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Abstract

Alignment is a crucial step to enhance the
instruction-following and conversational abili-
ties of language models. Despite many recent
work proposing new algorithms, datasets, and
training pipelines, there is a lack of comprehen-
sive studies measuring the impact of various
design choices throughout the whole training
process. We first conduct a rigorous analysis
over a three-stage training pipeline consisting
of supervised fine-tuning, offline preference
learning, and online preference learning. We
have found that using techniques like sequence
packing, loss masking in SFT, increasing the
preference dataset size in DPO, and online
DPO training can significantly improve the per-
formance of language models. We then train
from Gemma-2b-base and LLama-3-8b-base,
and find that our best models exceed the perfor-
mance of the official instruct models tuned with
closed-source data and algorithms. Our code
and models can be found at https://github.
com/Columbia-NLP-Lab/LionAlignment.

1 Introduction

Large language models (LLMs), pre-trained on
datasets of trillion-scale tokens, have shown re-
markable performance across a wide range of
natural language processing tasks (Brown et al.,
2020; OpenAI et al., 2024; Touvron et al., 2023;
AI@Meta, 2024). However, these pre-trained mod-
els often struggle to follow human instructions and
generate responses that are unsafe or inappropriate
(Wei et al., 2023; Deshpande et al., 2023). Re-
cent research has increasingly focused on aligning
LLMs: this includes many new algorithms based
on reinforcement learning (Ouyang et al., 2022a;
Rafailov et al., 2023; Meng et al., 2024; Guo et al.,
2024a), new datasets to facilitate preference learn-
ing (Cui et al., 2023; Banghua et al., 2023), and new
training pipelines to improve the overall alignment

* denotes equal contribution.

performance (Tunstall et al., 2023b; Tran et al.,
2023; Dong et al., 2024). Although these contribu-
tions demonstrate sizable improvements, the train-
ing processes, datasets, and hyper-parameters often
remain heterogeneous or closed-source (Gemma
et al., 2024; AI@Meta, 2024). This makes it dif-
ficult to pinpoint the source of improvements and
limits the development of more effective or efficient
alignment algorithms.

In this work, we replicate modern alignment
pipelines (Tunstall et al., 2023b; Xu et al., 2024b)
and analyze sources in the training process that
could affect performance. In the three-stage train-
ing of supervised fine-tuning (SFT), offline prefer-
ence learning, and online preference learning, we
find that: 1) sequence packing and loss masking
significantly enhance SFT, 2) scaling offline prefer-
ence datasets improves overall performance, and 3)
online learning greatly benefits chat benchmarks.

Then, we aggregate our findings and fine-tune
from Gemma-2b-base (Gemma et al., 2024) and
LLaMA-3-8b-base (AI@Meta, 2024) using pub-
licly available datasets and open-source algo-
rithms. We evaluate our models on popular bench-
marks such as Arena-Hard (Zheng et al., 2023),
AlpacaEval-2 (Li et al., 2023b), MT-Bench (Zheng
et al., 2023), and OpenLLM (Beeching et al., 2023).
In all benchmarks, our models exceed the perfor-
mance of the officially instruct models, which rely
on closed-source datasets and algorithms. We be-
lieve our easily reproducible study offers useful
insights for alignment research, and our fine-tuned
models are valuable for downstream applications.

Our contributions are:

• We present a rigorous analysis of modern
alignment training pipelines, and identify a
set of design choices that significantly impact
the performance of language models.

• We aggregate our empirical findings into
a step-by-step recipe, and show that our
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models outperform the officially released in-
struct models, which relies on closed-source
datasets and algorithms.

• We make our model, training dataset, and code
publicly available for future research in lan-
guage model alignment.

2 Preliminaries

Traditional reinforcement learning for human feed-
back (RLHF) methods typically starts with super-
vised fine-tuning, then trains a reward model r
mimicking human preferences, and finally opti-
mizes a language model πθ to maximize the reward
(Ziegler et al., 2020; Bai et al., 2022; Ouyang et al.,
2022a). However, this process can be complex and
difficult to tune. Many recent works (Tran et al.,
2023; Xu et al., 2024b) have proposed alternative
algorithms. In this work, we examine a three-stage
RLHF pipeline: 1) supervised fine-tuning; 2) of-
fline preference learning with DPO (Rafailov et al.,
2023); and 3) online preference learning with DPO.
Below, we review each training stage.

Supervised Fine-tuning Stage Supervised Fine-
tuning (SFT) maximizes the log likelihood of the
ground truth response y given a user’s query x:

p(y|x) = 1

|y|

|y|∑

i=1

log πθ(yi|x, y<i).

Efficiently optimizing the above objective is a chal-
lenging problem. We explore various strategies for
SFT, which are detailed in Section 3.2.

Offline Preference Learning Stage In the sec-
ond phase, the SFT model πSFT is trained offline
with a collection of human preference data. This is
often done using DPO, which first re-parametrizes
the reward r in terms of the optimal policy1:

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x)

where πref is a reference policy, β controls the
strength of the KL-divergence, and Z(x) is the par-
tition function. Then, DPO optimizes the following
objective treating the LMs as reward models:

LDPO = −E(x,yw,yl)∼D [log σ (rw − rl)] .

1Under the formulation of reward maximization under a
KL-divergence constraint

where (x, yw, yl) are preference pairs consisting
of the prompt, the winning response, and the los-
ing response, respectively; and rw = r(xw, yw),
rl = r(xl, yl) are rewards given a choice of πθ and
πref. Despite its simplicity, practical concerns in-
clude the choice of reference model πref, strength
of KL-divergence β, scalability of training, and
data filtering. We will analyze these in Section 3.3.

Online Preference Learning Stage After offline
preference learning, the model can be further fine-
tuned with online preference pairs to improve its
performance (Xu et al., 2024b; Guo et al., 2024b;
Tran et al., 2023). Similar to the traditional RLHF
pipeline, the process includes: 1) sampling multi-
ple responses from πθ; 2) use a reward model or
judge to rank the responses; and 3) optimize πθ
using DPO. In Section 3.4, we will examine the
effectiveness of further online learning against the
simple offline training process.

3 Alignment Procedure Analysis

This section explores and quantifies which choices
are important to align language models. We intro-
duce our experimental setups in Section 3.1, and
analyze different configurations in each stage of
the training process in Section 3.2, Section 3.3, and
Section 3.4, respectively. For a controlled study, we
fix the model architecture to Gemma-2b (Gemma
et al., 2024).

3.1 Experiment Setup

SFT Training Data To ensure the reproducibil-
ity, we carefully selected open-source, high-quality
datasets for supervised fine-tuning. These include
OpenHermes-2.5 (Teknium, 2023), SlimOrca (Lian
et al., 2023; Longpre et al., 2023; Mukherjee
et al., 2023), MetaMathQA (Yu et al., 2023), Ul-
traChat (Ding et al., 2023), OrcaMath (Mitra et al.,
2024), Capybara (Daniele and Suphavadeeprasit,
2023), and Deita-10k (Liu et al., 2024a). Since
OpenHermes-2.5 is a collection of many other
smaller open-source datasets, we also implemented
a deduplication process to remove duplicate sam-
ples across these datasets. We use the latest version
of those datasets to ensure that there is no contami-
nation of data for our evaluation benchmarks. We
summarize the dataset statistics in Table 1.

Offline Preference Learning Data For a con-
trolled study, all models are trained on a fixed pool
of pairwise preference dataset. We follow (Dong
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Dataset Samples (%) Tokens (%)

OpenHermes-2.5 35.79% 28.77%
MetaMathQA 20.96% 10.14%
SlimOrca 19.74% 15.42%
UltraChat 11.29% 27.89%
OrcaMath 10.85% 7.60%
Capybara 0.86% 1.68%
Deita-10k 0.51% 8.51%

Total Count 1.84M 878M

Table 1: SFT dataset statistics

Dataset Samples (%) Judge

HH-RLHF 37.83% Human
TLDR-Preference 27.85% Human
UltraFeedback 23.04% GPT-4
Distilabel-Orca 4.83% GPT-4-Turbo
Py-DPO 3.57% GPT-4-Turbo
Distilabel-Capybara 2.87% GPT-4-Turbo

Total Count 264K -

Table 2: Offline DPO dataset statistics

et al., 2024; Tunstall et al., 2023b) and manually
select a mixture of publicly available datasets such
as UltraFeedback (Cui et al., 2023), HH-RLHF
(Bai et al., 2022), and TLDR-preferences (Stien-
non et al., 2020a). These datasets consist of chat
responses generated by a variety of LMs, and the
winning/losing response is decided by prompting
a judge model (e.g., GPT-4) or by asking human
raters. We present the dataset statistics in Table 2.
For more details on these datasets, please refer
to Appendix A.1. Unless otherwise indicated, all
dataset subsets mentioned in this section are ran-
domly sampled from this 264K mixture.

Online Preference Learning Data We follow
prior work (Meng et al., 2024; Xu et al., 2024b)
and consider using data from UltraFeedback (Cui
et al., 2023) as prompts. We then sample multiple
responses from πθ and use Pair-RM (Jiang et al.,
2023b) as a judge to obtain preference pairs. This
results in an online collected dataset of 60k in size.
Unless otherwise indicated, all dataset subsets re-
lated to online learning are randomly sampled from
this 60k dataset.

Evaluation Benchmarks We assess our models
using OpenLLM (Beeching et al., 2023) and Arena-
Hard-Auto (Li et al., 2024). The HuggingFace
OpenLLM leaderboard evaluates an LM across a di-
verse set of reasoning, math, and knowledge tasks,

and the average score is reported. Arena-Hard-
Auto evaluates an LM’s instruction-following abil-
ity using 500 challenging user queries curated from
the live Chatbot Arena leaderboard (Zheng et al.,
2023). To quantify the models’ performance, it
prompts a judge model (GPT-4-turbo) to compare
the generated response against a reference response
(by GPT-4), and uses the win rate as the final score.
Since evaluation with GPT-4-turbo is expensive
and using GPT-4’s answers provides reference an-
swers that are too strong, we use GPT-4-Omni2 as
the judge model and answers by GPT-3.5-turbo3 as
references for Sections 3.2 to 3.4. We denote this
modification as Arena-Hard-Auto*.

3.2 Supervised Fine-tuning

Supervised fine-tuning (SFT) plays a critical role
in aligning Large Language Models (LLMs), often
serving as the first step of alignment. However,
different techniques, including sequence packing,
padding, and loss masking, have been proposed for
SFT (Chiang et al., 2023; Tunstall et al., 2023b;
Shi et al., 2024). We re-examine the effectiveness
of these strategies within the context of alignment.

Packing Packing optimizes the training effi-
ciency by grouping sequences of varying lengths
into a single long sequence without requiring any
padding. This technique, commonly used in LLM
pre-training, is now also utilized in instruction-
based supervised fine-tuning, as implemented by
models like Zephyr (Tunstall et al., 2023b)4.

Padding In contrast to packing, padding extends
shorter sequences with padding tokens and trun-
cates longer ones to a fixed maximum length. It is
often paired with loss masking, and is implemented
in training models like Alpaca (Taori et al., 2023)
and Vicuna (Chiang et al., 2023)5.

Loss Masking The standard language model
training computes loss across all tokens in a se-
quence. Loss masking, however, ignores loss com-
putation on tokens that are not output tokens like
user instructions. It prevents the model from learn-
ing irrelevant information, alleviating catastrophic
forgetting and overfitting.

2We use version GPT-4o-2024-05-13
3We use version GPT-3.5-turbo-0125
4https://github.com/huggingface/

alignment-handbook
5https://github.com/lm-sys/FastChat
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Model OpenLLM Arena Hard Auto*

Gemma-2b 46.51 -

|D| = 10K

Padding 42.49 3.1
+ Loss Mask 43.62 2.4

Packing 47.95 5.1
+ Loss Mask 48.34 5.2

|D| = 1.6M

Packing 47.14 3.9
+ Loss Mask 53.80 8.8

Table 3: Performance comparison for different SFT
strategies on OpenLLM and Arena-Hard-Auto*.

Loss masking can be used in conjunction with
both packing and padding strategies. Packing with-
out loss masking and padding with loss masking
is widely adopted in SFT, but the combination of
packing with loss masking is largely unexplored.
We evaluate the performance of these strategies on
both small and large datasets. For each dataset size
|D|, we train all models from Gemma-2b-base over
3 epochs using a batch size of 32, a sequence length
of 2,048 tokens, a learning rate of 2e-5. We then
repeat this with |D|=10K with DEITA-10k (Liu
et al., 2024b) and |D|=1.6M with Open-Hermes2.5
(Teknium, 2023), MetaMathQA (Yu et al., 2023),
and UltraChat (Ding et al., 2023).

Table 3 summarizes our results. We find that
combining packing with loss masking consistently
yields the best performance across both dataset
scales. We believe this is because other strategies
may overfit chat templates: the starting tokens in
each batch remain unchanged, leading to poor adap-
tation to unseen templates used in benchmarks such
as OpenLLM. Next, we find increasing dataset size
widens the performance gap between packing with
and without loss masking. This may be due to
the increasing number of user instructions as the
dataset size grows, which is unnecessary for the
model to learn. Overall, this indicates that πSFT

should be trained with packing and loss masking,
over a large collection of high-quality datasets as
in Table 1.

3.3 Offline Preference Learning
Following prior work, we use DPO (Rafailov et al.,
2023) and continue training from the last iteration
of SFT from Section 3.2. We selected DPO for
our study because it is one of the most widely used
algorithms for preference optimization (Tunstall
et al., 2023b; Jiang et al., 2024; Yang et al., 2023;

Model OpenLLM Arena Hard Auto*

gemma-2b-sft 54.67 8.8
+ default DPO 55.13 11.6

+ sqlen=2048 55.31 12.7

+ πref=SFT chosen 55.39 13.1
+ πref=DPO 55.42 12.5
+ πref=LLaMA-3-8b 55.31 12.7

Table 4: Effect of training with longer sequences and
using different reference models. sqlen refers to maxi-
mum sequence length. πref =x refers to DPO training
with different reference models.

Yuan et al., 2024), despite the recent appearance
of many alternatives (Meng et al., 2024; Gorba-
tovski et al., 2024; Ethayarajh et al., 2024). We
then compare different training settings such as
choosing sequence length/reference model; tuning
beta; scaling offline alignment; and filtering prefer-
ence datasets.

Choosing Sequence Length/Reference Model
Popular implementations of DPO (Tunstall et al.,
2023a,b) use a sequence length of 1024, and a ref-
erence model πref = πSFT. However, many recent
work differs in this setting: using either a longer
sequence length (Meng et al., 2024), or a different
reference model (Rafailov et al., 2023; Gorbatovski
et al., 2024). We compare these configurations by
training Gemma-2b on a 10k randomly sampled
subset from the mixture dataset and evaluating on
OpenLLM and Arena-Hard-Auto*. Specially, we
measure the impact of 1) using a longer sequence
length of 2048, and 2) using different reference
models proposed by prior work. The latter in-
cludes using πSFT after further SFT on all chosen
responses in the 10k subset (denoted as πref=SFT
chosen); πSFT after additional DPO training on the
10k subset (denoted as πref=DPO); and using a
stronger model such as LLaMA-3-8b (denoted as
πref=LLaMA-3-8b).

Table 4 shows that training with a longer se-
quence length of 2048 significantly improves per-
formance on both benchmarks. We believe this is
because multi-turn chat data are intrinsically long,
and that longer responses may contain more com-
plex reasoning compared to shorter answers (Zhao
et al., 2024). We also find using different refer-
ence models such as πref=SFT chosen or πref=DPO
slightly improves performance. However, as these
methods require additional training, for simplicity
we use πref = πSFT for the rest of the experiments.
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Figure 1: Measuring the effect of dataset size (|D|) and training steps (FLOPs) on final performance. While
performance can quickly saturate given a fixed |D|, increasing the dataset size increases the point of saturation.
Dotted lines are our interpolation using a degree 2 polynomial.
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Figure 2: Varying KL-divergence strength (β) under
different training data sizes. We find the best β stays
relatively consistent across different dataset sizes.

Tuning Beta Beta β is a hyperparameter in DPO
that controls the strength of KL-divergence. Be-
sides sequence length and reference model, many
prior work (Tunstall et al., 2023b; Gorbatovski
et al., 2024) also differs in the choice of β. It is un-
clear whether β can critically affect performance,
and how other factors such as training data size can
interact with β.

To investigate this, we first fix a dataset size
|D|, and vary β ∈ {0.01, 0.05, 0.1, 0.2, 0.5}. We
then repeat this process for different dataset sizes.
In Figure 2, we find that 1) using a high KL-
divergence β significantly harms performance, and
2) the best β stays relatively consistent across dif-
ferent training data sizes. This indicates that β can
be tuned using only a small subset of the data6,
which is much more compute-efficient than sweep-
ing using the full dataset.

Scaling Offline Alignment Prior work in SFT
shows that scaling high-quality data during pretrain-
ing can significantly improve performance (Hoff-

6However, we note that using a subset too small (e.g.,
|D| = 1000) do not yield meaningful variations across runs.

mann et al., 2022; Kaplan et al., 2020). We investi-
gate whether a similar scaling law exists in offline
preference alignment. For a given dataset size |D|,
we fix all training hyperparameters (e.g., β = 0.1
and a learning rate of 5e-7) and only vary the num-
ber of training steps. We then repeat this process
for |D| = {1, 10, 100} × 103, all randomly sam-
pled from the dataset in Table 2. For other training
details, please refer to Appendix A.2. We present
the results in Figure 1.

In Figure 1, we find that 1) under a fixed dataset
size, performance quickly saturates/over-optimizes
as training step increases (Rafailov et al., 2024; Gao
et al., 2022); and 2) increasing dataset size raises
the point of saturation. We believe this indicates
that similar to SFT, scaling law exists in offline
preference learning so that scaling both dataset size
and training steps can improve performance. We
note that this finding contrasts many DPO training
configurations in prior work, where either a 2-10
times smaller dataset is used (Tunstall et al., 2023b;
Ivison et al., 2023), or 2-4 times fewer training
steps are performed (Meng et al., 2024; Gorba-
tovski et al., 2024).

Filtering Preference Datasets Besides increas-
ing training data, several prior work (Liu et al.,
2024b; Zhou et al., 2023; Zhao et al., 2024) have
also explored scaling down training data. These
work finds that training with a small selection of
“highest-quality” data can match or outperform
training with the full dataset. To measure the effec-
tiveness of these approaches, we considered train-
ing with a 10k data budget obtained from differ-
ent data selection algorithms: DEITA (Liu et al.,
2024b), LONGEST (Zhao et al., 2024), ALPAGA-
SUS (Chen et al., 2024), and ARGILLA (Argilla,
2024). These methods select data based on their
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Figure 3: Effect of training on 10k data selected using different filtering algorithms. We find that simply training on
a larger dataset (100k) outperforms all methods.

response length, response quality, prompt diversity,
or a mixture of them7. We also consider A2, our
simple heuristic that filters data based on a com-
bination of score difference (Argilla, 2024; Wang
et al., 2024) and high rating alike ALPAGASUS. On
a high level, our method 1) remove preference pairs
that have a score difference of less than 2.0, which
is similar to Argilla (2024) that treats pairs with
small score differences as noisy training data; and
2) bin preference pairs by their score differences,
and uniformly sample preference pairs that has the
highest chosen score from each bin, which is simi-
lar to Chen et al. (2024) that trains on the highest-
quality sequences judged by GPT-3.5-turbo/GPT-
4-turbo. For more implementation details on these
algorithms, please refer to Appendix A.4.

Figure 3 summarizes the results. We find that 1)
simply training on a 10 times larger dataset (100k)
outperforms all data filtering methods; and 2) A2
is the only method that is competitive with ran-
dom sampling in both benchmarks. We believe the
former result strengthens the importance of data
quantity and diversity in offline preference learning.
The latter indicates that filtering methods based on
attributes about the data itself may be insufficient
for DPO, and that “better” data may be model de-
pendent (Xia et al., 2024; Yu et al., 2024).

3.4 Online Preference Learning

Finetuning πθ with preference data obtained online
has proven highly effective in further enhancing
model performance (Dong et al., 2024; Guo et al.,
2024b). Given the high computational complexity
of online training (Schulman et al., 2017a; Tran
et al., 2023), we investigate whether it remains
“essential” compared to the much more efficient
offline alternative (Section 3.3).

7Some algorithms such as DEITA are originally designed
for SFT datasets and uses a single prompt-response pair (x, y).
In these cases, we use (x, yw) from DPO datasets as (x, y).

Model OpenLLM Arena Hard Auto*

gemma-2b-sft 54.67 8.8
+ offline DPO (10k) 55.31 12.7
+ offline DPO (100k) 55.96 14.9

+ ODPO (1k) 55.32 12.7
+ ODPO (5k) 55.31 13.4
+ ODPO (10k) 55.32 14.6

Table 5: Effect of Online DPO (denoted as ODPO). We
initialize all ODPO runs from the DPO (10k) checkpoint,
and investigate the effect of different training data sizes.

We measure the effect of various online training
data sizes on the final performance, and compare it
against offline DPO. Specifically, we follow Meng
et al. (2024) and first sample n = 5 responses with
a temperature of 0.8 for each prompt from the Ul-
traFeedback dataset. We then use Pair-RM8 (Jiang
et al., 2023b) as a judge and use the best and worst
response as yw and yl, respectively. Similar to
Meng et al. (2024), we perform one iteration of on-
line training using DPO. We train all models from
the DPO checkpoint trained with 10k randomly
sampled data (denoted as offline DPO (10k)).

In Table 5, we first find that online training
mainly benefits chat benchmarks (Arena Hard
Auto*) but not core capability/knowledgege bench-
marks (OpenLLM). We believe this is because on-
line preference pairs are derived from πθ itself,
making it unlikely for πθ to acquire new knowl-
edge or skills. Next, we find that increasing the
number of online training samples to 10k reaches
comparable performance to offline DPO with 100k
data. This indicates that online training remains
competitive, and can be much more sample effi-
cient than offline training for chat benchmarks.

8We note that results may vary with different reward mod-
els (Lambert et al., 2024), which we leave for future work.
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4 The LION Series

In the previous section, we empirically analyzed
the best strategies to perform supervised fine-
tuning, offline preference learning, and online pref-
erence learning. We aggregate these findings to
train a series of models, the LION series, and eval-
uate them on numerous LLM benchmarks.

4.1 Experiment Setup

Training Recipe We aggregate our findings from
Section 3 into a single training recipe. During the
SFT stage, we use the packing with loss masking
strategy. During the DPO stage, we 1) use a se-
quence length of 2048 and πref = πSFT, 2) sweep
for the optimal β using a small (10k) subset, and
3) train our models over a large dataset with a com-
pute budget equivalent to the best model in Figure 1.
For online DPO, we follow (Meng et al., 2024) and
use Pair-RM (Jiang et al., 2023b) as a judge. We
perform one iteration of online DPO and train on
the full 60k online preference data.

Training Datasets We use the same datasets
from Section 3.2 for SFT. Given the scaling trends
for offline preference learning (Section 3.3), we ad-
ditionally add Nectar (Banghua et al., 2023), Help-
Steer (Wang et al., 2023), and PKU-SafeRLHF
(Dai et al., 2024). For online learning, we follow
(Meng et al., 2024) and use prompts from Ultra-
Feedback. We summarize the datasets used in Ap-
pendix B.3.

Evaluation Benchmarks To holistically evalu-
ate our models performance, we follow prior work
and consider in total four benchmarks: Arena-
Hard-Auto (Li et al., 2024), AlpacaEval-2 (Dubois
et al., 2024; Li et al., 2023b), MT-Bench (Zheng
et al., 2023), and OpenLLM (Beeching et al.,
2023). In addition to the evaluation methods used
in Section 3, AlpacaEval-2 uses a length-controlled
(LC) metric to evaluate the model’s instruction-
following ability; and MT-Bench uses GPT-4 as a
judge to score the model’s response on a diverse set
of QA tasks. We use the standard evaluation setting
for all benchmarks, such as using GPT-4-turbo as
the judge model and GPT-4 as the reference for
Arena-Hard-Auto (c.f. Section 3.1).

4.2 Models and Baselines

Models We train all of our models from Gemma-
2b-base (Gemma et al., 2024) and LLaMa-3-8B-
base (AI@Meta, 2024). These models are pre-

trained with trillions of tokens from the web, and
highly performant for a wide range of text genera-
tion tasks (Beeching et al., 2023). We denote our
models trained after each phase as -lion-sft, -lion-
dpo, and -lion-odpo, representing the SFT, offline
DPO, and online DPO stages, respectively.

Baselines We mainly compare our method
against the officially released instruct models,
Gemma-2b-it and Llama-3-8b-it. From the base
model, Gemma-2b-it is first trained using SFT,
and further finetuned using a novel, close-sourced
RLHF algorithm (Gemma et al., 2024). LLaMA-3-
8b-it is trained using a combination of SFT, rejec-
tion sampling, PPO, and DPO (AI@Meta, 2024).
Both models are trained using close-sourced data.

4.3 Main Results

We present the main results in Table 6. We find that
after the SFT and offline DPO training phase, our
Gemma-2b model already outperforms the Gemma-
2b-it on all benchmarks. It also matches or sur-
passes various popular 7b models, such as LLaMA-
2-7b-chat (Touvron et al., 2023) and Vicuna-7b
(Chiang et al., 2023). Similarly, our LLaMA-3-8b-
lion-dpo shows competitive performance against
the LLaMA-3-8b-it, despite only being trained with
SFT and DPO. Finally, after online DPO training,
our models further improve, surpassing the offi-
cially released instruct models in all benchmarks.
We believe this result indicates the effectiveness of
our training recipe throughout the three stages of
alignment training.

4.4 Qualitative Analysis

To provide insights into the opaque training process
during preference learning, we additionally mea-
sure how the sequence probability for yw and yl
change after DPO training. We use a fixed unseen
test set of (x, yw, yl) obtained from public datasets
(see Appendix A.1), and compare πθ(yw)− πθ(yl)
for each preference pair before and after training.
We find that many of the best-performing models
have a parabolic shape as shown in Figure 4(b).
This shows that well-trained models learns to im-
prove confidence not only in pairs they could al-
ready distinguish correctly before training (i.e.,
πθ(yw) > πθ(yl)) but also equally in pairs they pre-
viously could not (i.e., πθ(yw) < πθ(yl)). Please
refer to Appendix B.5 for more details.
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Model Method Size Arena-Hard AlpacaEval-2 MT-bench OpenLLM

Gemma-2b - 2B - - - 46.69
Gemma-2b-it SFT+RLHF 2B 3.4 5.44 5.63 42.75
Gemma-2b-zephyr SFT+DPO 2B 0.9 2.65 4.13 46.92
LLaMA-2-7b-chat SFT 7B 4.6 5.35 6.22 53.16
Vicuna-7b-v1.5 SFT 7B 2.5 7.62 6.57 52.06
Gemma-2b-lion-sft (ours) SFT 2B 2.4 7.79 6.37 54.78
Gemma-2b-lion-dpo (ours) SFT+DPO 2B 4.6 8.75 6.58 55.35
Gemma-2b-lion-odpo (ours) SFT+DPO+ODPO 2B 5.0 9.57 6.75 55.98

LLaMA-3-8b - 8B - - - 63.05
LLaMA-3-8b-it SFT+RS+DPO+PPO 8B 20.6 22.9 8.00 68.28
LLaMA-3-8b-lion-sft (ours) SFT 8B 11.3 17.9 7.58 68.71
LLaMA-3-8b-lion-dpo (ours) SFT+DPO 8B 19.1 21.8 8.12 71.28
LLaMA-3-8b-lion-odpo (ours) SFT+DPO+ODPO 8B 22.0 26.8 8.19 71.41

LLaMA-3-70B-it SFT+RS+DPO+PPO 70B 41.1 34.4 8.95 73.96
GPT-3.5-turbo-0125 - - 24.8 22.7 8.39 -
GPT-4 Turbo - - 82.6 55.0 9.32 -

Table 6: Evaluating the LION series across multiple chat and core knowledge benchmarks. We report the win rate
and length-controlled win rate for Arena-Hard-Auto and AlpacaEval-2, respectively.
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Figure 4: We track the changes in the probability margin πθ(yw)− πθ(yl) under various training configurations,
and find that the best-performing models exhibit a parabolic pattern. Arena-Hard-Auto* results from left to right are
10.7, 14.8, and 13.2. Test loss from left to right is 0.63, 0.65, and 1.33.

5 Related Work

Many recent studies extensively explored align-
ment methods to improve LLMs’ ability to fol-
low human instructions. Early approaches train
LLMs with supervised fine-tuning (SFT) using
high-quality human-written demonstrations (Sanh
et al., 2021; Wei et al., 2022; Chung et al., 2022;
Mishra et al., 2021). This method enjoys various
properties such as fast convergence and scaling
laws in training data/model sizes (Kaplan et al.,
2020; Hoffmann et al., 2022). However, SFT is vul-
nerable to exposure bias, and can generate outputs
that do not align well with human intent. To this
end, reinforcement learning from human feedback
(Schulman et al., 2017b; Stiennon et al., 2020b;
Ouyang et al., 2022b) was proposed. These work
typically employs an online RL algorithm (such as
PPO, Schulman et al. (2017a)) to optimize LLMs
towards a reward model mimicking human prefer-
ences. Although effective, PPO can be complex

to implement and often suffers from high reward
variance, making it challenging to maintain stable
performance (Xu et al., 2024c).

To address the limitations of PPO, many recent
work focused on offline preference learning algo-
rithms, such as Direct Preference Optimization
(Rafailov et al., 2023), KTO (Ethayarajh et al.,
2024), CTO (Xu et al., 2024a), and more (Guo
et al., 2024a; Hong et al., 2024). These algorithms
are much easier to use, and spurred many recent
studies to explore: 1) collecting high-quality of-
fline preference data (Cui et al., 2023; Dai et al.,
2024; Banghua et al., 2023), and 2) designing bet-
ter training pipelines such as iterative DPO and
online DPO (Guo et al., 2024b; Xu et al., 2024b;
Tran et al., 2023; Xu et al., 2024c). Although these
contributions demonstrate improvements, the train-
ing processes, datasets, and hyper-parameters often
remain heterogeneous, and it is difficult to under-
stand the source of improvements. Our goal is to
provide a comprehensive analysis of the alignment
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pipeline starting from SFT to online preference
learning, and to serve as a reference point for better
understanding in the alignment process.

6 Conclusion

We present a detailed analysis of modern align-
ment pipelines, and present a step-by-step recipe
to finetune models using only publicly available
datasets and open-sourced algorithms. We find that
model performance substantially improves by 1)
using packing and loss making in SFT, 2) scaling
offline preference datasets and training steps in
DPO, and 3) training with online preference data
to improve chat performance. We then aggregate
our findings and train the LION series, and show
that they outperform the officially released instruct
models as well as models of larger sizes on bench-
marks such as Arena-Hard-Auto, AlpacaEval-2,
MT-bench, and OpenLLM. These results illustrate
the importance of many previously overlooked de-
sign choices, and serve as a reference point for
future work in alignment research.

7 Limitations

7.1 Sensitivity of Model Backbone

In our analysis, we investigated the effect of various
training strategies during each stage independently,
and aggregate a training recipe using the best re-
sults from each stage. However, it is possible that
there are combined effects between two or more
stages (e.g., modify SFT and offline DPO simul-
taneously), which could lead to different or better
results. Since this would result in an exponentially
larger search space for training strategies, we chose
to conduct our experiments in a sequential manner.
We leave this exploration for future work.

7.2 Sensitivity of Training Data

Unlike SFT, in our prior experiments we find that
offline preference datasets can vary significantly
in quality and quantity. We therefore manually se-
lected a mixture of high-quality datasets for our
experiments in Section 3.3 based on some empiri-
cal heuristics (Appendix A.1). Since this choice is
empirical, we believe results may vary when, in the
future, datasets of higher quality and larger sizes
become available. We believe creating new, higher-
quality datasets is perpendicular to our work, and
we leave this for future work.

7.3 More Model Architectures

Our analysis primarily focuses on the Gemma-2b-
base model. This is because 1) Gemma-2b is a
light-weight yet performant model used widely in
the community, and 2) it requires significantly less
compute to conduct analysis as in Section 3 com-
pared to using larger models such as LLaMA-3-
8B-base. However, we believe it would be benefi-
cial to extend our analysis to other model architec-
tures such as LLaMA-3-8b (AI@Meta, 2024) and
Mistral-7b (Jiang et al., 2023a). We plan to extend
our experiments with models of different sizes and
architectures in future work.

8 Ethical Considerations

In this work, we focus on the reproduction study
and step-by-step recipe to align large language
models. Our model was trained on publicly avail-
able alignment datasets. Despite our efforts to care-
fully examine and curate our training data sources,
there is a possibility that malicious or harmful con-
tent may still be present. To mitigate these risks, we
acknowledge the necessity of incorporating more
datasets specifically focused on safety, harmful-
ness, and bias. Furthermore, for future work, we
commit to conducting more comprehensive evalua-
tions on safety, harmfulness, and bias to enhance
the robustness and ethical standards of language
model alignment.
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A More Details on Alignment Procedure
Analysis

A.1 Offline Preference Dataset Curation

Gathering a high-quality dataset of sufficient scale
is imperative to study various properties of current
offline preference learning algorithms. There are
many open-source preference labeled datasets avail-
able online, including Ultrafeedback (Cui et al.,
2023), TLDR-Preferences (Stiennon et al., 2020a),
and Nectar (Banghua et al., 2023). However, they
show significant differences in 1) the quality and di-
versity of the prompts, 2) models used to generate
the responses, 3) judge models, and 4) the number
of preference pairs. It is therefore unclear which
dataset is of sufficient quality to train a model
on, and how the model’s performance changes on
downstream benchmarks.

To this end, we first selected a collection of 12
datasets, and empirically measure each dataset’s
quality by 1) sample upto 10k samples from each
dataset, 2) train SFT-finetuned Gemma-2b and
record its performance on MT-bench. We present
the results in Figure A2 and Figure A3. We then
used the top-six datasets according to their overall
score in our offline preference learning experiments
in Section 3.3. The baseline is our πSFT model.

A.2 Training Hyperparams for Scaling DPO

For all runs, we finetune from the best πSFT ob-
tained from Section 3.2. We use a sequence length
of 2048, β = 0.1, batch size of 128, learning rate
of 5e-7, and vary training steps for each run. For
|D|=100k, we continue training from previous runs
instead of starting from scratch to save compute.

In addition to our result in Figure 1 measuring
performance in OpenLLM and Arena-Hard-Auto*,
we also present other metrics such as evaluation
loss, reward margin, and reward accuracy in Ta-
ble A1. We note that the evaluation loss and reward
margin are inconsistent with the performance in
Arena-Hard-Auto* (or OpenLLM). This indicates
that simple metrics such as evaluation loss and re-
ward margin may not be good indicators of model
final performance.

A.3 Reward Annotation for Data Filtering

While datasets such as UltraFeedback (Cui et al.,
2023) provide ratings in [1,10] for chosen/rejected
responses, other datasets such as TLDR (Stiennon
et al., 2020a) and HH-RLHF (Bai et al., 2022) does

not. This makes methods such as filtering based on
score difference (e.g., ARGILLA) not applicable.

To this end, we consider a simple approach to
use Nexusflow/Starling-RM-34B (Banghua et al.,
2023), the best reward model according reward-
bench (Lambert et al., 2024), to provide a score
prediction to all of our training data. Specifically,
we first used the reward model to compute a real
value score for the prompt + chosen response and
prompt + rejected response separately. Next, since
the predicted score is a real value, we 1) rescale
it to [0, 1] to obtain s̃, and then 2) consider a least
square solution to find a, b under the function:

ŝ = clip(a · s̃+ b,min = 0,max = 10)

where the least square error between the true score
s for data that contains a GPT-4 annotated score and
the rescaled ŝ is minimized. This results in a =
11.1745, b = 1.1791. The average least square
error and absolute error is 3.5389 and 1.4278, re-
spectively. Finally, we augment the entire 264K
training data with this score ŝ, and present the score
distribution in Figure A6.

Note that this reward model achieves 67.72%
accuracy over the entire 264K dataset (both with
and without our score transformation). This indi-
cates that ∼30% of the predicted score might not
be accurate. Therefore, we use the original score
annotation when available, and use the predicted
and rescaled score only when necessary.

A.4 More Details on Dataset Filtering
Algorithms

We consider data filtering algorithms both from
the instruction-tuning domain and from the pref-
erence learning domain. This include algorithms
such as DEITA (Liu et al., 2024b), LONGEST (Zhao
et al., 2024), ALPAGASUS (Chen et al., 2024), and
ARGILLA (Argilla, 2024). We also consider A2,
which can be seen as a combination of ARGILLA

and ALPAGASUS: first removing pairs that has a
score difference of less than two, and then sam-
pling 10k data that has the highest chosen score in
each bin. We apply each of the algorithms above
to select 10k data from the 264K shown in Table 2.
We present the selected data distributions for each
algorithm (except for A2) in Figure A7, and for
A2 in Figure A5.
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Chosen

Rejected

Chosen
rejected

Padding tokens
Sequence after removing paddings

Figure A1: Illustration of efficient DPO implementation. Traditional DPO training requires adding padding tokens to
the batch. Our implementation can remove the need of paddding tokens, and thus improving the training efficiency.

FLOPs |D| Arena-Hard-Auto* Eval Loss Eval Reward Margin Eval Reward Accurarcy

3.1e19 100k 14.8 0.6507 0.5375 0.6554
1.8e19 10k 13.2 1.3300 0.7851 0.5738
6.2e18 100k 11.1 0.6389 0.3970 0.6334
1.2e18 10k 10.7 0.6333 0.2082 0.6922
1.1e17 1k 9.3 0.6940 -0.0039 0.4858

Table A1: Automatic evaluation metrics such as loss, reward margin, and reward accuracies on test set is inconsistent
with final performance on benchmarks such as Arena-Hard-Auto*. All runs used β = 0.1.
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Figure A2: MT-bench score after training Gemma-2b
on upto 10k samples from each dataset. Datasets we
used in Section 3 is colored in purple. “OHP” stands for
Openhermes-Preference.

B More Details on Training LION Series

B.1 Efficient DPO Implementation

In this work, we introduced an efficient DPO im-
plementation for Transformers. The motivation is
to eliminate the computation overhead caused by
padding tokens, as in DPO, chosen and rejected
samples normally have varied lengths. Our ap-
proach involves removing all padding tokens within
a batch and concatenating the remaining sequences
into a single, continuous sequence. To handle se-
quence boundaries effectively in the self-attention
layers, we utilize FlashAttention (Dao, 2024). This
ensures that the removed padding tokens do not
interfere with the processing of the valid tokens.
An illustration of this process can be found in Fig-

Configuration Training Time

LLaMA3-8b DPO 15.72 hours
+ Fast Implementation (ours) 11.40 hours

Improvement 27.48%

Table A2: DPO Training times for different configura-
tions.

ure A1.
We evaluated the training times for LLAMA3-

DPO with and without the fast DPO model imple-
mentation. The experiments were conducted using
the specified offline preference dataset, running
on a setup of four A100 80GB GPUs. As shown
in Table A2, our fast DPO model implementation
achieves a 27.48% speed improvement.

B.2 Training Details

All the training experiments in this paper were con-
ducted on 4×A100 80GB GPUs. We used Deep-
speed (Rasley et al., 2020) for all our experiments
as we find that storingin model weights in fp32 is
essential for DPO’s performance as learning rate
is small. For other training details, please see Ta-
ble A3 and Table A4.

B.3 Training Datasets

Following our findings in Section 3, we train the
LION series using a combination of datasets from
the instruction-tuning domain and the preference
learning domain. For SFT, we use the same dataset
collection as in Table 1. Given the scaling trends
of offline DPO, we add in more preference datasets
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(b) Extraction
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Figure A3: MT-bench performance after training Gemma-2b on upto 10k samples from each dataset. Datasets we
used in Section 3.3 are colored in purple.

such as Nectar (Banghua et al., 2023) in addition
to Table 2. We summarize the datasets for training
the LION below:

Details of Supervised Fine-Tuning Data

• OpenHermes-2.5 (Teknium, 2023): The
OpenHermes-2.5 dataset contains 1 million di-
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Figure A4: Effect of β on model performance across datasets of different sizes.
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Figure A5: Data distribution for A2, which 1) removes DPO pairs with score difference less than two, and 2) sample
10k data that has the highest chosen score in each score difference bin.
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Figure A6: Score distribution for the dataset we used in Section 3.3. (a) Responses from Ultrafeedback, Orca-
DPO-pairs, and Capybara-DPO already contain scores annotated by GPT-4/GPT-4-turbo. (b) We rescaled the score
prediction produced by Nexusflow/Starling-RM-34B.

verse, synthetic samples. It includes data from various sources like Airoboros, CamelAI (Li
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(c) DEITA-10k
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(d) Argilla-10k

Figure A7: Data distribution after applying the respective filtering algorithms.

et al., 2023a), ChatBot Arena, and several oth-
ers, each contributing to fields ranging from
physics and mathematics to code assistance
and medical tasks. Please check the repo for

details.

• MetaMathQA (Yu et al., 2023): Meta-
MathQA is created using question bootstrap-
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Hyperparam Gemma-2b LLaMA-3-8b

Warmup ratio 0.1 0.1
Peak Learning Rate 2e-5 2e-5
Max Sequence Length 8192 8192
Batch Size 16 64
Weight Decay 0.0 0.0
Number Epochs 3 3
Learning Rate Decay Cosine Cosine
Max Grad Norm 1.0 1.0

Training Time 25.80 hrs 56.36 hrs

Table A3: SFT Training Details. Training time is mea-
sured on 4 GPUs configuration.

Hyperparam Gemma-2b LLaMA-3-8b

Beta 0.05 0.01
Warmup ratio 0.1 0.1
Max Sequence Length 2048 2048
Peak Learning Rate 5e-7 5e-7
Batch Size 64 128
Weight Decay 0.0 0.0
Number Epochs 2 1
Learning Rate Decay Cosine Cosine
Max Grad Norm 1.0 1.0

Training Time 10.15 hrs 11.40 hrs

Table A4: DPO Training Details. Training time is mea-
sured on 4 GPUs configuration.

ping, where mathematical questions are rewrit-
ten from GSM (Cobbe et al., 2021) and Math
(Hendrycks et al., 2021) dataset. The dataset
is further enriched by rephrasing questions
and using rejection sampling to select only
correctly answered paths, enhancing diversity
and reasoning capabilities.

• SlimOrca (Lian et al., 2023): The SlimOrca
dataset is a curated subset of the OpenOrca
(Mukherjee et al., 2023) data, containing
about 500,000 GPT-4 completions refined us-
ing human annotations from the FLAN (Long-
pre et al., 2023) dataset to remove incorrect
answers.

• UltraChat (Ding et al., 2023): UltraChat is
large-scale, informative, and diverse multi-
round dialogue dataset aimed at improving
language model conversational skills. It con-
tains 1.5M samples with a wide range of top-
ics and instructions.

• OrcaMath (Mitra et al., 2024): OrcaMath
comprises 200,000 synthetic mathematical
problems created using a collaborative multi-
agent setup with GPT-4.

• Capybara (Daniele and Suphavadeeprasit,
2023): Capybara uses the Amplify-Instruct
method to create synthetic multi-turn conver-
sations from quality single-turn seeds. It fo-
cuses on diverse, logical reasoning across do-
mains, with each conversation exploring deep,
diverse topics.

• Deita-10k (Liu et al., 2024a): Deita is an
open-source dataset aimed at enhancing in-
struction tuning for Large Language Models
(LLMs) through Automatic Data Selection. It
incorporates a dataset of 10,000 high-quality,
alignment-specific Supervised Fine-Tuning
(SFT) data points. This data is primarily se-
lected from larger datasets including 58K en-
tries from ShareGPT (Chiang et al., 2023),
105K from UltraChat (Ding et al., 2023), and
a 143K mixture from WizardLM (Xu et al.,
2023) data (Luo et al., 2023).

Details of Offline Preference Data

• TLDR (Stiennon et al., 2020a): This data is
used to train a reward model for summariza-
tion. Summaries for the reward model came
from the TL;DR dataset. We use the compar-
isons data, where annotators chose the better
of two summaries.

• PKU-SafeRLHF (Dai et al., 2024): This
dataset contains 83.4K preference entries
annotated for harmlessness and helpfulness.
Each entry includes two responses to a ques-
tion, with safety meta-labels and prefer-
ences. The responses came from Alpaca-
7B, Alpaca2-7B, and Alpaca3-8B models, fol-
lowing SFT performed on Llama2-7B and
Llama3-8B with the Alpaca 52K dataset.

• HelpSteer (Wang et al., 2023): It is open-
source Helpfulness Dataset designed by
NVIDIA to improve models’ helpfulness, fac-
tual accuracy, and coherence, with adjustable
response complexity and verbosity. It contains
37,120 samples, each including a prompt, a
response, and five human-annotated attributes
of the response, rated from 0 to 4: Helpful-
ness (overall helpfulness), Correctness (perti-
nence and accuracy of facts), Coherence (con-
sistency and clarity), Complexity (intellectual
depth), and Verbosity (amount of detail).
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Model ARC HellaSwag MMLU TruthfulQA Winogrande GSM8k Average

Gemma-2b 48.38 71.77 41.77 33.08 66.30 16.91 46.51
Gemma-2b-it 43.60 62.55 36.95 45.85 61.80 10.99 43.62
Gemma-2b-lion-sft (ours) 50.94 70.65 45.04 43.80 64.88 53.37 54.78
Gemma-2b-lion-dpo (ours) 52.30 72.47 45.31 45.06 65.19 51.78 55.35
Gemma-2b-lion-odpo (ours) 53.75 73.04 45.52 45.66 64.40 53.53 55.98

LLaMA-3-8b-Base 58.02 82.15 65.09 43.92 77.58 51.55 63.05
LLaMA-3-8b-Instruct 61.86 78.79 65.70 51.64 75.30 75.13 68.07
LLaMA-3-8b-lion-sft (ours) 59.64 80.80 64.21 54.26 76.64 76.72 68.71
LLaMA-3-8b-lion-dpo (ours) 63.91 82.95 63.67 60.01 76.56 80.59 71.28
LLaMA-3-8b-lion-odpo (ours) 63.99 83.18 63.59 61.12 76.72 79.91 71.41

Table A5: Detailed task evaluation results on OpenLLM.

• UltraFeedback (Cui et al., 2023): UltraFeed-
back is a diverse preference dataset with 64k
prompts and 256k responses from various
sources, annotated by GPT-4 for instruction-
following, truthfulness, honesty, and help-
fulness. It includes 380k high-quality feed-
back entries, allowing the creation of 1 mil-
lion comparison pairs. Prompts are sourced
from datasets like UltraChat, ShareGPT, Evol-
Instruct, TruthfulQA, FalseQA, and FLAN,
ensuring broad representation and diversity.

• Nectar (Banghua et al., 2023): Nectar is a
high-quality 7-wise comparison dataset. It
features diverse chat prompts from sources
like lmsys-chat-1M, ShareGPT, Antropic/hh-
rlhf, UltraFeedback, Evol-Instruct, and Flan.
Responses from models such as GPT-4, GPT-
3.5-turbo, LLama-2-7B-chat, and Mistral-7B-
Instruct are ranked by GPT-4, resulting in
3.8M pairwise comparisons.

• Py-DPO9: The DPO dataset enhances Python
coding abilities using the validated Python-
Alpaca dataset for "chosen" responses. "Re-
jected" values, generated with a mix of
airoboros-l2-13b-3.1.1 and bagel-7b-v0.1, are
assumed to be of lower quality.

• Distilabel-Capybara10: The Distilabel-
Capybara dataset, created by distilabel ad-
dresses the lack of multi-turn open datasets for
DPO/RLHF by providing multi-turn dialogue
preferences on top of Capybara.

9https://huggingface.co/datasets/jondurbin/
py-dpo-v0.1

10https://huggingface.co/datasets/argilla/
distilabel-capybara-dpo-7k-binarized

• Distilabel-Orca11: Similar to Distilabel-
Capybara, this dataset is created by distilabel
to generate preference labels on top of Orca.

Details of Online Preference Data
We used data from UltraFeedback (Cui et al.,

2023) as prompts. We sample multiple responses
from πθ and use Pair-RM (Jiang et al., 2023b) as a
judge to obtain preference pairs. This results in an
online collected dataset of 60k in size.

B.4 Performance Details

Table A5 presents a comprehensive breakdown of
the performance of our Gemma-2b and LLaMA-
3-8b models across various OpenLLM tasks, high-
lighting the improvements brought by the lion-sft,
lion-dpo, and lion-odpo alignment training meth-
ods. The lion-sft model showed substantial im-
provements across all tasks, with significant gains
in GSM8k (53.37) and TruthfulQA (43.80). Build-
ing on these improvements, the lion-dpo model
particularly enhanced ARC (52.30) and HellaSwag
(72.47), while maintaining strong performance in
other tasks. The lion-odpo model achieved the
highest scores overall, excelling in ARC (53.75)
and HellaSwag (73.04), and maintaining superior
performance in GSM8k (53.53).

For the LLaMA-3-8b model, the lion-sft variant
displayed robust performance across all tasks, with
notable scores in GSM8k (76.72) and TruthfulQA
(54.26). The lion-dpo model further improved
performance, achieving higher scores in ARC
(63.91), HellaSwag (82.95), and significantly in
GSM8k (80.59) and TruthfulQA (60.01). The lion-
odpo model marginally outperformed the lion-dpo
model, attaining the highest scores in ARC (63.99),

11https://huggingface.co/datasets/argilla/
distilabel-intel-orca-dpo-pairs
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HellaSwag (83.18), and TruthfulQA (61.12), while
maintaining exceptional performance across all
tasks.

Both the Gemma-2b and LLaMA-3-8b models
benefit significantly from the alignment training,
with each subsequent model (sft, dpo, odpo) show-
ing progressive improvements. The lion-odpo mod-
els generally achieve the highest scores, demon-
strating the effectiveness of this alignment method
in enhancing model performance across diverse
tasks.

B.5 More Details on Qualitative Analysis
To provide insights into the opaque training process
during preference learning, we additionally record
how the sequence probability for yw and yl change
after DPO training. We use a fixed unseen test set
of (x, yw, yl) obtained from public datasets (see
Appendix A.1), and compute πθ(yw)− πθ(yl) for
each preference pair before and after training. We
then qualitatively compare various models from
Table 6 and from Section 3. We present the visual-
izations in Figure 4.

In Figure 4, we find that many of the best-
performing models have a parabolic shape as
shown in Figure 4(b). This indicates that well-
trained models learn to not only increase confi-
dence in pairs they could distinguish correctly be-
fore training (i.e., πθ(yw) > πθ(yl)), but also im-
prove on pairs where they previously could not
(i.e., πθ(yw) < πθ(yl)). Undertrained models (Fig-
ure 4(a)) achieve a similar shape but with a much
smaller magnitude. While overtrained models (Fig-
ure 4(c)) show a change in probability at an even
greater scale (e.g., for πθ(yw) < πθ(yl)), it is often
achieved by sacrifising performance on the other
side of the plot (e.g., πθ(yw) > πθ(yl)).
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