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Abstract

Pretrained large language models (LLMs) have
excelled in a variety of natural language pro-
cessing (NLP) tasks, including summarization,
question answering, and translation. However,
LLMs pose significant security risks due to
their tendency to memorize training data, lead-
ing to potential privacy breaches and copyright
infringement. Therefore, accurate measure-
ment of the memorization is essential to eval-
uate and mitigate these potential risks. How-
ever, previous attempts to characterize mem-
orization are constrained by either using pre-
fixes only or by prepending a constant soft
prompt to the prefixes, which cannot react to
changes in input. To address this challenge, we
propose a novel method for estimating LLM
memorization using dynamic, prefix-dependent
soft prompts. Our approach involves training
a transformer-based generator to produce soft
prompts that adapt to changes in input, thereby
enabling more accurate extraction of memo-
rized data. Our method not only addresses
the limitations of previous methods but also
demonstrates superior performance in diverse
experimental settings compared to state-of-the-
art techniques. In particular, our method can
achieve the maximum relative improvement
of 135.3% and 39.8% over the vanilla base-
line on average in terms of discoverable mem-
orization rate for the text generation task and
code generation task, respectively. Our code
is available at https://github.com/wangger/llm-
memorization-dsp.

1 Introduction

Pretrained large language models (LLMs) have
achieved remarkable success across a wide range
of downstream natural language processing (NLP)
tasks such as summarization (Zhang et al., 2024;
Van Veen et al., 2024; Zhang et al., 2019), question
answering (Pan et al., 2023; Shao et al., 2023; Louis

*Co-corresponding authors.

et al., 2024; Jiang et al., 2021; Guo et al., 2023; Ya-
sunaga et al., 2021) and translation (Zhang et al.,
2023; Bawden and Yvon, 2023; He et al., 2024;
Xue et al., 2020; Xu et al., 2023; Li et al., 2024),
etc. The popularity of LLMs requires people to
pay attention to the unique challenges they bring
to security. One of the significant security issues
is that LLMs can memorize a considerable portion
of their training data even though they tend to not
overfit to their training dataset due to the small
number of training epochs (Radford et al., 2019).
Moreover, the memorized data can be extracted
by carefully designed input from attackers or even
unintentional input from ordinary users, which can
cause privacy and copyright issues with the sensi-
tive training data (Carlini et al., 2021, 2023; Ozdayi
et al., 2023; Nasr et al., 2023; Karamolegkou et al.,
2023). For example, the confidential codes from
Samsung can be exposed to other users after they
were shared with OpenAI due to the memorization
of LLMs (DeGeurin, 2023; Huynh, 2023).

The huge security risks and the potential uses
of memorization make it important to measure the
memorization of the target LLM. With an accurate
method to quantify the intrinsic memorization of
LLMs, model developers can have a better under-
standing of the model’s vulnerability posed by its
memorization and take actions such as machine un-
learning (Yao et al., 2023; Pawelczyk et al., 2023;
Yao et al., 2024) to mitigate the memorization be-
fore they release their LLMs to the public. More-
over, the method to extract memorized data can
also be combined with the target LLM and lever-
aged by the users to detect whether their self-built
dataset has data leakage issues when it is used to
evaluate the target LLM.

To measure the intrinsic memorization of the
target LLM, Carlini et al. (2023) first proposed a
metric called discoverable memorization rate to
serve as the estimation. As shown in Figure 1 (a),
the given data are split into prefix tokens and suffix
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Figure 1: Conceptual comparison of three methods for
extracting memorized data from the target LLM.

tokens and the prefix tokens are fed into the target
LLM. The data are defined as discoverably memo-
rized when the output tokens can match the suffix
tokens verbatim. Ozdayi et al. (2023) proposed that
more memorized data can be extracted via learn-
ing a soft prompt and prepending it to the prefix
tokens for generation, which is shown in Figure 1
(b). However, the memorization of the target LLM
is still underestimated even with the soft prompt
since it is constant and invariant to prefix tokens,
which may not help or even hinder extracting data
when changing the prefix.

In this paper, we propose a new method to esti-
mate the memorization of LLMs. Compared with
constant soft prompts (Ozdayi et al., 2023), our
method can generate prefix-dependent soft prompts
and react to the changes in inputs. More specifi-
cally, a transformer-based generator is trained for
the generation of the dynamic soft prompt. As
shown in Figure 1 (c), it takes the outputs from the
naive mapping m(·) of prefix tokens as its input
and emits the corresponding soft prompt prepended
to the prefix tokens. This method can customize
prompts given the inputs and thus extract more
memorized data from the target LLM, which can
reflect its intrinsic memorization more accurately.

Our contributions can be summarized as follows.

• We propose a new method with dynamic soft
prompts to extract memorized data from the
target LLMs and estimate their memorization

with the same assumption as the state-of-the-art
(SOTA) work (Ozdayi et al., 2023) but overcom-
ing its limitation on the invariance to the input.

• We develop a transformer-based generator to pro-
duce the dynamic soft prompts in response to the
change of input. To find the best parameters of
the generator, we utilize a technique to initialize
the transformer blocks within the generator as
identity mappings for the effective and robust
training of the generator.

• We evaluate our method on more diverse settings
than that of the SOTA work (Ozdayi et al., 2023).
Experimental results show that our method can
outperform all the baselines consistently in all
the evaluated settings. The maximum relative im-
provement of 135.3% and 39.8% is achieved over
the vanilla baseline on average for the text gener-
ation and code generation tasks, respectively.

2 Related Work

LLM Memorization. The memorization of LLM
is firstly verified by Carlini et al. (2021). It shows
that it is feasible for attackers to extract training
data from target LLMs by producing a large num-
ber of random prefixes and feeding them to the
target LLM for generation. Carlini et al. (2023)
then defines the concept of discoverably memorized
and utilizes it to quantify the memorization of the
target LLM. In addition to the memorization of pre-
trained LLM on the pretraining dataset, the memo-
rization of fine-tuned LLM has also been studied by
some works (Mireshghallah et al., 2022; Zeng et al.,
2023). The latest work (Zeng et al., 2023) shows
that memorization also exists in fine-tuning settings
and that the characteristics of memorization vary
with the type of fine-tuning tasks. Karamolegkou
et al. (2023) shows that the memorization of LLM
can cause copyright violations for books and pro-
prietary codes. Nasr et al. (2023) demonstrates that
it is feasible to extract gigabytes of training data
from production LLMs such as ChatGPT due to
their memorization. Recently, Ozdayi et al. (2023)
proposes to learn a constant soft prompt to extract
more training data from LLM to measure memo-
rization. However, we argue that this method still
underestimates the memorization of LLM since the
soft prompt is independent of the input and thus
does not react to the dynamics of the input. Our
method can address these limitations.
Defend against Memorization. Training LLMs
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with differentially private training (Abadi et al.,
2016) is considered effective in preventing the
memorization of individual training samples with
a theoretical guarantee (Carlini et al., 2021), How-
ever, the training cost is expensive — even pro-
hibitive for LLMs. Moreover, the utility of LLMs
is significantly degraded, making them impractical
for real-world applications. Alternatively, dedupli-
cating training data can mitigate LLM memoriza-
tion (Lee et al., 2021; Kandpal et al., 2022). How-
ever, it cannot eliminate the memorization since
certain portions of data will be memorized by LLM
inevitably even if they only appear once in the train-
ing data. Similarly, Ippolito et al. (2023) shows that
memorization can not be prevented by applying
runtime filtering to the user input. Therefore, the
“ultimate” solution to prevent memorization is still
under exploration. Machine unlearning (Yao et al.,
2023; Pawelczyk et al., 2023; Yao et al., 2024) is a
promising method to defend against memorization.
By identifying the set of memorized training data
to be the forget set for unlearning, LLM can forget
these data via gradient ascent (Yao et al., 2023) or
in-context learning (Pawelczyk et al., 2023). Com-
pared to existing methods, our method can identify
a larger and more accurate forget set for machine
unlearning to defend against memorization.
Prompt Tuning. Prompt tuning, introduced
by Lester et al. (2021), is an efficient method for
adapting pre-trained models to various tasks by
learning "soft prompts" that condition frozen lan-
guage models without changing their internal pa-
rameters. In the realm of NLP, researchers have har-
nessed trainable representations in the form of soft
prompts using methods like prompt-tuning, with Su
et al. (2022) and Vu et al. (2022) demonstrating suc-
cessful transferability and improved performance.
Ma et al. (2022) uses pruning to remove ineffective
tokens, and Wei et al. (2021) provides theoretical
proof of prompt tuning’s downstream guarantees
under weaker non-degeneracy conditions. Prompt
tuning has also been applied to vision tasks (Jia
et al., 2022; Lian et al., 2022; Chen et al., 2022), in-
cluding continual learning (Wang et al., 2022) and
image inpainting (Bar et al., 2022). Different from
previous work that used prompt tuning to improve
downstream performance, our work leverages con-
tinuous prompts to more accurately reflect intrinsic
memorization, extract memorized data from the
target LLMs, and measure their memorization.

3 Method

3.1 Problem Formulation

According to the work (Nasr et al., 2023), given the
target LLM fθ and data x, x is defined as discover-
ably memorized if there exists a generation routine
G, such that fθ(G(p)) = s, where x = [p||s] and
x is split into prefix p and suffix s. The generation
routine can be constant soft prompts (Ozdayi et al.,
2023), dynamic soft prompts (our method), or just
the identity function (Carlini et al., 2023).

In our problem setting, a set of sequences Dtr
is randomly sampled from the training set D of
the target LLM fθ, we aim to find the generation
routine G to maximize discoverable memorization
rate over the training set D by leveraging Dtr. We
use another disjoint set Dtest randomly sampled
from D to evaluate the discoverable memorization
rate over D, which is defined as,

max
1

|Dtest|
∑

xi∈Dtest

1fθ(G(pi))=si(pi), (1)

where 1(·) denotes the indicator function and xi =
[pi||si].

3.2 Method Overview

To maximize the discoverable memorization rate,
we propose a pipeline to learn a transformer-based
generator gω to build the generation routine G. As
shown in Figure 2 (b), the generator gω is initial-
ized with K identity blocks, which are illustrated
in Section 3.4. The input to gω is m(p), where m(·)
represents a naive mapping of prefix tokens p and it
is detailed in Section 3.3. The dynamic soft prompt
o is then generated via gω, where o = gω(m(p)).
Since o depends on the prefix token p, it can adapt
to the change in p. Note that the dimension of o
should be the same as the dimension of the embed-
ding E(x) of the target LLM fθ for its concatena-
tion with the input data x.

We train the generator gω on Dtr to obtain the
optimized parameters ω∗. For each sequence
xi ∈ Dtr, where xi = [pi||si], the dynamic soft
prompt oi is generated and then prepended to the
embeddings E(pi) of prefix tokens pi and the em-
beddings E(si) of suffix tokens si. Thus, we
obtain the input qi to the target LLM fθ, where
qi = [oi||E(pi)||E(si)]. By feeding qi to the target
LLM fθ, we aim to minimize the aligned causal
language modeling (CLM) loss L (Ozdayi et al.,
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Figure 2: Illustration of our method.

2023) over Dtr, which is defined as,

L = −
∑

xi∈Dtr

|qi|−1∑

t=ki

logPθ,ω(qi,t|qi,1, ..., qi,t−1),

(2)
where qi,t represents the t th token in the input
sequence qi. Pθ,ω(qi,t|qi,1, ..., qi,t−1) denotes the
output conditional probability of the t th token
given the preceding t − 1 tokens. ki represents
the index of the starting token in suffix si. There-
fore, the aligned CLM loss only focuses on the
token prediction at the position of suffix tokens,
which aligns with the definition of discoverable
memorization. During the training phase, only the
parameters ω of gω are updated based on the gra-
dients calculated from the aligned CLM loss while
the parameters θ of fθ are frozen.

During the testing phase of the trained generator
gω∗ , for each testing sequence xi ∈ Dtest, only the
dynamic soft prompt oi and the embedding of pre-
fix tokens E(pi) are concatenated and sent to the
target LLM fθ for generation. The generated out-
put tokens yi are then compared with the suffix to-
kens si for evaluation, where yi = fθ([oi||E(pi)]).
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Figure 3: Illustration of naive mapping m(·) with exam-
ples.

3.3 Mapping of Prefix Tokens

According to the constant soft prompt (Ozdayi
et al., 2023), the length of the prompt N is a hyper-
parameter of the method and its value can affect
the extraction of data. If we feed the prefix tokens
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p to gω directly, then the length of the dynamic soft
prompt o will be limited to the length of the prefix
tokens p. To provide the same flexibility as the
constant soft prompt (Ozdayi et al., 2023), we pro-
pose a naive mapping m(·) to preprocess the prefix
tokens p and send its output m(p) to the generator
gω.

The details of m(·) are shown in Figure 3 with
an example. Assume the length of p and m(p) is
L and N , respectively. If L ≥ N , m(p) is the
last N tokens of p. Otherwise, we first generate r
by duplicating p for ⌈ L

N ⌉ times. m(p) is then the
last N tokens of r. The dynamic soft prompt o is
generated, where o = gω(m(p)). In this way, the
length of the prompt N can be an arbitrary integer,
which provides the maximum flexibility for usage.

3.4 Identity Blocks with Zero-Initialization

Randomly initializing the transformer-based gen-
erator gω and training it from scratch may degrade
its performance and even lead to model collapse. It
can be verified by a case study for GPT-Neo (Black
et al., 2021), shown in Table 1, where the rows
without zero initialization correspond to random
initializing gω. Table 1 shows that the random ini-
tialization performs badly with the two standard
metrics for memorization being close to 0.

The issue of random initialization is caused by
the fact that the underlying latent space of the dy-
namic soft prompt is far away from the embedding
space of the target LLM fθ at the initial stage, mak-
ing it difficult for the target LLM fθ to extract
meaningful information from the prompt and thus
hinder the training of the generator gω. Therefore,
to enable the effective and robust training of gω, it
is important to align the dynamic soft prompt with
the embedding of input data, making their underly-
ing latent space close to each other. To achieve this,
the tokenizer and embedding layer of the generator
gω should be initialized with those of the target
LLM fθ. However, this is insufficient due to the
perturbation incurred by the non-identical forward
pass of the transformer blocks within the generator
gω. More specifically, the forward pass for each
attention block can be formulated as,

z = x+ MHSA(LN(x)), (3a)

y = z + FFN(LN(z)), (3b)

where x and y are the input and output of the trans-
former block, respectively. z is the output of the
attention layer within the block. MHSA(·) denotes

Table 1: Case study on the effect of identity blocks with
zero-initialization. The random seed is 42.

Model Is Zero-
Initialization?

Is Dynamic
Prompt?

Exact
ER

Fractional
ER

✗ ✓ 0.000 0.053GPT-Neo
(125M) ✓ ✓ 0.421 0.557

✗ ✓ 0.000 0.035GPT-Neo
(1.3B) ✓ ✓ 0.651 0.772

✗ ✓ 0.000 0.022GPT-Neo
(2.7B) ✓ ✓ 0.702 0.820

the multi-head self-attention (MHSA) mechanism.
LN(·) represents layer normalization. FFN(·) corre-
sponds to the position-wise feed-forward network
(FFN). Therefore, if the transformer block is ran-
domly initialized, it corresponds to a non-identical
function where y ̸= x and thus enlarges the dis-
tance between the latent space of the dynamic soft
prompt and the target LLM fθ.

Inspired by LLAMA PRO (Wu et al., 2024), we
propose to initialize the transformer blocks within
gω as identity blocks to align the dynamic soft
embedding with the token embedding of the tar-
get LLM fθ. To illustrate the implementation of
the identity block shown in Figure 2 (a), we need
to delve into the details of MHSA(·) and FFN(·),
which can be formulated as,

MHSA(x′) =
H∑

i=1

σs (x
′WQW

⊤
Kx′⊤)x′WV WO,

(4a)

FFN(z′) = (σ (z′W1)⊙ z′W2)W3, (4b)

where x′ and z′ are obtained by applying layer
normalization to x and z, respectively. Assume
there are H heads in MHSA(·) and we omit the
head index i in Equation 4a for simplicity. WQ,
WK and WV are the query, key and value matrix
of the i th head. WO is the i th weight matrix
of the output linear layer in the attention block.
σs denotes the softmax function. For FFN(·), W1

and W2 are the weight matrices of the first layer
of linear layers within the position-wise FFN and
σ(·) is the activation function, while W3 is the
weight matrix of the second layer of the linear layer.
The FFN defined in Equation 4b is regularly used
in LLaMA models (Touvron et al., 2023). For
Pythia (Biderman et al., 2023) or GPT-Neo (Black
et al., 2021), we have FFN(z′) = σ(z′W1)W2.

According to Equation 3 and 4, we can conclude
that the identity block can be built by initializing
WO and W3 as zero matrices, such that y = x.
Moreover, it has been shown that such kind of zero
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Table 2: Main results on GPT-Neo suite.

Model Method
Dynamic
Prompt?

Exact ER↑ Exact
ER Gain

Fractional ER↑ Fractional
ER Gain

Test Loss↓ Test Perplexity↓
(PPL)

No Prompt N/A 0.173 ± 0.016 N/A 0.360 ± 0.012 N/A 0.990 ± 0.033 2.692 ± 0.087
Constant Hard Prompt ✗ 0.137 ± 0.011 -20.8% 0.324 ± 0.011 -9.9% 1.039 ± 0.032 2.826 ± 0.088
Dynamic Hard Prompt ✓ 0.060 ± 0.005 -65.1% 0.154 ± 0.005 -57.3% 1.160 ± 0.033 3.192 ± 0.104

CSP (Ozdayi et al., 2023) ✗ 0.236 ± 0.003 36.9% 0.412 ± 0.008 14.7% 0.908 ± 0.046 2.482 ± 0.113

GPT-Neo
(125M)

Ours ✓ 0.406 ± 0.022 135.3% 0.537 ± 0.027 49.2% 0.715 ± 0.062 2.046 ± 0.128
No Prompt N/A 0.445 ± 0.013 N/A 0.636 ± 0.007 N/A 0.205 ± 0.003 1.228 ± 0.003

Constant Hard Prompt ✗ 0.377 ± 0.017 -15.2% 0.579 ± 0.002 -9.0% 0.244 ± 0.007 1.277 ± 0.009
Dynamic Hard Prompt ✓ 0.097 ± 0.005 -78.1% 0.191 ± 0.008 -69.9% 0.399 ± 0.005 1.491 ± 0.007

CSP (Ozdayi et al., 2023) ✗ 0.526 ± 0.013 18.2% 0.690 ± 0.012 8.5% 0.140 ± 0.008 1.150 ± 0.010

GPT-Neo
(1.3B)

Ours ✓ 0.625 ± 0.038 40.5% 0.749 ± 0.032 17.7% 0.121 ± 0.014 1.129 ± 0.016
No Prompt N/A 0.546 ± 0.009 N/A 0.706 ± 0.005 N/A 0.129 ± 0.003 1.138 ± 0.004

Constant Hard Prompt ✗ 0.464 ± 0.008 -15.0% 0.653 ± 0.006 -7.4% 0.161 ± 0.003 1.175 ± 0.004
Dynamic Hard Prompt ✓ 0.122 ± 0.005 -77.6% 0.214 ± 0.005 -69.7% 0.296 ± 0.005 1.344 ± 0.007

CSP (Ozdayi et al., 2023) ✗ 0.630 ± 0.027 15.4% 0.772 ± 0.016 9.4% 0.087 ± 0.004 1.090 ± 0.004

GPT-Neo
(2.7B)

Ours ✓ 0.683 ± 0.024 25.2% 0.807 ± 0.014 14.3% 0.078 ± 0.007 1.081 ± 0.007

initialization does not introduce zero gradients and
thus does not prevent the effective training of the
generator gω (Wu et al., 2024).

Note that we utilize the identity blocks from a
different perspective than LLAMA PRO. LLAMA
PRO incorporated extra multiple identity blocks
into the pretrained LLM to expand the model for
post-pretraining without changing the original map-
ping of the pretrained LLM at the initial stage,
while in our method, we initialize the transformer
blocks within the generator gω as identity blocks
to achieve the identity mapping of the input, thus
aligning the latent space of the dynamic soft prompt
with that of the target LLM fθ initially.

4 Experiments

4.1 Experimental Setup

Models. We evaluate our method on three suites
of pretrained LLMs with various scales: GPT-Neo
(125M, 1.3B, 2.7B) (Black et al., 2021), Pythia
(410M, 1.4B, 2.8B, 6.9B) (Biderman et al., 2023)
and StarCoderBase (1B, 3B, 7B) (Li et al., 2023).
Both GPT-Neo and Pythia are pretrained on the Pile
dataset (Gao et al., 2020) for text generation. Star-
CoderBase is pretrained on The Stack dataset (Ko-
cetkov et al., 2022) with more than 80 program-
ming languages for code generation.
Dataset. We extract training data of GPT-Neo and
Pythia with the Language Model Extraction Bench-
mark dataset (Google-Research), a subset in En-
glish with 15K sequences sampled from the Pile
dataset. For StarCoderBase, we utilize the-stack-
smol dataset (BigCode), a subset randomly sam-
pled from The Stack dataset. In our experiments,
we focus on the java, c#, go and sql splits of it.
And there are 40K sequences in total.

Baselines. We compare our method with four base-
lines. The baseline No Prompt means that only the
prefix is fed to the target LLM to measure its mem-
orization without an extra prompt prepended to the
prefix. Note that it corresponds to the method (Car-
lini et al., 2023) shown in Figure 1 (a), serving
as the vanilla baseline. We include another two
naive baselines by prepending hard prompt to the
prefix for extraction: Constant Hard Prompt and
Dynamic Hard Prompt. Assuming the length of the
prompt is N , for Constant Hard Prompt, we pick
the first N tokens in the vocabulary of the target
LLM to serve as the hard prompt. For Dynamic
Hard Prompt, we apply the mapping m(·) in Sec-
tion 3.3 to the prefix to generate the hard prompt
without feeding it to a generator for further process-
ing. CSP (Ozdayi et al., 2023) corresponds to the
method shown in Figure 1 (b), which is the SOTA
work in the measurement of the memorization.
Metrics. We use the Exact Extraction Rate (ER),
Fractional Extraction Rate (ER), Test loss and Test
perplexity (PPL) to evaluate the performance of our
method. Test loss is calculated by Equation 2 over
the test set DTest. And Test PPL is the token-wise
perplexity over the test set of suffixes Dsuf

Test. Exact
ER means exact extraction rate, which corresponds
to discoverable memorization rate to estimate the
verbatim memorization, defined in Equation 1.
Fractional ER is fractional exact rate, which reflects
the token-wise match between the output token se-
quence v from the target LLM fθ and the suffix s,
calculated as 1

|DTest|
∑

s∈Dsuf
Test

1
|s|

∑|s|−1
t=0 1vt=st(vt),

where vt and st are the t th token in the output
token sequence v and suffix s, respectively.
Evaluation Settings. We utilize the first trans-
former block of the target LLM to serve as the
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Table 3: Main results on Pythia suite.

Model Method
Dynamic
Prompt?

Exact ER↑ Exact
ER Gain

Fractional ER↑ Fractional
ER Gain

Test Loss↓ Test Perplexity↓
(PPL)

No Prompt N/A 0.239 ± 0.013 N/A 0.463 ± 0.005 N/A 0.488 ± 0.020 1.629 ± 0.033
Constant Hard Prompt ✗ 0.155 ± 0.008 -35.2% 0.351 ± 0.011 -24.3% 0.619 ± 0.023 1.856 ± 0.043
Dynamic Hard Prompt ✓ 0.050 ± 0.012 -79.2% 0.129 ± 0.009 -72.2% 0.720 ± 0.021 2.054 ± 0.043

CSP (Ozdayi et al., 2023) ✗ 0.302 ± 0.016 26.2% 0.521 ± 0.005 12.6% 0.415 ± 0.021 1.514 ± 0.032

Pythia
(410M)

Ours ✓ 0.497 ± 0.028 107.7% 0.670 ± 0.015 44.7% 0.304 ± 0.018 1.355 ± 0.025
No Prompt N/A 0.425 ± 0.010 N/A 0.658 ± 0.014 N/A 0.210 ± 0.013 1.234 ± 0.017

Constant Hard Prompt ✗ 0.293 ± 0.005 -31.1% 0.526 ± 0.001 -20.1% 0.302 ± 0.012 1.352 ± 0.017
Dynamic Hard Prompt ✓ 0.072 ± 0.004 -83.1% 0.166 ± 0.007 -74.7% 0.425 ± 0.016 1.530 ± 0.025

CSP (Ozdayi et al., 2023) ✗ 0.499 ± 0.002 17.4% 0.714 ± 0.002 8.6% 0.128 ± 0.002 1.137 ± 0.002

Pythia
(1.4B)

Ours ✓ 0.606 ± 0.027 42.5% 0.780 ± 0.010 18.5% 0.111 ± 0.004 1.118 ± 0.005
No Prompt N/A 0.514 ± 0.007 N/A 0.733 ± 0.011 N/A 0.149 ± 0.008 1.161 ± 0.009

Constant Hard Prompt ✗ 0.392 ± 0.008 -23.7% 0.604 ± 0.012 -17.5% 0.226 ± 0.013 1.254 ± 0.016
Dynamic Hard Prompt ✓ 0.092 ± 0.008 -82.0% 0.194 ± 0.011 -73.6% 0.343 ± 0.013 1.409 ± 0.019

CSP (Ozdayi et al., 2023) ✗ 0.563 ± 0.024 9.5% 0.770 ± 0.011 5.1% 0.095 ± 0.007 1.099 ± 0.007

Pythia
(2.8B)

Ours ✓ 0.647 ± 0.024 25.8% 0.816 ± 0.011 11.3% 0.083 ± 0.004 1.087 ± 0.005
No Prompt N/A 0.582 ± 0.018 N/A 0.792 ± 0.011 N/A 0.108 ± 0.004 1.114 ± 0.004

Constant Hard Prompt ✗ 0.448 ± 0.011 -22.9% 0.671 ± 0.004 -15.3% 0.170 ± 0.005 1.186 ± 0.006
Dynamic Hard Prompt ✓ 0.122 ± 0.008 -79.0% 0.236 ± 0.004 -70.3% 0.270 ± 0.008 1.310 ± 0.010

CSP (Ozdayi et al., 2023) ✗ 0.633 ± 0.018 8.8% 0.827 ± 0.008 4.3% 0.069 ± 0.006 1.072 ± 0.007

Pythia
(6.9B)

Ours ✓ 0.693 ± 0.015 19.2% 0.861 ± 0.008 8.7% 0.063 ± 0.002 1.065 ± 0.002

Table 4: Main results on StarCoderBase suite.

Model Method
Dynamic
Prompt?

Exact ER↑ Exact
ER Gain

Fractional ER↑ Fractional
ER Gain

Test Loss↓ Test Perplexity↓
(PPL)

No Prompt N/A 0.055 ± 0.006 N/A 0.230 ± 0.007 N/A 0.844 ± 0.008 2.326 ± 0.020
Constant Hard Prompt ✗ 0.033 ± 0.002 -39.5% 0.205 ± 0.001 -10.9% 0.971 ± 0.010 2.640 ± 0.027
Dynamic Hard Prompt ✓ 0.005 ± 0.002 -90.9% 0.064 ± 0.002 -72.3% 0.967 ± 0.008 2.628 ± 0.021

CSP (Ozdayi et al., 2023) ✗ 0.065 ± 0.005 18.8% 0.232 ± 0.006 0.9% 0.823 ± 0.008 2.277 ± 0.019

StarCoderBase
(1B)

Ours ✓ 0.077 ± 0.005 39.8% 0.245 ± 0.012 6.6% 0.817 ± 0.019 2.263 ± 0.043
No Prompt N/A 0.064 ± 0.007 N/A 0.254 ± 0.008 N/A 0.751 ± 0.007 2.120 ± 0.014

Constant Hard Prompt ✗ 0.039 ± 0.004 -39.9% 0.229 ± 0.004 -10.0% 0.842 ± 0.008 2.322 ± 0.019
Dynamic Hard Prompt ✓ 0.016 ± 0.002 -74.9% 0.092 ± 0.003 -63.8% 0.845 ± 0.006 2.328 ± 0.015

CSP (Ozdayi et al., 2023) ✗ 0.073 ± 0.008 13.2% 0.247 ± 0.010 -2.7% 0.739 ± 0.005 2.095 ± 0.010

StarCoderBase
(3B)

Ours ✓ 0.089 ± 0.008 37.8% 0.267 ± 0.010 5.2% 0.728 ± 0.013 2.071 ± 0.028
No Prompt N/A 0.077 ± 0.013 N/A 0.272 ± 0.008 N/A 0.677 ± 0.006 1.967 ± 0.012

Constant Hard Prompt ✗ 0.014 ± 0.006 -81.5% 0.238 ± 0.008 -12.5% 0.775 ± 0.009 2.170 ± 0.019
Dynamic Hard Prompt ✓ 0.035 ± 0.004 -54.6% 0.133 ± 0.007 -51.1% 0.753 ± 0.008 2.124 ± 0.018

CSP (Ozdayi et al., 2023) ✗ 0.087 ± 0.012 12.8% 0.272 ± 0.008 -0.3% 0.663 ± 0.006 1.941 ± 0.013

StarCoderBase
(7B)

Ours ✓ 0.098 ± 0.011 27.4% 0.283 ± 0.009 3.8% 0.650 ± 0.008 1.915 ± 0.015

generator’s architecture for the best performance-
efficiency trade-offs. The length of the prompt,
prefix, and suffix is 50 by default without explicit
explanation for evaluation. For the main results
in Section 4.2, the experiments are conducted for
three runs, with the random seed of 0, 20 and 42.
For the ablation study in Section 4.3 and the case
study in Section 4.4, the random seed is 42. For de-
tails of the training and evaluation settings, please
refer to the Appendix.

4.2 Main Results

The main results to evaluate our method and the
SOTA baselines are summarized in Table 2, 3 and 4
for the suites of GPT-Neo, Pythia and StarCoder-
Base, respectively.

In the application of text generation, our method
can outperform all the baselines consistently and
significantly. For GPT-Neo suite, compared with

the vanilla baseline (i.e., No Prompt), our method
can achieve a relative improvement of 135.3%,
40.5% and 25.2% on average in terms of Exact
ER with the model size of 125M, 1.3B and 2.7B,
respectively. For the Pythia suite, our method can
achieve a relative improvement of 107.7%, 42.5%,
25.8% and 19.2% over the vanilla baseline on av-
erage in terms of Exact ER with the model size of
410M, 1.4B, 2.8B and 6.9B, respectively.

In the application of code generation, our method
can also outperform all the baselines consistently
and significantly. For StarCodeBase suite, our
method can achieve a relative improvement of
39.8%, 37.8% and 27.4% over the vanilla baseline
on average in terms of Exact ER with the model
size of 1B, 3B, and 7B, respectively.

We have several observations from the main re-
sults across diverse settings. Firstly, prepending
naive hard prompts such as Constant Hard Prompt
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Figure 4: Ablation study on prefix size and length of prompt with exact extraction rate.

and Dynamic Hard Prompt is not useful but harm-
ful for the exaction of training data from target
LLM, leading to a much lower estimation of its
memorization. Secondly, our method consistently
outperforms the SOTA work, CSP (Ozdayi et al.,
2023) , highlighting the importance of dynamic soft
prompts for the measure of memorization. More-
over, the memorization of LLM increases with the
model size, which is consistent with the existing
works (Carlini et al., 2023; Ozdayi et al., 2023;
Nasr et al., 2023). However, it does not mean that
the small model does not have security concerns
on memorization. As shown in Table 2 and Table 3,
the memorization of small language models with
millions of parameters is underestimated signifi-
cantly by the results from the previous methods.
According to the results from our method, these
models’ memorization cannot be ignored in real
applications.

4.3 Ablation Study

We explore our methods from several perspectives:
the impact of dynamic prompt, prefix size L, and
the length of prompt N .
Impact of Dynamic Prompt. To evaluate the im-
pact of dynamic prompt, we build another base-
line by replacing the input to the generator with
the first N tokens in the vocabulary of the target
LLM. In this way, the soft prompts from the gen-
erator are constant and independent of the prefix
tokens. The results are shown in Table 5. It can
be observed that our method with dynamic prompt

Table 5: Ablation study on the dynamics of prompt.

Model Method
Is Dynamic

Prompt?
Exact
ER

Fractional
ER

CSP ✗ 0.641 0.779
Ours ✗ 0.630 0.765

GPT-Neo
(2.7B) Ours ✓ 0.702 0.820

CSP ✗ 0.585 0.783
Ours ✗ 0.565 0.766

Pythia
(2.8B) Ours ✓ 0.669 0.827

CSP ✗ 0.081 0.249
Ours ✗ 0.081 0.247

StarCoderBase
(3B) Ours ✓ 0.094 0.268

outperforms the case with constant prompt con-
sistently and significantly over all the evaluated
settings. Moreover, the performance of our method
with constant prompts is close to that of directly
learning a constant soft prompt. Therefore, we can
conclude that the advantage of our method over
CSP comes from its adaptation to the dynamics of
input instead of incorporating a transformer-based
generator straightforwardly.

Impact of Prefix Size. To evaluate the impact
prefix size, we set the length of prompt N to 25
and vary the prefix size for GPT-Neo (2.7B), Pythia
(2.8B), Pythia (6.9B) and StarCoderBase (7B). The
results in terms of Exact ER are shown in the first
row of Figure 4. Our method can outperform the
two representative baselines consistently over all
the settings of prefix size across diverse LLMs and
datasets. Moreover, the amount of extracted data
increases along with the increase in the prefix size,
consistent with the existing works (Carlini et al.,
2023; Ozdayi et al., 2023).
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Table 6: The case study of the scenario where the data is extracted by our method while CSP (Ozdayi et al., 2023)
fails to extract them.

Prefix Method Generations

o.png" align="left" border="0" /></a></td>

<td width="1">&nbsp;&nbsp;</td><td class="postheader" valign="center"><a href="

Ground Truth
index.html"><font color="#004faf">Home</font></a>· <a href="classes.html"><font color="#004faf">
All Classes</font

CSP (Ozdayi et al., 2023) http://3.bp.blogspot.com/-d6zR6w6D4/T6D3w0w0w0I/AAAAAAAABQI/w0w0w0w0w0w0w

Ours
index.html"><font color="#004faf">Home</font></a>· <a href="classes.html"><font color="#004faf">
All Classes</font

all subject to the following:

The copyright notices in the Software and this entire statement, including the above license grant, this
restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part,

Ground Truth

and all derivative works of the Software, unless such copies or derivative works are solely in the form of
machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANT

CSP (Ozdayi et al., 2023)
of this software, regardless of the contents of the Software, must not be repeated, modified or distributed
under the terms of the GNU General Public License, either version 3, or (at your option) any later version.

Ours

and all derivative works of the Software, unless such copies or derivative works are solely in the form of
machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANT

Table 7: The case study of the scenario where the data is extracted by CSP (Ozdayi et al., 2023) while our method
fails to extract it.

Prefix Method Generations

and the Stack is set to Main.
******************************************************************************
*
* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*

Ground Truth
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright

CSP (Ozdayi et al., 2023)
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright

Ours
******************************************************************************
* @file PORT_MEM_PMEM_PMEM_PMEM_PMEM_PMEM_PMEM_PMEM_PMEM_PMEM_PM

Impact of Length of Prompt. To evaluate the im-
pact length of prompt N , we set the prefix size L to
50 and vary the length of prompt N for GPT-Neo
(2.7B), Pythia (2.8B), Pythia (6.9B) and StarCoder-
Base (7B). The results in terms of Exact ER are
shown in the second row of Figure 4. According to
the results, we have several observations. Firstly,
our method can outperform the two representative
baselines consistently over all the settings of length
of prompt N across diverse LLMs and datasets.
Secondly, the performance of our method usually
increases rapidly when increasing the length of
prompt N from a small value (e.g., 5) to a moder-
ate value (e.g., 25). Then the performance improve-
ment usually becomes smaller when the length of
prompt N is increased further. And it tends to
saturate when the length of prompt N reaches a
relatively large value (e.g., 50 or 75).

4.4 Case Study

In this section, we conducted a case study on GPT-
Neo (125M) to understand the difference between
the memorized data extracted by our method and
CSP (Ozdayi et al., 2023) . For the given test set
with 1K samples, 174 samples can be extracted by
our method but cannot be extracted by CSP (Ozdayi
et al., 2023) . And there are 19 samples that can be
extracted by CSP (Ozdayi et al., 2023) but cannot
be extracted by our method. We also presented two
examples of the former case in Table 6 and one
example of the latter one in Table 7.

5 Conclusion

We propose a novel method to unlock memoriza-
tion in large language models (LLMs) which was
underestimated by previous methods. More specifi-
cally, a transformer-based generator is developed
to customize the dynamic, prefix-dependent soft
prompts to measure the LLM memorization. It can
have a more precise detection of memorized data,
capturing the data omitted by the previous methods
only relying on the prefixes or the concatenation
of a constant soft prompt and prefixes. Extensive
experiments are conducted to show that our method
can outperform the state-of-the-art techniques by a
large margin under diverse settings, including text
generation and code generation tasks.

6 Limitations

There are several limitations of our work. First, we
primarily focus on the memorization of pretrained
LLM over the pretraining dataset and show that
our method can extract more training data. How-
ever, it has been shown that fine-tuned LLMs also
have memorization on fine-tuning dataset (Zeng
et al., 2023). Therefore, the effectiveness of our
method under the fine-tuning settings remains un-
explored, including fine-tuning on a single task
and multiple tasks. Second, we observed the sat-
uration phenomenon in the ablation study on the
length of prompt. The reason for the saturation re-
mains unknown. And further studies on saturation
might help extract more data with our method and
thus provide better measurement of memorization.
Third, based on the experimental results, we can
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observe that the improvement of our method on the
fractional extraction rate is smaller and less robust
compared with the improvement in the exact extrac-
tion rate. One possible reason is that the aligned
CLM loss to train the generator is more suitable for
the optimization of verbatim memorization. Since
fractional extraction rate may be more important in
cases where the meaning of the extracted sequences
is more important than the exact match, it is valu-
able to improve the performance of our method on
the metric of fractional extraction rate.

7 Ethical Considerations

In this work, we propose to leverage dynamic soft
prompts to extract more training data from the tar-
get LLM and measure its memorization under the
white-box settings. Therefore, it is possible that the
attackers might utilize our method to extract sensi-
tive data from the target LLM if they have white-
box access to the target LLM. However, the main
purpose of this work is to raise awareness among
LLM researchers and developers about the security
concerns caused by LLM memorization. By uti-
lizing our method to evaluate the memorization of
the target LLM, the owner of the LLM can evalu-
ate its security vulnerability more accurately and
thoroughly and then take action to defend against
it. For example, we mentioned in the paper that the
developer can utilize machine unlearning to forget
the sensitive training data that is identified by our
method. To minimize the security issues caused by
our work, all of our experiments are conducted on
public datasets that have been extensively studied
by the research community.
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A Detailed Experimental Setup

Training and Evaluation Settings. The random
train/test split is 14k/1k samples, 9686/1k samples
and 38k/2k samples for GPT-Neo, Pythia and Star-
CoderBase, respectively. For evaluation, the gener-
ation’s decoding method is greedy decoding. All
the experiments are conducted on a single NVIDIA
A100 GPU with 80GB Memory in less than 12
hours for a single run. During the training of the
generator, We used a batch size of 128 and an Adam
optimizer for 15 epochs. We tried the learning rate
from the range of [10−3, 10−7] and picked up the
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Figure 5: Ablation study on prefix size and length of prompt with fractional extraction rate for LLMs in the main
paper.

best performance for each run and reported the aver-
age performance over the three runs in Section 4.2.
Discuss on the Artifacts. The source code of
our method is implemented with Pytorch (Paszke
et al., 2019) and HuggingFace Accelerate (HF).
And the implementation is built upon the open-
sourced code released by Ozdayi et al. (2023). All
the codes and datasets we utilize are public and
open-sourced. They support the usage in research
and we use them for research purpose only. We did
not check whether the used data contains any infor-
mation that names or uniquely identifies individual
people or offensive content. We left this work to
the institution that released the data.

B Ablation Study on the LLMs in the
Main Paper with Fractional Extraction
Rate

Figure 5 shows the ablation study on the prefix size
and length of prompt for GPT-Neo (2.7B), Pythia
(2.8B), Pythia (6.9B) and StarCoderBase (7B) in
terms of Fractional ER, which are the LLMs men-
tioned in the ablation study of main paper. And we
have the same conclusion as the ones Section 4.3.
More specifically, our method can outperform the
baselines consistently over all the settings. And
the saturation phenomenon can be observed in the
ablation study on the length of prompt.

Table 8: Ablation study on the dynamics of prompt for
more LLMs.

Model Method
Is Dynamic

Prompt?
Exact
ER

Fractional
ER

CSP ✗ 0.239 0.421
Ours ✗ 0.254 0.423

GPT-Neo
(125M) Ours ✓ 0.421 0.557

CSP ✗ 0.532 0.698
Ours ✗ 0.000 0.053

GPT-Neo
(1.3B) Ours ✓ 0.651 0.772

CSP ✗ 0.318 0.526
Ours ✗ 0.310 0.531

Pythia
(410M) Ours ✓ 0.513 0.683

CSP ✗ 0.497 0.714
Ours ✗ 0.484 0.709

Pythia
(1.4B) Ours ✓ 0.617 0.786

CSP ✗ 0.651 0.833
Ours ✗ 0.613 0.813

Pythia
(6.9B) Ours ✓ 0.702 0.858

CSP ✗ 0.071 0.235
Ours ✗ 0.079 0.254StarCoderBase

(1B) Ours ✓ 0.082 0.244
CSP ✗ 0.010 0.278
Ours ✗ 0.092 0.271

StarCoderBase
(7B) Ours ✓ 0.110 0.289

C Ablation Study of the Dynamics of
Prompt on the Remaining LLMs

Table 8 shows more results for the ablation stud-
ies on the dynamics of prompt, including all the
LLMs not mentioned in the same ablation studies
in Section 4.3 in the main paper. As shown in Ta-
ble 8, same conclusion as the ones in Section 4.3
can be drawn. More specifically, our method with
dynamic prompt outperforms the case with con-
stant prompt consistently and significantly over all
the evaluated settings. And the performance of our
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Figure 6: Ablation study on prefix size and length of prompt with exact extraction rate for the remaining LLMs for
text generation.
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Figure 7: Ablation study on prefix size and length of prompt with fractional extraction rate for the remaining LLMs
for text generation.

method with constant prompts is close to that of
directly learning a constant soft prompt.

D Ablation Study on the Remaining
LLMs for Text Generation

Figure 6 shows the ablation study on the prefix
size and length of prompt for GPT-Neo (125M),
GPT-Neo (1.3B), Pythia (410M) and Pythia (1.4B)
in terms of Exact ER, which are the remaining
LLMs not mentioned in the ablation study of main
paper for text generation. Figure 7 shows the same
ablation study evaluated by Fractional ER. The

same conclusion can also be drawn as the ones in
Section 4.3. More specifically, our method can
outperform the baselines consistently over all the
settings. And the saturation phenomenon can be
observed in the ablation study on the length of
prompt in terms of Exact ER and Fractional ER.

E Ablation Study on the Remaining
LLMs for Code Generation

Figure 8 shows the ablation study on the prefix
size and length of prompt for StarCoderBase (1B)
and StarCoderBase (3B) in terms of Exact ER and
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Figure 8: Ablation study on prefix size and length of prompt for the remaining LLMs for code generation.

Fractional ER. The two LLMs are the models not
mentioned in the ablation study of the main paper
for code generation. And we can conclude the
same conclusion as the ones in Section 4.3 with
the exception when evaluating the impact of the
length of prompt on StarCoderBase (1B) in terms
of Fractional ER. In this case, the performance of
CSP outperforms our method when the length of
prompt is 75. It indicates that more techniques
are needed for our method to achieve robust and
consistent improvement in terms of Fractional ER.

9796


