CoBa: Convergence Balancer for Multitask Finetuning of

Large Language Models
Zi Gong* Hang Yu* Cong Liao
Ant Group Ant Group Ant Group

gongzi.gz@antgroup.com

Bingchang Liu
Ant Group

Abstract

Multi-task learning (MTL) benefits the fine-
tuning of large language models (LLMs) by
providing a single model with improved perfor-
mance and generalization ability across tasks,
presenting a resource-efficient alternative to de-
veloping separate models for each task. Yet,
existing MTL strategies for LLMs often fall
short by either being computationally inten-
sive or failing to ensure simultaneous task
convergence. This paper presents CoBa, a
new MTL approach designed to effectively
manage task convergence balance with min-
imal computational overhead. Utilizing Rel-
ative Convergence Scores (RCS), Absolute
Convergence Scores (ACS), and a Divergence
Factor (DF), CoBa dynamically adjusts task
weights during the training process, ensuring
that the validation loss of all tasks progress
towards convergence at an even pace while
mitigating the issue of individual task diver-
gence. The results of our experiments involv-
ing four disparate datasets underscore that this
approach not only fosters equilibrium in task
improvement but enhances the LLMs’ perfor-
mance by up to 13% relative to the second-
best baselines. Code is open-sourced at https:
//github.com/codefuse-ai/MFTCoder.

1 Introduction

In recent years, large language models (LLMs)
have emerged as a focal point of research within
both academia and industry, owing to their superior
performance. These models are initially pretrained,
designed to ensure they possess broad applicabil-
ity across a variety of downstream tasks. This
is followed by a finetuning stage, which metic-
ulously adapts the models for specific tasks or
scenarios. However, this phase requires individ-
ual, task-specific finetuning, leading to a complex
deployment scenario in production environments.

“Equal contribution.
"The corresponding author.

hyu. hugo@antgroup.com

Chaoyu Chen
Ant Group
bingchang.lbc@antgroup.com chris.ccy@antgroup.com

liaocong.lc@antgroup.com

Jianguo Li’
Ant Group
lijg.zero@antgroup.com

Table 1: The time complexity of existing MTL ap-
proaches for each heterogeneous batch. In this context,
‘F’ and ‘B’ denotes the time complexity of the forward
and backward propagation respectively. ‘K is the num-
ber of tasks. |0;| is the weights (usually the final layer
of weights which are shared between tasks). The con-
stants are referred to as ‘a;’, where a4y < a1 < as < as.
Additionally, ‘N’ is the length of history window, ‘1"
is to number of training iterations, and * means the loss
weight is determined by the convergence trend of the
validation rather than the training loss.

Method Time Complexity
Uniform O(F + B)
GradNorm O(F + B + K|05|)
GradNorm* O(2F + 2B + K|04|)
LBTW O(F + B + 1K)
LBTW* O(2F + B+ a1 K)
FAMO O(F + B + a2K + a4K?)
FAMO* O(2F + 2B + asK)
MetaWeighting O(KF + KB)
CoBa O(2F + B+ agK)

The need to deploy separate models for each task,
combined with their considerable size and the asso-
ciated resource consumption, presents a formidable
challenge as the number of tasks grows.

Multi-task learning (MTL) presents a promising
remedy to the above issue by enabling the simulta-
neous training of multiple tasks (Crawshaw, 2020;
Vandenhende et al., 2021; Zhang et al., 2023). This
approach leverages a single model to support a vari-
ety of tasks, thus significantly conserving resources.
Moreover, MTL not only fosters performance im-
provements across related tasks but has the poten-
tial to generalize to unseen tasks. Reversely, the
vast parameter space of LLMs facilitates this adapt-
ability, allowing them to undertake multiple tasks
simultaneously. This proficiency is exemplified by
GPT-3.5/4 from OpenAl (Achiam et al., 2023).

For an effective implementation of MTL in
LLMs, two critical criteria must be met concur-
rently. First, the approach should incur minimal
extra computational costs since the training of

8063

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 8063—-8077
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/codefuse-ai/MFTCoder
https://github.com/codefuse-ai/MFTCoder

LLMs in itself is already highly resource-intensive.
Second, it is imperative to guarantee the simul-
taneous convergence of all tasks, tactfully navi-
gating to a shared optimal checkpoint.

Unfortunately, current approaches do not simul-
taneously meet the above two requirements. Tradi-
tional MTL methods, particularly those focusing on
loss balancing and gradient manipulation (Kendall
et al., 2018; Chen et al., 2018; Liu et al., 2019a;
Mao et al., 2022; Liu et al., 2024b), have proven
effective for smaller models and straightforward
classification tasks. However, adapting these es-
tablished techniques to LLMs presents significant
challenges due to the high computational costs
and the complexities involved in integrating them
with parallel training frameworks. For example,
GradNorm (Chen et al., 2018), FAMO (Liu et al.,
2024b), and MetaWeighting (Mao et al., 2022) typi-
cally incur a high computational cost with regard to
the number of tasks K, as shown in Table 1. Con-
versely, NLP models such as Muppet (Aghajanyan
et al., 2021) and ExT5 (Aribandi et al., 2021) em-
ploy a straightforward data mixing strategy from
multiple tasks for application in LLMs. However,
they fall short of addressing the persistent issue
of uneven task convergence within MTL settings.
This imbalance can result in a scenario where some
tasks are still optimizing while others begin to
worsen, negatively impacting the model’s overall
effectiveness.

In this paper, we introduce CoBa (COnvergence
BAlancer), an innovative MTL approach designed
for LLMs. This method aims to achieve balanced
convergence across various tasks while maintain-
ing ease of applicability in the training of LLMs.
The core strategy involves dynamically varying
each task’s training loss weight based on its conver-
gence trends in the validation dataset. Two essen-
tial criteria underpin this method are: 1) when the
validation losses of all tasks consistently decline,
the method lowers weights for those converging
faster (experiencing steeper drops in validation
losses) and increases weights for those converg-
ing more gradually (exhibiting less steep slopes).
2) For any tasks showing divergence—a signal
of possible overfitting—their associated weights
are decreased. On the other hand, weights are
boosted for tasks that are steadily converging.
To move forward to these objectives, we introduce
the Relative Convergence Score (RCS) to address
the first criterion and the Absolute Convergence
Score (ACS) for the second. A Divergence Fac-

tor (DF) is then applied to ascertain which score
prevails in influencing the final weight allocation.
Note that RCS, ACS, and DF are all efficiently com-
puted, leveraging the validation loss slopes through
normalization and softmax functions, making them
not only computationally effective but also easily
compatible with parallel training architectures. To
summarize, the main contributions of our study are:

* We introduce CoBa, a novel strategy designed
to achieve balanced convergence across various
tasks. CoBa is straightforward in its application
to LLMs, bridging the gap between advanced
MTL requirements and practical usability.

* We propose two new metrics — the RCS and the
ACS — along with a DF. The former two cater
to the aforementioned two criteria respectively,
while the DF determines which metric primarily
affects the final weight distribution.

* We validate the efficacy and efficiency of CoBa
through extensive experiments and show that
CoBa not only maintains balanced convergence
across tasks but also achieves up to a 13% rel-
ative performance improvement in comparison
with the second-best baselines.

2 Related Work

All Multi-Task Learning (MTL) approaches (Craw-
shaw, 2020; Vandenhende et al., 2021; Zhang et al.,
2023) are designed to foster positive knowledge
transfer across tasks through parameter sharing,
while simultaneously minimizing any potential neg-
ative transfer, often referred to as task interference.
Our discussion here primarily revolves around op-
timization techniques within MTL, given their rel-
evance to LLMs. We categorize the existing work
into two distinct groups: classical MTL methods
and MTL methods tailored for LLMs.

Classical Methods Traditional MTL strategies
aimed at addressing task imbalance from an opti-
mization standpoint fall into two categories: gra-
dient manipulation and loss balance. Gradient ma-
nipulation techniques (Chen et al., 2020; Liu et al.,
2020; Yu et al., 2020; Liu et al., 2021) create a
composite update vector at each optimization step
by amalgamating task gradients. This approach
ensures local improvements across all tasks but can
be computationally intensive, particularly for mod-
els with numerous parameters. Conversely, loss
balancing methods dynamically adjust each task’s
weight during training based on predefined fac-
tors such as task uncertainty (Kendall et al., 2018),

8064

task difficulty prioritization (Guo et al., 2018), and
random loss weighting (Lin et al., 2021). These
methods are computationally more efficient but
do not guarantee simultaneous convergence of all
tasks. To overcome this issue, advanced solutions
aiming at convergence balance include DWA (Liu
et al., 2019b), LBTW (Liu et al., 2019a), Grad-
Norm (Chen et al., 2018), MetaWeighting (Mao
et al., 2022), and FAMO (Liu et al., 2024b). The
latter three adjust task weights based on gradi-
ents, with MetaWeighting additionally focusing
on the validation instead of the training loss to en-
hance generalization performance. Unfortunately,
gradient-based weight adjustment can be computa-
tionally demanding, as shown in Table 1.

Methods for LLMs MTL research specific to
LLMs is still in its infancy, with a handful of no-
table contributions from models such as T5 (Raffel
et al., 2020), Muppet (Aghajanyan et al., 2021),
ExT5 (Aribandi et al., 2021), and MFTcoder (Liu
et al., 2024a). The initial three primarily aggregate
data from various tasks without considering task
equilibrium, often overlooking tasks with smaller
datasets and favoring those with larger ones. MFT-
coder advances this by calculating individual loss
for each task, yet assigns equal weights across the
board. MFTcoder acknowledges the inability of
such approaches to ensure uniform validation loss
convergence across tasks and suggests leveraging
FAMO as a potential solution.

The proposed method, CoBa, embodies the
strengths of both classical and LLM-specific MTL
approaches, achieving convergence balance among
tasks with minimal additional computational de-
mands. Crucially, it focuses on validation loss,
thereby promising to maintain or improve the gen-
eralization capabilities of the model.

3 Convergence Balancer (CoBa)

Multi-task learning (MTL) is engineered to opti-
mize a single model, parameterized by § € R,
enabling it to adeptly perform K > 2 tasks, poten-
tially even in tandem. The loss function for task
at the t-th iteration is denoted by ¢;(0;t) : R™ —
R>¢. This forms the foundation for the optimiza-
tion challenge of MTL, expressed as:

K
fuin, {5(9;75) = ;wi(t)giw;t)} ;D

where w;(t) is the loss weight for task ¢ at itera-
tion ¢. Assigning w;(t) = 1/K ensures data bal-

ance, giving due attention to tasks irrespective of
their sample sizes. However, this approach leads
to varying convergence rates across tasks (e.g., see
Figure 1(a)), complicating the identification of a
checkpoint that is optimal for all tasks. Our goal
is to adjust the weights w;(¢) to harmonize these
convergence rates. Furthermore, we prioritize gen-
eralization over mere training performance, and
so the weights w;(¢) is derived from the validation
rather than training losses. To achieve these objec-
tives, we adhere to two key criteria:

c1. When validation losses for all tasks are on
a downward trend, tasks with faster convergence
(sharper decline) receive reduced weights to avoid
rapid overfitting. In contrast, tasks converging
more slowly (gentler slopes) are assigned increased
weights to encourage more learning.

¢2. When any tasks begin to display signs of di-
vergence (overfitting), their weights are decreased.
Conversely, tasks that maintain a convergence tra-
jectory are accorded higher weights.

These two criteria are quantified respectively
through Relative Convergence Scores (RCS) and
Absolute Convergence Scores (ACS). RCS is em-
ployed to assess the convergence pace relative
among tasks, while ACS measures the current con-
vergence rate against historical rates for each task
individually. Note that these scores are derived
from the slopes of validation losses—not the gra-
dients—to minimize computational demands. We
then integrate a divergence factor (DF), highlight-
ing the overall convergence trajectory across tasks.
This factor ensures RCS impacts weights predom-
inantly when all tasks are converging, while ACS
takes precedence as an arbitrary task commences
diverging. In the sequel, we detail the computation
of slopes, the formulation of RCS and ACS, and
their amalgamation with the DF.

3.1 Convergence Slope

The convergence speed of different tasks can be
intuitively measured by examining the slope of
the validation loss curves. Figure 1(a) depicts this
scenario, where Task B, marked by the green curve,
demonstrates a quicker convergence compared to
Task C, which is represented by the red curve, up
until step 5900. This is reflected in the steeper slope
observed for Task B, indicating a higher absolute
value for its convergence slope than that of Task C
as shown in Figure 1(b).

To ensure a fair comparison of convergence
speeds across tasks, we first normalize the valida-

8065

Task A = Task B

Task C === Divergence Factor

0.56 2
° 0.54 1 0.6
0

2 t
Sos2 N step 5000
o
- @ -1

tep 8000
o < step

¥

| Istep8000 | o2

1.0
06 step 5900 0.8 0.6/ step 700 step 5900
¢ / p
L 06 2 |
Qo4 e 5 ©0.41{ ¢ 4
A .] Bo.4 g < i
02| S————_| 02 02{ N ~<X

0.46 5000 10000 15000

Steps

5000 10000 15000 0
Steps

0

20.50

3
0.48

0 5000 10000 15000 0

Steps

(a) Loss ratios. (b) Convergence slopes. (C) Relative scores.

5000 10000 15000
Steps

5000 10000 15000 0.0 0
Steps

H 0.0
0 5000 10000 15000 0
Steps

(f) Weights.

(d) Absolute scores. (€) Divergence factor.

Figure 1: Demonstration of CoBa’s task weight calculation process based on a real example.

tion losses. Specifically, we employ the validation
loss ratio, £9%(6;t), calculated as the current val-
idation loss divided by the initial validation loss
at step 0, that is, £2%(0;t) = €v9(0;t) /09%(;0),
where the £Y%(6; 0) refers to the validation loss of
the i-th task at step 0.

Utilizing this normalized validation loss ra-
tio, £Y%(0;t), we fit a linear model defined by
ax + 3 across a selected range of iterations. The
slope « from this linear fit provides us with an
estimate of the convergence slope for that pe-
riod. More specifically, at iteration ¢, we con-
struct the observations vector x;(t) = [t,1]7
and accordingly compile the observation matrix
X;(N;t) = [zi(s0), ..., x;(t)] ", matched with the
corresponding validation loss ratios y;(N;t) =
[0994(0; 50), ..., £071(0;1)] T, where 2 T denotes the
transpose of a, N refers to the length of history
window, and s9 = max(0,t — N + 1). We
aim to obtain the coefficient vector ¢;(N;t) =
[o;(N;t), B;(N;)] T, which minimizes the MSE
between the projected values X;(N;t)c;(N;t)
and the actual values y;(IV; t):

¢ = argcmin %(Xici —y) (Xici —yi). ()

The vector ¢;(N; t) has a closed-form solution as:

¢ = (X X)Xy, 3)
Note that the solution in Eq. (3) is only applicable
for t > 1. Thus, we set o;(N;t) = 0 when ¢t < 1.

Furthermore, to address the potential inaccuracy
of initial convergence slopes, our methodology in-
corporates a warm-up mechanism, parameterized
by W, which defines the number of steps before the
weight update process begins. During this warm-
up period, task weights are uniformly set to 1/ K,
ensuring a balanced starting point. Once the warm-
up period is completed, the weights are updated
based on the convergence slopes observed within a
sliding window of N steps. We recommend setting
N to 2M and W to M, where M is the number of
batches in the validation set. In each iteration, only
a single mini-batch from the validation set is used
for calculating the task-specific loss weight w;(t).

3.2 Relative Convergence Scores (RCS)

As mentioned above, the goal of RCS is to dy-
namically allocate smaller weights to tasks that
are converging more rapidly, and larger weights to
those converging more slowly, such that all tasks
can converge at the same time. This score is calcu-
lated based on the convergence slopes of all tasks
at a specific iteration ¢, that is,

IK{ (&7} (t) > L@
>i—1]ai(t)]

where softmax; means that the softmax operation
is applied to the dimension of ¢ (i.e., the dimen-
sion of tasks). To guarantee a level playing field
across all tasks, we first normalize the convergence
slopes as ;(t)/ 3.5 | | (t)|, making the calcu-
lated score resistant to variations in the mean scale
of the slopes. However, given that this normalized
value tends towards zero as the number of tasks /'
increases, we compensate by the multiplication of
K. This adjustment ensures that the final RCSs are
not disproportionately affected by the total number
of tasks being considered. The subsequent appli-
cation of the softmax function can then effectively
differentiate the RCS values across the tasks.

In practice, as displayed in Figure 1(a), Task
B, highlighted by the blue curve, demonstrates the
slowest convergence rate, which is appropriately re-
flected by the highest RCS, depicted in Figure 1(c).
Additionally, Figure 1(a) shows that Task C (the
red curve) converges slower than Task A (the green
curve) up to step 8000, which is coherently trans-
lated into a higher RCS for Task C compared to
Task A when ¢ < 8000 (cf. Figure 1(c)).

RCS;(t) = softmax; (

3.3 Absolute Convergence Scores (ACS)

Unfortunately, relying solely on RCS proves to
be inadequate for the needs of multi-task learn-
ing. As depicted in Figures 1(a) and 1(c), Task
B illustrates a scenario where, despite beginning
to diverge, it still secures the highest RCS due
to its largest (albeit positive) convergence slope.
Awarding the greatest weight to Task B under these
circumstances could exacerbate the situation by

8066

leading to further overfitting on this task, poten-
tially causing overall model performance to deteri-
orate—a scenario we intend to avoid. This predica-
ment underscores the necessity of ACS, whose fun-
damental purpose is to mitigate such risks by allo-
cating reduced weights to tasks that are diverging,
while favoring tasks that are on a converging trajec-
tory with larger weights. The ACS for a given task
¢ at any step t is mathematically represented as:
—N (673 (t)

7 :))
Zj:t—N+1 i (7))
Unlike RCS, where both normalization within the
softmax and the softmax itself occur across the task
dimension ¢, ACS performs normalization along
the iteration dimension ¢ from step ¢t — N 41 to step
t, but subsequently applies the softmax function
across the task dimension ¢. ACS’s unique aspect
lies in its exclusive consideration of a task’s own
historical performance during the normalization,
without considering other tasks. This isolation of
individual task trajectory is the reason behind the
nomenclature “Absolute” in ACS.

ACS;(t) = softmax; <

In general, in the initial stages of fine-tuning,
tasks typically exhibit fast convergence, marked by
a substantial negative slope. For tasks that maintain
a consistent convergence, these negative slopes ex-
hibit minimal change over the span from¢ — N 41
to t. In contrast, tasks that start to diverge will
show significant changes in their slopes, transition-
ing from negative to neutral or even positive values.
By normalizing the slope over this time window
and accounting for the negative sign as shown in
Eq. (5), tasks that continue to converge receive rel-
atively high values at step ¢. Conversely, tasks that
begin to diverge are assigned progressively lower
values. The subsequent application of the softmax
function across tasks allows us to allocate weights
appropriately, thereby achieving the desired effect
of bolstering converging tasks and restraining the
influence of diverging ones.

Figure 1(a), 1(b) and 1(d) intuitively demonstrate
the utility of the ACSs. As Task B’s loss ratio di-
verges at the earliest, its convergence slope rapidly
approaches zero, resulting in the smallest ACS. Ad-
ditionally, before step 5900, Task C’s convergence
slope approaches zero faster than Task A’s, thereby
receiving a lower ACS. After 5900 steps, the con-
vergence slope value of Task A exceeds Task C’s,
indicating that Task A will diverge earlier than Task
C, thus a lower ACS is attributed to Task A.

Algorithm 1 CoBa

Input: Initial parameter 6y, M batches of validation set, his-
tory window length N = 5M, warm-up steps W = M,
task number K, w;(0) = 1/K, validation loss ratios
window y;(N;0) < []

Output: Trained parameter 0

I: fort=0:Tdo

2: Compute £(6;t) with training batch @
3: Compute £/ (6;t) with validation batch v;
4 yi(Nst) < [69(0; 50), ..., 17 (6;1)]
5: Compute o (t) with (2),(3)
6: if t < W then
7: Compute RC'S(t) with (4)
8: Compute AC'S(t) with (5)
9: Compute DF'(t) with (7)

10: Compute w(t) with (6)

11: else

12: Compute w; (t) = &

13: end if

14: end for

3.4 Divergence Factor and Final Weight

In practice, it’s common that at the onset of training,
tasks generally show converging patterns. Conse-
quently, during this phase, RCS should play the pri-
mary role in dictating the weights assigned to each
task’s loss. Nevertheless, as training progresses, it
may happen that some tasks begin to diverge. In
such instances, ACS ought to take precedence in in-
fluencing the task loss weights. To seamlessly tran-
sition from RCS-dominance to ACS-dominance in
response to these evolving conditions, we introduce
the concept of a divergence factor (DF), designed
to monitor divergence trends throughout the train-
ing process. Given the divergence factor DF(t)
at step ¢, we can compute the final weight vector
w(t) = [wi(t), -+ ,wk(t)]" that takes both RCS
and ACS into account as:
w(t) = DF(t) RCS(t) + (1 — DF(t)) ACS(¢).

(6)
Now let us delve into the calculation of DF(¢). The
approach to determining the DF involves capturing
the largest (considering signs) convergence slope,
denoted as amax(t), across all tasks at each iter-
ation t. The DF itself is then quantified by the
formula:
DF(t) =min <t softmax; (— —:tamax(t) ,) , 1> ,

2 i1 Omax (i)
(N

where softmax; denotes that the softmax opera-
tion is applied to the dimension of steps. Crucially,
within the softmax function, we multiply the numer-
ator by the current step ¢ to ensure that DF(¢) does
not inherently decline as ¢ increases—even though
the denominator naturally accumulates over time.

8067

The use of the temperature parameter 7 > 1 assures
a sufficiently high level of distinction between the
softmax outputs. Finally, the entire softmax term
is scaled by ¢ to guarantee that DF(¢) equals 1
when all tasks are continuously converging. Con-
cretely, suppose that the most slowly converging
task sustains a constant negative slope. softmax;
then yields 1/t at step t, suggesting a decreasing
proportion of RCS in the final weight as train-
ing proceeds. However, in this context where all
tasks are converging, RCS should retain its dom-
inance in the final weight. Thus, by multiplying
the softmax; outputs by ¢, we ensure DF(¢) re-
mains at 1. On the other hand, DF(¢) given by
Eq. (7) falls below 1 only when the slope of a task
keeps increasing from negative to zero or even pos-
itive—indicative of the onset of divergence, which
aligns with the intended design of our method.

lustrating the proposed method with the exam-
ple provided in Figure 1, we note that in the initial
training stages—say, before 700 steps—the gradual
tapering of the DF (see Figure 1(e)) allows RCS
to exert a stronger influence, leading to Task B
receiving the heaviest weight. However, as Task
B’s convergence slope swiftly nears zero, the DF
undergoes a swift decline, hence amplifying the
role of ACS. Our methodology adeptly captures
the point at which the convergence slope of Task B
starts oscillating around zero, resulting in a lower
ACS for Task B. Post the 700-step mark, Task B’s
weight is reduced significantly, a strategic move to
effectively mitigate the risk of overfitting.

Difference from Existing Methods: Current ap-
proaches to convergence balancing, such as Grad-
Norm (Chen et al., 2018), DWA (Liu et al., 2019b),
IBTW (Liu et al.,, 2019a), FAMO (Liu et al.,,
2024b), and MetaWeighting (Mao et al., 2022),
are designed around the first criterion ¢ outlined
at the beginning of this section: decelerating the
convergence of rapidly converging tasks while ac-
celerating the convergence of slower tasks. The
proposed RCS also accomplishes this objective ef-
fectively. Yet, it should be noted that this first
criterion often has a counteractive effect on con-
vergence balancing when certain tasks start to di-
verge. This is an issue that existing methods fail
to address. To counteract this, CoBa introduces
the ABS, which assigns lower weights to tasks that
are diverging. Furthermore, DF improves this by
detecting the divergence trend of tasks and subse-
quently magnifying the importance of ABS. This

suppresses premature divergence trends, ensuring
overall stability is maintained.

3.5 Complexity Analysis

The overall algorithm is summarized in Algo-
rithm 1. Here, we provide an analysis of CoBa’s
computational complexity. For our assumptions,
we assign the computational complexity of for-
ward propagation as F' and the complexity of
backward propagation as B. We denote the num-
ber of tasks as K, the length of the history win-
dow as IV, and the number of training iterations
as T'. Initially, CoBa calculates the loss for a
training batch which updates the parameters, and
this process costs O(F + B) time. Subsequently,
it evaluates the validation batch’s loss, taking
O(F) time. Then, it calculates the convergence
slopes a(t) = [ai(t), -+ ,ax(t)]T which re-
quires O(2K N) flops. The computation of RCS(t)
and ACS(t) costs O(5K) and O(3K + 2N) time,
respectively. Ultimately, the identification of DF (¢)
and weight consumes O(77") and O(3K) time, re-
spectively. Thus, the joint time complexity of CoBa
isO2F+B+2KN+11K+2N+7T). In terms
of F, B, and K, this expression can be simplified
to O(2F + B + a3 K), as shown in Table 1.

4 Experiments

In this section, we assess the performance of
the CoBa across four diverse datasets: the Code
Completion (CC) Dataset, encompassing five
programming languages; the Code-Related Task
(CRT) Dataset, featuring five unique program-
ming tasks; the XTREME-UP, which delves into
question-answering across nine natural languages;
and Multi-Domain QA Dataset, including ques-
tion answering data in the fields of coding, math-
ematics, and natural language. Due to the space
limit, the results of the last dataset are shown in
Appendix D. The tasks within these datasets are in-
herently related and generative, making them ideal
candidates for MTL experiments on LLM. For fur-
ther insights into the datasets, readers are directed
to the Appendix A.

Our evaluation benchmarks the CoBa against 8
state-of-the-art (SOTA) baselines': Single-Task
Learning (STL), which finetunes each task in
isolation; Uniform (Liu et al., 2024a), applying
equal weights to all tasks in an MTL framework;

'We exclude MetaWeighting due to its high computational

demands, as detailed in Table 1, thereby rendering it pro-
hibitive for use with LLMs.

8068

ar bn en average
621 < 82; 74 A 4
79‘ [4 [
~ w |60 811 * L
g ® ° 734
< 784 . . . Se |0l . -
— ‘ oo »
[581 4 4
774 o o 791 724
T s . & i
~ * * QO *x © ~ * * QO * m© ~ * * QO *x © ~ * * QO *x ™
55555808 58855808 55855808 68855808
LI2SVELSS L25LETS6 LI5ELEFTSS LISEITSS
SSSIVeLR SSIVeLR SSSIVeLR SESVYCF
DLD,? ~ & D@g ~ & QJP,? ~ & b@g ~ &
OG OG 06 OG

Figure 2: Experimental results on XTREME-UP dataset with 3-tasks setting.

Table 2: Performance on the CC Dataset with Phi-1.5-
1.3B model.

Method Python Java C++ JS Go Avg
STL 488 238 207 268 17.1 274
Uniform 482 226 232 274 165 27.6
GradNorm 470 220 232 268 165 27.1
GradNorm* 47.6 25.6 22.0 262 17.1 277
LBTW 470 220 223 28.1 183 27.6
LBTW* 482 232 238 268 183 28.1
FAMO 482 262 213 262 17.1 2738
FAMO* 482 232 256 268 17.7 283
CoBa 494 244 250 299 183 294

GradNorm (Chen et al., 2018), a method that
optimizes the task weights iteratively such that
task-specific gradients are of similar magnitude;
LBTW (Liu et al., 2019a), which dynamically ad-
justs task weights according to the ratio of current
to initial loss w;(t) = (£;(t)/lo(t))?, parameter-
ized by a hyperparameter b; and FAMO (Liu et al.,
2024b), aimed at optimizing weights to enhance the
minimal improvement rate across tasks. Notably,
the last three methods were originally designed
based on the training loss. In pursuit of enhanced
generalization for the fine-tuned models, we have
adapted these methods to focus on validation loss,
denoted as LBTW*, GradNorm*, and FAMO*.
Except for STL and Uniform, all methods strive to
balance convergence across tasks, demonstrating
their potential to compete with CoBa. The detailed
experiment setup is described in Appendix B.

4.1 Results for CC and CRT

Table 2 shows the Pass@1 metric for all code
completion (CC) tasks resulting from all meth-
ods. Moreover, Figure 4 graphically presents the
normalized validation loss ratio across all tasks
for each method. CoBa demonstrates superior

performance over the baseline methods in the
Pass@1 metric for five programming languages,
achieving a minimum of 4% relative improve-
ment in the average Pass@1 score (calculated as
(29.4—28.3)/28.3 = 4%). In addition, adaptations
of FAMO, LBTW, and GradNorm to the valida-
tion loss rather than the training loss (i.e., FAMO?,
LBTW*, and GradNorm*) show enhanced perfor-
mance. This enhancement signifies the importance
of balancing convergence speed based on valida-
tion loss for better generalization, as pointed out
in (Mao et al., 2022). Indeed, FAMO* closely
trails the performance of CoBa. However, Figure 4
reveals its limitation in preemptively addressing
the divergence in the Python completion task, thus
limiting its overall efficacy. As an alternative, by
utilizing the ACS and DF, CoBa effectively neutral-
izes the divergence of the Python task. Contrast-
ingly, despite its aims of learning all tasks at an
equal pace, GradNorm’s performance lags behind
counterparts such as CoBa, FAMO, and LBTW.
This underperformance may be attributed to Grad-
Norm’s strategy of adjusting loss weights using the
same learning rate as the model parameters, a tactic
that proves ineffective due to the typically small
learning rates employed in training LLMs. Conse-
quently, the weights adjusted by GradNorm remain
almost identical to the initial uniform weights, fail-
ing to dynamically respond to the learning progress
and hampering convergence balance.

Regarding the CRT Dataset, its results are sim-
ilar to those of the CC dataset, and so we defer
its detailed discussion to Appendix C. Notably, in
contrast with other state-of-the-art methods, CoBa
excelled in the Code Completion and Unit Test
Generation tasks, recording substantial relative
average Pass@1 improvements of at least 6%
and 13 %, respectively.

8069

Table 3: Performance on the CC Dataset with
CodeLlama-13B-Python.

Method Python Java C++ JS Go Avg
STL 604 53.7 402 537 372 49.0
Uniform 622 53.1 408 51.8 39.6 495
GradNorm 62.8 53.1 415 524 372 494
GradNorm* 61.0 543 409 537 39.6 499
LBTW 640 549 40.8 51.8 39.0 50.1
LBTW* 622 524 427 549 408 50.6
FAMO 622 524 421 51.8 415 50.0
FAMO* 622 53.1 415 531 415 502
CoBa 659 56.7 427 56.7 427 529

4.2 Results for XTREME-UP

In this study, we conduct experiments across three
groups, each consisting of 3, 6, and 9 tasks, with a
mix of high and low-resource languages. We per-
form five trials per group to assess the resilience
of our proposed method, CoBa, against varying
task quantities and its capability to generalize per-
formance for low-resource languages. The results,
presented in Figure 2 and Figures 6 and 7 in the
appendix, consistently show CoBa outperform-
ing all baselines in terms of the average span
F score across all conditions. Notably, the effec-
tiveness of CoBa remains stable regardless of the
number of tasks, illustrating its adaptability. Im-
portantly, CoBa showcases pronounced enhance-
ments in performance for low-resource languages,
like Bengali (bn) and Telugu (te), with a 3% to
5% absolute increase in span F} scores over the
Single-Task Learning (STL) approach. This un-
derscores CoBa’s proficiency in improving gen-
eralization for tasks with limited data availabil-
ity. For high-resource languages, CoBa’s perfor-
mance matches or surpasses that of STL, suggest-
ing that balancing convergence can catalyze syner-
gistic benefits among related tasks. Our experiment
also reveals that FAMO generally underperforms,
likely due to its sensitivity to the regularization
coefficient v (Liu et al., 2024b), which requires
manual customization for each dataset. In contrast,
FAMO*, designed for the validation set, bypasses
re-normalization and shows much better perfor-

mance.2

We have also identified several other factors that may help
explain the gap between FAMO and FAMO™:

1. Utilizing the convergence properties of the validation set,
rather than the training set, for task weight allocation can
lead to improved performance.

2. FAMO optimizes an approximation of the original loss
to facilitate the reuse of intermediate computations for
weight updates, thereby reducing computational complex-
ity. However, this approximation is only effective with
an appropriately set learning rate; otherwise, it can create

4.3 Ablation Study and Run Time Analysis

We first examine the impact of RCS, ACS, and
DF within CoBa. Figure 3 highlights the necessity
of combining all three components to ensure that
all tasks converge at a similar pace. Moreover, the
quantitative results in Table 9 reveal a decline in
CoBa’s effectiveness when excluding either RCS,
ACS, or DF. Next, we evaluate CoBa’s adaptabil-
ity across models of varying sizes by choosing
CodeLlama-13B-Python as the base model. Re-
sults in Table 3 highlight CoBa’s exceptional per-
formance across all five programming languages,
boasting a minimum of a 5% enhancement in av-
erage Pass@]1 relative to other SOTA methods.
Comparisons between the larger CodeLlama-13B-
Python and the smaller Phi-1.5-1.3B models—seen
in Table 2—highlighted that larger models boost
CoBa’s multi-task learning efficacy. This suggests
CoBa’s compatibility with and enhanced perfor-
mance through the utilization of larger models. Fi-
nally, we analyze the runtime efficiency of CoBa
on both the CodeLlama-13B-Python and Phi-1.5-
1.3B models, in comparison to other methods. As
expected from our theoretical analysis (see Table 1),
CoBa requires a significantly shorter runtime than
other validation set-based convergence balancing
methods like GradNorm* and FAMO®, and aligns
closely with Uniform, the most straightforward
MTL approach. This efficiency further positions
CoBa as a practical choice for integrating into MTL
frameworks for LLMs.

5 Conclusion

In this paper, we propose CoBa, a novel MTL
method for LLMs that simultaneously achieves
convergence balance with low computational com-

a performance gap. In contrast, FAMO™ optimizes the
original training loss without performing re-normalization.
Indeed, we observe that FAMO exhibits a higher loss scale
(both training and validation) in nearly all experiments
compared to FAMO®, except in the Multi-Domain QA
dataset where a higher learning rate is applied. This dispar-
ity is particularly pronounced in the XTREME-UP experi-
ments, where the loss for FAMO is approximately double
that of FAMO*.

3. The F1 score metric employed for XTREME-UP has a
strong correlation with the loss, which elucidates why
FAMO?’s performance on this dataset is significantly in-
ferior to that of FAMO™. Conversely, for code-related
datasets, the Pass@ 1 metric shows a relatively weak corre-
lation with loss; thus, a decrease in loss does not necessar-
ily translate to an increase in Pass@1. This may account
for the comparable performance of FAMO and FAMO™ in
these code-related datasets.

8070

Python === java C++ JavaScript Go
35 CoBa CoBa w/o RCS CoBa w/o ACS CoBa DF=0.5
g 1.014 1.011 1.0 \\
= '\
£0.38 0.8 0.8 \\ 0-81 %
€06 0.6 0.6 0.6
Eo. . . \
o
04 0.4 0.4 \N 0.4
(9] Y
0.2 0.2 0.2 S 0.2
o : S,
200 =] 0.0 =] 0.0 == | 0.0 -
>

600 1200 1800 2400 600 1200 1800 2400

600 1200 1800 2400

600 1200 1800 2400

Figure 3: Normalized valid loss ratio of ablation study on the CC dataset for 5 programming languages. For better
visualization, we apply Min-Max Normalization to the validation loss ratios for each task.

Table 4: Comparison of the time taken per epoch for
experiments on the CC Dataset.

Method Phi-1.5-1.3B CodeLlama-13B-Python

mins/epoch mins/epoch
Uniform 22.98 188.93
GradNorm 25.80 197.10
GradNorm* 46.08 351.13
LBTW 26.15 195.28
LBTW* 29.20 234.77
FAMO 24.83 192.53
FAMO* 41.58 335.82
CoBa 29.05 230.20

plexity. Extensive experiments on four real-world
datasets have demonstrated the efficacy and effi-
ciency of the proposed method.

6 Ethical Considerations

Our research is foundational and not expected to
have significant social implications. We ensure
transparency and adherence to ethical standards
in the use of datasets. Additionally, the accessi-
bility of these datasets is beneficial for broader
reproducibility and review within the research com-
munity, aligning with ethical research practices.
However, we acknowledge the responsibility that
comes with the development of any MTL technol-
ogy. We encourage ongoing dialogue and ethical
considerations in the application of our findings.

7 Limitations

We have identified the main limitations of our ap-

proach as follows:

* The Model Parameter Scale: Due to resource
constraints, we are unable to evaluate the efficacy
of CoBa on larger LLMs. In future work, we
aspire to conduct experiments with larger LLMs,
akin to MFTCoder (Liu et al., 2024a), to further
substantiate our findings.

¢ The Number of Tasks: Due to the limited num-

8071

ber of open-source multi-task fine-tuning data,
we are unable to experiment on more tasks. In
the future, we hope to collect more relevant multi-
task datasets to verify the effectiveness of CoBa.

Domain of application: This paper focuses on
NLP. However, multi-task learning is not limited
to this modality. In the future, we aim to explore
other modalities such as computer vision.

Task Conflicts or Interference: CoBa is de-
signed to achieve convergence balance among
tasks and does not guarantee optimal perfor-
mance for all tasks in the presence of conflicts.
A promising solution is to integrate CoBa with a
Mixture of Experts (MoE) framework, assigning
each task to a specific expert within the model.
This separation enables tasks to have individual-
ized sets of parameters, mitigating the issue of
task interference.

Curriculum Learning: While CoBa prioritizes
difficult tasks at the initial stage of Multi-Task
Learning (MTL), curriculum learning empha-
sizes prioritizing easier tasks, which can be ad-
vantageous in scenarios where learning harder
tasks may become easier once the model has
mastered the easier tasks. Therefore, the first cri-
terion of CoBa may not be directly applicable in
this setup. Nonetheless, an interesting modifica-
tion to CoBa could be its ability to automatically
identify and assign greater weight to easier tasks
(e.g., tasks that converge faster) during the initial
training stages to align with curriculum learning
principles. Furthermore, the debate on whether
to prioritize easy tasks over difficult ones or vice
versa, as noted in (Guo et al., 2018), is also an
ongoing and important research topic. It is, there-
fore, worth exploring how to modify CoBa to dy-
namically decide which tasks to focus on during
different training stages, ensuring that all tasks
are well learned in the final stage.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,
Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive multi-task representations
with pre-finetuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5799-5811.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,
Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-
glei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo Ni,
et al. 2021. Ext5: Towards extreme multi-task scal-
ing for transfer learning. In International Conference
on Learning Representations.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. Gradnorm: Gradient
normalization for adaptive loss balancing in deep
multitask networks. In International conference on
machine learning, pages 794-803. PMLR.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang
Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. 2020. Just pick a sign: Op-
timizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing
Systems, 33:2039-2050.

Michael Crawshaw. 2020. Multi-task learning with
deep neural networks: A survey. arXiv preprint
arXiv:2009.09796.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting
Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei
Chen, Liang Chen, et al. 2024. Codefuse-13b: A
pretrained multi-lingual code large language model.
In Proceedings of the 46th International Conference
on Software Engineering: Software Engineering in
Practice, pages 418—429.

Michelle Guo, Albert Haque, De-An Huang, Serena
Yeung, and Li Fei-Fei. 2018. Dynamic task prioriti-
zation for multitask learning. In Proceedings of the
European conference on computer vision (ECCV),
pages 270-287.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 7482—7491.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023.
Textbooks are all you need ii: phi-1.5 technical report.
arXiv preprint arXiv:2309.05463.

Baijiong Lin, YE Feiyang, and Yu Zhang. 2021. A
closer look at loss weighting in multi-task learning.

Bingchang Liu, Chaoyu Chen, Cong Liao, Zi Gong,
Huan Wang, Zhichao Lei, Ming Liang, Dajun Chen,
Min Shen, Hailian Zhou, et al. 2024a. Mftcoder:
Boosting code llms with multitask fine-tuning. In
Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. 2024b.
Famo: Fast adaptive multitask optimization. Ad-
vances in Neural Information Processing Systems,

36.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and
Qiang Liu. 2021. Conflict-averse gradient descent for
multi-task learning. Advances in Neural Information
Processing Systems, 34:18878—-18890.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue,
Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. 2020. Towards impartial multi-task
learning. In International Conference on Learning
Representations.

Shengchao Liu, Yingyu Liang, and Anthony Gitter.
2019a. Loss-balanced task weighting to reduce nega-
tive transfer in multi-task learning. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 33, pages 9977-9978.

Shikun Liu, Edward Johns, and Andrew J Davison.
2019b. End-to-end multi-task learning with atten-
tion. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages
1871-1880.

Yuren Mao, Zekai Wang, Weiwei Liu, Xuemin Lin,
and Pengtao Xie. 2022. Metaweighting: Learning to
weight tasks in multi-task learning. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 3436-3448.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. arXiv
preprint arXiv:2402.14830.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

8072

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Sebastian Ruder, Jonathan H Clark, Alexander Gutkin,
Mihir Kale, Min Ma, Massimo Nicosia, Shruti Rijh-
wani, Parker Riley, Jean Michel Amath Sarr, Xinyi
Wang, et al. 2023. Xtreme-up: A user-centric scarce-
data benchmark for under-represented languages. In
The 2023 Conference on Empirical Methods in Natu-
ral Language Processing.

Qingyi Si, Tong Wang, Naibin Gu, Rui Liu, and Zheng
Lin. Alpaca-cot: An instruction-tuning platform with
unified interface of instruction collection, parameter-
efficient methods, and large language models, 2023.
URL https://github. com/PhoebusSi/alpaca-CoT.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Simon Vandenhende, Stamatios Georgoulis, Wouter
Van Gansbeke, Marc Proesmans, Dengxin Dai, and
Luc Van Gool. 2021. Multi-task learning for dense
prediction tasks: A survey. IEEE transactions on pat-
tern analysis and machine intelligence, 44(7):3614—
3633.

Fuzhao Xue, Kabir Jain, Mahir Hitesh Shah, Zangwei
Zheng, and Yang You. 2023. Instruction in the wild:
A user-based instruction dataset.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey
Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. Advances

in Neural Information Processing Systems, 33:5824—
5836.

Zhihan Zhang, Wenhao Yu, Mengxia Yu, Zhichun Guo,
and Meng Jiang. 2023. A survey of multi-task learn-
ing in natural language processing: Regarding task
relatedness and training methods. In Proceedings
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages
943-956.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

A Datasets

Code Completion (CC) Dataset The CC
Dataset comprises five distinct programming lan-
guages: Python, Java, C++, JavaScript (JS), and
Go. It is a subset derived from the code completion
task data within the Code-related Tasks Dataset.
Table 5 displays the statistical information for this
dataset. Training will be conducted on this dataset,
with evaluations carried out on HumanEval (Chen
et al., 2021) and HumanEval-X (Zheng et al., 2023)
benchmarks, utilizing the Pass @1 metric as the as-
sessment criterion.

Code-Related Task (CRT) Dataset The CRT
Dataset (Liu et al., 2024a) comprises five distinct
programming tasks: code completion, code trans-
lation, Text2Code, unit testing, and code sum-
marization. The statistical information for this
dataset is presented in Table 6. Evaluations for the
Code Completion task will be conducted using the
HumanEval (Chen et al., 2021) and HumanEval-
X (Zheng et al., 2023) benchmarks, while the
Code Translation task will be assessed using the
CodeFuseEval-CodeTrans (Di et al., 2024) bench-
mark. The Text2Code task will utilize the MBPP
for evaluation, and the Unit Test task will be eval-
uated using the CodeFuseEval-UnitTest (Di et al.,
2024) benchmark. The assessment metric for these
four tasks is Pass@1. For the Code Comment task,
we have constructed a test set based on 500 prob-
lems from the MBPP and will employ the BLEU
score as the evaluation metric.

XTREME-UP The XTREME-UP Dataset
(Ruder et al., 2023) is a multilingual and multitask
dataset, specifically designed to address underrep-
resented languages in scarce-data scenarios. Our
selected portion focuses on in-language question-
answering sets that span across nine different lan-
guages. These languages include a mix of high-
resource languages like Arabic (ar), English (en),
Finnish (fi), Korean (ko), and Russian (ru), as well
as low-resource languages such as Bengali (bn),
Indonesian (id), Swabhili (sw), and Telugu (te). A
comprehensive list detailing the number of samples
and data splits for each language can be found in
Table 7, as provided by (Ruder et al., 2023). It
is also pertinent to mention that we have adopted
the same evaluation criterion, the span F} score, as
in (Ruder et al., 2023). It defines true positives as
the tokens that match between the correct and gen-
erated answers. On the other hand, false positives

8073

Table 5: Data statistics of the CC Dataset.

Task #Samples Train / Valid
Python 20,539

Java 32,346

C++ 33,291 95/5
JavaScript 13,217

Go 34,340

Table 6: Data statistics of the CRT Dataset.

Task #Samples Train / Valid
Code Comment 645,711

Code Completion 192,547

Code Translation 307,585 95/5
Text2Code 94,086

Unit Test 390,393

are identified as tokens that only appear in the pre-
diction but not in the correct answer. Lastly, tokens
that are present in the correct answer but fail to
appear in the prediction are classified as false nega-
tives. Furthermore, we carry out mutually inclusive
experimental groups, with three task quantities of 3,
6, 9. Each group contains a blend of high and low-
resource languages, and five trials are conducted
for each to examine the resilience of our proposed
method vis-a-vis the number of tasks and test the
performance generalization for low-resource lan-
guages. The 3-task group is composed of Arabic
(ar), Bengali (bn), and English (en), whereas the 6-
task group also includes Finnish (fi), Russian (ru),
and Telugu (te).

Multi-Domain QA Dataset The Multi-Domain
QA Dataset including question answering data in
the fields of coding, mathematics, and natural lan-
guage, i.e., Text2Code (Liu et al., 2024a), Orca
Math (Mitra et al., 2024), and a combination of
Alpaca-cleaned (Si et al.) and Instinwild (Xue et al.,
2023) datasets. The statistics of this dataset are
shown in Table 8. We select the checkpoint with
the lowest validation loss and evaluate the model’s
performance on the test set using perplexity (PPL)
as the metric, with lower perplexity indicating bet-
ter performance.

B Experiment Setup

In this section, we elaborate on the experimental
setups for benchmark methods used in our paper.
Regarding the CC and CRT Dataset, our cho-
sen base model is Phi-1.5-1.3B (Li et al., 2023)
due to its strong coding power. We fine-tune this

Table 7: Data statistics of the XTREME-UP Dataset.

Task #Samples Train Valid Test
Arabi (ar) 30,401 26,719 1,841 1,841
Bengali (bn) 876 426 225 225
English (en) 8,121 6,361 880 880
Finnish (fi) 14,676 11,548 1,564 1,564
Indonesian (id) 2,684 426 1,129 1,129
Korean (ko) 3,437 2,336 549 552
Russian (ru) 14,140 10,892 1,624 1,624
Swabhili (sw) 2,387 425 965 997
Telugu (te) 3,100 426 1,337 1,337

Table 8: Data statistics of the Multi-Domain QA
Dataset.

Task #Samples Train/ Valid / Test
Code 94,086

Math 200,035 95/51/5

NL 104,133

model using a cluster of 16 A100 GPUs, with spe-
cific parameters set as follows: a learning rate
of 5e-6, and a total batch size of 160. For the
Code Completion dataset, we ensure uniform sam-
ple length by adding padding tokens. In the case
of the Code-Related Tasks Dataset, we employ a
data pack mode to accommodate its extensive sam-
ple size. This technique packs samples and en-
sures their cumulated length does not exceed the
sequence length of the base model, thereby boost-
ing training efficiency (Touvron et al., 2023; Liu
et al., 2024a). In addition, to compare the baseline
methods’ performance with a larger model, we uti-
lize CodeLlama-13B-Python (Roziere et al., 2023)
as the base model in the Code Completion Dataset
with a learning rate of 1e-6 and a batch size of 128.

For the XTREME-UP dataset, we select Qwen-
1.8B (Bai et al., 2023) as our base model since it
is a multilingual model. Fine-tuning proceeds on
8 A100 GPUs, with a learning rate of 5e-7, a total
batch size of 128, and the adoption of the padding
mode. It’s crucial to highlight that when replicating
FAMO, we utilized a larger learning rate of 5e-6, as
the re-normalization and regularization techniques
employed by FAMO make the training converge
too slowly when the learning rate is Se-7.

For the Multi-Domain QA dataset, we choose
Phi-1.5-1.3B (Li et al., 2023) again because there is
code-related data in this dataset. We fine-tune this
model using 8 A100 GPUs, with a learning rate of
le-5, a total batch size of 80, and the adoption of
the pack mode.

In regards to hyperparameters used in all meth-

8074

Python m— Java C++ JavaScript Go
5 Uniform GradNorm GradNorm* LBTW
01.0{; 1.0 1.0 Lor,
g A A A
£08 0.8 0.8 0.8
o
£06 0.6 0.6 0.6
o
04 0.4 0.4 0.4
20.2 0.2 0.2 0.2
j— Teewl
20.0 <| 0.0 0.0 ~| 0.0
> 600 1200 1800 600 1200 1800 600 1200 1800 600 1200 1800 2400
= LBTW” FAMO FAMO”" CoBa
%10 1.0 1.of;
S 107 '\ . 1.014
208 0.8 \\ 0.8 \ 08
5 \ \
£06 0.6 0.6 0.6
°
£04 0.4 0.4 0.4
" \
20.2 M 0.2 0.2 0.2
%0.0 S| 0.0 \\ 0.0 ~| 0.0 —
> 600 1200 1800 600 12001800 2400 3000 600 1200 1800 600 1200 1800 2400
Steps Steps Steps Steps

Figure 4: Normalized valid loss ratios on the CC dataset for 5 programming languages. The x-axis endpoint in each
figure marks the early stopping point. For better visualization, we apply Min-Max Normalization to the validation
loss ratios for each task, which involves subtracting the minimum value and then dividing by the range between the

maximum and minimum values.

Table 9: Ablation study on CC with Phi-1.5-1.3B.

Method Python Java C++ JS Go Avg
CoBa 494 244 250 299 183 294
w/o RCS 48.8 250 232 293 17.1 28.7
wlo ACS 470 268 226 268 17.1 28.1
DF =05 476 238 232 268 20.1 283

Table 10: Performance for the Code Completion task in
the CRT dataset.

Method Python Java C++ JS Go Avg
STL 463 274 20.1 293 195 285
Uniform 482 354 256 31.1 220 324
GradNorm 494 360 25.0 305 244 33.1
LBTW 482 354 287 31.7 207 329
FAMO 47.6 354 232 323 220 321
CoBa 500 39.0 293 329 244 35.1

ods, the following settings are applied for CoBa:
au is set to 5, N is set to 2M, and W is set to
M, with M representing the batch number of the
validation set. For GradNorm, we assign the asym-
metry hyperparameter « a value of 1.5, as this pro-
vides the best performance in their respective stud-
ies, and utilize the ‘lm_head’ layer as 6. In the
case of LBTW, we adjust the hyperparameter b to
0.5, again following the best performance guide-
lines from their research. With FAMO, the settings
include a learning rate of 0.025 for the optimizer
for the weights «, and a weight decay ~ of 0.01.

Finally, to ensure a fair comparison, we include

Table 11: Performance for the Unit Test Generation task
in the CRT dataset.

Method Python Java JavaScript Avg
STL 1.5 116 43 9.1
Uniform 153 177 14.6 15.9
GradNorm 14.0 15.2 16.5 15.2
LBTW 11.5 20.1 15.2 15.6
FAMO 109 11.6 19.5 14.0
CoBa 19.1 177 16.5 17.7

the early stopping method in our fine-tuning pro-
cedure, based on the validation loss ratio averaged
over all tasks. The checkpoint with the lowest vali-
dation loss ratio is selected for downstream evalua-
tion.

C Results on CRT Dataset

We further investigate the performance of all meth-
ods on the Code-Related Tasks (CRT) Dataset.
Here we split the tasks based on the specific cod-
ing requirements, rather than the programming lan-
guage. Note that the sample size of this dataset
is much larger than the other two, and the high
complexity of GradNorm* and FAMO* precludes
their use on this dataset. The results, distributed
across Tables 10 to 12, indicate that CoBa sur-
passes other SOTA methods in almost all tasks,
excluding Text2Code. In particular, CoBa stands
out in the Code Completion and Unit Test Gener-
ation tasks, recording substantial relative average

8075

Table 12: Performance for the Code Translation task in the CRT dataset.

Method Py2Java Py2C++ Java2Py Java2C++ C++2Py C++2Java Avg
STL 44.5 57.8 51.8 42.7 53.7 45.7 49.4
Uniform 62.5 56.4 59.2 28.7 60.4 58.5 54.3
GradNorm 63.9 55.4 64.6 23.2 63.4 56.7 54.5
LBTW 66.5 52.6 61.6 28.1 64.63 60.4 55.6
FAMO 63.7 56.4 62.2 25.0 61.6 62.8 55.3
CoBa 67.3 61.2 61.0 28.1 59.8 62.8 56.7

Table 13: Performance for the Code Comment task in
the CRT dataset.

Method BLEU
STL 34.6
Uniform 34.5
GradNorm 34.0
LBTW 34.8
FAMO 33.8
CoBa 354

Table 14: Performance for the Text2Code task in the
CRT dataset.

Method MBPP (Pass@1)
STL 41.0
Uniform 414
GradNorm 41.0
LBTW 41.6
FAMO 40.2
CoBa 41.0

Pass@1 enhancements of at least 6% and 13%, re-
spectively. Furthermore, as depicted in Figure 5,
CoBa not only avoids early divergence in Code
Completion and Text2Code tasks but also expe-
dites convergence in the remaining tasks, affirm-
ing its efficacy in achieving convergence balance
and boosting MTL capabilities. Conversely, other
methods aimed at balancing convergence, such as
GradNorm, LBTW, and FAMO, exhibit erratically
across different tasks, often failing to prevent over-
fitting in Code Completion and Text2Code tasks.
Their performance is sometimes even inferior to
STL, which learns each task separately, highlight-
ing a potential limitation of these methods com-
pared to the robustness of CoBa.

D Results on Multi-Domain QA Dataset

The results are summarized in Table 15, demon-
strating that CoBa consistently achieves the lowest
PPL across all three tasks, underscoring its robust-
ness in handling datasets with high diversity. Com-
pared to the second-best baseline (i.e., LBTW¥),
CoBa reduces the average perplexity by 0.0059.

Table 15: Performance in the Multi-Domain QA dataset.

Method Code Math NL Avg

Uniform 2.0103 1.3629 3.9749 2.2167
GradNorm 2.0103 1.3623 3.9749 2.2162
GradNorm* 2.0103 1.3623 3.9749 2.2162
LBTW 2.0109 1.3652 3.8768 2.1997
LBTW* 2.0103 1.3619 3.8690 2.1961
FAMO 20119 1.3633 3.9236 2.2078
FAMO* 2.0113 13597 39157 2.2043
CoBa 2.0075 1.3568 3.8574 2.1902

Moreover, when compared to the worst-performing
baseline (i.e., Uniform), CoBa shows an average
perplexity reduction of 0.0265. The experimental
results demonstrate the effectiveness of CoBa on
multi-task datasets in different domains. In this ex-
periment, we set a larger learning rate compared to
previous experiments. Our findings reveal that the
performance of FAMO is comparable to FAMO*.
This suggests that FAMO is sensitive to the learn-
ing rate.

8076

== Code Comment Code Completion Code Translation Text2Code Unit Test
—~ Uniform GradNorm LBTW FAMO CoBa
T 1.04 1.04 1.09, 1.09 1.0
Tosi| 087 | 08{ | 0.89 | 081
20561 067 & 0.6 | 064 067 ¥
2 \ \
§ 0.44 0.44 0.44 044 W 0.44 \
N

"
8029 0.21 0.21 0.21 _\ 0.21 \
o . e S S
3001, o] 004] 00 Rl ooy, _emm=a] o0 e,
= 0 9000 18000 0 9000 18000 0 9000 18000 27000 0 9000 18000 0 9000 18000

Steps Steps Steps Steps Steps

Figure 5: Normalized valid loss ratio of 5 programming tasks on CRT dataset. The x-axis endpoint in each figure
marks the early stopping point. For better visualization, we apply Min-Max Normalization to the validation loss
ratios for each task, which involves subtracting the minimum value and then dividing by the range between the
maximum and minimum values.

ar bn en
80| P o LY
s @62 ° o 82 4 ?
781 a e
S 60 e
=761 o® |80
w ()
744 581 ° s
] s
72 ’ 561 78 °
fi ru te average
76 e 76 >
781 L4 L "
|78 & t 4 ®
- 741
= 761 » |74
o 76 °
721
74 . v o 72]
(1] []
- 74 . e
I S SL9LP A EEASLOLND N EESISLOLD I SIL9OLD
§5EL3808 658555808 55853808 658855808
S§STeg S5V S§SVe g §ENHTFO
) L"’ /? ~ &« N) 157 %’ ~ & N) 'LD ,EJ ~ &) L” /? ~ &«
OG (7(5 0(15 OG
Figure 6: Experimental results on XTREME-UP dataset with 6-tasks setting.
ar bn en fi id
L g o .g L) 78 ® 30 ®»
781 ” - .| 82 ~ g . 2
v 60/ P RIRET
;@76*) 76
£ o |80] 76)
& 581 ¢
| 74
74 e 74
781 Py
2 B Jsgle e T2 % gl
ko ru SW te average
® L
741 o { 681 e, “ ‘
o | 75/ ° ® 74 74 -
_ o L 661 o o
K731
= 4 76 641 72 %
w () 72
721 ®
621 « & LY
® 744 » Y 70
71) d 60 L)
~ S+ * QO* o ~ Eyg* O * o I:,EE*g* O * m N * Q* o ~ S+ * Q* o
2 ssf,ssg%’ HSSE&ESILE G S5S5&ESTLS mssﬁ,\ﬁsg? «ossf,ssgé’e
ST ST ST ST §§SFTgY
N I r? ~ « N o g ~ &« N i g ~ &« N) & g ~ « N I g ~ «
UG UG OG OG L’)G

Figure 7: Experimental results on XTREME-UP dataset with 9-tasks setting.

8077

