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Abstract

Scaling model size significantly challenges the
deployment and inference of Large Language
Models (LLMs). Due to the redundancy in
LLM weights, recent research has focused on
pushing weight-only quantization to extremely
low-bit (even down to 2 bits). It reduces mem-
ory requirements, optimizes storage costs, and
decreases memory bandwidth needs during in-
ference. However, due to numerical representa-
tion limitations, traditional scalar-based weight
quantization struggles to achieve such extreme
low-bit. Recent research on Vector Quantiza-
tion (VQ) for LLMs has demonstrated the po-
tential for extremely low-bit model quantiza-
tion by compressing vectors into indices using
lookup tables.

In this paper, we introduce Vector Post-
Training Quantization (VPTQ) for extremely
low-bit quantization of LLMs. We use Second-
Order Optimization to formulate the LLM
VQ problem and guide our quantization al-
gorithm design by solving the optimization.
We further refine the weights using Channel-
Independent Second-Order Optimization for
a granular VQ. In addition, by decomposing
the optimization problem, we propose a brief
and effective codebook initialization algorithm.
We also extend VPTQ to support residual and
outlier quantization, which enhances model
accuracy and further compresses the model.
Our experimental results show that VPTQ re-
duces model quantization perplexity by 0.01-
0.34 on LLaMA-2, 0.38-0.68 on Mistral-7B,
4.41-7.34 on LLaMA-3 over SOTA at 2-bit,
with an average accuracy improvement of 0.79-
1.5% on LLaMA-2, 1% on Mistral-7B, 11-
22% on LLaMA-3 on QA tasks on average.
We only utilize 10.4-18.6% of the quantiza-
tion algorithm execution time, resulting in
a 1.6-1.8× increase in inference throughput
compared to SOTA. Our code is available at
https://github.com/microsoft/VPTQ.

Table 1: LLM Quantization Algorithm Comparison.
VPTQ balances all dimensions and achieves SOTA.

VPTQ AQLM QuIP# GPTVQ GPTQ AWQ
Effective Bitwidth ↓↓↓ ↓ ↓ ↑ ↑↑ ↑↑

Accuracy @ Low-bit ↑↑↑ ↑ ↑ ↓ ↓↓ ↓↓
Quantization Time Cost ↓↓↓ ↑↑ ↓ ↓ ↓ ↓
Inference Throughput ↑↑↑ ↑ ↓ ↑ ↑ ↑

1 Introduction

Large language models (LLMs) (Touvron et al.,
2023; Meta, 2024) have shown excellent perfor-
mance across various complex tasks as their sizes
increase. However, the enormous weight of LLMs
poses significant challenges for efficient inference
and practical deployment. For instance, storing the
LLaMA-2 70B model weights in FP16 format re-
quires 140GB of memory, surpassing the capacity
of high-end GPUs and necessitating multi-GPU de-
ployment. This huge size significantly affects mem-
ory capacity and hard disk storage and requires
substantial bandwidth for inference. Weight-only
quantization is a mainstream model compression
technique that effectively reduces the model’s size
by representing floating-point numbers with fewer
bits.

In weight-only quantization of LLMs, a promi-
nent method is Post-Training Quantization (PTQ).
PTQ quantizes model weights directly without re-
training the model. Typically, PTQ only involves
converting model weights into lower-bit fixed-point
numbers. Currently, the main approach in PTQ
is scalar quantization, which converts each scalar
weight in the model into a lower bit value. Recent
work (Frantar et al., 2023; Lin et al., 2023; Xiao
et al., 2023; Lee et al., 2024; Chee et al., 2023)
has achieved near-original model accuracy with
3-4 bit quantization. Table 1 summarizes the char-
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acteristics of typical scalar quantization methods
(GPTQ, AWQ) in LLM. However, due to the limita-
tions of numerical representation, traditional scalar-
based weight quantization struggles to achieve ex-
tremely low-bit levels. For instance, with 2-bit
quantization, we can only use four numerical val-
ues to represent model weights, which severely
limits the range of weight representation. Although
BitNet (Wang et al., 2023; Ma et al., 2024) has
enabled quantization-aware training that can quan-
tize weights to below 2 bits during the model’s
pre-training phase, this approach requires substan-
tial GPU cluster resources to maintain reasonable
accuracy.

Recent studies (van Baalen et al., 2024; Tseng
et al., 2024; Egiazarian et al., 2024) have explored
an efficient method of weight-only quantization
known as Vector Quantization (VQ).

VQ is a data compression technique that maps
high-dimensional vectors to a set of predefined
lower-dimensional vectors stored in codebooks
(lookup tables). During encoding, each data point
is represented by the index of a corresponding
vector in the codebook, and during decoding, the
original data is approximated using these indices.
This method substantially reduces the storage re-
quirements for data while allowing for the quick
reconstruction of original vectors through simple
index references. VQ achieves more effective data
compression than scalar quantization by leveraging
correlations and redundancies across different data
dimensions. By detecting and leveraging interde-
pendence, VQ can encode complex multidimen-
sional data with fewer bits, thus achieving higher
compression ratios and reduced bit width.

While Vector Quantization (VQ) shows promise
in extreme low-bit weight compression for Large
Language Models (LLMs), it faces several signif-
icant challenges. Table 1 compares the strengths
and weaknesses of various VQ algorithms in multi-
ple dimensions.

The first challenge is ensuring the accuracy
after extreme low-bit VQ quantization. Unlike
scalar quantization, the quantization granularity of
VQ algorithms is vector-based. The quantization
may introduce additional accumulation errors due
to the simultaneous quantization of multiple num-
bers. For example, GPTVQ (van Baalen et al.,
2024) uses the Second-Order Optimization method
to implement PTQ. However, GPTVQ accumulates
quantization errors within vector quantization, lead-

ing to an inevitable increase in quantization errors
as the vector length increases. This prevents the
use of longer vectors and, consequently, limits the
compression ratio.

The second challenge lies in efficiently execut-
ing VQ quantization on LLMs. VQ can com-
press vectors in the weight matrix into indices, but
these indices are discrete, non-differentiable inte-
gers. This introduces difficulties in implementing
VQ quantization methods through model training.
For instance, AQLM (Egiazarian et al., 2024) em-
ploys beam search and backpropagation to quantize
and update centroids in lookup tables. VQ neces-
sitates additional gradient estimation, slowing the
convergence of model quantization training and re-
quiring intensive training efforts to achieve better
accuracy.

The third challenge arises as the dequantiza-
tion overhead in VQ model inference. To reduce
quantization errors, complex data preprocessing
methods may be used to process weights. QuIP#
(Tseng et al., 2024) introduces incoherence process-
ing using the randomized Hadamard transform for
the weight matrix before VQ. These preprocessing
steps can reduce quantization errors and improve
model accuracy. However, postprocessing must
be performed in real time during model inference,
which can severely impact throughput in inference.

VPTQ seeks to bypass the limitations of cur-
rent VQ by offering a lightweight and efficient
approach exclusively for extreme low-bit weight
quantization.

In this paper, we present Vector Post-Training
Quantization (VPTQ), a novel approach for ex-
tremely low-bit quantization of LLMs.

1. VPTQ achieves SOTA accuracy results on
extremely low-bit LLMs. We formulate the
quantization problem as an optimization prob-
lem and employ Second-Order Optimization
to guide our quantization algorithm design.
By Channel-Independent Second-Order Opti-
mization, VPTQ reduces model quantization
perplexity by 0.01-0.34, 4.41-7.34, 0.38-0.5
on LLaMA-2/3/Mistral-7B, respectively, over
SOTA at 2-bit, with an accuracy improve-
ment of 0.79-1.5%,11-22%,1%, on LLaMA-
2/3/Mistral-7B in QA tasks on average.

2. VPTQ can transform LLMs into extremely
low-bit models with a minor quantization al-
gorithm overhead. Under the guidance of the
optimization problem, we transform the quan-
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tization algorithm into a heuristic algorithm
to solve the optimization problem. We also
analyze and propose a brief and effective code-
book initialization algorithm to reduce the ex-
tra overhead of centroid training and updates.
Experiments show that VPTQ only requires
10.4-18.6% of the quantization algorithm ex-
ecution time compared to existing SOTA re-
sults.

3. VPTQ has low dequantization overhead.
VPTQ algorithm quantizes all the weights in
every Linear Operator in the model into an
index matrix and codebooks. During model
inference, we only need to dequantize the
weight matrix by reading centroids from the
codebook according to the index before ex-
ecuting the operator. The models quantized
by VPTQ result in 1.6-1.8× improvement in
inference throughput compared to SOTA.

2 Background and Motivation

2.1 Post Training Quantization in LLM
Post-Training Quantization (PTQ) (LeCun et al.,
1989; Hassibi et al., 1993; Hassibi and Stork, 1992;
Frantar et al., 2023; Singh and Alistarh, 2020) aims
to decrease model weight size by simplifying the
numerical representation and seeking to maintain
the model’s accuracy without retraining the model.
We can formulate PTQ as the following optimiza-
tion problem:

argmin E[L(X,W +∆W)− L(X,W)]

≈ ∆WT · g(W) +
1

2
∆WT ·H(W) ·∆W

where W is the original model weights, Ŵ is quan-
tized weights, and ∆W = Ŵ−W represents the
weight quantization error. The loss of the model
task is L. The optimization object is to minimize
the impact of model quantization on the model task,
which means minimizing the expected deviation of
the loss function.

PTQ typically employs a concise and accurate
method for analyzing the above optimization prob-
lem: Second-Order Optimization. Following a Tay-
lor series expansion, this method breaks down the
optimization goal into first-order, second-order, and
higher-order terms. g(W) and H(W) represent
the gradient and Hessian of task loss L, respec-
tively. It often assumes that the model has already
reached local optimum before model quantization,
which means that the first-order term is nearly zero.
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Figure 1: Vector Quantization in Weight Quantization

Higher-order terms exert a minor effect on the opti-
mization goal, and we typically disregard interac-
tions among weights between different layers. Con-
sequently, we can simplify the optimization prob-
lem by focusing on optimizing the second-order
term and then define the following optimization
problem:

argmin
∆W

∆WT ·H(W) ·∆W,

s.t. ∆W = 0
(1)

The objective of the optimization problem is to
minimize the second-order error in model quan-
tization, subject to the constraint that the change
in model weights is as minimized as possible, i.e.,
∆W = 0.

2.2 Vector Quantization in Neural Networks

VQ is a key method for efficient lossy data com-
pression (Gersho, 1979). Its objective is to reduce
the distortion by mapping high-dimensional origi-
nal data to a lower-dimensional space represented
by a lookup table (Eq. 2). VQ maps original vec-
tors (W′) from the vector space to a finite set of
vectors, which is commonly referred to as a code-
book (lookup table, C). Each vector in the original
space approximates the closest vector (centroid Ci)
in the codebook.

argmin
i∈k

∥v − Ci∥2,∀v ∈ W′ (2)

VQ indicates the nearest centroid Ci that minimizes
the Euclidean distance between the input vector
v in the lookup table. The optimization problem
aims to find the index i that results in the small-
est distance between v. Thus, each input vector
is represented by the most similar centroids, thus
minimizing total distortion.

Recent research has explored the use of VQ for
model weight quantization (Chen et al., 2020; Cho
et al., 2022; Stock et al., 2020, 2021). These studies
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attempt to compress the embedding layer, the con-
volution layer, and the classification layer of neural
networks using VQ. Figure 1 illustrates an example
of applying VQ to compress model weights on a
weight matrix. For a weight matrix W with di-
mensions M ×N , we reshape W into vectors of
length v as W′ (step ➊). The number of reshaped
vectors should be M×N

v . Next, we employ k-means
or other clustering algorithms to build a codebook
(step ➋). The constructed codebook contains k cen-
troid vectors, each with v dimensions. Applying
the VQ algorithm directly often does not yield an
acceptable accuracy. Typically, PTQ algorithms
adjust the model index and centroid to enhance the
accuracy of the quantized model (step ➌).

During model inference, each operator in the
model first dequantizes the original weight matrix
from the lookup table (codebook) by index and
centroid. Unlike scalar quantization, VQ keeps the
index and centroid in quantized weight. The equiv-
alent compression ratio of VQ can be formulated
as: total original model bits/(codebook bits +
index bits). The equivalent quantization bitwidth
is as: original bit width/compression ratio. For ex-
ample, a 4096 × 4096 FP16 weight matrix with
vectors of length v = 8 and 256 centroids, the com-
pression ratio is (16× 4096× 4096)/(8× 256×
16 + log2(256) × 4096 × 4096/8) = 15.97. The
equivalent bitwidth is 1.002 bit.

2.3 Vector Quantization in LLMs

While VQ has been applied to weight quantization,
the following significant challenges persist when
quantizing LLM. We summarize the benefits and
weaknesses of recent research (Egiazarian et al.,
2024; Tseng et al., 2024; van Baalen et al., 2024)
techniques in Table 1.

The number of parameters in LLMs is enor-
mous, which requires quantizing the model using
lightweight methods to avoid excessive resource
consumption. AQLM (Egiazarian et al., 2024) uti-
lizes gradient descent to train each layer of the
VQ-quantized model and simultaneously trains
across multiple layers using calibration data. It
achieves effective compression through additive
quantization and joint optimization of the code-
book, which can achieve high accuracy. However,
due to AQLM’s use of backpropagation for model
training, significant GPU hours and memory are re-
quired to achieve better accuracy, especially when
dealing with LLMs with massive parameters.

Algorithm 1 VPTQ Algorithm
Input: W← RM×N ▷ input weight matrix
Input: H← RN×N ▷ hessian matrix
Output: Ŵ← RM×N ▷ quantized weight matrix
E← RM×N ▷ initialize quantization errors
for s = 0, B, 2B, . . . do ▷ Column blocks

for n = s, s+ 1, . . . , s+B − 1 do ▷
Quantize a single column n, fundamentally different from
AQLM (Egiazarian et al., 2024).

for m = 0, V, 2V, . . . ,M do ▷
Parallel (Residual) Vector Quantization by function Q(v)
to vectors in the column n

Ŵm:m+V,n← QV (Wm:m+V,n)
end for
E:,n ← (W:,n −W′

:,n)/(H
−1
n,n) ▷ update

quantization error
W:,n:s+B ←W:,n:s+B −E:,nH

−1
n,n:s+B ▷

merge quantization error to weights
end for
W:,s+B: ←W:,s+B: −E:,s:s+BH

−1
s:s+B,s+B: ▷

update all remaining weights
end for

GPTVQ (van Baalen et al., 2024) utilizes the
Second-Order Optimization method to implement
PTQ. However, GPTVQ accumulates quantization
errors within vector quantization, leading to an
inevitable increase in quantization errors as the
vector length increases. It prevents the use of longer
vectors and consequently limits the compression
ratio.

QuIP# (Tseng et al., 2024) introduces an incoher-
ence processing using the randomized Hadamard
transform for the weight matrix before VQ. The
processed weight matrix approximates a sub-
Gaussian distribution, allowing for compression
with a tiny codebook. However, incoherence pro-
cessing requires a significant amount of computa-
tion, despite QuIP# being able to compress LLM
to extremely low-bit with a low accuracy drop. It
requires significantly more computation for infer-
ence compared to the original LLM, resulting in
low inference throughput.

3 Vector Post-Training Quantization
3.1 VPTQ Algorithm
VPTQ leverages Second-Order Optimization and
solves the optimization problem Eq.1 to achieve ex-
treme low-bit quantization. Assume that a weight
matrix is W ∈ RM×N , and a Hessian matrix col-
lected from the current layer is H ∈ RN×N . We
denote the q-th column of the weight matrix as
Ŵ:,q. The quantized column Ŵ:,q can be repre-
sented as the transpose of concatenated centroid
vectors

Ŵ:,q = (C0, C1, ..., CM/v)
T .
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When the weight matrix of the model is large,
we can first split the weight matrix into multi-
ple groups. Each group has its own independent
codebook. This method allows us to flexibly di-
vide the weight matrix into several submatrices
(Ŵ:,q:q+(M/group num)) equal to the group number.
For clarity, we describe only one group in the fol-
lowing algorithm description.

Unlike GPTVQ, we quantize each column of
the matrix independently, which we refer to as
Channel-Independent Second-Order Optimiza-
tion. It greatly simplifies the complexity of VQ in
Second-Order Optimization. GPTVQ, on the other
hand, quantizes v columns of the matrix (ŴM,v)
at once, leading to larger errors and more complex
transformations for problem optimization.

We use the Lagrange Method to transform the
optimization problem 1 into an unconstrained op-
timization problem. The Lagrangian function
L(∆W), and λ is the Lagrangian multiplier:

L(∆W) = ∆WTH(W)∆W + λ∆W

The dual function g(λ) can be represented as:

g(λ) = −H−1
qq λλ

T − λ(Ŵ:,q −W:,q)

Differentiating g(λ) with respect to λ and setting
it to 0,

g′(λ) = −H−1
qq λ− (Ŵ:,q −W:,q)

T = 0

we can find that when λT = − (Ŵ:,q−W:,q)

H−1
qq

, the
problem reaches an optimal solution.

By substituting λT into the optimization prob-
lem, we find that to minimize the error introduced
by quantization, we need to minimize the impact on
the Lagrangian function. Therefore, we can trans-
form the quantization problem into minimizing:

∆L(∆Ŵ) =

∑ ∥v − C∥2
2H−1

qq

We find that when quantizing a column vector
each time, we only need to consider minimizing∑ ∥v − C∥2, which is to find the closest centroid
in Euclidean Distance. It precisely aligns with the
optimization of VQ. Moreover, since VPTQ quan-
tizes the weight matrix column by column, H−1

qq

is constant when quantizing each column, so we
do not need to consider Hessian when finding the
centroid.

After quantizing a column of the weight matrix,
we need to update the current quantization error to
the unquantized part through:

∆W =
(Ŵ:,q −W:,q)

H−1
qq

Hq,:

It will transform current quantization errors to the
following unquantized columns. Since GPTVQ
quantizes v columns at the same time, quantization
error can only spread to other unquantized columns
when all v columns have been quantized. It will
lead to more errors accumulating in the quantiza-
tion, resulting in a decrease in model accuracy. We
can have similar conclusions from Table 2. Algo-
rithm 1 provides a detailed description of the steps
to solve the optimization problem and quantize the
weights according to the above analysis.

Distinguish VPTQ from GPTQ and GPTVQ:
Compared with GPTQ, VPTQ employs vector rep-
resentations in the quantization, which choose the
vector closest to the original matrix to represent
the original data. As VQ can use a larger code-
book to store the quantized data, it covers a wider
range of numerical distributions compared to the
scalar quantization of GPTQ, thereby achieving
better accuracy. Table 2 reveals that VPTQ signifi-
cantly outperforms GPTQ under extremely low bit
quantization.

Moreover, since GPTVQ quantizes multiple
columns simultaneously, the propagation of quanti-
zation errors to unquantized columns is more chal-
lenging. Furthermore, the quantization errors in
GPTVQ accumulate as the vector length increases,
hindering GPTVQ from using longer vector lengths
for weight compression (limited to only 1-4 bits).
It significantly reduces the compression ratio of
VQ. On the other hand, VPTQ is capable of com-
pressing weights using longer vectors (> 8 bits) and
representing data with a larger codebook. Table 2
shows the better accuracy achieved by VPTQ than
GPTVQ.

3.2 Optimization in VPTQ
3.2.1 Hessian-Weighted Centroid

Initialization
VTPQ algorithm requires the initialization of cen-
troids in the codebooks prior to quantization. Prop-
erly initializing centroids can reduce quantization
errors and improve model accuracy. A straightfor-
ward method is to perform K-means clustering on
the weight matrix as centroids (Eq.2). However, it
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does not consider the optimization object in Eq.1,
leading to a significant accuracy drop (van Baalen
et al., 2024; Egiazarian et al., 2024).

We can transform the optimization object by
leveraging the cyclic property of matrix traces and
the Hadamard product. We refine the optimization
objective as:

∆WT∆W ⊙H =
n−1∑

i=0

hi,i∥∆W:,i∥2

+
n−1∑

i=0

n−1∑

j=0,j ̸=i

hi,j(∆W:,i∆W:,j)

Due to the Hessian matrix being predominantly di-
agonal (Dong et al., 2020), it guides us to split the
proxy error into two terms. The first term repre-
sents the dominant diagonal elements of the initial
error matrix, which significantly impact the quanti-
zation error. The second term is the interaction of
a single value in weight quantization with others.

Because the Hessian matrix is predominantly di-
agonal, we can prioritize optimizing the first term
through centroid initialization. We can view the
first term as a Weighted K-means Clustering prob-
lem (Cordeiro de Amorim and Mirkin, 2012; Kerd-
prasop et al., 2005; Liu et al., 2017). Since this
problem is well-studied, we can directly solve it
to achieve efficient and accurate centroid initializa-
tion.

3.2.2 Residual Vector Quantization
We enable Residual Vector Quantization (RVQ)
(Barnes et al., 1996; Wei et al., 2014) in VPTQ.
RVQ improves vector quantization (VQ) by break-
ing down the compression of a weight matrix into
two (or more) stages. Each stage further com-
presses the residual error vres = v − Q(v) from
the previous quantization stage:

Q(vres) = argmin
i

∥(v −Q(v))− Cres
i ∥2

Unlike GPTVQ, VPTQ enables RVQ, which
quantizes VQ quantization error using a separate
lookup table for better representation and quanti-
zation. By partitioning the encoding into multi-
ple stages and reducing quantization error, RVQ
not only achieves superior compression efficiency
but also ensures a balance between quantization
error, the size of lookup tables, and the memory re-
quirements for indices. During the decoding phase,
VPTQ simply reads the centroids from these multi-
ple lookup tables and combines them to reconstruct
the original weight matrix.

Algorithm 2 End to End Quantization Algorithm
Require: original model, vector length v, centroid number k,

hessian matrices H
Ensure: quantized model

for each layer l do ▷ Fully parallelized each layer on GPUs
for each Linear operator do

if outlier is enabled then
Initialize outlier centroids Coutlier
W′

outlier ← VPTQ(Woutlier, Coutlier)
end if
Initialize centroids C
w′ ← VPTQ(W, C)
if residual is enabled then

Initialize residual centroids Cres
W′′ ← VPTQ(W −W′, Cres)

end if
end for
if finetune layer is enabled then

Finetune layer l
end if

end for

3.2.3 Outlier Elimination
Recent studies on quantization in LLM have consis-
tently observed a significant presence of outliers in
activation (Xiao et al., 2023; Lin et al., 2023; Lee
et al., 2024). Outliers, while small portions (~1%
of the matrix), heavily affect the quantization error
and simulate model accuracy. Outliers typically re-
sult in large values in the diagonal elements of the
Hessian matrix. During centroid initialization in
Sec.3.2.1, VPTQ already considers these Hessian
diagonals as weights in K-means, allowing VPTQ
to better quantize the error introduced by outliers.

Q(voutlier) = argmin
i

∥voutlier − Coutlier
i ∥2

Furthermore, VPTQ flexibly partitions the weight
matrix and uses a separate outlier lookup table to
quantify matrix tiles most affected by outliers. It
allows us to effectively trade off model accuracy
and quantization overhead.

4 End to end Quantization Algorithm
In this section, we will detail the end-to-end model
quantization algorithm (Algorithm 2). The algo-
rithm takes the original model, vector length v,
centroid number k, and Hessian matrices H as in-
puts. It starts by iterating over each layer l of the
model. As each layer’s quantization only relates to
the current layer and the Hessian matrix, we can
fully parallelize the quantization of each layer on
GPUs.

In each layer, we first quantize the weight of
each Linear Operator (matrix multiplication of
input and weight). If we enable the outlier op-
tion, the algorithm first selects outlier columns
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following Section 3.2 and initializes the outlier
centroids Coutlier. Then, VPTQ is applied to the
outlier weights Woutlier using the outlier centroids,
generating the quantized weights W′

outlier. Next,
the algorithm initializes the centroids C for the re-
maining columns and applies VPTQ to the weights
W using these centroids to produce the quantized
weights W′. Lastly, if residual quantization is en-
abled, the algorithm initializes the residual cen-
troids Cres. It applies VPTQ to the residual error
between the original weights and the quantized
weights (W − W′), using the residual centroids.
The quantized weight is updated as W′′.

After processing all the operators, the algorithm
will fine-tune the layer l if we enable layer fine-
tuning. The loss function is the Mean Squared
Error (MSE) between the original and quantized
computations. In layer-wise fine-tuning, we only
update the normalization operator (e.g. RMSNorm)
and centroid. These parameters only comprise a
small fraction of the entire layer, and we can com-
plete the fine-tuning quickly with limited memory.
After each layer completes quantization and fine-
tuning, we can further fine-tune the entire model
as other PTQ methods used (Tseng et al., 2024;
Chee et al., 2023; Egiazarian et al., 2024). Once
the algorithm processes all layers, it outputs the
quantized model. The end-to-end VPTQ algorithm
quantizes all the weights in every Linear Operator
in the model into an index and a codebook (C). Dur-
ing model inference, we only need to dequantize
the weight matrix by reading centroids from the
codebook according to the index before executing
the operator.

5 Experiments and Evaluations

5.1 Settings
Algorithm Baseline We focus on weight-only

quantization. The detailed quantization parameters
(such as vector length and codebook numbers) and
fine-tuning parameters of our VPTQ are shown in
Appendix B . Following (Frantar et al., 2023), our
calibration data consists of 128 random segments
of the C4 dataset (Raffel et al., 2020).

Models and Datasets We benchmark accuracy
on LLaMA-2 (Touvron et al., 2023), LLaMA-3
families (Meta, 2024), and Mistral (Jiang et al.,
2023). Following previous work (Frantar et al.,
2023), we report perplexity on language modeling
tasks (WikiText-2 (Merity et al., 2016), C4 (Raffel
et al., 2020)). We also employ lm-eval-harness

(Gao et al., 2021) to perform zero-shot evalua-
tions on common sense QA benchmarks (PIQA
(Bisk et al., 2020), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC (Clark
et al., 2018)). Detailed configuration is in Appendix
A.

Baselines For LLaMA-2 and Mistral models,
we compare VPTQ against GPTQ, GPTVQ, DB-
LLM, QuIP#, and AQLM. To account for the dif-
ferent overheads resulting from varying codebook
constructions, we provide results with compara-
ble bit widths to facilitate a fair comparison. For
LLaMA-3 models, we use the results of (Huang
et al., 2024). However, due to alignment issues
with the C4 dataset, we only show results for Wiki-
Text and QA tasks. Because LLaMA-3 models are
new and running quantization ourselves is costly,
we do not have results for QuIP# and AQLM.

5.2 Accuracy Evaluation
Results on LLaMA-2 model: We compare VPTQ
with QuIP#, AQLM, GPTVQ, DB-LLM, and
GPTQ on the LLaMA-2 model. First, we discuss
the results of 2-bit quantization. As shown in Table
2, GPTQ, as a scalar quantization method, performs
poorly with unusable accuracy. While DB-LLM
and GPTVQ perform better, they still experience
significant performance drops, with WikiText-2
perplexity increasing by 2. The significant accu-
racy drop in GPTVQ, despite being a vector quan-
tization algorithm, is due to two factors: the use
of shorter vector lengths, which introduces higher
quantization loss, and the choice to update weights
every v columns, which leads to cumulative errors.
Therefore, we primarily focus on comparing VPTQ
with the state-of-the-art QuIP# and AQLM which
both choose longer vector lengths.

Table 2 includes the average scores for the five
QA tasks mentioned in Section 5.1. VPTQ outper-
forms QuIP# and AQLM on 7B and 13B models.
For the 7B model, VPTQ achieves a further re-
duction in WikiText-2 perplexity by 0.5 and 0.3
compared to the previous best results at 2-2.02 bits
and 2.26-2.29 bits, respectively. In QA tasks, the
VPTQ 2.26-bit model surpasses the AQLM 2.29-
bit model with an average accuracy increase of
1%. For the 13B model, the VPTQ 2.02-bit model
shows a slight improvement over QuIP#, and the
2.18-bit model outperforms AQLM in QA accuracy
by 1.5%. On the LLaMA-2-70B model, we achieve
similar perplexity (< 0.02) and comparable QA
results(< 0.4%). The results for 3- and 4-bit quan-
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Table 2: LLaMA-2 2bit Quantization Results. The "N/A" in the table stands for "not available," with further
explanation provided in the Appendix A.1

(a) 7B results

Method bit W2↓ C4↓ AvgQA↑ tok/s↑ mem(GB)↓ cost(h)↓
FP16 16 5.12 6.63 62.2 38.32 27.22 N/A
GPTQ 2.125 50.75 36.76 39.16 19.59 4.42 0.2

GPTVQ 2.25 6.71 9.9 56.14 N/A N/A 1.5
DB-LLM 2.01 7.23 9.62 55.1 N/A N/A N/A

QuIP# 2 6.19 8.16 58.2 4.4 2.25 N/A
AQLM 2.02 6.64 8.56 56.5 19.4 2.16 N/A
AQLM 2.29 6.29 8.11 58.6 19.6 2.4 11.07
VPTQ 2.02 6.13 8.07 58.2 39.9 2.28 2

2.26 5.95 7.87 59.4 35.7 2.48 2.2

(b) 13B results

Method bit W2↓ C4↓ AvgQA↑ tok/s↑ mem(GB)↓ cost(h)↓
FP16 16 4.57 6.05 65.4 30.03 63.63 N/A
GPTQ 2.125 43.84 23.07 43.72 11.56 7.92 0.3

GPTVQ 2.25 5.72 8.43 61.56 N/A N/A 3.7
DB-LLM 2.01 6.19 8.38 59.4 N/A N/A N/A

QuIP# 2 5.35 7.2 62.0 3.5 3.94 N/A
AQLM 1.97 5.65 7.51 60.6 N/A N/A N/A
AQLM 2.18 5.41 7.2 61.6 16.5 4.14 22.7
VPTQ 2.02 5.32 7.15 62.4 26.9 4.03 3.2

2.18 5.28 7.04 63.1 18.5 4.31 4

(c) 70B results

Method bit W2↓ C4↓ AvgQA↑ tok/s↑ mem(GB)↓ cost(h)↓
FP16 16 3.12 4.97 70.2 multi-gpu N/A N/A
GPTQ 2.125 NaN NaN 59.18 2.38 37.63 2.83

GPTVQ 2.25 4.25 6.9 68.5 N/A N/A 12
DB-LLM 2.01 4.64 6.77 65.8 N/A N/A N/A

QuIP# 2 3.91 5.71 69.0 1.9 18.36 25
AQLM 2.07 3.94 5.72 68.8 6.9 18.81 183
VPTQ 2.07 3.93 5.72 68.6 9.7 19.54 19
VPTQ 2.11 3.92 5.71 68.7 9.7 20.01 19

Table 3: LLaMA-3 and Mistra-7b 2,3,4-bit Quantization Results. The table shows LLaMA-3 Wikitext2 perplexity
(context length 2048) and average zero-shot QA Accuracy, Mistral-7B Wikitext2, C4 perplexity (context length
8192) and average zero-shot QA accuracy. Detailed score for each task see Table 6 and Table 7.

LLaMA-3 8B LLaMA-3 70B Mistral 7B

bit W2↓ AvgQA↑ bit W2↓ AvgQA↑ bit W2↓ C4↓ AvgQA↑

FP16 16 6.14 68.6 16 2.9 75.3 FP16 16.0 4.77 5.71 68.6
QuIP 4 6.5 67.1 4 3.4 74.5 QuIP# 4.01 4.85 5.79 68.7
GPTQ 4 6.5 67.3 4 3.3 74.9 AQLM 4.02 4.85 5.79 68.0
VPTQ 4.03 6.42 68.1 4.05 3.15 74.7 GPTQ 4.125 4.83 5.74 68.4
QuIP 3 7.5 63.7 3 4.7 72.6 VPTQ 4.03 4.81 5.72 68.2
GPTQ 3 8.2 61.7 3 5.2 70.6 AQLM 3.0 5.07 5.97 67.3
VPTQ 3.03 6.97 66.7 3.01 3.81 73.7 VPTQ 3.03 4.96 5.84 67.3
QuIP 2 85.1 36.8 2 13 48.7 QuIP# 2.01 6.02 6.84 62.2

DB-LLM 2 13.6 51.7 N/A N/A N/A AQLM 2.01 6.32 6.93 62.2
GPTQ 2 2.10E+02 36.2 2 11.9 45.4 GPTQ 2.125 1535 164 44.5
VPTQ 2.08 9.29 60.2 2.02 5.6 70.9 GPTVQ 2.25 8.99 18.6 57.7
VPTQ 2.24 9.19 62.7 2.07 5.66 70.7 VPTQ 2.04 5.64 6.43 63.2

tization shown in Table 5 are without end-to-end
fine-tuning but are also comparable to AQLM and
QuIP# which include end-to-end fine-tuning. The

ablation study of quantization parameters is in Ap-
pendix C.

Results on LLaMA-3 and Mistral model: Ta-
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ble 3 presents VPTQ results on the LLaMA-3
model and Mistral-7b model. In all 2-, 3-, and
4-bit quantizations of LLaMA-3 models, we sig-
nificantly outperform GPTQ, DB-LLM, and QuIP,
whose accuracy drops to unusable levels. VPTQ en-
sures an accuracy drop of < 8% for the 8B model
and < 5% for the 70B model. On the Mistral-
7B model, our 2-bit performance surpasses both
QuIP# and AQLM by 0.8% in QA accuracy. In
3-bit quantization, our perplexity is lower. At 4-
bit, results are comparable overall. More detailed
results are in Table 7. As bit width increases, the
advantage of vector quantization diminishes, with
GPTQ showing a similar WikiText-2 perplexity at
4-bit.

Inference throughput and quantization cost:
In Table 2, the ‘tok/s’ column indicates the num-
ber of tokens generated per second during the de-
code phase of inference. VPTQ achieves a 2-9×
speedup compared to QuIP# because QuIP# uses
Hadamard Transform during decoding, which intro-
duces O(n2) multiplications and additions, signifi-
cantly slowing the inference throughput. Compared
to AQLM, VPTQ uses a smaller codebook, result-
ing in a lower decoding overhead. Therefore, our
inference throughput for the 7B and 13B models
is 1.6-1.8× faster than AQLM. As the model size
increases, our codebook size becomes comparable
to theirs, leading to similar inference throughputs
for the 70B model. The ’mem(GB)’ column rep-
resents the GPU memory usage at runtime. The
‘cost(h)’ column represents the hours required for
model quantization on 4× 80GB A100 GPUs. We
achieves comparable or even better results than
AQLM in only 10.4-18.6% of quantization algo-
rithm execution time.

6 Conclusion

In this paper, we propose Vector Post-Training
Quantization (VPTQ), a novel approach to achiev-
ing extremely low-bit quantization of LLMs by
Vector Quantization. Through the application of
Second-Order Optimization, we have formulated
the LLM Vector Quantization problem and directed
the design of our quantization algorithm. By fur-
ther refining the weights via Channel-Independent
Second-Order Optimization, we have enabled a
more granular VQ.

VPTQ also includes a brief and effective code-
book initialization algorithm, which is achieved
by decomposing the optimization problem. We

have extended VPTQ to support residual and out-
lier quantization, which not only improves model
accuracy but also further compresses the model
size.

Our experimental results demonstrate the effec-
tiveness and efficiency of VPTQ. The perplexity
of quantized model is reduced by 0.01-0.34 on
LLaMA-2, 0.38-0.68 on Mistral-7B, 4.41-7.34 on
LLaMA-3 over SOTA at 2-bit, with an average ac-
curacy improvement of 0.79-1.5% on LLaMA-2,
1% on Mistral-7B, 11-22% on LLaMA-3 on QA
tasks. Furthermore, we achieved these results only
using 10.4-18.6% of the execution time of the quan-
tization algorithm, leading to a 1.6-1.8× increase
in inference throughput compared to SOTA. These
results underscore the potential of VPTQ as an ef-
ficient and powerful solution for the deployment
and inference of LLMs, particularly in resource-
constrained settings.

7 Limitations

Related research on PTQ (Egiazarian et al., 2024;
Tseng et al., 2024; van Baalen et al., 2024) have
adopted end-to-end model fine-tuning after the
PTQ phase. Compared to other related works,
VPTQ can better quantize the model in the PTQ,
and it simplifies and reduces the cost and overhead
of model fine-tuning.

Due to GPU resource constraints, we cannot fine-
tune larger models (70B) for longer iterations and
more tokens. It limits our experimental results,
which can only achieve similar results to baselines
in 70B models. It restricts the demonstration of
VPTQ’s advantages and potential on large mod-
els in this paper. We will strive for more GPU
resources to fine-tune the VPTQ model for longer
periods and with more tokens in the future, allow-
ing for a fair comparison.

Additionally, since LLaMA-3 models are the
latest released models, there is a lack of baselines
from related works. It is difficult for us to fully
demonstrate our performance improvements. We
will continue to add more baselines in the future to
highlight the advantages of VPTQ.

In this paper, we only use AI tools for grammar
checking and code completion.
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A Appendix: All Experiments Results

A.1 Supplementary Explanation for Main
Results Table 2

Table 2 shows our main results. Here we provide
an explanation for the ’N/A’ entries relative to other
works.

DB-LLM Since they did not open source their
code, we use the AvgQA results from their paper.
However, this number does not align with our FP16
results.

GPTQ We reproduce the 2-bit results using the
official GPTQ repository. As GPTQ quantizes each
layer in sequential order, the ’cost(h)’ represents
the time taken to quantize on a single A100 GPU.

GPTVQ They do not release their 2-bit quan-
tized model. We reproduce Llama-2, LLama-3
7B and 13B, Mistral 7b 2-bit results using their
released GPTVQ code, which only supports single-
GPU execution. Therefore, the quantization cost
reflects the execution time for quantization on a
single A100 GPU. Due to the lack of specific logic
for loading their quantizers in the released code, we
were unable to measure the throughput and runtime
memory.

AQLM Their 1.97-bit LLaMA-2 13b model has
not been open-sourced, so we are unable to mea-
sure its inference throughput and runtime memory.

QuIP# Due to recent changes in the libraries
they rely on, the quantization cost is not measured.
The quantization time for the 70B model is esti-
mated based on their original paper.

A.2 All Experimental Results
In this section, we present all our experimen-
tal results, including the perplexity of the quan-
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tized model on different context lengths in two
datasets, Wikitext2 and C4, and the accuracy on
five Commonsense QA tasks (abbreviated as AE
for Arc_easy, AC for Arc_challenge, HE for Hel-
laswag, QA for PIQA, and WI for Winogrande).
Table 4 displays all results of LLaMA-2 at 2-bit
quantization. Table 5 presents results of LLaMA-2
at 3 and 4 bits quantization. Table 6 displays all
results of Llama3 at 2, 3, and 4-bit quantization.
Table 7 shows all results of Mistral 7b at 2, 3, and
4-bit quantization.

B Quantitative Analysis of Quantization
Parameter Settings

Quantization configuration The quantization pa-
rameters of all VPTQ 2bit models are shown in
Table 8.

Layer-wise fine-tuning parameters Layer-wise
finetuning trains centroids and layer norm using the
input and output of each layer when entering 128
samples of C4 training sets into the full precision
model. We train each layer for 100 iterations. Table
9 shows the learning rate and batch size used for
each model.

C Ablation Study

Table 10 shows results from LLaMA-2 13b on
Wikitext2 and C4 (sequence length = 4096) un-
der different quantization parameters. The im-
pact of techniques such as vector length, channel-
independent optimization, residual vector quanti-
zation, outlier elimination, layer-wise fine-tuning,
and end-to-end fine-tuning on quantization results
will be discussed.

C.1 Parameter Description

When performing N% outlier elimination, N% of
outliers will be quantized using a codebook with
a vector length of v0 and k0 centroids. For the
remaining (100-N)% parameters, the vector length
is v1. k1 represents the number of centroids in
the first codebook, while k2 represents the number
of centroids in the second codebook for residual
vector quantization. k2 = −1 indicates no residual
vector quantization.

C.2 Vector Length and Residual Vector
Quantization

Compression Ratio Calculation The average
bitwidth per element of the index matrix obtained
through vector quantization is:

Average index bitwidth =
log2(k1)

v1
+

log2(k2)

v1

The compression ratio is calculated by:

Compression ratio =
Total original model bits

Codebook bits + Index bits

For an original linear weight matrix with M pa-
rameters,

Codebook bits = (v0 × k0 + v1 × (k1 + k2))× 16

Index bits = M ×N%× log2

(
k0
v0

)
+M×

(100−N)%×
[
log2(k1)

v1
+

log2(k2)

v1

]

The total bitwidth in the table is calculated per
transformer block, which for LLaMA-2 includes 4
attention linear and 3 FFN linear layers.

Impact of Vector Length First, we discuss
the impact of vector length on accuracy. In Ta-
ble 10 rows #2, #3, #4, and #6 show results for
v1 = 2, 4, 6, 8, keeping the average index bit at
2 (i.e., log2(k1/v1) = 2). As v1 increases, the
perplexity on Wikitext2 and C4 decreases, but the
codebook size also increases exponentially. For
v1 = 8 and k1 = 65536, the codebook overhead
introduces an additional 0.19 bits. Then, we eval-
uate the model inference throughput in Table 11.
Since we employ weight-only quantization, the
main additional overhead of quantized model in-
ference comes from the lookup table for model
weights. Table 11 shows models with 2 bits on
various throughputs. As the vector length increases
(from 2 to 6), the granularity of memory access
for reading the lookup table in dequantization in-
creases, which allows memory access to match the
GPU’s cache line (128 bytes @ L1). This reduces
memory access transactions and decreases cache
misses. As the vector length further increases (from
8 to 12) along with the size and levels of the code-
book, the codebook size further increases, which
results in the codebook not fitting in the L1 cache,
thereby reducing the model’s inference speed. Ad-
ditionally, we find that a reasonable setting (e.g.,
v = 6, k = 4096) can achieve throughput simi-
lar to the original model for the quantized model,
demonstrating the efficiency of the VPTQ design.
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Table 4: LLaMA-2 2bit Quantization Results

7B bit W2 C4 AC AE HE QA WI tok/s mem(GB) cost(h)
FP16 16 5.12 6.63 39.93 69.28 56.69 78.35 66.93 38.32 27.22 N/A
GPTQ 2.125 50.75 36.76 20.9 34.9 30.5 57.2 52.3 19.59 4.42 0.2

GPTVQ 2.25 6.71 9.9 31.2 66.3 46.4 72.4 64.4 N/A N/A 1.5
DB-LLM 2.01 7.23 9.62 33.53 45.2 61.98 73.18 61.72 N/A N/A N/A

QuIP# 2 6.19 8.16 34.6 64.6 51.91 75.1 64.9 4.4 2.25 N/A
AQLM 2.02 6.64 8.56 33.28 61.87 49.49 73.56 64.17 19.4 2.16 N/A

2.29 6.29 8.11 34.9 66.5 50.88 74.92 65.67 19.6 2.4 11.07
VPTQ 2.02 6.13 8.07 35.24 63.8 52.08 75.19 64.33 39.9 2.28 2

2.26 5.95 7.87 36.43 64.9 52.87 76.17 66.46 35.7 2.48 2.2
13b bit W2 C4 AC AE HE QA WI tok/s mem(GB) cost(h)

FP16 16 4.57 6.05 45.56 73.23 59.71 78.73 69.69 30.03 63.63 N/A
GPTQ 2.125 43.84 23.07 23.3 43.3 36 61.3 54.7 11.56 7.92 0.3

GPTVQ 2.25 5.72 8.43 38.7 73.6 51.6 75.4 68.5 N/A N/A 3.7
DB-LLM 2.01 6.19 8.38 38.14 51.64 68.04 75.14 64.09 N/A N/A N/A

QuIP# 2 5.35 7.2 39.5 69.3 56.01 77.3 67.7 3.5 3.94 N/A
AQLM 1.97 5.65 7.51 37.8 69.78 53.74 76.22 65.43 N/A N/A N/A

2.18 5.41 7.2 39.42 69.15 54.68 76.22 68.43 16.5 4.14 22.7
VPTQ 2.02 5.32 7.15 40.02 71.55 56.18 77.26 66.85 26.9 4.03 3.2

2.18 5.28 7.04 40.96 71.8 56.89 77.48 68.43 18.5 4.31 4
70b bit W2 C4 AC AE HE QA WI tok/s mem(GB) cost(h)

FP16 16 3.12 4.97 51.11 77.74 63.97 81.12 77.11 multi-gpu N/A N/A
GPTQ 2.125 NaN NaN 35.8 67 51.8 74.6 66.7 2.38 37.63 2.83

GPTVQ 2.25 4.25 6.9 49.4 80.47 58.26 79.4 75.2 N/A N/A 12
DB-LLM 2.01 4.64 6.77 44.45 55.93 76.16 79.27 73.32 N/A N/A N/A

QuIP# 2 3.91 5.71 48.7 77.3 62.49 80.3 75.9 1.9 18.36 25
AQLM 2.07 3.94 5.72 47.93 77.68 61.79 80.43 75.93 6.9 18.81 183
VPTQ 2.07 3.93 5.72 47.7 77.1 62.98 80.3 74.98 9.7 19.54 19

2.11 3.92 5.71 48.29 77.77 62.51 79.82 75.14 9.7 20.01 19

Residual Vector Quantization Without any
fine-tuning, rows #4 and #7 show similar perplex-
ities for v1 = 6, k1 = 4096 and v1 = 12, k1 =
k2 = 4096 , with the latter even higher. How-
ever, after layer-wise fine-tuning, comparing rows
#11 and #13, residual vector quantization (RVQ)
reduces the perplexity by 0.3 compared to vector
quantization (VQ) due to the increased number of
finetunable centroids, showing significant improve-
ment.

C.3 Channel-Independent Optimization

Row #4 with channel-independent optimization
shows a perplexity decrease of 1 compared to row
#5 without it, indicating that channel-independent
second-order optimization effectively mitigates
quantization error accumulation.

C.4 Outlier Elimination

Rows #4, #8, #9, and #10 represent the results
for eliminating 0%, 1%, 2%, and 5% outliers, re-
spectively. We used a codebook with v0 = 4 and
k0 = 4096 to quantize N% of outliers, achieving
an effective average index bit of 3 bits, while other
parameters were 2 bits. Higher N% means more
parameters are quantized with 3 bits, leading to a

larger total bitwidth and lower perplexity.

C.5 Fine-tuning

Rows #4, #11, and #12 show results without any
fine-tuning, with layer-wise fine-tuning, and with
end-to-end fine-tuning, respectively. Adding fine-
tuning reduced the perplexity on Wikitext2 from
6.29 to 6.07 and further to 5.32.

C.6 Group Number

Rows #14, #15, #16, and #17 show the quantization
results when 99% of parameters are divided into 1,
2, 4, and 8 groups, respectively. Each group has its
own independent codebook. When divided into 1,
2, and 4 groups, the perplexity on Wikitext2 does
not change much, likely because the distribution of
the remaining parameters (after removing 1% out-
liers) is relatively uniform. This is likely because
the distributions of different groups overlap after
grouping, so the benefit of increasing the group
number is not significant.

C.7 Higher Bitwidth

Rows #18 and #19 represent the results for 3-bit
and 4-bit quantization, respectively. Compared to
the FP16 results in row #1, 4-bit vector quantization
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Table 5: LLaMA-2 3, 4-bit Quantization Results. The table shows Witext2,
C4 perplexity (context length 2048 and 4096) and zeroshot QA Accuracy.

7B bit W2(2k) C4(2k) W2(4k) C4(4k) AC AE HE QA WI

GPTQ 4 — — 5.49 7.2 36.8 66.2 55.4 76.6 68.2
GPTVQ 4.125 5.68 7.25 5.27 6.88 42.83 75.17 56.41 77.37 69.61
QuIP# 4 5.56 7.07 5.19 6.75 40.5 69.1 — 78.4 67.6
AQLM 4.04 — — 5.21 6.75 41.0 70.2 56.0 78.2 67.3
VPTQ 4.01 5.64 7.13 5.26 6.8 39.7 69.0 56.0 78.1 67.1
GPTQ 3 — — 8.06 10.61 31.1 58.5 45.2 71.5 59.2

GPTVQ 3.125 5.83 7.51 5.44 7.24 39.93 74.07 54.21 76.17 69.06
QuIP# 3 5.79 7.32 5.41 7.04 39.2 68.4 - 77.3 66.5
AQLM 3.04 — — 5.46 7.08 38.4 68.1 54.1 76.9 66.9
VPTQ 3.02 5.82 7.33 5.43 7.04 39.3 69.1 54.9 77.3 68.0

13B bit W2(2k) C4(2k) W2(4k) C4(4k) AC AE HE QA WI

GPTQ 4 — — 4.78 6.34 42.49 70.45 58.67 77.75 70.01
GPTVQ 4.125 5.68 7.25 5.27 6.88 42.83 75.17 56.41 77.37 69.61
QuIP# 4 4.95 6.54 4.63 6.13 45.50 73.90 — 78.90 69.90
AQLM 3.94 — — 4.65 6.14 44.80 73.32 59.27 78.35 69.85
VPTQ 4.02 4.96 6.54 4.64 6.13 44.37 73.19 59.37 77.75 69.77
GPTQ 3 — — 5.85 7.86 38.48 65.66 53.47 76.50 63.93

GPTVQ 3.125 5.11 6.83 4.8 6.47 44.45 77.23 58.18 77.8 71.98
QuIP# 3 5.1 6.72 4.78 6.35 44.00 72.50 — 78.40 69.10
AQLM 3.03 — — 4.82 6.37 42.58 70.88 58.30 77.26 68.43
VPTQ 3.03 5.12 6.7 4.79 6.32 42.32 73.99 58.42 77.64 68.67

70B bit W2(2k) C4(2k) W2(4k) C4(4k) AC AE HE QA WI

GPTQ 4 — — 3.35 5.15 49.15 76.81 63.47 81.23 75.61
GPTVQ 4.125 5.32 — — — — — — — —
QuIP# 4 3.38 5.56 3.18 5.02 50.6 78.1 - 81.4 77.1
AQLM 4.14 — — 3.19 5.03 50.68 77.31 63.69 81.5 76.48
VPTQ 4.01 3.39 5.57 3.19 5.02 49.57 78.16 63.71 81.18 76.4
GPTQ 3 — — 4.4 6.26 44.11 72.73 60 78.4 71.82

GPTVQ 3.125 5.51 — — — — — — — —
QuIP# 3 3.56 5.67 3.35 5.15 50.9 77.7 — 81.4 76.4
AQLM 3.01 — — 3.36 5.17 50 77.61 63.23 81.28 77.19
VPTQ 3.01 3.55 5.67 3.34 5.15 48.89 77.06 63.52 80.9 77.51

Table 6: LLaMA-3 Wikitext2 perplexity (context length 2048) and zeroshot QA Accuracy.

LLaMA-3 8B LLaMA-3 70B

bit W2↓ AC↑ AE↑ HE↑ QA↑ WI↑ bit W2↓ AC↑ AE↑ HE↑ QA↑ WI↑

FP16 16 6.14 50.3 80.1 60.2 79.6 73.1 16 2.9 60.1 87.0 66.3 82.4 80.8
QuIP 4 6.5 47.4 78.2 58.6 78.2 73.2 4 3.4 58.7 86.0 65.7 82.5 79.7
GPTQ 4 6.5 47.7 78.8 59.0 78.4 72.6 4 3.3 58.4 86.3 66.1 82.9 80.7
VPTQ 4.03 6.42 49.1 78.8 59.3 78.7 74.8 4.05 3.15 59.0 86.1 66.2 82.4 79.8
QuIP 3 7.5 41.0 72.9 55.4 76.8 72.5 3 4.7 54.9 83.3 63.9 82.3 78.4
GPTQ 3 8.2 37.7 70.5 54.3 74.9 71.1 3 5.2 52.1 79.6 63.5 80.6 77.1
VPTQ 3.03 6.97 45.8 77.5 58.4 78.2 73.4 3.01 3.81 57.3 84.7 65.5 81.7 79.2
QuIP 2 85.1 21.3 29.0 29.2 52.9 51.7 2 13 26.5 48.9 40.9 65.3 61.7

DB-LLM 2 13.6 28.2 59.1 42.1 68.9 60.4 N/A N/A N/A N/A N/A N/A N/A
GPTQ 2 2.10E+02 19.9 28.8 27.7 53.9 50.5 2 11.9 24.6 38.9 41.0 62.7 59.9
VPTQ 2.08 9.29 36.9 71.0 52.2 75.1 65.9 2.02 5.6 52.5 81.8 61.7 80.4 77.9
VPTQ 2.24 9.19 42.6 73.2 53.1 75.4 69.1 2.07 5.66 54.2 83.6 61.8 80.1 74.0
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Table 7: Mistral-7B-v0.1 Wikitext2, C4 perplexity (context length 2048 and 8192) and zeroshot QA Accuracy

Mistral 7b

bit W2(2k) W2(8k) C4(8k) AC AE HE QA WI

FP16 16 5.25 4.77 5.71 48.89 78.87 61.12 80.3 73.88
GPTVQ 4.125 5.38 4.87 6.13 50 80.43 60.36 79.65 73.4
QuIP# 4 — 4.85 5.79 49.4 78.96 60.62 80.41 73.95
AQLM 4.02 — 4.85 5.79 48.21 77.86 60.27 79.71 73.8
GPTQ 4.125 5.36 4.83 5.74 49.57 79.5 60.38 79.54 72.85
VPTQ 4.03 5.36 4.81 5.72 48.12 77.82 60.61 80.14 74.19

GPTVQ 3.125 6.42 6.8 13.28 40.78 75.67 54.18 77.42 67.4
AQLM 3.04 — 5.07 5.97 46.67 77.61 59.31 80.14 72.69
GPTQ 3.125 6.02 5.88 6.86 47.35 77.86 58.84 79.82 71.74
VPTQ 3.03 5.53 4.96 5.84 46.67 77.95 59.91 79.49 72.45
QuIP# 2 — 6.02 6.84 39.76 72.14 52.95 76.71 69.3
AQLM 2.01 — 6.32 6.93 40.44 73.65 52.13 76.01 68.75
GPTVQ 2.25 8.2 8.99 18.6 37.37 71 45.43 70.18 64.33
GPTQ 2.125 280 1535 164 24.49 44.91 36.56 63.33 52.96
VPTQ 2.04 6.32 5.64 6.43 41.13 72.22 56.1 77.91 68.67

Table 8: Parameters for 2-bit Quantization of Llama and Mistral Models. v represents the vector length, k denotes
the codebook size, k1 and k2 correspond to the two codebooks, and group num indicates the number of groups
into which PQ (Product Quantization) is divided.

bit
Outlier Other

N% v k v k1 k2 group num

LLaMA2-7b
2.02 0 - - 6 4096 - 1
2.26 1 4 8192 12 4096 4096 4

LLaMA2-13b
2.02 0 - - 6 4096 - 1
2.18 2 4 8192 12 4096 4096 4

LLaMA2-70b
2.07 1 4 8192 12 4096 4096 4
2.11 1 4 8192 12 4096 4096 8

LLaMA3-8b
2.08 1 4 4096 12 4096 4096 1
2.24 1 4 8192 6 4096 - 16

LLaMA3-70b
2.02 0 - - 12 4096 4096 1
2.07 1 4 4096 6 4096 - 16

Table 9: Layer-wise finetuning parameters on 8xH100

model finetune lr batchsize
LLaMA-2-7B 1× 10−4 32
LLaMA-2-13B 1× 10−4 32
LLaMA-2-70B 1× 10−5 16
LLaMA-3-8B 1× 10−5 16
LLaMA-3-70B 5× 10−6 8

Mistral-7B 5× 10−6 16

incurs almost no loss.

D Inference Evaluation

D.1 Throughput Measurement Process

We follow the throughput measurement method
used in AQLM (Egiazarian et al., 2024). During
the prompt phase, we provide 1 token and then

have the model generate 256 tokens, calculating the
generation time for each output token to determine
the throughput in tokens per second (tok/s).

D.2 Our Dequantization Implementation
Our dequantization implementation is divided into
two phases. In the first phase, which handles
prompts with relatively long sequences, we restore
the quantized weights (index and centroid, etc.) to
FP16 and then call ‘torch.matmul‘. In the second
phase, during decoding, we fuse the dequantization
and GEMV operations into QGemv, eliminating
the repetitive reading and writing of FP16 weights.
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Table 10: Ablation Study on Different Quantization Techniques for LLaMA-2 13B

bit
channel

independent
Finetune outlier other

layer
wise

e2e N% v0 k0 v1 k1 k2
group
num

W2(↓) C4(↓)

#1 FP16 - - - - - - - - - - 4.57 6.05
#2 2 Yes No No 0 - - 2 16 -1 1 14800 13337
#3 2.01 Yes No No 0 - - 4 256 -1 1 7.21 9.78
#4 2.02 Yes No No 0 - - 6 4096 -1 1 6.29 8.29
#5 2.02 No No No 0 - - 6 4096 -1 1 7.25 9.8
#6 2.19 Yes No No 0 - - 8 65536 -1 1 5.8 7.68
#7 2.04 Yes No No 0 - - 12 4096 4096 1 6.32 8.29
#8 2.03 Yes No No 1 4 4096 6 4096 -1 1 6.16 8.08
#9 2.04 Yes No No 2 4 4096 6 4096 -1 1 6.08 8.12
#10 2.07 Yes No No 5 4 4096 6 4096 -1 1 6.02 7.96
#11 2.02 Yes Yes No 0 - - 6 4096 -1 1 6.07 7.64
#12 2.02 Yes Yes Yes 0 - - 6 4096 -1 1 5.32 7.15
#13 2.04 Yes Yes No 0 - - 12 4096 4096 1 5.71 7.52
#14 2.06 Yes Yes No 1 4 4096 12 4096 4096 1 5.63 7.45
#15 2.09 Yes Yes No 1 4 4096 12 4096 4096 2 5.63 7.41
#16 2.17 Yes Yes No 1 4 4096 12 4096 4096 4 5.63 7.38
#17 2.3 Yes Yes No 1 4 4096 12 4096 4096 8 5.55 7.38
#18 3.01 Yes Yes No 0 - - 4 4096 -1 1 4.82 6.37
#19 4.02 Yes Yes No 0 - - 6 4096 4096 1 4.64 6.13

Table 11: Ablation of Vector Length on Inference
Throughput and Peak Memory Usage

v1 k1 k2 group num tok/s mem(GB)
FP16 - - - - 30.03 63.63

2 2 16 -1 1 18.85 4.17
2.01 4 256 -1 1 17.06 4
2.02 6 4096 -1 1 32.09 4.02
2.19 8 65536 -1 1 30.64 4.46
2.04 12 4096 4096 1 21.34 4.06
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