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Abstract

Retrieval-augmented generation has gained
popularity as a framework to enhance large lan-
guage models with external knowledge. How-
ever, its effectiveness hinges on the retrieval
robustness of the model. If the model lacks
retrieval robustness, its performance is con-
strained by the accuracy of the retriever, re-
sulting in significant compromises when the
retrieved context is irrelevant. In this paper,
we evaluate the “implicit” retrieval robustness
of various large language models, instructing
them to directly output the final answer without
explicitly judging the relevance of the retrieved
context. Our findings reveal that fine-tuning on
a mix of gold and distracting context signifi-
cantly enhances the model’s robustness to re-
trieval inaccuracies, while still maintaining its
ability to extract correct answers when retrieval
is accurate. This suggests that large language
models can implicitly handle relevant or irrele-
vant retrieved context by learning solely from
the supervision of the final answer in an end-to-
end manner. Introducing an additional process
for explicit relevance judgment can be unnec-
essary and disrupts the end-to-end approach. 1

1 Introduction

Large language models (LLMs) have brought about
a paradigm shift in the field of Natural Language
Processing, enabling remarkable advancements in
various tasks (Brown et al., 2020; Su et al., 2022a,b;
Chowdhery et al., 2023; Achiam et al., 2023). How-
ever, their static nature imposes limitations, pre-
venting them from fully encompassing all special-
ized knowledge or maintaining its currency (Dhin-
gra et al., 2022; Kandpal et al., 2023). To miti-
gate this constraint, a prevailing trend involves the
adoption of retrieval-augmented generation (RAG)
methodologies (Guu et al., 2020; Lewis et al., 2020;

∗Work Done Outside Amazon
† Corresponding Author

1We release our model outputs here. The used datasets can
be accessed through this link.
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Figure 1: Difference between explicitly and implicitly mod-
elling the relevance of retrieved context. The explicit approach
evaluates whether the retrieved context is relevant and then
calls different functions based on this assessment. In contrast,
the implicit approach directly generates the final answer in an
end-to-end manner.

Izacard et al., 2022). Through bringing extra con-
text from the retriever, these models can tap into
external knowledge reservoirs, refining their out-
puts with heightened precision and contextually
fitting information (Wang et al., 2023; Gao et al.,
2023; Chen and Shu, 2023).

Nevertheless, acquiring a reliable retriever is
challenging. Since the number of candidate docu-
ments for retrieval is typically much larger than the
vocabulary size of LLMs, it is often easier to gener-
ate the correct answer from the knowledge stored in
the model parameters rather than retrieving it (Yu
et al., 2023a; Maekawa et al., 2024; Feldman et al.,
2024). When the retriever is imperfect, the quality
of LLM generations can be significantly compro-
mised, which often leads to poorer performance
compared to scenarios where no retriever is em-
ployed at all (Li et al., 2022; Luo et al., 2023).
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The main reason that influences the quality of
RAG is their retrieval robustness (Yoran et al.,
2024). Ideally, a retrieval-robust model should pos-
sess two key capabilities:

I Properly incorporate helpful retrieved informa-
tion to provide an accurate answer.

II Ignore distracting information and rely on its
own internal knowledge as a fallback.2

Capability I pertains to scenarios where the re-
trieved information aids in deriving the answer,
while Capability II pertains to scenarios where the
retriever only returns distracting information.

A wide range of approaches have been proposed
to improve the retrieval robustness of LLMs, which
can be classified into two categories: The first cat-
egory explicitly decouples Capability I and II by
injecting an intermediate process to judge the rel-
evance of retrieved information, based on which
different functions are called (Creswell and Shana-
han, 2022; Yu et al., 2023b). The second category,
on the contrary, relies on the model itself to implic-
itly judge the relevance of the retrieved information
and generate the right answer directly (Luo et al.,
2023; Yoran et al., 2024). Figure 1 depicts the dif-
ference between explicit and implict approaches.

Despite being finer-grained, explicit approaches
increase runtime latency and the risk of error prop-
agation. They also require annotations regarding
the relevance of retrieved information, which can
be costly to obtain on a large scale.3 In this paper,
we conduct a thorough analysis in a controlled set-
ting to evaluate the “implicit” retrieval robustness
of LLMs. More concretely, we aim to determine
the extent to which we can uphold the retrieval ro-
bustness without requiring explicit judgment of the
retrieval’s relevance.

To conduct this analysis, we run extensive exper-
iments with 5 question-answering tasks spanning
different domains and scenarios; 5 open-source
LLMs (Vicuna-7/13/33B and Llama 2-7/13B); 2
closed-source models (GPT-3.5 and GPT-4) and 3
testing scenarios (zero-shot with prompting, full

2Some works take a conservative strategy of refraining
from answering if the retrieved context is unhelpful. However,
this limits the model’s potential to the accuracy of the retriever
and underutilizes LLMs’ internal knowledge (Li et al., 2023).

3Annotations can be circumvented by developing complex
self-supervision or weak-supervision algorithms (Wang et al.,
2024), but these algorithms often come with additional costs,
such as increased computations or suboptimal performance.

fine-tuning and LoRA fine-tuning). For each exper-
iment, we run controlled tests to evaluate Capabil-
ity I and II of the models separately. Our findings
can be summarized as follows:

• Without fine-tuning, open-source LLMs of-
ten under-perform GPT-3.5/GPT-4 in terms
of Capability I, but match them in terms of
Capability II. Larger models generally exhibit
greater resilience to distractions.

• Fine-tuning on gold context enhances Capa-
bility I on challenging tasks, but often hits
a plateau on easier tasks, accompanied by a
drop in Capability II. LoRA matches full fine-
tuning in improving Capability I and better
preserves Capability II.

• Fine-tuning on noisy context can significantly
enhance Capability II of LLMs without affect-
ing their Capability I. A higher noise ratio
(50%) can often lift the performance of Capa-
bility II to the level of non-retrieval models,
except on questions requiring multi-hop or
multi-turn inference.

Overall, we suggest that LLMs are notably ro-
bust at noisy retrievals during fine-tuning. With
a high noise ratio, the “implicit” retrieval robust-
ness of LLMs can be remarkably effective. For
most question-answering tasks that do not involve
sophisticated multi-hop or multi-turn inference, re-
lying on the model’s implicit retrieval robustness
may already suffice.

2 Related Work

Retrieval-Augmented Generation Due to the
static nature of the knowledge stored within their
parameters, large language models encounter dif-
ficulties in tasks that require extensive knowledge
or have temporal dependencies (Qiu et al., 2023).
Retrieval-augmented generation has emerged as
a valuable approach to address these limitations
by enabling models to retrieve and integrate in-
formation from external sources during the gen-
eration process (Guu et al., 2020; Lewis et al.,
2020; Del Tredici et al., 2021, 2022). The exter-
nal sources may include knowledge bases, search
engines, multi-turn histories, or private databases,
depending on the specific knowledge needed for
the task (Gao et al., 2023). Various studies have
explored the integration of retrieval mechanisms
into generative models to enhance the quality and
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relevance of generated text from LLMs (Peng
et al., 2023; Shi et al., 2023; Ren et al., 2023).
The retrieval-augmented mechanism not only im-
proves performance but also offers a cost-effective
approach to adapting the model for diverse do-
mains by dynamically adjusting external knowl-
edge sources (Barlacchi et al., 2022; Ram et al.,
2023). Although improvement has been observed,
the quality of generations is strongly affected by
the accuracy of retrievers. Inaccuracies in retriev-
ers can lead to the incorporation of irrelevant or
misleading information, resulting in lower-quality
generated content (Xu et al., 2024; Feldman et al.,
2024).

Retrieval-Robust Large Language Model Rec-
ognizing that the quality of text generations from
LLMs is significantly influenced by the retriever’s
quality, various research works have been proposed
to enhance the retrieval robustness of LLMs, i.e.
, the model should effectively utilize accurate re-
trieved information while also disregarding distract-
ing information in cases where the retriever is in-
accurate (Yoran et al., 2024). The first line of re-
search introduces an intermediary step to assess
the relevance of retrieved information, aligning
with conventional methods of step-by-step plan-
ning in text generation (Konstas and Lapata, 2013;
Moryossef et al., 2019; Shen et al., 2020). When
the information is detected to be unhelpful, the
model will simply fall back to use its own pa-
rameterized knowledge to answer the question.
This helpfulness label is usually obtained by man-
ual annotation (Glaese et al., 2022; Shuster et al.,
2022), chain-of-thought prompting on a powerful
LLM (Creswell and Shanahan, 2022; Yu et al.,
2023b; Zhang et al., 2024), or inspecting its ef-
fect on the model generation (Jeong et al., 2024).
Although this step-by-step approach provides finer-
grained signals, it also leads to increased runtime
latency and training costs, with potential risks of
error propagation (Wang et al., 2023). Conversely,
the alternative line of research employs an end-
to-end approach to train models to autonomously
discern the relevance of retrieved information from
without extra helpfulness labels. The key to achiev-
ing successful end-to-end learning is to incorporate
noisy retrievals, allowing the model to adjust to dis-
tracting information (Luo et al., 2023; Yoran et al.,
2024). Nonetheless, existing studies lack quanti-
tative analysis on how the retrieval robustness is
influenced by factors such as the model, fine-tuning

method, data, and noise ratio. Our research seeks
to address this gap in the literature.

3 Definition of Retrieval Robustness

Let q, c, a denote the question, context retrieved
from an external source, and answer respectively.
The variable p denotes the probability estimator
from the LLM generator. In retrieval-augmented
generation, the retriever retrieves some context c4

from external sources where c can be either help-
ful or unhelpful depending on the accuracy of the
retriever. The answer is generated from p(a|q, c)
by conditioning on q and c. An LLM is consid-
ered retrieval-robust if the probability estimation
p(a|q, c) remains effective regardless of the help-
fulness of c. It corresponds to two different capa-
bilities that the LLM should possess:

I When c is helpful, i.e. , the correct answer a∗

can be derived from the information contained
in c, then it should return a∗.

II When c is not helpful, it should discard the
information in c and rely on its own parameter-
ized knowledge p(a|q) to answer the question.

Equation 1 illustrates the ideal probust(a|q, c) from
a retrieval-robust LLM mathematically, where δ is
the dirac-delta function.

probust(a|q, c) =
{
δ(a− a∗), if a∗ ∈ c

p(a|q), otherwise
(1)

4 Experiment Setup

Model We test 5 open-source LLMs: Vicuna-
1.3-7/13/33B (Chiang et al., 2023) and Llama 2-
chat-7B/13B (Touvron et al., 2023), as well as two
closed-source LLMs GPT-3.5 and GPT-4 (Achiam
et al., 2023). 5 For open-source LLMs, we test
their performance with zero-shot prompting, LoRA
and full fine-tuning on task-specific datasets. For
closed-source LLMs, we only report their perfor-
mance by prompting them with instructions.

Dataset In order to test model capabilities com-
prehensively, we test the models on 5 datasets
covering diverse domains, question types and
knowledge sources: AmbigQA (Min et al., 2020),

4Depending on the granularity of the retrieval, the context
can be in the unit of documents, passages, sentences, entities,
etc (Shen et al., 2022c).

5We used GPT-3.5-0613 and GPT-4-0613. Experiment
results should be reproducible by calling the same API.
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Dataset Question Knowledge Source

AmbigQA General-Knowledge Wikipedia
ePQA Product-Specific Amazon

Musique Multi-Hop Wikipedia
SciQ Scientific TextBook

TopioCQA Conversational Wikipedia

Table 1: Datasets used in this paper. We choose 5 datasets
with diverse question types and knowledge sources.

ePQA (Shen et al., 2022a,b), Musique (Trivedi
et al., 2022), SciQ (Welbl et al., 2017) and Top-
ioCQA (Adlakha et al., 2022).

We specifically choose datasets with short an-
swers because evaluating long answers is known
to be challenging (Xu et al., 2023). AmbigQA is a
refined version of Natural Questions (Kwiatkowski
et al., 2019) after removing the ambiguity among
questions. It contains general-knowledge questions
answerable with Wikipedia contents. ePQA con-
tains product-specific questions from the Amazon
website. Testing on ePQA reduces the chance that
the model memorizes the knowledge since prod-
uct information is tail-distributed. MuSiQue is an
improved version of HotpotQA (Yang et al., 2018)
after removing potential short cuts. It contains ques-
tions requiring multi-hop reasoning, which have to
be answered with at least two passages. SciQ con-
tains scientific questions about physics, chemistry,
etc. TopioCQA contains questions in multi-turn
conversations. Table 1 provides a summary of used
datasets. Dataset examples are in Appendix B.

Hyperparameter When fine-tuning models, we
observe that the learning rate can have big impact
on the performance. In general for 7B/13B models,
full fine-tuning requires a small learning rate (in
the scale of 1e-6) while LoRA fine-tuning requires
a larger learning rate (in the scale of 1e-4). For 33B
models, a small learning rate in the scale of 1e-6 is
necessary. Due to the large impact of learning rate,
we perform a grid search over [1e-6, 3e-6, 5e-6, 1e-
5, 3e-5, 5e-5, 1e-4, 3e-5, 5e-4, 1e-3, 3e-3, 5e-3] for
every model fine-tuning in the following section,
then choose the checkpoint with the best score.6

The batch size is fixed as 64 for all runs. The model
is fine-tuned for 1 epoch with the best-performing
learning rate.

6As the learning rate increases, the behavior of the curve
varies between full FT and LoRA FT. In full FT, the model
performance initially improves before declining. The optimal
rate falls somewhere in between. In LoRA FT, the model
performance fluctuates, showing two cycles of improvement
and decline, with the optimal rate located at one of the peaks.

Prompt We conduct a series of prompt engi-
neering and finalize two prompt templates: Tem-
plate 4.1 is used when the retrieval is not involved
and 4.2 is used when the retrieval is involved. For
the ePQA dataset, we add an additional instruction
to let the model always start with “yes/no” for bi-
nary questions to enable easier evaluation. For the
TopiOCQA dataset, we further instruct the LLM
to be aware that the question is within a conversa-
tion and turns are separated by the <SEP> symbol.
Details are in Appendix A. Empirically we find
these templates are the best at inducing LLMs to
produce answers at the desired format. In order
to keep a fair comparison, we use the same set of
prompts both when directly prompting the original
LLMs, and when fine-tuning them, such that we
can quantify how fine-tuning changes the retrieval
robustness.

Prompt 4.1: Instruction w/o Retrieval

Answer the following question with less than
10 words. Question: [Q]

Prompt 4.2: Instruction w. Retrieval

Answer the following question with less
than 10 words. The context is retrieved
information which may or may not be helpful.
When the context is unhelpful, answer it
with your own knowledge. Question: [Q]
Context: [C]

Metric We evaluate the model’s performance us-
ing recall, which indicates the number of words
(excluding punctuation) from the gold answer that
also appear in the model prediction. The recall met-
ric is averaged across the test samples. This choice
is made because LLMs may generate answers that
are correct but longer than the concise answers in
the original dataset, so using other metrics such
as precision or F1 scores can significantly under-
estimate their performance (Adlakha et al., 2023).
Empirically we also observe that the recall score
correlates the best with human evaluations. 7

Evaluation We evaluate the model performance
under three scenarios to quantitatively measure the
two capabilities of retrieval robustness: (1) when
no retrieval is provided; (2) when gold retrieval is
provided; and (3) when distracting retrieval is pro-

7We explored other metrics such as precision, F1 score and
Bert-score. We conducted an human evaluation on 500 gener-
ations (each generation is judged by 3 independent annotators)
and found the recall metric correlated the best.
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vided. The gold retrieved information is extracted
from the original dataset. To acquire the distracting
retrieval, we retrieve the top 10 documents from the
knowledge sources of each dataset.8 Subsequently,
we consider the document with the lowest recall
score with the answer as distracting information.9

The rationale for selecting from the top-10 DPR re-
sults is to align the process with realistic use cases.
If the passages are blatantly distracting, it could
make it too simplistic for the model to differentiate.
We run all model generations with beam search
under the beam size of 5.

5 Results and Analysis

We evaluate how retrieval robust different LLMs
are in three scenatios: when directly prompting
the original LLMs without fine-tuning them; when
fine-tuning them only on gold context, and when
fine-tuning them on mixed gold and distracting
context. The results are presented in this order.
Full results tables are in Appendix C

5.1 Without Fine-Tuning
Figure 2 presents the results of directly prompting
original LLMs without fine-tuning when provided
with (1) no context, (2) gold context and (3) dis-
tracting context.

Without Context When no context is provided,
LLMs often struggle to recall exact answers from
their internal knowledge. As expected, larger mod-
els generally perform better than smaller ones.
While GPT-3.5 and GPT-4 outperform open-source
LLMs, their advantage is not substantial. For ques-
tions involving tail product knowledge (ePQA) or
requiring multi-hop inferences (Musique), GPT-3.5
and GPT-4 face the same challenges as open-source
models, limiting their advantages. Notably, most
questions in ePQA are binary, allowing models to
achieve decent scores through random guessing.
As a result, performance on ePQA appears reason-
able despite the LLMs’ lack of specific product
knowledge.

Capability I When gold context is provided, all
LLMs exhibit large improvement across all tasks,
demonstrating their remarkable capabilities in ex-
tracting the right answers from the retrieved con-

8We adopt a dense passage retriever (Karpukhin et al.,
2020, DPR) trained on each knowledge source.

9Most passages selected by this way have a recall score of
0 and only ∼ 2% of them have recall scores > 0.5, so we can
consider they are almost distracting information.
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Figure 2: Performance by Prompting different LLMs when
provided with no context (None), gold context (Gold) and
distracting context (Distract).

text. As model size increases, Vicuna-series mod-
els show more consistent performance improve-
ments. However, for Llama 2-series models, the
13B model does not exhibit a clear advantage over
the 7B model, except on the easiest dataset, Am-
bigQA. Nevertheless, there is still a large gap be-
tween open-source LLMs and closed-source GPT-
3.5/4. This gap is more notable (> 14%) on ePQA,
Musique and TopioCQA as their question types
and knowledge sources are more challenging. On
ePQA, where a substantial amount of context is
in JSON format, open-source LLMs encounter dif-
ficulty in efficiently processing information from
this source. On Musique and TopioCQA, the pres-
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ence of multiple items in the context and ques-
tions requires LLMs to accurately grasp the inter-
dependencies among them, thereby increasing the
complexity of the task.

Capability II When distracting context is intro-
duced, all LLMs experience a decline in perfor-
mance compared to having no context at all. How-
ever, the decline with distracting context is usually
much smaller than the gain from gold context, sug-
gesting that existing LLMs are quite good at ignor-
ing distracting context.10 The decline also varies
across datasets. On datasets with tail knowledge,
such as ePQA, the decline is minimal because the
original LLM has almost no prior knowledge about
specific products. Compared to Capability I, there
is a more consistent trend that larger models are
more resilient with distracting context, suggesting
that model size has a greater impact on the inherent
capability for instruction following than on the un-
derstanding of additional context information. Sur-
prisingly, powerful closed-source LLMs are even
more vulnerable to distracting context, particularly
on questions involving common knowledge (Am-
bigQA and SciQ). The largest open-source LLM
we tested, Vicuna-33B, is comparable to or better
than GPT-3.5/4 in terms of performance drop when
faced with distracting context.

In summary, when directly prompting LLMs, we
have the following observations:

1. In terms of Capability I, open-source LLMs
significantly under-performs GPT-3.5/4, es-
pecially on challenging tasks with complex
question types and knowledge sources.

2. In terms of Capability II, open-source LLMs
can be comparable or better than GPT-3.5/4.
Larger models are more resilient with distract-
ing context.

5.2 Fine-Tuning on Gold Context

While directly prompting existing LLMs can show-
case remarkable performance, further task-specific
fine-tuning is often necessary to fully tailor an
LLM for a specific task. In order to see how task-
specific fine-tuning can improve Capability I and II
of LLMs, we perform full and LoRA fine-tuning on
every task. During fine-tuning, the gold context is

10Previous research typically reports larger declines because
they did not explicitly instruct the LLM to revert to its own
knowledge when the context is unhelpful (Yoran et al., 2024).
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use only gold context when fine-tuning, then testing on gold
and distracting context (Gold and Distraction).

provided to teach LLMs to extract answers from the
context, a common setup in retrieval-augmented
training. Figure 3 depicts the experiment results.

Without Context Before fine-tuning on gold con-
text, we first analyze the performance change when
fine-tuning without context (“None” as in Figure 3).
This can serve as an upper-bound performance for
an LLM when the retrieved context is distracting
(p(a|q) as in Equation 1). As observed, fine-tuning
without context often results in limited improve-
ment. The only exception is the TopioCQA dataset,
likely because the original LLMs struggle to un-
derstand the conversational format of the input and
require fine-tuning to fully grasp the task format.
This supports the superficial alignment hypothesis,
which suggests that fine-tuning mainly trains the
model to follow task-specific formats rather than
adding new knowledge (Zhou et al., 2024).

Capability I When fine-tuning LLMs with gold
context, performance often improves significantly
in terms of extracting the correct answer from the
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provided context. The improvement is especially
pronounced on the ePQA and TopioCQA datasets,
as these tasks are not inherently difficult but re-
quire adaptation to specific knowledge sources and
conversational questions. On the ePQA dataset,
the fine-tuned models can even outperform the
closed-source GPT-3.5 and GPT-4 models. Af-
ter fine-tuning, there is a more consistent trend
of larger models performing better, as the vari-
ance from prompting formats is reduced. However,
all open-source LLMs struggle to further improve
on the AmbigQA dataset, even with task-specific
fine-tuning, possibly because their initial perfor-
mance is already high and adding more data alone
does not yield significant improvement. Llama
2 models also hit a performance plateau on the
Musique dataset. This suggests that task-specific
fine-tuning alone may not be sufficient for open-
source LLMs to match GPT-3.5 and GPT-4 in Ca-
pability I. Additional factors beyond task-specific
fine-tuning might be necessary to close this gap.
Across all models and datasets, there is no clear ad-
vantage of full fine-tuning over LoRA fine-tuning,
even though training costs associated with full fine-
tuning are significantly higher.

Capability II Despite the improvement of Ca-
pability I, fine-tuning LLMs only on gold context
can mislead them to always rely on the provided
context, even when the information is distracting.
This can eventually harm Capability II, prevent-
ing LLMs from safely falling back to their internal
knowledge. As observed in Figure 3, there is in-
deed some performance decrease when LLMs are
provided with distracting context. The gap between
the LLM’s probability estimation p(a|q, c) and the
ideal upper bound p(a|q) widens. However, un-
expectedly, the decrease is often small compared
to the big performance boost when provided with
gold context, especially on the more challenging
ePQA, Musique and TopioCQA datasets. This may
be because existing open-source LLMs struggle
to handle distracting context on these more diffi-
cult datasets, so their initial performance is already
close to random, leaving little room for further
decline even when fine-tuning only on gold con-
text. On the easier AmbigQA and SciQ datasets,
LoRA fine-tuning often results in less performance
drop compared to full fine-tuning due to the smaller
number of adjustable training parameters.

In summary, when fine-tuning LLMs only on
gold context, we have the following observations:

1. Capability I is improved significantly on chal-
lenging datasets, but hit a plateau on eas-
ier ones, suggesting other factors might be
needed to fully close the gap with GPT-3.5/4.

2. Capability II is decreased mainly on easier
datasets, potentially because the original per-
formance on harder datasets with distracting
context is already close to random.

3. LoRA fine-tuning is similar to full fine-tuning
in terms of improving Capability I, but better
at maintaining capability II.

5.3 Fine-Tuning on Mixed Context

0

20

40

60

80

Am
bi

gQ
A

0

20

40

60

80

eP
Q

A

0

20

40

60

M
us

iq
ue

0

20

40

60

80

Sc
iQ

Vicuna-7B Vicuna-13B Vicuna-33B Llama 2-7B Llama 2-13B
0

20

40

60

To
pi

oC
Q

A

Full-FT  w. 0% distraction
Full-FT  w. 20% distraction

Full-FT  w. 50% distraction
LoRA FT w. varied distraction rates
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Fine-tuning LLMs solely with gold context
can reduce their robustness to distracting con-
text, which are inevitable in real-world retrieval-
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Incorporating distracting context during fine-tuning signifi-
cantly enhances retrieval robustness in distracting contexts.
When the distraction ratio is increased to 50%, LLMs can
achieve performance comparable to the upper-bound perfor-
mance without retrieval.

augmented generation scenarios. Therefore, we
further explore whether the retrieval robustness can
be improved by mixing distracting context into
the fine-tuning datasets. We experiment with two
distraction ratios: 20% and 50%. All distracting
context are hard negative samples from the top-10
retrieved contents with dense retrieval to simulate
real-case scenarios.

Capability I Figure 4 illustrates the performance
of LLMs when fine-tuning with varying distrac-
tion ratios and testing on gold context. The results
indicate that different levels of distracting context
have little impact on performance. Even when
fine-tuned with 50% distracting context (i.e. the
training examples with gold context is reduced to
half), the models still maintain their performance
on gold context. Interestingly, in several instances,
especially on challenging datasets such as Musique,
augmenting the fine-tuning datasets with more dis-
tracting context actually enhances performance on

gold context. This suggests that Capabilities I and
II are not mutually exclusive, and that incorporat-
ing some noisy context during fine-tuning can also
be advantageous for Capability I. Regarding the
fine-tuning methods, LoRA fine-tuning performs
similarly to full fine-tuning, with the only excep-
tion being observed on the Musique dataset for the
Llama 2-7B model. This is due to the fact that
fine-tuning cannot further enhance performance,
allowing LoRA to preserve the original model per-
formance to the greatest extent possible.

Capability II After confirming that mixing dis-
tracting context into the fine-tuning dataset will not
affect Capability I, we further investigate whether
it can benefit Capability II by testing on distract-
ing context. The results are visualized on Figure 5.
As can be seen, increasing the distracting ratios
steadily improves the performance when provided
with distracting context. On the easier AmbigQA,
ePQA and SciQ datasets, after LLMs getting used
to their input formats, the performance when pro-
vided with distracting context can be very close to
the performance when no context is provided, i.e. ,
the model is not affected by the distracting context.
This holds true for models of varying sizes, with
LoRA fine-tuning performing similarly to full fine-
tuning. On the more challenging datasets, Musique
and TopioCQA, despite the steady improvement,
there is still some room for growth before the model
can be fully robust against distracting context. We
hypothesize that the model may require more data
to effectively understand longer input sequences,
considering that Musique includes multiple context
passages and TopioCQA involves an entire conver-
sation as the input question.

In summary, when fine-tuning LLMs on a mix-
ture of gold and distracting context, we have the
following observations:

1. Capability I is maintained, or sometimes even
enhanced, when the distracting ratio is in-
creased in the fine-tuning data.

2. Capability II gets improved steadily. On eas-
ier datasets with shorter inputs, the model can
even achieve complete robustness against dis-
tracting context.

6 Conclusion

Retrieval robustness is the key to determine the
quality of model generations in RAG. In this pa-
per, we conduct an extensive assessment of the
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“implicit” retrieval robustness of LLMs without ex-
plicitly letting models judge the relevance of the
retrieved context. Our findings indicate that LLMs
are remarkably adept at handling context with var-
ied retrieval accuracy, without needing explicit rele-
vance annotations. By incorporating a certain ratio
of distracting context into the fine-tuning dataset,
LLMs can maintain their ability to extract correct
answers from relevant context while hardly being
misled by irrelevant information.

Limitations

We aim to perform an extensive evaluation of the
implicit retrieval robustness across various LLMs.
However, due to resource and time constraint there
are several limitations of this paper.

First, we select models based only on LLama
and LLama-2 with up to 33B parameters. By the
time of writing, there have been more advanced and
larger open-source models available. The conclu-
sions drawn from this paper, especially the compar-
ison between open-source LLMs and closed-source
LLMs might not hold with up-to-date models.

Second, we choose only datasets with short an-
swers for simplicity of evaluations in this paper.
Long answers are also an important research di-
rection and is attracting growing attention. When
instructing models to generate more complex long
answers, the retrieval robustness of LLMs need to
be re-examined.

Finally, despite conducting a grid search over
a wide range of learning rates, it is possible that
the optimal configuration lies outside the range we
considered. We also did not extensively test results
with different batch sizes and data sizes, which
could impact model performance in various ways.
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A Prompts used for LLMs

A.1 W/o Retrieval

Prompt A.1: AmbigQA/MuSique/SciQ

Answer the following question with less than
10 words. Question: [Q]

Prompt A.2: ePQA

Answer the following question about a
product with less than 10 words. If it
is a binary question, always begin with yes
or no. Product name: [PRODUCT TITLE]
Question: [QUESTION]

Prompt A.3: TopioCQA

Answer the following conversation with less
than 10 words. Turns are split by [sep].
Conversation: [CONVERSATION]

A.2 W. Retrieval

Prompt A.4: AmbigQA/MuSique/SciQ

Answer the following question with less
than 10 words. The context is retrieved
information which may or may not be helpful.
When the context is unhelpful, answer it
with your own knowledge. Question: [QUES-
TION] Context: [CONTEXT]

Prompt A.5: ePQA

Answer the following question about a
product with less than 10 words. If it
is a binary question, always begin with yes
or no. The context is retrieved information
which may or may not be helpful. When the
context is unhelpful, answer it with your
own knowledge. Product name: [PRODUCT TI-
TLE] Question: [QUESTION] Context: [CON-
TEXT]

Prompt A.6: TopioCQA

Answer the following conversation with less
than 10 words. Turns are split by [sep].
The context is retrieved information which
may or may not be helpful. When the
context is unhelpful, answer it with your
own knowledge. Conversation: [CONVERSA-
TION] Context: [CONTEXT]

B Dataset Examples

Table 2 shows example snippets from each of the
datasets used in this paper. Musique contains at
least 2 gold passages per question as all questions
require multi-hop inferences. The other datasets
contain only 1 gold passage per question. When

sampling distracting passages, the numper of dis-
tracting passages is the same as that of gold pas-
sages.

The original ePQA dataset contains one-
sentence answers. In order to extract short answers
from them, we apply ChatGPT to extract a short
span from each annotated answer. If ChatGPT
judges the annotated answer cannot answer the
question, then we discard this example. Namely,
we only keep examples that ChatGPT thinks as
valid answers, so that we can reduce the chance of
noisy annotations in the original dataset. For the
test data, in order to catch diverse answers per ques-
tion, we manually annotated other possible spans
apart from the one generated by ChatGPT.

When evaluating model generations, a genera-
tion is considered correct as long as it matches any
one of the gold answers. We report the maximum
recall scores with all possible gold answers.

For all datasets, we select ∼3000 samples as
the training data and 200 samples as the test data.
Since our purpose is not to achieve state-of-the-art
performances but rather to inspect the effects of
retrieval-augmented generation, we use this data
split to reduce running time.

C Result Tables

Table 3, 4, 5 and 6 show the full results presented
in this paper. We only reported the results with the
best tried learning rate.

We run all experiments on 8 Nvidia A100 GPUs.
Each example is cut off with 1024 sub-tokens. On
each dataset, we train the model for one epoch and
select the run with the best learning rate. Each
training takes about 10 GPU hours for a 7B model,
15 hours for a 13B model and 30 hours for a 33B
model.
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Dataset Question Context Answer

AmbigQA

when did the first star wars movie
come out, in less than 32 theaters?

"star wars" debuted on wednesday,
may 25, 1977, in fewer than 32
theaters, and eight more on thurs-
day and friday. kurtz said ...

[’may 25, 1977’,’25th may,
1977’,’05/25/1977’]

ePQA
how much do these weigh? item_weight: { unit:ounces,

normalized_value:{ unit:pounds,
value:0.34 }, value:5.4 }

[’0.34 pounds’, ’5.4 ounces’]

Musique

who is the father of the creator of
the white rabbit?

["the white rabbit is a fictional
character in lewis carroll’s book
...", "charles dodgson was born in
1800 in hamilton ..."]

[’charles dodgson’]

SciQ

matter undergoing chemical reac-
tions and physical changes can re-
lease or absorb heat. a change that
releases heat is called what?

matter undergoing chemical reac-
tions and physical changes can re-
lease or absorb heat. a change that
releases heat is called an ...

[’exothermic process’]

TopioCQA

where do guinea pigs come from
in the wild [sep] they originated in
the andes of south america [sep]
how do they look like [sep] guinea
pigs are large for rodents; the com-
mon pet breeds weigh between
when full grown and measure be-
tween in length [sep] which club
is associated with it

cavy clubs and associations ded-
icated to the showing and breed-
ing of guinea pigs have been es-
tablished worldwide. the american
cavy breeders association, an ad-
junct to the american rabbit breed-
ers’ association, is the govern-
ing body in the united states and
canada. the british cavy council ...

[’cavy clubs dedicated to the show-
ing and breeding of guinea pigs
have been established worldwide.’,
’cavy clubs’, ’the american cavy
breeders association, british cavy
council and australian national
cavy council’, ’cavy clubs - the
american cavy breeders associa-
tion’]

Table 2: Dataset Examples. Musique contains at least 2 passages per question as all questions require multi-hop inferences.
The other datasets contain only 1 passage per question.

Dataset Retrieval Vicuna-7B Vicuna-13B Vicuna-33B Llama 2-7B Llama 2-13B GPT3.5 GPT4

AmbigQA
None 32.75 41.78 57.59 37.22 45.78 57.69 71.07
Gold 66.35 67.56 74.76 68.40 80.95 85.30 89.98

Distract 22.24 30.02 53.25 33.52 41.20 41.93 52.50

ePQA
None 42.21 47.84 49.71 45.17 45.35 54.83 55.27
Gold 50.00 62.53 63.30 61.44 51.08 79.78 77.96

Distract 39.36 45.80 45.62 44.89 42.91 50.70 47.51

Musique
None 11.10 11.21 19.75 15.22 19.69 12.80 22.23
Gold 39.10 36.60 43.65 43.63 40.46 58.56 74.11

Distract 4.58 6.24 12.80 10.48 10.60 7.25 16.71

SciQ
None 45.92 54.75 61.92 50.75 53.33 63.67 71.00
Gold 69.33 73.75 64.75 66.83 64.08 80.33 90.25

Distract 29.92 39.42 54.08 39.75 53.00 51.25 61.50

TopioCQA
None 29.91 30.99 35.16 30.52 32.79 41.54 57.38
Gold 26.87 30.34 50.19 34.38 35.56 64.14 76.44

Distract 19.75 22.13 28.98 22.65 21.95 30.87 55.65

Table 3: Prompting Performance.
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Dataset retrieval Vicuna-7B Vicuna-13B Vicuna-33B Llama 2-7B Llama 2-13B GPT3.5 GPT4

full Fine-tuning

AmbigQA
None 35.56 45.15 53.90 43.32 49.90 57.69 71.07
Gold 71.96 72.95 75.11 78.08 79.96 85.30 89.98

Distract 10.13 18.98 20.22 11.02 15.87 41.93 52.50

ePQA
None 52.37 53.04 53.50 53.37 53.81 54.83 55.27
Gold 79.65 79.67 81.04 78.32 81.27 79.78 77.96

Distract 41.08 40.87 44.44 40.12 44.67 50.70 47.51

Musique
None 18.30 19.77 22.82 15.40 18.75 12.80 22.23
Gold 50.84 53.81 55.74 32.65 46.80 58.56 74.11

Distract 5.02 4.59 4.55 3.96 9.81 7.25 16.71

SciQ
None 56.16 57.58 64.25 58.25 60.25 63.67 71.00
Gold 81.42 83.75 82.00 82.75 76.25 80.33 90.25

Distract 21.25 22.58 38.00 32.00 38.50 51.25 61.50

TopioCQA
None 43.44 45.39 48.58 42.77 44.59 41.54 57.38
Gold 65.59 65.78 71.37 70.81 69.94 64.14 76.44

Distract 19.77 23.79 24.82 20.16 25.21 30.87 55.65

LoRA Fine-tuning

AmbigQA
None 32.76 46.46 55.55 41.72 47.13 57.69 71.07
Gold 71.49 73.52 74.18 78.70 79.51 85.30 89.98

Distract 10.34 13.42 53.25 8.35 40.47 41.93 52.50

ePQA
None 52.62 53.75 54.37 49.04 53.74 54.83 55.27
Gold 77.52 80.97 83.96 74.88 79.60 79.78 77.96

Distract 43.82 41.09 43.19 41.12 47.82 50.70 47.51

Musique
None 16.06 21.54 23.58 14.62 19.18 12.80 22.23
Gold 50.08 55.91 56.16 44.13 40.69 58.56 74.11

Distract 4.89 5.20 5.65 10.56 10.60 7.25 16.71

SciQ
None 57.08 59.91 64.25 57.99 62.25 63.67 71.00
Gold 82.33 85.42 85.17 83.42 82.67 80.33 90.25

Distract 23.83 29.58 46.00 31.00 35.25 51.25 61.50

TopioCQA
None 43.00 42.67 48.14 41.19 44.33 41.54 57.38
Gold 64.18 63.82 68.80 68.37 68.83 64.14 76.44

Distract 21.63 24.13 23.02 24.61 25.89 30.87 55.65

Table 4: Performance by Fine-Tuning on Gold retrieval.
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Dataset retrieval Vicuna-7B Vicuna-13B Vicuna-33B Llama 2-7B Llama 2-13B GPT3.5 GPT4

full Fine-tuning

AmbigQA
None 35.56 45.15 53.90 43.32 49.90 57.69 71.07
Gold 74.62 74.36 74.10 79.94 77.24 85.30 89.98

Distract 30.56 31.60 51.32 34.37 43.25 41.93 52.50

ePQA
None 52.37 53.04 53.50 53.37 53.81 54.83 55.27
Gold 75.72 79.43 81.17 77.17 81.97 79.78 77.96

Distract 46.91 50.73 52.69 44.66 52.69 50.70 47.51

Musique
None 18.30 19.77 22.82 15.40 18.75 12.80 22.23
Gold 49.91 53.79 57.26 50.80 55.03 58.56 74.11

Distract 7.26 11.73 10.66 10.54 16.43 7.25 16.71

SciQ
None 56.16 57.58 64.25 58.25 60.25 63.67 71.00
Gold 79.50 86.00 82.08 81.08 83.58 80.33 90.25

Distract 50.50 53.83 58.42 50.83 53.08 51.25 61.50

TopioCQA
None 43.44 45.39 48.58 42.77 44.59 41.54 57.38
Gold 67.17 63.75 68.28 69.87 69.80 64.14 76.44

Distract 27.35 33.22 41.91 36.41 39.92 30.87 55.65

LoRA Fine-tuning

AmbigQA
None 32.76 46.46 55.55 41.72 47.13 57.69 71.07
Gold 72.22 73.21 77.80 76.68 80.45 85.30 89.98

Distract 29.01 38.79 43.90 33.30 41.69 41.93 52.50

ePQA
None 52.62 53.75 54.37 49.04 53.74 54.83 55.27
Gold 80.15 80.34 81.89 73.39 81.20 79.78 77.96

Distract 45.66 50.91 49.19 51.85 52.86 50.70 47.51

Musique
None 16.06 21.54 23.58 14.62 19.18 12.80 22.23
Gold 52.11 53.49 54.76 51.51 54.17 58.56 74.11

Distract 7.97 8.35 12.32 7.37 11.03 7.25 16.71

SciQ
None 57.08 59.91 64.25 57.99 62.25 63.67 71.00
Gold 81.75 84.67 83.75 82.25 83.42 80.33 90.25

Distract 51.08 54.92 59.25 48.92 54.33 51.25 61.50

TopioCQA
None 43.00 42.67 48.14 41.19 44.33 41.54 57.38
Gold 64.96 62.97 66.46 68.27 68.31 64.14 76.44

Distract 30.55 32.29 41.11 30.63 37.80 30.87 55.65

Table 5: Performance by Fine-Tuning on 80% Gold + 20% Distracting retrieval.
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Dataset retrieval Vicuna-7B Vicuna-13B Vicuna-33B Llama 2-7B Llama 2-13B GPT3.5 GPT4

full Fine-tuning

AmbigQA
None 35.56 45.15 53.90 43.32 49.90 57.69 71.07
Gold 72.18 74.33 74.55 75.98 76.77 85.30 89.98

Distract 31.16 44.10 53.11 36.34 43.05 41.93 52.50

ePQA
None 52.37 53.04 53.50 53.37 53.81 54.83 55.27
Gold 77.59 77.92 82.47 77.95 79.14 79.78 77.96

Distract 51.87 52.95 53.33 51.45 53.95 50.70 47.51

Musique
None 18.30 19.77 22.82 15.40 18.75 12.80 22.23
Gold 49.39 48.86 51.37 51.40 52.25 58.56 74.11

Distract 12.26 12.03 15.28 8.11 14.68 7.25 16.71

SciQ
None 56.16 57.58 64.25 58.25 60.25 63.67 71.00
Gold 80.75 81.33 80.25 80.17 84.00 80.33 90.25

Distract 51.67 56.99 61.91 50.92 53.58 51.25 61.50

TopioCQA
None 43.44 45.39 48.58 42.77 44.59 41.54 57.38
Gold 67.13 64.73 68.08 70.00 68.96 64.14 76.44

Distract 32.57 35.61 44.60 37.97 39.42 30.87 55.65

LoRA Fine-tuning

AmbigQA
None 32.76 46.46 55.55 41.72 47.13 57.69 71.07
Gold 74.22 73.32 74.18 73.02 79.34 85.30 89.98

Distract 33.04 42.80 52.75 35.26 40.47 41.93 52.50

ePQA
None 52.62 53.75 54.37 49.04 53.74 54.83 55.27
Gold 77.59 77.72 80.94 73.76 81.42 79.78 77.96

Distract 51.16 50.07 52.44 53.44 54.29 50.70 47.51

Musique
None 16.06 21.54 23.58 14.62 19.18 12.80 22.23
Gold 49.03 49.30 51.71 47.65 49.84 58.56 74.11

Distract 9.33 11.36 14.74 10.38 12.76 7.25 16.71

SciQ
None 57.08 59.91 64.25 57.99 62.25 63.67 71.00
Gold 80.08 84.08 83.33 82.67 82.58 80.33 90.25

Distract 52.50 53.75 62.00 50.58 56.16 51.25 61.50

TopioCQA
None 43.00 42.67 48.14 41.19 44.33 41.54 57.38
Gold 67.14 61.62 67.74 65.06 68.57 64.14 76.44

Distract 34.67 33.54 40.83 38.56 40.94 30.87 55.65

Table 6: Performance by Fine-Tuning on 50% Gold + 50% Distracting retrieval.

9003


