given topic (Ein-Dor et al., 2020; Stab et al., 2018;
Shnarch et al., 2018). In this work, we will focus
on the latter instead of extracting components like
claims and premises or their relations from single
documents.

Dataset composition The growth of sample
sizes in TDAM datasets seems to be a necessity to
cover wider ranges of topics and, thus, to support
better cross-topic and cross-domain performance
(Ein-Dor et al., 2020; Stab et al., 2018; Shnarch
et al., 2018; Rinott et al., 2015; Aharoni et al.,
2014). As this, in consequence, increases the an-
notation and training costs of the models, we aim
to uncover low-effort methods for TDAM datasets
that help to keep the number of training samples
as low as possible while reaching similar perfor-
mance. Ajjour et al. (2023) discover that many
TDAM datasets, even those with large amounts of
samples, do mostly cover topics that frequently ap-
pear in forums, but leave out many less-frequently
discussed areas. We argue that using too many
samples per topic in TDAM datasets is a waste
of financial resources and focusing on only a few,
frequently discussed topics limits the capability
of models to generalize well in cross-topic experi-
ments. In this work, we propose a different compo-
sitional structure for future TDAM datasets.

Model learning techniques The intuition of
keeping the number of training samples—and
hence, costs and annotation effort—low, has at-
tracted research that focuses on techniques en-
abling models to learn with less data. With regard
to models, one of the most impactful designs in
recent years are transformer (Vaswani et al., 2017)
that are pre-trained on large amounts of text with
unsupervised learning techniques (Liu et al., 2019b;
Devlin et al., 2019). These LLMs show remark-
able results on few-shot learning (Gao et al., 2021;
Schick and Schütze, 2021) and zero-shot learning
(Wei et al., 2022; Rücklé et al., 2020; Radford et al.,
2019) tasks. One form of zero-shot learning that
gained a lot of attention due to its astounding per-
formance is prompting (in-context learning), where
a pre-trained model is not fine-tuned and, in addi-
tion to the actual input, is only given exemplary
inputs (for instance, prepended to the actual input)
at inference (Brown et al., 2020). Two other and
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older techniques used to reduce training sample
sizes are transfer and multi-task learning, which
have also been successfully combined with LLMs
(Schiller et al., 2021; Liu et al., 2019a).

Benchmarks and diversity sampling In con-
trast to most of these techniques that concentrate
on adapting model architectures in a way such that
models are able to learn with few or no samples,
we focus on benchmarking efficient compositional
structures of TDAM datasets. In recent years, other
benchmarks consisting of multiple datasets have
been published (Schiller et al., 2021; Wang et al.,
2019a,b) with the aim to standardize performance
reports for machine learning models and, hence, al-
lowing new model architectures to compete against
each other and to make the results comparable.
Arakelyan et al. (2023) show improvements on
a benchmark for the task of stance detection by
sampling a subset with a deep, unsupervised topic
model and training on the subset with a contrastive
objective. We, however, aim to adapt and bench-
mark the composition of TDAM datasets we train
the models with, such that existing models (without
any modification) can exploit it. Our decision on
how to ensemble the datasets we use in this work
draws on insights of diversity sampling research
which shows that models can profit from datasets
with high diversity, i.e. containing samples that
differ strongly from each other (Larson et al., 2019;
Katharopoulos and Fleuret, 2018; Chang et al.,
2017). While other work in the area of TDAM has
scratched on the topic of diversity by increasing
the number of used topics (Ein-Dor et al., 2020),
there has been no work that we know of, dedicated
on determining the ideal dataset composition for
TDAM datasets.

3 Data

For our dataset composition benchmark, we first
need two datasets that only differ in the aforemen-
tioned dimensions of number of topics and number
of samples per topic but are otherwise similarly
composed. We use one existing dataset (see Sec-
tion 3.1) and base a new dataset (see Section 3.2)
on it with a composition better fit for diversity sam-
pling and few-shot learning. We evaluate our hy-
potheses on dataset composition for TDAM on two
more TDAM datasets (see Sections 3.3 and 3.4)
with slightly different learning tasks. Statistical
information about all datasets as well as examples
can be found in Tables 1 and 2. Information about

dataset licenses are listed in Appendix B.

3.1 UKP Corpus
As opposed to other TDAM datasets (Ein-Dor et al.,
2020; Shnarch et al., 2018; Rinott et al., 2015; Aha-
roni et al., 2014), the UKP Corpus has two main ad-
vantages: First, it includes stance labels, which are
an important additional information to categorize
mined arguments and can be further processed for
tasks like fake news detection (Hanselowski et al.,
2018). Second, the dataset is from heterogeneous
data sources and models real-world scenarios bet-
ter than taking only samples from a single source.
It consists of eight topics with a total of 25,492
samples, which are pairs of a short topic and a
single sentence, labeled with argument for (pro),
argument against (con), or no argument (none). As
described by Stab et al. (2018), a sentence is only
labeled as pro or con argument, if it holds evidence
for why the sentence supports or opposes the topic.
If the sentence holds no such evidence or is unre-
lated to the topic, it is labeled as no argument. We
split the dataset by taking all samples of five topics
for training, of one topic for development, and of
two topics for testing. To allow for a fair compari-
son, we downsample the number of samples in the
training set (equally for each topic) to fit the total
number of training samples generated for our newly
created Few-Shot-150T Corpus (FS150T-Corpus).

3.2 FS150T-Corpus
Due to its aforementioned advantages, we decide
to base our new dataset on the UKP Corpus. We
follow the exact guidelines and data crawling strat-
egy used for the UKP Corpus and crowdsource
21,600 samples over 150 controversial topics with
exactly 144 samples for each topic (see Appendix
A.1). The composition of our dataset is therefore
ideal for few-shot learning, as we have the same
number of samples for each topic to easily scale
up and down from 0 to 144. Moreover, we have
a large amount of topics to scale diversity up and
down. The topics are a collection of controversial
subjects from multiple domains like politics, tech-
nology, economy, and do not intersect with topics
from the UKP Corpus (see Appendix Table 8). We
randomly pick 10 of the topics for our development
set (1,440 samples) and 20 topics for our test set
(2,880) samples, leaving 120 topics for the training
set (17,280 samples).
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Datasets # Topics # Samples

Train Dev Test Total Classes

FS150T-Corpus (ours) 150 17,280 1,440 2,880 21,600 pro (19%), con (19%), none (62%)

UKP Corpus (Stab et al., 2018) 8 17,280 2,475 1,249 5,481 pro (19%), con (24%), none (56%)

IAM-Corpus (Cheng et al., 2022) 100 9,678 7,057 7,065 23,800 support (11%), contest (10%), no relation
(79%)

IBM-Corpus (Ein-Dor et al., 2020) 221 22,396 2,954 4,079 29,429 evidence (23%), no evidence (77%)

Table 1: Splits, classes, and class distributions for all used datasets.

Dataset Domain Topic Sentence Class

FS150T-Corpus Web Search electronic cigarettes Currently, there is no scientific evidence confirming that
electronic cigarettes help smokers quit smoking cigarettes. contra

renewable energy Installation is quick and homeowners can be enjoying solar
energy in a matter of days. pro

UKP Corpus Web Search nuclear energy It is pretty expensive to mine, refine and transport uranium. contra

gun control Gun control laws would reduce the societal costs associated
with gun violence. pro

IAM-Corpus Encyclopedia Should you restrict reality TV They involve extreme competition which drains children; it
takes away their innocence. contest

Should boxing be banned With a careful and thoughtful approach, boxing quite can be
beneficial to health. support

IBM-Corpus Encyclopedia We should ban organic food Like local food systems, organic food systems have been
criticized for being elitist and inaccessible. argument

Table 2: All datasets used in this work with the general domain the data origins from and data samples with topic,
sentence, and annotated labels (class).

3.3 IAM-Corpus (IAM-Corpus)
The IAM-Corpus is built upon the data from “Task
1: Claim Extraction” by Cheng et al. (2022). The
original data is based on 123 debating topics and
1,010 related articles from English Wikipedia. One
sample consists of a topic and a sentence from an
article. Each pair has one of three possible labels
attached: support, contest, or no relation. Due
to the massive imbalance of the none-arguments
in the original training split (93%), we have to
downsample them in a way that the model is able
to pick up the other two classes. We randomly
pick samples until we reach a class distribution
of 22%/18%/60% (support/contest/no relation) in
the training set. We leave the dev and test sets
untouched from the original, which also makes
this dataset the only in-topic dataset (as opposed
to cross-topic datasets which have no overlapping
topics between the dataset splits). The modified
training data set contains all 100 topics, the original
dev and test sets contain 62 topics and 63 topics.

3.4 IBM-Corpus (IBM-Corpus)
The IBM-Corpus is based on the publicly available
dataset constructed by the authors in Ein-Dor et al.
(2020). The dataset consists of almost 30,000 mo-
tion-sentence samples and each sample has a score
between 0 and 1 that either denotes a sentence to

be rather an evidence for the related motion or not.
Motions are described as high-level claims, e.g.
“Capitalism brings more harm than good”. The
sentences are extracted from English Wikipedia.
Following the authors’ experimental setup, we set
a threshold at 0.6 for the score to define two class
labels evidence and no evidence. We take 35 ran-
dom topics to form the test set, 20 random topics to
form the dev set, and 166 topics to form the train-
ing set. In contrast to all other datasets, this one
has only two class labels and the largest number of
topics (here: motions) and samples.

4 Method

To investigate the optimal composition of TDAM
datasets, we conduct sample, topic, and dataset
experiments, which we elaborate in the following.

4.1 Sample experiments
We investigate on how many training samples per
topic are necessary to reach acceptable and maxi-
mum performance. We start our experiments with
0 training samples per topic, i.e. untrained model
performance (zero-shot) and increase the number
of samples in small steps, ending with all samples
available for each topic. We define acceptable per-
formance by reaching at least 95% of the highest
performance on a test set, measured over all sample
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experiments for a given model. We define maxi-
mum performance for a model by the highest value
for the given metric on a test set, regardless of the
number of training samples used to reach it.

4.2 Topic experiments
We analyze how many topics are needed to gener-
alize well in cross-topic experiments by choosing
a set of training sample sizes (960; 1,440; 2,880;
5,760) and fixing them while increasing the top-
ics. The topics are increased in steps of 5 and end
with the maximum number of topics available for a
training set. Since fixing the number of topics and
sample sizes requires a certain amount of samples
available for each topic in the training set, experi-
ments with larger sample sizes may start at larger
topic sizes. For instance, fixing 10 topics and 960
samples only requires 96 samples per topic in the
training set, while fixing 10 topics and 5,760 sam-
ples already requires 576 samples per topic. The
more topics we include for a fixed sample size,
the less samples per topic are available. We aim to
find out whether or not using many topics (diversity
sampling) is beneficial for cross-topic performance.

4.3 Dataset experiments
We investigate if we can reach higher perfor-
mance by training on a dataset with few topics
but many samples per topic (UKP Corpus) or on a
dataset with many topics but few samples per topic
(FS150T-Corpus). For the benchmark experiments,
we leverage both supervised models and re-train
them in the following to setups:

• Training and tuning on the UKP Corpus and
show results on the test sets of both corpora.

• Training and tuning on the FS150T-Corpus
and show results on the test sets of both cor-
pora.

If either of the two variants performs better in both
experiments, we know the dataset composition that
should be preferred for the task of TDAM. In any
other case, our assumption that few samples com-
bined with many topics is the superior dataset com-
position (i.e. better cross-topic performance) on
TDAM datasets is refuted.

5 Models

We use four models: ERNIE 2.0 as a strong and fast
to train language model, FLAN-T5 XL as an LLM
option that was trained on massive amounts of data,
and two state-of-the-art chat models for zero-shot

in-context learning experiments. Details on fine-
tuning parameters are described in Appendix A.2.

5.1 ERNIE 2.0
As medium-sized model (110M parameters), we
use ERNIE 2.0 (Sun et al., 2020) which was pre-
trained in a continual multi-task learning fashion
on several word-, structure-, and semantic-aware
tasks (but not on TDAM tasks) and showed state-of-
the-art performance when fine-tuned on tasks of the
GLUE Benchmark (Wang et al., 2019b). The data
for the pre-training tasks was automatically gener-
ated with text extracted from encyclopedias, books,
dialog, and discourse relation datasets. As these
tasks have similar properties to TDAM, we expect
to benefit from the pre-training through a higher
maximum performance. Moreover, we anticipate
that the specific pre-training enables the model to
bootstrap performance on few-shot learning.

5.2 FLAN-T5 XL
We use FLAN-T5 XL (Chung et al., 2024) as a
large language model for our experiments. It is a
variant of the T5 model (Raffel et al., 2020) which
was fine-tuned on 1.8K instruction tasks. As this
model has an encoder-decoder structure, we re-
move the decoder and use a classification head for
our tasks, which leaves around 1.3B parameters.
Fine-tuning is done with LoRa (Hu et al., 2022) to
reduce training time.

5.3 LLama2-70B, ChatGPT
As strong, zero-shot baselines, we use Llama2-
70B (Touvron et al., 2023) and ChatGPT (OpenAI,
2023) in our experiments. The prompts used for
each dataset and the specific model versions can be
found in Appendix A.2.2.

6 Topic & Sample Experiments and
Evaluation

We run all experiments over six seeds and report
the average F1 macro on the test set for the three
seeds with the highest F1 macro measured on the
development set (see Appendix A.2).3

6.1 Sample Experiments
Figures 1-3 (see also Appendix C) show the per-
formance gains of all tested models with increas-
ing sample sizes per topic (samples uniformly dis-

3With low sample sizes, the models sometimes fail on
some of the seeds and distort the results.
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Figure 1: Sample experiments on the FS150T-Corpus

tributed over all training topics)4. As two strong
zero-shot baselines, we show results with Llama2-
70B and ChatGPT.

For all datasets, we observe that FLAN-T5 XL
struggles with small sample sizes, whereas ERNIE
2.0 shows good performance early on. ERNIE 2.0
reaches >0.60 F1 macro on the FS150T-Corpus
at 960 samples (FLAN-T5 XL: >2,800 samples),
>0.70 F1 macro on the IBM-Corpus at 960 sam-
ples (FLAN-T5 XL: 2,400 samples), and >0.50
F1 macro on the IAM-Corpus at 1,440 samples
(FLAN-T5 XL: 2,400 samples). However, when
looking at maximum performance, FLAN-T5 XL
eventually outperforms ERNIE 2.0 on all datasets
on up to 6pp (percentage points) in F1 macro.
Both models require all training data to reach their
maximum performance, except ERNIE 2.0 on the
FS150T-Corpus where it peaks at 69% of the train-
ing data and FLAN-T5 XL on the IBM-Corpus
where it still requires 90% of the training data.
Llama2-70B and ChatGPT outperform the other
models on all datasets on zero-shot experiments.
However, they both loose their advantage after 500-
2,000 training samples eventually, depending on
the dataset. Interestingly, on our FS150T-Corpus
that is especially designed for few-shot learning,
both zero-shot baselines are the most competitive
to our supervised learning models.

We also investigate how much data we really
need to reach acceptable performance, i.e., 95% of
the maximum performance of a model (see Table
3). For all three datasets, ERNIE 2.0 only needs a
maximum of 15% of the data to reach this perfor-
mance. For the FS150T-Corpus, it only needs 11%

4Increased step size of 2,880 for FLAN-T5 XL from 2,880
samples onwards.
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Dataset Model # Samples:
max performance

F1 macro
# Samples:
95% of max
performance

FS150T-
Corpus

FLAN-T5 XL 17,280
(100%) .7214 ± .0064 5,760 (33%)

ERNIE 2.0 12,000
(69%) .6617 ± .0048 1,920 (11%)

ChatGPT 0 .5700 -
Llama2-70B 0 .5608 -
Majority 0 .2451 -

IAM-
Corpus

FLAN-T5 XL 9,678
(100%) .5591 ± .0234 2,880 (30%)

ERNIE 2.0 6,720
(99%) .5213 ± .0070 1,440 (15%)

ChatGPT 0 .2890 -
Llama2-70B 0 .2920 -
Majority 0 .3204 -

IBM-
Corpus

FLAN-T5 XL 20160
(90%) .8210 ± .0043 5760 (26%)

ERNIE 2.0 22,396
(100%) .7937 ± .0015 3,360 (15%)

ChatGPT 0 .6150 -
Llama2-70B 0 .6210 -
Majority 0 .4481 -

Table 3: Sample experiment results with training sam-
ples required for highest performance, highest perfor-
mance in F1 macro, and number of training samples
required to reach 95% of the highest performance.
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Figure 4: Topic experiments for FS150T-/IAM- and IBM-Corpus on ERNIE 2.0 and FLAN-T5 XL and in F1 macro.

(with as few as 16 samples per topic). Hence, when
using ERNIE 2.0, we can almost drop 90% of the
data (if the dataset has a composition as proposed
in this work). For FLAN-T5 XL, which has diffi-
culties with smaller sample sizes on the datasets, it
still only needs 26-33% to reach 95% of its max-
imum performance on the datasets, which could
also reduce the necessary data size by almost 70%.

6.2 Topic Experiments
For the experiments, we fine-tune ERNIE 2.0 and
FLAN-T5 XL on four different training sample
sizes from 960 to 5,760. Topics and samples for
each run are picked randomly.

We have a deeper look into how model perfor-
mance changes for all datasets if the number of
topics is increased while the training sample size is
fixed (see Figure 4 and Appendix C). By increasing
the number of topics, we also increase the diversity
of the training set through adding outliers, instead
of just picking more samples with similar content
from the existing topics.

Similar to the increased robustness observed by
Larson et al. (2019), ERNIE 2.0 shows an upward
trend (dashed lines) for all datasets and sample
sizes. For the FS150T-Corpus, we observe an up-
ward trend with up to to 1.1pp on 960 samples, de-
creasing when more training samples are used. The
largest upward trend for IAM-Corpus is reached on
5.760 samples (2.2pp) and for the IBM-Corpus, the
largest upward trend is reached on 1,440 samples

(1.9pp). Hence, ERNIE 2.0 is able to leverage di-
verse topic distribution in all tested scenarios. For
the much larger FLAN-T5 XL, the impact of topic
diversity is mixed. For experiments with 1,440 and
less samples, we observe either no clear trend or
even a negative trend (also slightly for 2,880 sam-
ples on the FS150T-Corpus). Using more samples,
we observe a more positive trend. We assume these
mixed results are due to two reasons: First, FLAN-
T5 XL has seen much larger quantities of data ini-
tially in its pre-training as compared to ERNIE 2.0,
which makes it harder to add even more diverse
training data. Second, the large model size leads to
unstable results with low sample sizes—we observe
this for the IBM-Corpus in the topic experiments
and, generally, in the sample experiments (see Fig-
ures 1-3). Hence, we conclude that the significance
of the experiments with FLAN-T5 XL on smaller
sample sizes is low.

7 Cross-Dataset Experiments and
Evaluation on Benchmark Dataset

We tune two models based on ERNIE 2.0 and
FLAN-T5 XL: one model trained and tuned on the
FS150T-Corpus and one model trained and tuned
on the UKP Corpus. We show evaluation results
for both models on both corpora in Table 4.

Our baseline setting is when training, tuning,
and testing happens on the same dataset. For that
setup, FLAN-T5 XL shows .7532 and .7343 F1
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Test on
UKP Corpus

Test on
FS150T-Corpus

Test topics: MW SU all all
TACAM-

BERT Base*
Train & tune on
UKP Corpus

.4900 .6900 - -

TACAM-
BERT Large*

Train & tune on
UKP Corpus

.6900 .6900 - -

ERNIE
2.0

Train & tune on
UKP Corpus

.6777
± .0118

.7149
± .0093

.6980
± .0085

.6292
± .0072

Train & tune on
FS150T-Corpus

.7058
± .0046

.7406
± .0029

.7243
± .0048

.6585
± .0036

FLAN-T5
XL

Train & tune on
UKP Corpus

.7333
± .0095

.7881
± .0114

.7532
± .0132

.6917
± .0132

Train & tune on
FS150T-Corpus

.7574
± .0055

.8270
± .0023

.7944
± .0021

.7343
± .0037

Table 4: Dataset experiment results with ERNIE 2.0 and
FLAN-T5 XL, comparing results on the FS150T-Corpus
and UKP Corpus. As a baseline for the UKP Corpus,
we use TACAM-BERT (*work by Fromm et al. (2019)).
MW=Minimum Wage, SU=School uniforms.

macro for the UKP Corpus and the FS150T-Corpus,
respectively. Training and tuning FLAN-T5 XL
on the UKP Corpus and then evaluating it on the
FS150T-Corpus shows worse performance (.6917
F1 macro) than training and tuning a model on the
actual FS150T-Corpus, which is the expected out-
come. However, training and tuning FLAN-T5 XL
on the FS150T-Corpus shows the best results on
the UKP Corpus test set (.7944 F1 macro). The
same observation is made with ERNIE 2.0, just
with lower overall F1 macro scores. Hence, using
the FS150T-Corpus for training performs best on
the test sets of both corpora. We assume that train-
ing on just a few topics and fitting the model with
a large number of training samples to those topics
will not prepare it enough to generalize well — not
even for a massively pre-trained model like FLAN-
T5 XL. Training on many diverse topics, however,
will add generalizability to the model and reduce
the risk to over-fit to a small range of specific top-
ics, that is, it will also learn that topics can come
from a much larger variety within the embedding
space.

We also compare the models’ performances to
the current state-of-the-art (for which topic-wise
results are available) on the UKP Corpus. TACAM-
BERT Base (Fromm et al., 2019), with a number
of parameters comparable to ERNIE 2.0, performs
21.6pp and 5.1pp lower in F1 macro for the test
topics minimum wage and school uniforms. The
much larger TACAM-BERT Large (three times the
number of parameters) still underperforms ERNIE
2.0 by 1.6pp and 5.1pp.

8 Conclusion

We create a new dataset that enables to benchmark
the composition of TDAM datasets. Experiments
show that having many topics in combination with
few samples per topic can improve model perfor-
mance by 4.1pp in cross-dataset experiments and
also reaches a new state-of-the-art on the UKP Cor-
pus (see Section 7).

Recommendations for dataset composition:
Overall, we observe a positive trend in perfor-
mance when the number of training topics is in-
creased and a medium-sized LM is used (ERNIE
2.0), but mixed results with an LLM (FLAN-T5
XL), which we attribute to the extensive and diverse
pre-training and generally more unstable results on
smaller sample sizes (see Section 6.2). While the
topic experiments do not show a drastic increase
of accuracy, it can be an easy way to improve the
performance and usually comes without additional
costs. Hence, if there is a sample limit for a planned
dataset, we can increase a medium-sized model’s
performance by composing the dataset with more
topics. As we tested up to 160 topics on all datasets,
we assume this to be a good choice for training data
sizes ranging from ~1,000-6,000 samples but can
become less relevant if a large model like FLAN-
T5 XL is used. However, in many scenarios where
inference speed and operating costs are decisive, a
smaller model like ERNIE 2.0 with carefully sam-
pled training data might be the preferred choice.5

When choosing our proposed dataset composi-
tion (FS150T-Corpus) in combination with ERNIE
2.0 (pre-trained on several word-, structure-, and
semantic-aware tasks), we can reduce the training
sample size by almost 90% (to 1,920 samples), still
reach 95% of the maximum performance and, in
turn, decrease the annotation costs of the train set
by $2,323 to only $290 (see Appendix A.1) for a
dataset created in the composition proposed in this
work (see Section 6.1). Although showing diffi-
culties on small samples sizes, we can still reduce
the sample size by 67% with FLAN-T5 XL. We
observe the same trend on the other two datasets:
on the IBM-Corpus, 15% of the training data with
ERNIE 2.0 and 26% with FLAN-T5 XL are suffi-
cient to reach 95% of the maximum performance;
on the IAM-Corpus, 15% with ERNIE 2.0 and

5In comparison on an NVIDIA A10, FLAN-T5 XL can
predict 34 samples per second with a batch size of 1 and takes
5,638MB of GPU memory, whereas ERNIE 2.0 can predict
111 samples per second and only takes 860MB.
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30% with FLAN-T5 XL are sufficient. This clearly
challenges the trend to develop larger datasets for
TDAM. Following our proposed dataset composi-
tion makes low-budget productions of high-quality
TDAM datasets possible, contributing to a more
diverse landscape of those datasets.

Generalization to other tasks: While we test
our approach on TDAM only, work on related tasks
also shows performance improvements when focus-
ing on dataset diversity. For instance, Arakelyan
et al. (2023) show that higher performance can be
reached if subsets of stance detection datasets are
sampled for diversity with an unsupervised topic
model and used for training. Sultan et al. (2020)
use a transformer-based question generator and con-
clude that more diverse questions lead to a higher
performance on downstream Question-Answering
tasks. Yadav et al. (2024) also show improvements
for Question-Answering by generating question-
answer pairs with a focus on diversity conditions
like spacial aspects, question types and entities.
Similar to our findings, they also show that perfor-
mance gains are highest in low-resource scenarios.
Hence, we speculate that a well-architected dataset
composition, based on diversity, can also lead to
a high performance on Question-Answering and
pure Stance Detection datasets.

We publish our newly created dataset1 and code2,
allowing for further benchmarking experiments to
develop the design of future TDAM datasets.

Limitations

Our experiments focus on datasets for TDAM only.
While we would expect other tasks with datasets of
similar composition (for instance, Stance Detection
or Question-Answering, as discussed in Section
8) to also profit from our findings, we have not
tested this and can only make claims based on our
experiments for TDAM.

Our sample experiments only cover sample sizes
from 0 to 22,396 training samples and a step size
of 480-2,880 samples, depending on the model.
Hence, we can not rule out the possibility of higher
F1 macro or other derivations from the observable
trend with more than 22,396 training samples, nor
can we rule out the possibility that we have missed
a certain dip or peak due to our chosen step size.
Similarly for our topic experiments—while there
is a trend to higher performance with more topics,
it is unclear how this trend develops with more
than 160 topics (for instance, if the model shows

a saturation with regard to topics or if more topics
would even have a negative impact).

Lastly, when comparing the maximum perfor-
mance of our medium sized model choice with
our LLM choice, there is an obvious gap in per-
formance to observe. There is, however, a clear
downside of using LLMs when it comes to opera-
tion cost and speed (see Section 8), which can be a
crucial factor in many scenarios.
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A Reproducibility Criteria

A.1 Dataset
The new dataset FS150T-Corpus consists of 21,600
samples over 150 controversial topics with 144
samples each. We index the CommonCrawl6 dump
CC-MAIN-2016-07 via ElasticSearch7 and use all
150 controversial topics to search and extract texts
for the crowdsourcing process. To split the texts
into sentences, we use NLTK 3.7 (Bird et al., 2009).
The topics for the dataset are a collection of con-
troversially discussed subjects from the domains
of, amongst others, politics, technology, and econ-
omy. They were gathered manually from twitter
and reddit trends, as well as various discussion
forums. See Table 7 for a list of all topics in al-
phabetical order, including the semantically closest
topic for each given in cosine similarity. We com-
pute the similarity of two topics by averaging the
pairwise cosine similarity of all sentences for two

6https://commoncrawl.org
7https://www.elastic.co

topics. The embeddings were generated by using
the sentence-transformer library8 (version 2.2.2)
(Reimers and Gurevych, 2019). As the highest co-
sine similarity between two topics is only 0.25, this
indicates low overlapping in general.

We split the dataset into a train, development,
and test set. There is no overlap between topics
of the sets or with topics of the UKP Corpus (see
Table 8). The dataset language is English and the
annotation guidelines for the crowdsourcing pro-
cess are taken from Stab et al. (2018). See Tables
1 and 2 for more statistics and examples about the
dataset.

The crowdsourcing costs on Amazon Mechani-
cal Turk9 amount to a total of $3,266. The study
was open to all people located in the US and we
paid well above the US federal minimum wage of
$7.25/hour. Each sample was annotated by seven
independent, anonymous annotators. We asked the
annotators to label each sample they were presented
with (consisting of the guidelines, a topic, and a
respective sentence) into categories pro, contra, or
none. We design our guidelines based on Stab et al.
(2018), i.e. a sentence is only to be labeled as pro
or contra argument, if it holds evidence for why
the sentence supports or opposes the topic. If the
sentence holds no such evidence or is unrelated to
the topic, it is labeled as no argument (none). To
generate gold labels, we apply the MACE denois-
ing tool (Hovy et al., 2013) with a threshold of 0.9
as done in (Stab et al., 2018). Finally, two experts
were asked to annotate 100 randomly picked sam-
ples from the dataset. We create gold labels in the
same way as for the crowdworker annotations. The
Cohen’s κ between expert and crowdworkers is
.52, which can be interpreted as “moderate” agree-
ment (Landis and Koch, 1977) and reasonable for
the complexity of the task and the large amount of
different and difficult to understand topics.

A.2 Models
A.2.1 ERNIE 2.0, FLAN-T5 XL
We tune both models on the full training sets with
all combinations of four different learning rates
(1 ∗ 10−4, 1 ∗ 10−5, 3 ∗ 10−5, 5 ∗ 10−5) and three
batch sizes (4, 8, 16). All models are trained over
5 epochs and we use the best model (always deter-
mined on the development set by highest F1 macro)

8https://github.com/UKPLab/
sentence-transformers

9https://www.mturk.com/
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ERNIE 2.0 FLAN-T5 XL
Learning Rate Batch Size Learning Rate Batch Size

FS150T-Corpus 1 ∗ 10−5 4 1 ∗ 10−4 4
IAM-Corpus 1 ∗ 10−5 16 1 ∗ 10−4 4
IBM-Corpus 1 ∗ 10−5 8 1 ∗ 10−4 16

Table 5: Best hyperparameters for ERNIE 2.0 and
FLAN-T5 XL on all datasets.

to fix the hyperparameters for the actual experi-
ments. Due to unstable performance on low sam-
ple sizes, we decide to always train on 6 different
seeds (for tuning and actual experiments), but only
leverage the averaged results on the best 3 of them.
To better understand the reasoning behind this ap-
proach, we show the difference of using the best
3 seeds or all 6 seeds on the topic experiments for
the FS150T-Corpus with ERNIE 2.0 (see Figure
6). As can be seen, using 6 seeds shows an overall
higher standard deviation and lower performance,
especially for lower sample sizes. The final hy-
perparameters found for each dataset and model
are listed in Table 5. Training ERNIE 2.0 (110M
parameters) takes approx. 25 minutes on a single
NVIDIA P-100 (one seed) with the full training
set of the FS150T-Corpus and approx. 45 minutes
for our FLAN-T5 XL encoder (1.3B parameters)
on a single NVIDIA A10 with LoRa rank 16. We
use PyTorch 2.1.0 (Paszke et al., 2019) and trans-
formers 4.37.1 (Wolf et al., 2020) to run the models
and scikit-learn 0.23.2 (Pedregosa et al., 2011) to
compute the metrics.

A.2.2 Llama2-70B-Chat, ChatGPT
We use Llama2-70B-Chat (Touvron et al., 2023)
in a 4bit quantized version10 that we run on four
NVIDIA A6000 with vLLM (Kwon et al., 2023)
and ChatGPT (gpt-3.5-turbo, September 25 Ver-
sion) (OpenAI, 2023) via the OpenAI API11. We
defined prompts that closely resemble the defini-
tions for the respective dataset (for FS150T-Corpus,
the definition from Stab et al. (2018) is used) and
list all of them in Table 6.

B Dataset Licenses

We provide a list of all used datasets with their
licenses:

• FS150T-Corpus (ours): Only annotations are
10https://huggingface.co/TheBloke/

Llama-2-70B-chat-AWQ/commit/
ad4d622cb488138748dd28a0ca95c2b34dbe3964

11https://platform.openai.com/docs/
api-reference

included and licensed under CC-BY-SA 4.0.
The annotated texts have to be extracted via
script2 from CommonCrawl (see also A.1) or
requested1.

• IAM-Corpus (Cheng et al., 2022): The au-
thors do not provide a license. The data is
extracted from English Wikipedia.

• UKP Corpus (Stab et al., 2018): Licensed
under CC-BY-NC.

• IBM-Corpus (Ein-Dor et al., 2020): Licensed
under CC-BY-SA 3.0.

C Additional Figures

This sections holds figures that include information
about the standard deviation of sample (see Figures
5) and topic experiments (see Figures 7) that is left
out in the main paper for better readability (see
Sections 6.1 and 6.2).
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Figure 5: Sample experiments for FS150T-/IAM- and IBM-Corpus on ERNIE 2.0, FLAN-T5 XL, Llama2-70B, and
ChatGPT in F1 macro and with standard deviation.
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Figure 6: Same topic experiments with ERNIE 2.0 on FS150T-Corpus, but taking only the best 3 seeds on the
development set (left figure) or taking all 6 seeds (right side) into account. Using 6 seeds shows higher standard
deviation and lower performance, especially for smaller sample sizes.
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Figure 7: Topic experiments for FS150T-/IAM- and IBM-Corpus on ERNIE 2.0 and FLAN-T5 XL in F1 macro and
with standard deviation.
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Dataset Prompt 1 Prompt 2 Prompt 3

FS150T-Corpus

Decide if the below sentence is an argument
with regard to the given topic. We define an

argument as a span of text expressing
evidence or reasoning that can be used to
either support or oppose a given topic. An

argument need not be “direct” or
self-contained—it may pre-suppose some

common or domain knowledge, or the
application of commonsense reasoning—but
it must be unambiguous in its orientation to

the topic. If it is no argument, label it
neutral. If it is an argument, decide whether
it is in favor or against the topic and label it

with favor or against. Only answer with
neutral, favor, or against. Sentence: [A
sentence from the test set] Topic: [A

respective topic from the test set] Label:

Decide if the below sentence is a pro
argument (label it “pro") or a contra

argument (label it “contra") regarding the
given topic. If it is no argument regarding
topic or no argument at all, label it "none":

Sentence: [A sentence from the test set]
Topic: [A respective topic from the test set]

Label:

Label the sentence “[A sentence from the
test set]” with “pro” if it is an argument

regarding topic “[A respective topic from
the test set]” or “contra” if it is an argument

against the topic. Label it “none” if the
sentence is no argument regarding the topic

or no argument at all. Label:

IAM-Corpus

What is the stance of the following sentence
regarding the given topic? Only answer with

one word; “other” if it is not a claim or
unrelated to the topic, “support” only if it is
a claim that supports the topic, or “contest”
only if it is a claim that contests the topic.
Sentence: [A sentence from the test set]

Topic: [A respective topic from the test set]
Label:

Decide the stance of the sentence below
regarding the given topic. Unrelated

sentences or non-claims are labelled with
“none”, supporting or contesting claims are

labelled with “support” or “contest”.
Sentence: [A sentence from the test set]

Topic: [A respective topic from the test set]
Label:

Label the sentence “[A sentence from the
test set]” with “support” if it is a claim that
supports topic “[A respective topic from the

test set]” or with “contest” if it is a claim
that contests the topic. Label it "none" if the
sentence is no claim regarding the topic or

unrelated to it. Label:

IBM-Corpus

Decide if the following sentence is a valid
evidence with regard to the given claim. We

define evidence as a sentence that clearly
supports or contests the claim and is not

merely a belief or a claim itself. Rather, an
evidence provides an indication whether a
claim is true. Only answer with one word;
“valid” if the sentence is an evidence with

regard to the claim, otherwise return
“invalid”. Sentence: [A sentence from the

test set] Claim: [A respective claim from the
test set] Label:

Decide if the below sentence is a valid
evidence regarding the given claim (label it
“yes”) or not (label it “no”): Sentence: [A

sentence from the test set] Claim: [A
respective claim from the test set] Label:

Label the sentence “[A sentence from the
test set]” with "valid" if it is a valid evidence
for the claim “[A respective claim from the

test set]” or "invalid" if not. Label:

Table 6: All prompts used for experiments with LLama2-70B and ChatGPT on FS150T-Corpus (best: Prompt 2),
IAM-Corpus (best: Prompt 2), and IBM-Corpus (best: Prompt 1).

10885



To
pi

c
M

os
ts

im
ila

rt
op

ic
C

os
in

e
si

m
.

To
pi

c
M

os
ts

im
ila

rt
op

ic
C

os
in

e
si

m
.

To
pi

c
M

os
ts

im
ila

rt
op

ic
C

os
in

e
si

m
.

3d
pr

in
te

r
ho

lo
gr

ap
hy

0.
11

fo
re

ig
n

ai
d

us
in

te
rv

en
tio

n
0.

17
pr

es
cr

ip
tio

n
dr

ug
ad

s
bi

g
ph

ar
m

a
0.

19
al

co
ho

la
dv

er
tis

in
g

lo
w

er
dr

in
ki

ng
ag

e
0.

22
fr

ac
ki

ng
of

fs
ho

re
dr

ill
in

g
0.

21
pr

og
re

ss
iv

e
ta

x
fa

rm
su

bs
id

ie
s

0.
18

al
te

rn
at

iv
e

m
ed

ic
in

e
bi

g
ph

ar
m

a
0.

17
fr

ee
m

ar
ke

t
pr

og
re

ss
iv

e
ta

x
0.

16
ra

ci
al

pr
ofi

lin
g

re
ve

rs
e

di
sc

ri
m

in
at

io
n

0.
18

am
az

on
eb

oo
ks

0.
13

fr
ee

do
m

of
sp

ee
ch

us
a

pa
tr

io
ta

ct
0.

15
re

lig
io

us
ho

lid
ay

s
at

he
is

m
0.

12
an

ar
ch

is
m

is
ol

at
io

ni
sm

0.
16

fu
el

ta
x

pr
og

re
ss

iv
e

ta
x

0.
17

re
ne

w
ab

le
en

er
gy

w
in

d
en

er
gy

0.
20

an
im

al
di

ss
ec

tio
n

an
im

al
te

st
in

g
0.

20
ga

m
bl

in
g

le
ga

liz
ed

pr
os

tit
ut

io
n

0.
14

re
pa

ra
tio

ns
fo

rs
la

ve
ry

w
hi

te
su

pr
em

ac
y

0.
20

an
im

al
te

st
in

g
an

im
al

di
ss

ec
tio

n
0.

20
ga

y
m

ar
ri

ag
e

ga
y

ri
gh

ts
0.

23
re

ve
rs

e
di

sc
ri

m
in

at
io

n
w

hi
te

su
pr

em
ac

y
0.

19
an

tib
io

tic
us

ag
e

al
te

rn
at

iv
e

m
ed

ic
in

e
0.

16
ga

y
ri

gh
ts

ga
y

m
ar

ri
ag

e
0.

23
ri

gh
tt

o
he

al
th

ca
re

ob
am

ac
ar

e
0.

21
ar

tifi
ci

al
in

te
lli

ge
nc

e
au

to
no

m
ou

s
ca

rs
0.

12
ge

ot
he

rm
al

en
er

gy
hy

dr
oe

le
ct

ri
ci

ty
0.

19
ro

bo
ts

au
to

no
m

ou
s

ca
rs

0.
12

as
si

st
ed

su
ic

id
e

le
th

al
in

je
ct

io
n

0.
22

gl
ob

al
w

ar
m

in
g

m
an

-m
ad

e
gr

ee
nh

ou
se

ga
se

s
0.

21
sa

nc
tu

ar
y

ci
tie

s
ill

eg
al

im
m

ig
ra

tio
n

0.
20

at
he

is
m

ex
is

te
nc

e
of

go
d

0.
21

gl
yp

ho
sa

te
gm

os
0.

18
sc

ho
ol

vo
uc

he
rs

ch
ar

te
rs

ch
oo

ls
0.

24
au

to
no

m
ou

s
ca

rs
lo

w
er

sp
ee

d
lim

it
0.

19
gm

os
bi

of
ue

ls
0.

18
se

x
ed

uc
at

io
n

in
sc

ho
ol

bi
rt

h
co

nt
ro

l
0.

19
be

au
ty

co
nt

es
t

fe
m

in
is

m
0.

14
go

ve
rn

m
en

ts
ur

ve
ill

an
ce

us
a

pa
tr

io
ta

ct
0.

20
se

x
of

fe
nd

er
re

gi
st

ry
m

an
da

to
ry

se
nt

en
ci

ng
0.

18
bi

g
ph

ar
m

a
pr

es
cr

ip
tio

n
dr

ug
ad

s
0.

19
gu

an
ta

na
m

o
ba

y
de

te
nt

io
n

ca
m

p
dr

on
e

st
ri

ke
s

0.
15

sm
ar

th
om

e
sm

ar
tw

at
ch

0.
12

bi
lin

gu
al

ed
uc

at
io

n
st

an
da

rd
iz

ed
te

st
in

g
0.

17
ho

lo
gr

ap
hy

3d
pr

in
te

r
0.

11
sm

ar
tw

at
ch

am
az

on
0.

12
bi

of
ue

ls
of

fs
ho

re
dr

ill
in

g
0.

19
ho

m
es

ch
oo

lin
g

ch
ar

te
rs

ch
oo

ls
0.

18
so

ci
al

m
ed

ia
ne

tn
eu

tr
al

ity
0.

13
bi

rt
h

co
nt

ro
l

se
x

ed
uc

at
io

n
in

sc
ho

ol
0.

19
ho

m
ew

or
k

ho
m

es
ch

oo
lin

g
0.

17
so

la
re

ne
rg

y
re

ne
w

ab
le

en
er

gy
0.

19
bo

ar
di

ng
sc

ho
ol

ch
ar

te
rs

ch
oo

ls
0.

17
hy

dr
oe

le
ct

ri
ci

ty
re

ne
w

ab
le

en
er

gy
0.

20
sp

an
ki

ng
co

rp
or

al
pu

ni
sh

m
en

t
0.

18
bo

rd
er

se
cu

ri
ty

ill
eg

al
im

m
ig

ra
tio

n
0.

21
ill

eg
al

im
m

ig
ra

tio
n

bo
rd

er
se

cu
ri

ty
0.

21
sp

er
m

do
no

r
su

rr
og

ac
y

0.
20

br
ex

it
fo

re
ig

n
ai

d
0.

14
in

sa
ni

ty
de

fe
ns

e
m

an
da

to
ry

se
nt

en
ci

ng
0.

20
st

an
da

rd
iz

ed
te

st
in

g
te

ac
he

rt
en

ur
e

0.
18

bu
llfi

gh
tin

g
fa

ct
or

y
fa

rm
in

g
0.

13
in

si
de

rt
ra

di
ng

la
bo

ru
ni

on
s

0.
13

st
em

ce
ll

re
se

ar
ch

or
ga

n
do

na
tio

n
0.

18
ce

ll
ph

on
e

ra
di

at
io

n
st

em
ce

ll
re

se
ar

ch
0.

13
is

ol
at

io
ni

sm
nu

cl
ea

rd
is

ar
m

am
en

t
0.

19
su

rr
og

ac
y

sp
er

m
do

no
r

0.
20

ce
ns

or
sh

ip
ne

tn
eu

tr
al

ity
0.

16
ju

ry
du

ty
m

an
da

to
ry

se
nt

en
ci

ng
0.

17
su

v
au

to
no

m
ou

s
ca

rs
0.

16
ch

ar
te

rs
ch

oo
ls

sc
ho

ol
vo

uc
he

rs
0.

24
la

bo
ru

ni
on

s
un

em
pl

oy
m

en
ti

ns
ur

an
ce

0.
18

te
ac

he
rt

en
ur

e
ch

ar
te

rs
ch

oo
ls

0.
22

ch
ee

rl
ea

di
ng

be
au

ty
co

nt
es

t
0.

11
le

ga
liz

ed
pr

os
tit

ut
io

n
m

on
og

am
y

0.
18

te
rm

lim
it

el
ec

to
ra

lc
ol

le
ge

0.
18

cl
er

ic
al

ce
lib

ac
y

m
on

og
am

y
0.

18
le

th
al

in
je

ct
io

n
as

si
st

ed
su

ic
id

e
0.

22
to

ba
cc

o
ad

ve
rt

is
in

g
el

ec
tr

on
ic

ci
ga

re
tte

s
0.

20
co

al
m

in
in

g
fr

ac
ki

ng
0.

15
lib

er
ta

ri
an

is
m

ri
gh

tt
o

he
al

th
ca

re
0.

16
tr

an
sg

en
de

rr
ig

ht
s

ga
y

ri
gh

ts
0.

20
co

m
m

un
ity

se
rv

ic
e

sc
ho

ol
vo

uc
he

rs
0.

12
lif

e
ex

te
ns

io
n

st
em

ce
ll

re
se

ar
ch

0.
14

tw
o-

st
at

e
so

lu
tio

n
nu

cl
ea

rd
is

ar
m

am
en

t
0.

18
co

m
pu

ls
or

y
vo

tin
g

el
ec

to
ra

lc
ol

le
ge

0.
25

lo
bb

yi
ng

tw
o-

st
at

e
so

lu
tio

n
0.

14
un

em
pl

oy
m

en
ti

ns
ur

an
ce

la
bo

ru
ni

on
s

0.
18

co
nc

ea
le

d
ha

nd
gu

ns
m

an
da

to
ry

se
nt

en
ci

ng
0.

15
lo

tte
ry

cr
ow

df
un

di
ng

0.
13

ur
ba

n
ag

ri
cu

ltu
re

fa
rm

su
bs

id
ie

s
0.

17
co

rp
or

al
pu

ni
sh

m
en

t
m

an
da

to
ry

se
nt

en
ci

ng
0.

19
lo

w
er

dr
in

ki
ng

ag
e

al
co

ho
la

dv
er

tis
in

g
0.

22
ur

ba
ni

za
tio

n
ur

ba
n

ag
ri

cu
ltu

re
0.

12
cr

ow
df

un
di

ng
fa

rm
su

bs
id

ie
s

0.
13

lo
w

er
sp

ee
d

lim
it

au
to

no
m

ou
s

ca
rs

0.
19

us
in

te
rv

en
tio

n
w

ar
on

te
rr

or
is

m
0.

19
cu

ltu
re

d
m

ea
t

fa
ct

or
y

fa
rm

in
g

0.
20

m
an

-m
ad

e
gr

ee
nh

ou
se

ga
se

s
gl

ob
al

w
ar

m
in

g
0.

21
us

a
pa

tr
io

ta
ct

go
ve

rn
m

en
ts

ur
ve

ill
an

ce
0.

20
da

yc
ar

e
ho

m
es

ch
oo

lin
g

0.
14

m
an

da
to

ry
na

tio
na

ls
er

vi
ce

ri
gh

tt
o

he
al

th
ca

re
0.

15
va

cc
in

at
io

n
an

im
al

te
st

in
g

0.
15

da
yl

ig
ht

sa
vi

ng
tim

e
so

la
re

ne
rg

y
0.

11
m

an
da

to
ry

se
nt

en
ci

ng
in

sa
ni

ty
de

fe
ns

e
0.

20
ve

ge
ta

ri
an

is
m

cu
ltu

re
d

m
ea

t
0.

20
di

re
ct

de
m

oc
ra

cy
co

m
pu

ls
or

y
vo

tin
g

0.
22

m
on

ar
ch

y
di

re
ct

de
m

oc
ra

cy
0.

16
vi

de
o

ga
m

es
an

d
vi

ol
en

ce
co

rp
or

al
pu

ni
sh

m
en

t
0.

14
dr

on
e

st
ri

ke
s

w
ar

on
te

rr
or

is
m

0.
20

m
on

og
am

y
ga

y
m

ar
ri

ag
e

0.
23

vi
rt

ua
lr

ea
lit

y
ar

tifi
ci

al
in

te
lli

ge
nc

e
0.

11
eb

oo
ks

am
az

on
0.

13
m

ul
tic

ul
tu

ra
lis

m
w

hi
te

su
pr

em
ac

y
0.

17
vo

tin
g

m
ac

hi
ne

s
co

m
pu

ls
or

y
vo

tin
g

0.
24

ec
ot

ou
ri

sm
ur

ba
n

ag
ri

cu
ltu

re
0.

16
ne

tn
eu

tr
al

ity
ce

ns
or

sh
ip

0.
16

w
ar

on
dr

ug
s

le
ga

liz
ed

pr
os

tit
ut

io
n

0.
17

el
ec

to
ra

lc
ol

le
ge

co
m

pu
ls

or
y

vo
tin

g
0.

25
nu

cl
ea

rd
is

ar
m

am
en

t
is

ol
at

io
ni

sm
0.

19
w

ar
on

ob
es

ity
ri

gh
tt

o
he

al
th

ca
re

0.
14

el
ec

tr
on

ic
ci

ga
re

tte
s

to
ba

cc
o

ad
ve

rt
is

in
g

0.
20

ob
am

ac
ar

e
ri

gh
tt

o
he

al
th

ca
re

0.
21

w
ar

on
te

rr
or

is
m

dr
on

e
st

ri
ke

s
0.

20
ex

ec
ut

iv
e

or
de

r
ob

am
ac

ar
e

0.
18

oc
cu

py
w

al
ls

tr
ee

t
w

hi
te

su
pr

em
ac

y
0.

14
w

at
er

pr
iv

at
iz

at
io

n
fr

ac
ki

ng
0.

15
ex

is
te

nc
e

of
go

d
at

he
is

m
0.

21
of

fs
ho

re
dr

ill
in

g
fr

ac
ki

ng
0.

21
w

ea
th

er
m

od
ifi

ca
tio

n
m

an
-m

ad
e

gr
ee

nh
ou

se
ga

se
s

0.
16

ex
tr

at
er

re
st

ri
al

lif
e

ex
is

te
nc

e
of

go
d

0.
14

on
lin

e
da

tin
g

se
rv

ic
e

m
on

og
am

y
0.

10
w

ha
lin

g
cu

ltu
re

d
m

ea
t

0.
16

ex
tr

em
e

sp
or

t
au

to
no

m
ou

s
ca

rs
0.

09
or

ga
n

do
na

tio
n

as
si

st
ed

su
ic

id
e

0.
19

w
hi

te
su

pr
em

ac
y

re
pa

ra
tio

ns
fo

rs
la

ve
ry

0.
20

fa
ct

or
y

fa
rm

in
g

cu
ltu

re
d

m
ea

t
0.

20
or

ga
ni

c
fo

od
ve

ge
ta

ri
an

is
m

0.
19

w
ik

ile
ak

s
go

ve
rn

m
en

ts
ur

ve
ill

an
ce

0.
17

fa
rm

su
bs

id
ie

s
pr

og
re

ss
iv

e
ta

x
0.

18
ou

ts
ou

rc
in

g
cr

ow
df

un
di

ng
0.

13
w

in
d

en
er

gy
re

ne
w

ab
le

en
er

gy
0.

20
fa

st
fo

od
ve

ge
ta

ri
an

is
m

0.
17

pe
de

le
c

au
to

no
m

ou
s

ca
rs

0.
14

w
ir

et
ap

pi
ng

go
ve

rn
m

en
ts

ur
ve

ill
an

ce
0.

16
fe

lo
n

vo
tin

g
co

m
pu

ls
or

y
vo

tin
g

0.
23

pl
as

tic
su

rg
er

y
al

te
rn

at
iv

e
m

ed
ic

in
e

0.
13

w
om

en
in

th
e

m
ili

ta
ry

fe
m

in
is

m
0.

18
fe

m
in

is
m

m
on

og
am

y
0.

19
po

lic
e

bo
dy

ca
m

er
as

go
ve

rn
m

en
ts

ur
ve

ill
an

ce
0.

15
ye

ar
-r

ou
nd

sc
ho

ol
ch

ar
te

rs
ch

oo
ls

0.
20

Ta
bl

e
7:

L
is

to
f

al
l1

50
to

pi
cs

fo
r

th
e

FS
15

0T
-C

or
pu

s,
in

cl
ud

in
g

th
ei

r
se

m
an

tic
al

ly
cl

os
es

tt
op

ic
co

m
pu

te
d

vi
a

em
be

dd
in

gs
w

ith
m

od
el

“a
ll-

M
in

iL
M

-L
6-

v2
”

(R
ei

m
er

s
an

d
G

ur
ev

yc
h,

20
19

).
H

ig
he

st
co

si
ne

si
m

ila
ri

ty
co

m
pu

te
d:

0.
25

.

10886



To
pi

c
(F

S1
50

T-
C

or
pu

s)
M

os
ts

im
ila

rt
op

ic
(U

K
P

C
or

pu
s)

C
os

in
e

si
m

.
To

pi
c

(F
S1

50
T-

C
or

pu
s)

M
os

ts
im

ila
rt

op
ic

(U
K

P
C

or
pu

s)
C

os
in

e
si

m
.

To
pi

c
(F

S1
50

T-
C

or
pu

s)
M

os
ts

im
ila

rt
op

ic
(U

K
P

C
or

pu
s)

C
os

in
e

si
m

.

3d
pr

in
te

r
m

in
im

um
w

ag
e

0.
07

fa
st

fo
od

m
in

im
um

w
ag

e
0.

08
on

lin
e

da
tin

g
se

rv
ic

e
m

ar
iju

an
a

le
ga

liz
at

io
n

0.
04

bi
rt

h
co

nt
ro

l
ab

or
tio

n
0.

17
fe

lo
n

vo
tin

g
de

at
h

pe
na

lty
0.

15
or

ga
n

do
na

tio
n

cl
on

in
g

0.
16

al
co

ho
la

dv
er

tis
in

g
m

ar
iju

an
a

le
ga

liz
at

io
n

0.
15

fe
m

in
is

m
ab

or
tio

n
0.

17
or

ga
ni

c
fo

od
m

ar
iju

an
a

le
ga

liz
at

io
n

0.
08

al
te

rn
at

iv
e

m
ed

ic
in

e
m

ar
iju

an
a

le
ga

liz
at

io
n

0.
12

fo
re

ig
n

ai
d

m
in

im
um

w
ag

e
0.

12
ou

ts
ou

rc
in

g
m

in
im

um
w

ag
e

0.
12

am
az

on
m

in
im

um
w

ag
e

0.
05

fr
ac

ki
ng

nu
cl

ea
re

ne
rg

y
0.

14
pe

de
le

c
nu

cl
ea

re
ne

rg
y

0.
07

an
ar

ch
is

m
gu

n
co

nt
ro

l
0.

11
fr

ee
m

ar
ke

t
m

in
im

um
w

ag
e

0.
14

pl
as

tic
su

rg
er

y
cl

on
in

g
0.

10
an

im
al

di
ss

ec
tio

n
cl

on
in

g
0.

12
fr

ee
do

m
of

sp
ee

ch
gu

n
co

nt
ro

l
0.

13
po

lic
e

bo
dy

ca
m

er
as

gu
n

co
nt

ro
l

0.
12

an
im

al
te

st
in

g
cl

on
in

g
0.

15
fu

el
ta

x
m

in
im

um
w

ag
e

0.
12

pr
es

cr
ip

tio
n

dr
ug

ad
s

m
ar

iju
an

a
le

ga
liz

at
io

n
0.

14
an

tib
io

tic
us

ag
e

m
ar

iju
an

a
le

ga
liz

at
io

n
0.

09
ga

m
bl

in
g

m
ar

iju
an

a
le

ga
liz

at
io

n
0.

12
pr

og
re

ss
iv

e
ta

x
m

in
im

um
w

ag
e

0.
16

ar
tifi

ci
al

in
te

lli
ge

nc
e

cl
on

in
g

0.
10

ga
y

m
ar

ri
ag

e
ab

or
tio

n
0.

14
ra

ci
al

pr
ofi

lin
g

gu
n

co
nt

ro
l

0.
13

as
si

st
ed

su
ic

id
e

de
at

h
pe

na
lty

0.
17

ga
y

ri
gh

ts
ab

or
tio

n
0.

14
re

lig
io

us
ho

lid
ay

s
sc

ho
ol

un
if

or
m

s
0.

09
at

he
is

m
cl

on
in

g
0.

12
ge

ot
he

rm
al

en
er

gy
nu

cl
ea

re
ne

rg
y

0.
15

re
ne

w
ab

le
en

er
gy

nu
cl

ea
re

ne
rg

y
0.

15
au

to
no

m
ou

s
ca

rs
gu

n
co

nt
ro

l
0.

09
gl

ob
al

w
ar

m
in

g
nu

cl
ea

re
ne

rg
y

0.
14

re
pa

ra
tio

ns
fo

rs
la

ve
ry

de
at

h
pe

na
lty

0.
13

be
au

ty
co

nt
es

t
sc

ho
ol

un
if

or
m

s
0.

10
gl

yp
ho

sa
te

m
ar

iju
an

a
le

ga
liz

at
io

n
0.

11
re

ve
rs

e
di

sc
ri

m
in

at
io

n
sc

ho
ol

un
if

or
m

s
0.

12
bi

g
ph

ar
m

a
m

ar
iju

an
a

le
ga

liz
at

io
n

0.
14

gm
os

cl
on

in
g

0.
14

ri
gh

tt
o

he
al

th
ca

re
ab

or
tio

n
0.

14
bi

lin
gu

al
ed

uc
at

io
n

sc
ho

ol
un

if
or

m
s

0.
12

go
ve

rn
m

en
ts

ur
ve

ill
an

ce
gu

n
co

nt
ro

l
0.

12
ro

bo
ts

cl
on

in
g

0.
09

bi
of

ue
ls

nu
cl

ea
re

ne
rg

y
0.

14
gu

an
ta

na
m

o
ba

y
de

te
nt

io
n

ca
m

p
de

at
h

pe
na

lty
0.

12
sa

nc
tu

ar
y

ci
tie

s
m

ar
iju

an
a

le
ga

liz
at

io
n

0.
12

bi
rt

h
co

nt
ro

l
ab

or
tio

n
0.

17
co

nc
ea

le
d

ha
nd

gu
ns

gu
n

co
nt

ro
l

0.
20

sc
ho

ol
vo

uc
he

rs
sc

ho
ol

un
if

or
m

s
0.

15
bo

ar
di

ng
sc

ho
ol

sc
ho

ol
un

if
or

m
s

0.
12

ho
lo

gr
ap

hy
cl

on
in

g
0.

05
sc

ho
ol

vo
uc

he
rs

sc
ho

ol
un

if
or

m
s

0.
15

bo
rd

er
se

cu
ri

ty
m

ar
iju

an
a

le
ga

liz
at

io
n

0.
12

ho
m

es
ch

oo
lin

g
sc

ho
ol

un
if

or
m

s
0.

13
se

x
ed

uc
at

io
n

in
sc

ho
ol

ab
or

tio
n

0.
17

br
ex

it
m

in
im

um
w

ag
e

0.
11

ho
m

ew
or

k
sc

ho
ol

un
if

or
m

s
0.

13
se

x
of

fe
nd

er
re

gi
st

ry
de

at
h

pe
na

lty
0.

14
bu

llfi
gh

tin
g

gu
n

co
nt

ro
l

0.
08

hy
dr

oe
le

ct
ri

ci
ty

nu
cl

ea
re

ne
rg

y
0.

15
sm

ar
th

om
e

nu
cl

ea
re

ne
rg

y
0.

07
ce

ll
ph

on
e

ra
di

at
io

n
cl

on
in

g
0.

10
ill

eg
al

im
m

ig
ra

tio
n

m
ar

iju
an

a
le

ga
liz

at
io

n
0.

12
sm

ar
tw

at
ch

m
in

im
um

w
ag

e
0.

04
ce

ns
or

sh
ip

gu
n

co
nt

ro
l

0.
11

in
sa

ni
ty

de
fe

ns
e

de
at

h
pe

na
lty

0.
17

so
ci

al
m

ed
ia

sc
ho

ol
un

if
or

m
s

0.
07

ch
ar

te
rs

ch
oo

ls
sc

ho
ol

un
if

or
m

s
0.

15
in

si
de

rt
ra

di
ng

m
in

im
um

w
ag

e
0.

11
so

la
re

ne
rg

y
nu

cl
ea

re
ne

rg
y

0.
14

ch
ee

rl
ea

di
ng

sc
ho

ol
un

if
or

m
s

0.
10

is
ol

at
io

ni
sm

gu
n

co
nt

ro
l

0.
12

sp
an

ki
ng

de
at

h
pe

na
lty

0.
09

cl
er

ic
al

ce
lib

ac
y

ab
or

tio
n

0.
12

ju
ry

du
ty

de
at

h
pe

na
lty

0.
14

sp
er

m
do

no
r

cl
on

in
g

0.
17

st
em

ce
ll

re
se

ar
ch

cl
on

in
g

0.
21

la
bo

ru
ni

on
s

m
in

im
um

w
ag

e
0.

16
st

an
da

rd
iz

ed
te

st
in

g
sc

ho
ol

un
if

or
m

s
0.

14
co

al
m

in
in

g
nu

cl
ea

re
ne

rg
y

0.
11

le
ga

liz
ed

pr
os

tit
ut

io
n

m
ar

iju
an

a
le

ga
liz

at
io

n
0.

15
st

em
ce

ll
re

se
ar

ch
cl

on
in

g
0.

21
co

m
m

un
ity

se
rv

ic
e

m
in

im
um

w
ag

e
0.

09
le

th
al

in
je

ct
io

n
de

at
h

pe
na

lty
0.

22
su

rr
og

ac
y

ab
or

tio
n

0.
17

co
m

pu
ls

or
y

vo
tin

g
m

in
im

um
w

ag
e

0.
12

lib
er

ta
ri

an
is

m
ab

or
tio

n
0.

13
su

v
nu

cl
ea

re
ne

rg
y

0.
05

co
nc

ea
le

d
ha

nd
gu

ns
gu

n
co

nt
ro

l
0.

20
lif

e
ex

te
ns

io
n

cl
on

in
g

0.
12

te
ac

he
rt

en
ur

e
sc

ho
ol

un
if

or
m

s
0.

15
co

rp
or

al
pu

ni
sh

m
en

t
de

at
h

pe
na

lty
0.

16
lo

bb
yi

ng
gu

n
co

nt
ro

l
0.

13
te

rm
lim

it
gu

n
co

nt
ro

l
0.

12
cr

ow
df

un
di

ng
m

in
im

um
w

ag
e

0.
12

lo
tte

ry
m

in
im

um
w

ag
e

0.
10

to
ba

cc
o

ad
ve

rt
is

in
g

m
ar

iju
an

a
le

ga
liz

at
io

n
0.

17
cu

ltu
re

d
m

ea
t

cl
on

in
g

0.
12

lo
w

er
dr

in
ki

ng
ag

e
m

ar
iju

an
a

le
ga

liz
at

io
n

0.
15

tr
an

sg
en

de
rr

ig
ht

s
ab

or
tio

n
0.

13
da

yc
ar

e
sc

ho
ol

un
if

or
m

s
0.

08
lo

w
er

sp
ee

d
lim

it
gu

n
co

nt
ro

l
0.

09
tw

o-
st

at
e

so
lu

tio
n

gu
n

co
nt

ro
l

0.
10

da
yl

ig
ht

sa
vi

ng
tim

e
m

in
im

um
w

ag
e

0.
09

m
an

-m
ad

e
gr

ee
nh

ou
se

ga
se

s
nu

cl
ea

re
ne

rg
y

0.
13

un
em

pl
oy

m
en

ti
ns

ur
an

ce
m

in
im

um
w

ag
e

0.
18

le
th

al
in

je
ct

io
n

de
at

h
pe

na
lty

0.
22

m
an

da
to

ry
na

tio
na

ls
er

vi
ce

gu
n

co
nt

ro
l

0.
12

ur
ba

n
ag

ri
cu

ltu
re

m
in

im
um

w
ag

e
0.

10
di

re
ct

de
m

oc
ra

cy
gu

n
co

nt
ro

l
0.

12
m

an
da

to
ry

se
nt

en
ci

ng
de

at
h

pe
na

lty
0.

19
ur

ba
ni

za
tio

n
m

in
im

um
w

ag
e

0.
10

dr
on

e
st

ri
ke

s
gu

n
co

nt
ro

l
0.

14
w

ar
on

dr
ug

s
m

ar
iju

an
a

le
ga

liz
at

io
n

0.
19

us
in

te
rv

en
tio

n
gu

n
co

nt
ro

l
0.

12
eb

oo
ks

m
in

im
um

w
ag

e
0.

05
un

em
pl

oy
m

en
ti

ns
ur

an
ce

m
in

im
um

w
ag

e
0.

18
us

a
pa

tr
io

ta
ct

gu
n

co
nt

ro
l

0.
15

ec
ot

ou
ri

sm
nu

cl
ea

re
ne

rg
y

0.
10

m
on

ar
ch

y
ab

or
tio

n
0.

09
va

cc
in

at
io

n
cl

on
in

g
0.

12
el

ec
to

ra
lc

ol
le

ge
gu

n
co

nt
ro

l
0.

10
m

on
og

am
y

ab
or

tio
n

0.
13

ve
ge

ta
ri

an
is

m
ab

or
tio

n
0.

05
el

ec
tr

on
ic

ci
ga

re
tte

s
m

ar
iju

an
a

le
ga

liz
at

io
n

0.
13

m
ul

tic
ul

tu
ra

lis
m

sc
ho

ol
un

if
or

m
s

0.
10

vi
de

o
ga

m
es

an
d

vi
ol

en
ce

gu
n

co
nt

ro
l

0.
12

ex
ec

ut
iv

e
or

de
r

ab
or

tio
n

0.
15

ne
tn

eu
tr

al
ity

m
in

im
um

w
ag

e
0.

10
vi

rt
ua

lr
ea

lit
y

cl
on

in
g

0.
07

ex
is

te
nc

e
of

go
d

cl
on

in
g

0.
12

nu
cl

ea
rd

is
ar

m
am

en
t

nu
cl

ea
re

ne
rg

y
0.

18
vo

tin
g

m
ac

hi
ne

s
gu

n
co

nt
ro

l
0.

09
ex

tr
at

er
re

st
ri

al
lif

e
cl

on
in

g
0.

12
nu

cl
ea

rd
is

ar
m

am
en

t
nu

cl
ea

re
ne

rg
y

0.
18

w
ar

on
dr

ug
s

m
ar

iju
an

a
le

ga
liz

at
io

n
0.

19
ex

tr
em

e
sp

or
t

sc
ho

ol
un

if
or

m
s

0.
07

ob
am

ac
ar

e
m

in
im

um
w

ag
e

0.
14

w
ar

on
ob

es
ity

m
ar

iju
an

a
le

ga
liz

at
io

n
0.

11
fa

ct
or

y
fa

rm
in

g
cl

on
in

g
0.

12
oc

cu
py

w
al

ls
tr

ee
t

gu
n

co
nt

ro
l

0.
11

w
ar

on
te

rr
or

is
m

gu
n

co
nt

ro
l

0.
13

fa
rm

su
bs

id
ie

s
m

in
im

um
w

ag
e

0.
15

of
fs

ho
re

dr
ill

in
g

nu
cl

ea
re

ne
rg

y
0.

14
w

at
er

pr
iv

at
iz

at
io

n
nu

cl
ea

re
ne

rg
y

0.
11

Ta
bl

e
8:

L
is

to
fa

ll
15

0
to

pi
cs

fo
rt

he
FS

15
0T

-C
or

pu
s

an
d

th
ei

rs
em

an
tic

al
ly

cl
os

es
tt

op
ic

fr
om

th
e

U
K

P
C

or
pu

s,
co

m
pu

te
d

vi
a

em
be

dd
in

gs
w

ith
m

od
el

“a
ll-

M
in

iL
M

-L
6-

v2
”

(R
ei

m
er

s
an

d
G

ur
ev

yc
h,

20
19

).
H

ig
he

st
co

si
ne

si
m

ila
ri

ty
co

m
pu

te
d:

0.
22

.

10887


