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Abstract
We present three innovations in tokenization
and subword segmentation. First, we propose
to use unsupervised morphological analysis
with Morfessor as pre-tokenization. Second,
we present an algebraic method for obtain-
ing subword embeddings grounded in a word
embedding space. Based on that, we design
a novel subword segmentation algorithm that
uses the embeddings, ensuring that the proce-
dure considers lexical meaning. Third, we intro-
duce an efficient segmentation algorithm based
on a subword bigram model that can be ini-
tialized with the lexically aware segmentation
method to avoid using Morfessor and large em-
bedding tables at inference time. We evaluate
the proposed approaches using two intrinsic
metrics and measure their performance on two
downstream tasks: part-of-speech tagging and
machine translation. Our experiments show
significant improvements in the morphological
plausibility of the segmentation when evaluated
using segmentation precision on morpheme
boundaries and improved Rényi efficiency in
8 languages. Although the proposed tokeniza-
tion methods do not have a large impact on
automatic translation quality, we observe con-
sistent performance gains in the arguably more
morphological task of part-of-speech tagging.

1 Introduction

Statistical approaches to subword segmentation are
the state of the art in most natural language process-
ing (NLP) applications of neural networks, most
notably the Transformer model (Vaswani et al.,
2017). The Unigram model from SentencePiece
(Kudo and Richardson, 2018) and Byte-Pair En-
coding (BPE; Sennrich et al., 2016) are among
the two most widely employed tokenization tech-
niques. These methods gained popularity because
of their versatility – they are language-independent
and have convenient properties for model training,
reducing the vocabulary size while assuring even
learning of the token representations.
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Figure 1: We organize subword tokenization learning
into four steps: pre-tokenization, vocabulary learning,
inference, and distillation for efficiency. Steps (1)–(3)
highlighted in yellow are specific contributions of this
paper.

Despite the indisputable advantages, one aspect
of the statistical word segmentation algorithms has
remained a thorn in the eyes of many linguistically-
oriented researchers: Subwords do not reflect mor-
phology. This problem is especially pronounced in
multilingual models, which share a common vocab-
ulary across all languages. Without a careful and
balanced data selection, lower-resourced languages
tend to have fewer allocated subwords, resulting in
a large token-to-word ratio (Haddow et al., 2022;
Limisiewicz et al., 2023).

We posit that a strong segmentation retains the
property of the statistical approaches, i.e., that fre-
quent words are split into fewer tokens than rare
words. However, once a word is split into more to-
kens, the subword boundaries should ideally match
the actual morpheme boundaries.1 We hypothe-

1We use the word morpheme for morphologically moti-
vated subword units. Some theories (Žabokrtský et al., 2022)
distinguish morphs as surface realizations of abstract mor-
phemes as the smallest units of meaning. Where appropriate,
we follow this distinction for clarity. By morpheme bound-
aries, we mean boundaries between morphs within a word.
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size that the standard algorithms lack morphology
awareness because they do not work with lexical
meaning, which is a crucial concept in language
morphology.

Following Schmidt et al. (2024), we conceptu-
alize tokenization as a process with three steps (as
illustrated in Figure 1): pre-tokenization, vocabu-
lary construction, and segmentation. Within this
conceptual framework, we propose three innova-
tions throughout the whole process:

(1) We consider unsupervised morphological
segmentation as an alternative for pre-
tokenization.

(2) Propose a novel lexically grounded segmen-
tation algorithm based on word and subword
embeddings.

(3) We propose an efficient statistical segmenta-
tion algorithm using subword bigram statistics
that can be used to distill complex tokeniza-
tion pipelines into an efficient algorithm.

In Section 2, we discuss pre-tokenization and
vocabulary construction. Besides the standard pre-
tokenization, which splits the text into word-like
units (words, punctuation, etc.), we also experiment
with Morfessor (Smit et al., 2014), which we apply
on top of the word-like pre-tokenized text.

For lexically grounded segmentation, we derive
a formula for computing subword embeddings us-
ing a pre-trained word embedding model and a
training corpus (Section 3.1). Next, we use the
subword embeddings to design a subword segmen-
tation algorithm based on semantic similarity be-
tween the word and its subwords (Section 3.2).

Finally, we propose a subword-bigram-based
statistical segmentation algorithm that retains the
properties of the embedding-based segmentation
(Section 4). With the bigram-based algorithm, we
can have a model for subword segmentation that
does not require running Morfessor or storing a
large embedding table.

We test our approach using two intrinsic eval-
uation metrics and two downstream tasks (Sec-
tion 5.1). In the intrinsic evaluation, we test our
approach on the SIGMORPHON 2018 shared task
dataset (Batsuren et al., 2022) and observe sig-
nificantly better morphological generalization in
both proposed algorithms with a fixed vocabulary
size. We also measure the Rényi efficiency (Rényi,
1961) of the unigram distribution of the segmented

text, which has been shown to correlate with down-
stream model performance (Zouhar et al., 2023).
Additionally, we evaluate our segmentation algo-
rithm on Part-of-Speech (POS) Tagging using Uni-
versal Dependencies (Zeman et al., 2024), showing
an improvement compared to other segmentations.
Finally, we evaluate our tokenization on machine
translation using a simulated low-resource IWSLT
2017 dataset (Cettolo et al., 2017) where we reach
results comparable with currently used subword
tokenizers.

We show the code examples in Appendix A
and we release the code for the segmentation tool,
LEGROS,2 as well as the experimental code.3

2 Pre-tokenization and Vocabulary
Construction

Neural networks can only have limited vocabular-
ies in order 104–105, which rules out using word-
based vocabularies. A common solution is statisti-
cal heuristics that keep frequent words intact and
split rare words into smaller units, ensuring that
there are no rare tokens, such that embeddings of all
tokens get updated reasonably often. The most pop-
ular methods are Byte-Pair Encoding (BPE; Sen-
nrich et al., 2016) based on greedily merging the
most frequent token pairs and the Unigram model
(as implemented in SentencePiece; Kudo, 2018)
that returns high-probability segmentations using a
unigram language model. However, these methods
manifest low morphological generalization, which
in turn might lead to reduced interpretability, com-
positional generalization, and cross-lingual transfer
capabilities.

Perhaps the most straightforward approach for
lexically grounded word segmentation is to use un-
supervised morphological analyzers, such as Mor-
fessor. However, direct use of these linguistically
motivated tools leads to worse results (Macháček
et al., 2018) and is only beneficial in low-resource
scenarios (Soulos et al., 2021; Gaser et al., 2023).
Furthermore, morphological analysis does not fully
address the problems of rare tokens and vocab-
ulary size. To address these issues, we propose
only using morphological analyzers during pre-
tokenization (Step 1 in Figure 1). After pre-
tokenization, we apply the well-established statisti-
cal methods for vocabulary construction. This com-
bination ensures that there will be a low number

2https://github.com/ufal/legros
3https://github.com/ufal/legros-paper
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of rare tokens and efficient control of vocabulary
size while still preserving the lexical meaning of
the subwords.

3 Segmentation with Subword
Embeddings

In this section, we describe a novel lexically-
grounded segmentation method (Step 2 in Fig-
ure 1).

When considering language morphology, we as-
sume the word can be decomposed into several
smaller meaningful units that carry the meaning
of the original word when combined together. We
consider the segmentation of a word to be lexically
grounded when it respects the word’s meaning and
does not introduce subword boundaries in the mid-
dle of meaningful units. To find such a segmenta-
tion, we need to model the meaning of both words
and subword units jointly.4

A widely used proxy for capturing the lexical
meaning of words is word embeddings. To capture
the meaning of subwords, we introduce a method
to compute subword embeddings in a shared space
with the word embeddings (§ 3.1). We also describe
a segmentation algorithm that takes the subword
embeddings into account (§ 3.2).

3.1 Subword Embeddings
We obtain the joint embedding model of words
and subwords by extending the skip-gram model
(Mikolov et al., 2013) to subword units. Specifi-
cally, we derive a formula for computing the em-
bedding of any substring in a training dataset, situ-
ating its representation within the skip-gram model
embedding space.

Skip-gram models are trained to produce a proba-
bility distribution of words that are likely to appear
within a certain context window around a given
input word x. When we extend this model to han-
dle substrings, each substring is used to predict the
whole words that appear within the context window
of any word that contains the substring. As a result,
the embeddings of the substrings are determined
by the contexts of the words they are part of.

To compute the subword embeddings, we re-
quire a tokenized training dataset D and a trained
skip-gram word embedding model with a vocabu-
lary V . In addition to its input embedding matrix

4Linguistic theories often work with the concept of morphs
and morphemes as the smallest meaningful units. However,
our solution tries to be theory-agnostic, so it can work with
any subword units regardless of their theoretical justification.

E ∈ R|V|×d where d is the dimension of the word
embedding vectors, we also need the output matrix
W ∈ Rd×|V|.

The statistics of skip-gram models. Using data
D, we denote the symmetric word cooccurrence
matrix C ∈ R|V|×|V| that for each pair of words
x, y ∈ V , Cx,y contains the frequency of x and y
appearing within the same context window in D.
Then, our method relies on the following observa-
tion:

softmax(EW ) ≈ norm(C) (1)

where norm means row-wise normalization.
This follows from the fact that the skip-gram

model optimizes cross-entropy between the pre-
dicted distribution of neighboring words and the
empirical distribution in the training data. It is usu-
ally approximated by stochastic minibatch training
with negative sampling instead of computing the
full softmax. The empirical distribution can be ob-
tained by normalizing the count matrix C, which
leads to the following optimization problem:

min
E,W

XENT(softmax(EW ), norm(C)) (2)

By Gibbs inequality, the cross-entropy is mini-
mum if softmax(EX) = norm(C). This leads
to Equation 1. We use the approximation sign
(≈) to stress that stochastic optimization solves
the problem only approximately. When training
word embeddings, we must find both E and W .
When extending the model for subwords, we keep
the W fixed, and we only need to find the (newly
added) subword portion of E, which we call Es.

Extension to subwords. Next, we choose a set
of subwords S. We either select the set of all sub-
strings present in D up to a certain length, or we use
the set of subwords from an existing segmentation.
We then define a segmentation matrix A ∈ R|S|×|V|

such that:

As,x =

{
1, if s belongs to x,

0, otherwise.
(3)

Then, the multiplication AC corresponds to the
subword-word cooccurrence matrix. Thus, we can
find the substring embedding matrix Es ∈ R|S|×d

by solving the following formula:

softmax(EsW ) ≈ norm(AC), (4)

which can be solved using a least-square approxi-
mation as:

Es = log(norm(AC))W−1
right (5)
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where W−1
right is the right-inverse of the skip-gram’s

output matrix W .

3.2 Segmentation
In this section, we apply the subword embedding
model to lexically grounded subword segmenta-
tion. We propose an algorithm based on the word-
subword similarities within the shared embedding
space. Following the Unigram model from Senten-
cePiece (Kudo, 2018), which searches for a seg-
mentation that maximizes the probability under a
subword unigram model, we use a dynamic pro-
gramming algorithm (shown in Algorithm 1 in Ap-
pendix A) to find the segmentation (sequence of
subwords) that maximizes a similarity-based score.

Formally, for a word x and a segmentation
s1, s2, . . . , sn, the similarity score is the sum of
cosine similarities between the embedding of x
and the embeddings of each of the subwords si,
minus a length penalty of α per each subword:

n∑

i=1

(E(x)) · (Es(si))

∥E(x)∥ · ∥Es(si)∥
− α. (6)

Increasing the value of α forces the algorithm to
use fewer subwords. In other words, α controls
what weight we put to the semantic similarity and
what weight we put to minimize the number of
subwords. Based on preliminary results, we set α
to 1 and keep it fixed in all experiments.

Unlike the Unigram segmentation, the subword
scores are not static but depend on the segmented
word. Therefore, the segmentation can be viewed
as a word-specific unigram model.

As stated in the previous section, the computa-
tion of the subword embeddings requires an exist-
ing subword vocabulary S and the segmentation
matrix A. We initialize S with the set of subwords
used by another segmentation algorithm. We only
set As,x = 1 when s has been used as a subword
of x.

After initialization, we iteratively refine the seg-
mentation in two alternating steps until conver-
gence.

1. For a segmentation matrix A, calculate sub-
word embeddings Es (Equation 5).

2. For subword embeddings Es, find a new best
segmentation and update the segmentation ma-
trix A accordingly. Note that subwords not
used in this step are never used again, and
therefore, the vocabulary shrinks as the algo-
rithm proceeds.

4 Bigram model

The segmentation algorithm described in the previ-
ous section has several drawbacks: It requires stor-
ing relatively large embedding tables for words and
subwords and does not generalize for OOV words
without embeddings. Moreover, pre-tokenization
with Morfessor requires running language-specific
models, making the segmentation more computa-
tionally demanding than the established method.

We avoid this drawback by introducing an alter-
native segmentation algorithm based on subword
bigram statistics. It is a straightforward general-
ization of the commonly used Unigram model. At
inference time, we search for a segmentation that
maximizes probability predicted by a subword bi-
gram model instead of a unigram model. The op-
timization problem is solvable using dynamic pro-
gramming, similar to the Unigram model. How-
ever, the algorithm has a quadratic complexity in
the segmented string length. Therefore, we propose
using a linear-time beam search algorithm that only
considers k best segmentations in each step. The
full algorithm is described in Algorithm 2 in Ap-
pendix A.

We use the subword bigram statistic obtained by
counting subword bigram and unigram frequencies
in a corpus tokenized by a tokenizer that we want
to distill into the bigram model. To account for
unknown bigrams encountered during inference,
we need to eliminate zero probabilities from the bi-
gram distribution. To this end, we apply Laplacian
smoothing, i.e., we increase the frequency of every
bigram (si|si−1) by one. Additionally, if si−1 is
an unknown unigram, we assign the unigram prob-
ability of si to the bigram. If both si and si−1 are
unknown unigrams, we assign uniform probability
1/|S| to the bigram.

5 Experiments

We evaluate our proposed methods intrinsically
using morpheme boundary precision and Rényi
efficiency, as well as extrinsically on two down-
stream tasks: part-of-speech tagging and machine
translation.

5.1 Intrinsic Evaluation

We evaluate the capability of our framework to
capture morphological boundaries and compare it
with commonly used segmentation methods. Our
main evaluation metrics are precision on morpheme
boundaries (given a fixed vocabulary size budget)
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and Rényi efficiency (Rényi, 1961) of the token dis-
tribution, which was shown to be a good predictor
of downstream performance of a tokenizer (Zouhar
et al., 2023).

Test data. For the morpheme boundary evalua-
tion, we use the test set from the SIGMORPHON
2022 Shared Task on Morpheme Segmentation
(Batsuren et al., 2022), which contains test data
for nine languages (Czech, English, Spanish, Hun-
garian, French, Italian, Russian, Latin, Mongolian).
We omit Latin due to the lack of resources for train-
ing word embeddings. Except for Czech (which
contains surface-level segmentation into morphs),
each test set consists of word decompositions into
morphemes. This means that the original words
cannot be reconstructed by simply concatenating
the morphemes. To be able to evaluate word seg-
mentations in all languages, we use a set of heuris-
tic rules to map the morphemes to the surface form.

To measure the Rényi efficiency of the token
distribution, we use 4,000 sentences randomly sam-
pled from the (plain text) training data described in
the following paragraph.

Experimental settings. We use the skip-gram
model from FastText (Bojanowski et al., 2017)
to train the word embeddings. For all languages
except Mongolian, we train the model on 50M
sentences from NewsCrawl (Kocmi et al., 2022).
We use 15M sentences from CC-100 (Conneau
et al., 2020) for Mongolian. We lowercase and
pre-tokenize the text using Sacremoses,5 and for
experiments with Morfessor pre-tokenization, we
train Morfessor (Smit et al., 2014) with the default
parameters. We apply Morfessor on already pre-
tokenized text as a second step. We use a vocabu-
lary size of 200k, an embedding dimension of 200,
and a window size of 5. We train the embeddings
for 10 epochs for both pre-tokenization setups.

As a baseline, we prepare BPE and Unigram
tokenizers with vocabularies 1k, 2k, 4k, 8k, 16k,
24k, 32k, and 48k using the same plain text dataset.

We use the segmentation from the BPE and Un-
igram subwords to initialize the matrix A from
Equation 3 and iterate our algorithm. Finally, we
use the bigram statistics from 200k embedding vo-
cabulary and segment the test set using the subword
bigram language model.

Segmentation evaluation. Unlike the original
SIGMORPHON shared task evaluation, where the

5https://github.com/hplt-project/sacremoses

evaluation metric was the F1 score measured on the
morphemes themselves, we measure the morpheme
boundary precision for a given vocabulary size. We
believe this setup best captures the use of subword
tokenizers in neural networks where we have a
vocabulary budget given by the model architecture.
However, we do report also recall and F1 score for
completeness.

Results. The main results for the 32k vocabulary
are presented in Table 1. Across all languages,
Unigram reaches better precision than BPE, consis-
tently with previous work (Batsuren et al., 2022).
Pre-tokenization using Morfessor consistently out-
performs word-like pre-tokenization across all lan-
guages in morpheme boundary precision. Us-
ing lexically grounded embedding-based segmenta-
tion improves compared to the default BPE and
Unigram segmentation algorithms. The differ-
ence is more pronounced with the word-like pre-
tokenization. Distillation into the bigram model
usually leads to a small decrease in the bound-
ary precision. The performance of BPE and the
Unigram model for vocabulary construction is
language-dependent.

The Rényi efficiency is significantly higher for
Morfessor pre-tokenization. Unlike morpheme
boundary precision, distilling the embedding-based
segmentation into a bigram model has almost no
effect on Rényi efficiency. Segmentation based on
the Unigram model vocabulary achieves the best
results.

Figure 2 shows morpheme boundary precision,
recall, and F1 score for Czech for different vocab-
ulary sizes; additional languages are presented in
the Appendix in Figure 3. The boundary preci-
sion increases with the increasing vocabulary size,
whereas the recall has the opposite trend. Our seg-
mentation methods improve the boundary precision
in all cases. Word-like pre-tokenization has a neg-
ligible effect on recall. On the other hand, adding
Morfessor to pre-tokenization decreases recall.

We also show a random sample of segmented
Czech, English, and French words in the Appendix
in Table 10.

5.2 POS Tagging Evaluation
In our first extrinsic evaluation, we experiment with
POS tagging as a simple task that directly involves
language morphology.

Data. We use Universal Dependency (UD) Cor-
pora (Zeman et al., 2024) for the languages from
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Vocab. Inf. Morpheme boundary precision Rényi efficiency

cs en es fr hu it mn ru cs en es fr hu it mn ru
W

or
d-

lik
e BPE

Orig 76.5 56.6 60.6 57.1 77.0 52.9 78.8 61.7 .419 .429 .396 .421 .373 .437 .470 .414
Emb. 78.9 65.8 63.9 63.3 82.4 58.3 88.9 64.2 .422 .435 .403 .427 .387 .443 .479 .424
Big. 79.4 66.1 63.2 62.9 81.5 58.2 88.1 66.1 .423 .435 .404 .428 .388 .444 .480 .425

Uni.
Orig 84.3 64.6 63.1 64.7 80.5 53.3 90.4 66.8 .424 .432 .398 .425 .382 .442 .478 .423
Emb. 87.0 68.3 65.2 66.5 82.6 57.0 89.8 67.6 .424 .437 .407 .433 .390 .447 .468 .431
Big. 86.8 68.8 64.4 66.2 82.2 57.3 89.3 69.1 .425 .437 .408 .434 .391 .448 .469 .433

M
or

fe
ss

or BPE
Orig 88.4 70.7 66.4 66.4 82.3 63.2 90.7 69.1 .449 .437 .422 .446 .391 .455 .497 .451
Emb. 88.9 72.0 66.3 67.0 84.9 62.0 92.5 71.5 .451 .440 .425 .449 .401 .457 .500 .456
Big. 88.7 69.9 66.2 67.5 84.3 62.8 91.8 71.2 .452 .440 .426 .449 .400 .458 .500 .457

Uni.
Orig 89.4 70.3 65.3 65.4 84.0 61.4 90.1 70.6 .457 .441 .426 .452 .398 .460 .503 .461
Emb. 91.0 70.3 65.0 65.7 85.9 61.7 91.0 73.6 .457 .441 .429 .454 .403 .460 .496 .458
Big. 90.2 69.7 65.2 66.4 85.0 61.6 90.7 72.3 .458 .442 .429 .454 .403 .460 .496 .460

Table 1: Morpheme boundary precision on the SIGMORPHON 2018 test set and Rényi efficiency estimated on 4k
plain text sentences for tokenizers with 32k-sized vocabularies. The best results in each column are bolded. The
blue-yellow scale is fit to the value range per column. Results for 24k and 40k vocabularies are in Appendix in
Table 8.
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Figure 2: Boundary precision, recall, and F1 score for Czech in the SIGMORPHON 2018 test set for different
vocabulary sizes. For more other languages, see Figure 3 in the Appendix.

the intrinsic evaluation except for Mongolian,
which does not have a UD corpus. See Table 6
in the Appendix for details of the corpora.

Model details. We train an LSTM-based tagger.
We use an embedding layer of 300, two bidirec-
tional LSTM layers (Hochreiter and Schmidhuber,
1997) of dimension 600, and a final projection into
18 POS tags. We use a batch size of 256 sentences
and train for 3,200 steps using the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of 0.01.
We select the best weights based on the loss on the
development set. We prepend each word with a
special word-separator token for subword segmen-
tation and copy the POS tag to all its subwords. At
inference time, we predict the tag from a distribu-
tion that averages the predictions for the individual
subwords. We are aware that there are methods

that would improve the performance of the tagger
trained from scratch, e.g., including character-level
features and using pre-trained word embeddings.
In our experiments, we are mainly interested in
how informative the segmentation is for the tagger.

Data preparation. We experiment with several
segmentation methods. As a baseline, we use the
word segmentation provided in UD and word seg-
mented using Morfessor. Further, we experimented
with word-like pre-tokenization, Morfessor pre-
tokenization, and BPE and Unigram for vocabulary
construction. For segmentation, we tested both the
original subword segmentation corresponding to
BPE and the Unigram model (denoted as Orig. in
the results) and distilled bigram models created via
the lexically grounded embedding-based segmenta-
tion (denoted as Ours in the results).
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Tokenization cs en es fr hu it ru Aggr.

Word vocab 96.16 92.07 94.43 96.14 79.44 96.45 94.16 -2.013
Morfessor 96.01 92.05 94.61 96.19 78.14 96.64 94.48 -1.902

W
or

d-
lik

e

BPE Orig. 98.17 93.73 95.50 97.16 87.76 97.47 97.38 0.340
Ours 98.19 93.78 95.58 97.23 88.88 97.56 97.40 0.471

Uni. Orig. 98.09 93.50 95.41 97.00 88.57 97.41 97.30 0.187
Ours 98.17 93.76 95.56 97.11 89.68 97.58 97.43 0.447

M
or

fe
ss

or BPE Orig. 98.18 93.91 95.44 97.21 90.92 97.48 97.39 0.473
Ours 98.21 93.96 95.72 97.33 91.63 97.74 97.52 0.745

Uni. Orig. 98.04 93.86 95.66 97.16 91.12 97.61 97.35 0.541
Ours 98.11 93.95 95.72 97.29 91.51 97.75 97.52 0.712

Table 2: Test accuracies of POS tagging. The final column shows the averaged normalized accuracy (after subtracting
the language-specific mean and dividing by the language-specific standard deviation). The blue-yellow scale is fit to
the value range per column. More detailed results and additional baselines are in Table 9 in the Appendix.

Tokenization Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 0.0 0.4 0.7 0.4
Ours -0.0 0.5 0.8 0.4

Uni. Orig. -0.0 0.9 0.9 0.6
Ours -0.2 0.5 0.6 0.3

M
or

fe
ss

or BPE Orig. -1.0 -0.8 -0.7 -0.9
Ours -0.2 0.3 0.5 0.2

Uni. Orig. -1.3 -0.9 -0.9 -1.0
Ours -0.1 0.3 -0.2 -0.0

Table 3: Mean deviation from the average chrF score for
18 language pairs of the IWSLT 2017. The blue-yellow
scale is fit globally to the values across the table.

Results. The results are presented in Table 2
(with more details in Table 9 in the Appendix).
In general, subword-based segmentation signifi-
cantly outperforms word-like and Morfessor-based
models. Morfessor pre-tokenization is slightly bet-
ter than word-like pre-tokenization only in all lan-
guages, with a particularly pronounced difference
in Hungarian, the only language in our test sets
with agglutinative morphology. Our segmentation
algorithm consistently improves over the default
BPE and Unigram algorithms. The overall best
tokenization approach combines the Morfessor pre-
tokenization followed by the BPE algorithm for
vocabulary construction and our bigram-based seg-
mentation.

5.3 Machine Translation Evaluation

As a second downstream task, we evaluate our seg-
mentation on machine translation (MT) in a simu-
lated low-resource setup.

Experimental setup. We use the IWLST 2017
dataset of 18 language pairs (involving combina-
tions of Arabic, English, Dutch, German, Italian,
and Romanian) with the provided data splits for
train, validation, and testing. The exact language
pairs and dataset statistics are in the Appendix in
Table 7. Similarly to POS tagging, we experiment
with word-like and Morfessor pre-tokenization,
BPE, and Unigram vocabulary construction (jointly
on parallel data) and compare the default segmen-
tation (Orig.) algorithms with the bigram-based
segmentation distilled from the embedding-based
segmentation algorithm (Ours).

We use the Transformer Base model (Vaswani
et al., 2017) as implemented in Marian (Junczys-
Dowmunt et al., 2018). We train the models using
the Adam optimizer with learning rate 10−4 and
the inverse square learning rate decay with 4,000
warmup steps with effective batch size 18,000 to-
kens.

Results. We evaluate the MT quality using the
chrF scores (Popović, 2015),6 see Table 11 in the
Appendix for complete results. At first glance,
there are only minor differences in translation qual-
ity across the tested methods and language pairs,
except for a few outliers. Therefore, in Table 3,7

we provide aggregated results across the languages:
We first compute the mean chrF score per language
pair and subtract it from the scores. Finally, we
average the difference from the mean across lan-
guages. The results show that the word-based pre-

6We use the SacreBLEU implementation (Post, 2018):
chrF2|nrefs:1|case:mixed|eff:yes|nc:6|nw:0|
space:no|version:2.0.0

7Table 3 shows normalized chrF scores. See Table 5 in the
Appendix for BLEU scores.
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cs en es fr hu it ru Avg.

-.30 .73 .69 .60 .95 .74 .33 .54

(a) POS-tagging (accuracy)

ar ) en -.70 en ) ar -.73 de ) en -.13 en ) de -.38
en ) fr -.06 fr ) en .19 en ) nl -.47 nl ) en .03
en ) ro -.31 ro ) en -.36 it ) en -.39 en ) it -.46
it ) nl -.43 nl ) it -.40 ro ) it -.04 it ) ro -.17
ro ) nl -.42 nl ) ro -.40 =⇒ Avg. -.31

(b) Machine Translation (chrF)

Table 4: Pearson correlation of Rényi efficiency of the
training data with the downstream performance. The
blue-yellow scale is fit globally to the values across both
tables.

tokenization outperforms Morfessor tokenization.
Whilst our techniques have a slightly negative ef-
fect with the word-like pre-tokenization, adding
Morfessor-based pre-tokenization shows signifi-
cant improvements. Still, the overall MT quality
stays behind the full Unigram and BPE preprocess-
ing pipelines.

5.4 Rényi Efficiency
Finally, we evaluate the correlation between the re-
sults of our downstream tasks and Rényi Efficiency.
Zouhar et al. (2023) conducted a theoretical analy-
sis of information-theoretical properties of tokeniz-
ers and suggest to measure their unigram informa-
tion efficiency. Information efficiency is the ratio
of the unigram entropy of tokenized text and the
maximum possible entropy given the vocabulary
size. Instead of using the more common Shannon
entropy, they use parametrized Rényi entropy with
α = 2.5 that they claim better correlates with the
downstream performance on English-German MT.

To verify the claims of Zouhar et al. (2023), we
computed the Pearson correlation of the Rényi effi-
ciency of the training data in our experiments with
the model performance. Our results are presented
in Table 4. For POS tagging, Rényi efficiency is
a good predictor of tagger performance in most
languages except Czech. However, the correlation
varies strongly between languages. In MT, we did
not confirm the results of Zouhar et al. (2023): the
correlation of the Rényi efficiency of the training
data and the MT quality in terms of chrF is mostly
negative and highly varies across language pairs.

6 Related Work

Subword embeddings. There are relatively few
methods for obtaining static subword embeddings.

FastText (Bojanowski et al., 2017) averages sub-
word embeddings to obtain static word embeddings.
However, subwords are stored in a hash table with
many conflicts for better memory efficiency, mak-
ing the subword embeddings unusable for our pur-
poses. Heinzerling and Strube (2018) trained sub-
word embedding for 275 languages and various
vocabulary sizes using GloVe (Pennington et al.,
2014) while treating subwords as standalone tokens.
They, however, do not put the subword embeddings
into relation to word embeddings. Static subword
embeddings are, as the first layer, a part of most
neural NLP models. However, none of the meth-
ods explicitly models the relationship between the
words and subwords.

Subword segmentation. Besides the standard
BPE (Sennrich et al., 2016) and the Unigram model
(Kudo, 2018), several more recent approaches to
subword segmentation exist. Xu et al. (2021) use
optimal transport to find a replacement for greedy
vocabulary construction of BPE, leading to more
efficient bilingual vocabularies. He et al. (2020)
and Meyer and Buys (2023) work with Dynamic
Programming Encoding that includes subword se-
lection into the language-modeling objective of in
MT model with a decoder using character-level in-
puts. Yehezkel and Pinter (2023) introduce SaGe,
which uses skip-gram training objective as a loss
to replace unigram perplexity used in the Unigram
model. Hofmann et al. (2022) show that chang-
ing the segmentation algorithm in a WordPiece
(Schuster and Nakajima, 2012) tokenizer and a
trained BERT model can improve classification per-
formance. Schmidt et al. (2024) further elaborate
on this idea and introduce an alternative segmenta-
tion algorithm that produces the minimum number
of tokens given a vocabulary.

7 Conclusions

In this paper, we devised morphologically plausi-
ble methods for subword segmentation. Inspired by
Schmidt et al. (2024), we divide the tokenization
process into three steps: pre-tokenization, vocabu-
lary construction, and segmentation.

We described three key contributions of our
work. Our first contribution focuses on the pre-
tokenization step: Instead of the standard ap-
proaches, which split the text into word-like units,
we use Morfessor, which splits the text into mor-
phemes. However, we only regard this as pre-
tokenization. Next, we proposed a novel segmen-
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tation algorithm based on word and subword em-
beddings, which provides lexical grounding to the
segmentation. Finally, we proposed a statistical
bigram segmentation model that can be used to
simplify complex tokenization pipelines.

The intrinsic evaluation results show that the pro-
posed method better captures language morphology
than standard statistical subword segmentation ap-
proaches. This is further confirmed by the results
we obtained on POS tagging, in which information
about morphology is a key feature.

However, our method did not significantly im-
prove the performance of machine translation,
which is a more complex NLP task. We argue that a
dedicated analysis would be required to determine
the exact influence of the lexically grounded seg-
mentation on the translation quality, which might
be improved in one dimension but reduced in an-
other.

In our work, we have taken steps to create
a more morphologically accurate tokenization
method while keeping the benefits of statistical
subword segmentation. We believe these methods
will improve modeling language overall and con-
tribute to model interpretability and cross-lingual
transfer.

8 Limitations

The subword embedding formula derived in Sec-
tion 3.1 requires a trained word embedding model
and, therefore, relies on the quality of available
data. This problem manifests mostly in under-
represented languages, many of which would bene-
fit from morphology-aware segmentation.

In Section 5.1, we use a set of heuristic rules to
map the morphemes to the surface form for some
languages. These rules are language agnostic and
may introduce noise into the evaluation. However,
the results are consistent with Czech, annotated on
the morph level.
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Zdeněk Žabokrtský, Niyati Bafna, Jan Bodnár, Lukáš
Kyjánek, Emil Svoboda, Magda Ševčíková, and
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A Code Examples

Below, we list Python implementations of the two
proposed segmentation algorithms: Segmentation
based on subword embeddings (Algorithm 1) and
bigram segmentation (Algorithm 2).

B Statistis of Used Datasets

Table 6 contains statistics of the UD Treebanks
used for POS Tagging evaluation. Table 7 con-
tains basic statics of the IWSLT 2017 data used for
machine translation evaluation.

Tokenization Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e
BPE Orig. 0.3 0.7 0.7 0.5

Ours 0.3 0.4 0.5 0.4

Uni. Orig. 0.3 0.9 0.7 0.7
Ours 0.2 0.8 0.3 0.5

M
or

fe
ss

or BPE Orig. -0.7 -0.7 -0.8 -0.7
Ours -0.4 -0.1 -0.0 -0.2

Uni. Orig. -1.0 -0.8 -1.0 -0.9
Ours -0.1 -0.0 -0.5 -0.2

Table 5: Mean deviation from the average BLEU score
for 18 language pairs of the IWSLT 2017. The blue-
yellow scale is fit globally to the values across the table.

C Additional Results

Here, we present additional results: Precision, re-
call, and F1 Score on the SIGMORPHON 2018
test set (Figure 3) and segmentations of randomly
sampled words in Czech, English, and French (Ta-
ble 10). Table 9 contains more detailed results of
POS tagging. Table 5 contains aggregated BLEU
scores for MT experiments, and Table 11 contains
individual chrF scores for the 18 language pairs.8

8SacreBLEU signature: BLEU|nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version:2.0.0
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1 def embedding_segment(
2 word: str,
3 word_embedding: np.ndarray,
4 subword_embeddings: Dict[str, np.ndarray]) -> List[str]:
5

6 # Costs of segmenting the word up to a certain length
7 costs = [0. for _ in range(len(word) + 1)]
8 # Backward pointers: position i says from what index we can get position i
9 prev = [0 for _ in word]

10

11 # 1. Populate the segmentation cost table
12 for i in range(1, len(word) + 1):
13 # Now, we know how to segment everything up to position i-1 and want to find position i
14 indices = [] # Indices j from where we can go to position i
15 scores = [] # Scores corresponding to the indices
16 for j in range(i): # 0..i
17 subword = word[j:i]
18 if subword in subword_embeddings:
19 subword_embedding = subword_embeddings[subword]
20 new_cost = costs[j] + cosine_similarity(
21 word_embedding, subword_embedding) - 1
22 scores.append(new_cost)
23 indices.append(j)
24 # Best index from which we get to position i, i.e., the argmax of scores
25 idx = max(range(len(scores)), key=lambda i: scores[i])
26 costs[i] = scores[idx]
27 prev[i - 1] = indices[idx]
28

29 # 2. Reconstruct the best segmentation by following the backward pointers
30 subwords = []
31 idx = len(prev) - 1
32 while idx >= 0:
33 new_idx = prev[idx]
34 sbwrd = word[new_idx:idx + 1]
35 subwords.append(sbwrd)
36

37 idx = new_idx - 1
38 return list(reversed(subwords)), costs[-1]

Algorithm 1: Python code showing the segmentation algorithm using subword embeddings. On the input, word is
the word to be segmented, word_embedding is its embedding, and subword_embedding is the subword embedding
matrix.

It is a dynamic programming algorithm that first computes the scores of the best segmentation up to a given position
in the string (kept in list costs) and what was the start index of the last subword in the best-scoring segmentation
(kept in list prev). When moving to the next index in the for loop on line 12, we can rely on knowing the best
segmentation score for all indices up to i − 1 from the previous iteration. Therefore, in the for loop on line 16,
we can try all subwords that will bring us to index i. figure out the best possible subword that will extend the
segmentation to index i.

In the second step, we use the list prev to reconstruct what subwords were used to the best score starting at the end
of the word.
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1 def beam_search_segment(
2 word: str,
3 vocab: Set[str]
4 beam_size: int = 5) -> List[str]:
5 max_subword_length = max(len(tok) for tok in vocab)
6

7 # List where the i-th position contains possible segmentations ending at position i
8 segmentations = [[(["###"], 0.0)]] + [[] for _ in token]
9 for start in range(len(token)):

10 # Try to expand all segmentations ending at index `start`
11 # with subwords of all possible lengths
12 for length in range(1, vocab.max_subword_length + 1):
13 end = start + length
14 if end > len(token):
15 break
16

17 subword = token[start:end]
18 if subword not in vocab and len(subword) > 1:
19 continue
20

21 # Expand from the current segmentations ending at index `start`
22 for prev_segmentation, prev_score in segmentations[start]:
23 # Compute the bigram log probability of the current `subword`
24 # given the last subword of `prev_segmenation`
25 score = log_probability(subword, prev_segmentation[-1])
26 new_segmentation = prev_segmentation + [subword]
27 new_score = prev_score + score # Summing log probabilities
28 segmentations[end].append((new_segmentation, new_score))
29

30 # For each end index that follows, keep only the best `beam_size` segmentations
31 for i, seg_list in enumerate(segmentations[start + 1:]):
32 if len(seg_list) > beam_size:
33 seg_list.sort(key=lambda x: x[1], reverse=True)
34 segmentations[start + 1 + i] = seg_list[:beam_size]
35

36 best_segmentation = max(segmentations[-1], key=lambda x: x[1])
37 return best_segmentation[0][1:]

Algorithm 2: Python code for bigram segmentation. On the input, token is the token to be tokenized, vocab is the
subword vocabulary, and max_subword_length controls the maximum number of characters in a subword. We
assume there is a function log_probability that computes the log probability of a subword bigram.
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Treebank Train Dev Test

Sent. Tokens Sent Tokens Sent. Tokens

Czech PDT 68k 1,192k 9k 162k 10k 177k
English EWT 12k 207k 2k 25k 2k 25k
Spanish GSD 14k 389k 1k 37k 1k 12k
French GSD 14k 364k 1k 36k 1k 10k
Hungarian Szeged 1k 20k 1k 11k 1k 10k
Italian ISDT 13k 294k 1k 12k 1k 11k
Russian SynTagRus 69k 1206k 8k 153k 8k 157

Table 6: Basic statistics of the splits of the UD treebanks used in the POS tagging evaluation in terms of number
sentences and number of tokens.

Language pair Train Dev Test

Sent Src. tok Tgt. tok. Sent Src. tok Tgt. tok. Sent Src. tok Tgt. tok.

ar-en 231k 3,817k 4,865k 1k 15k 21k 8k 136k 184k
de-en 206k 3,923k 4,318k 1k 19k 21k 8k 149k 162k
en-fr 232k 4,888k 5,360k 1k 21k 21k 8k 184k 193k
en-nl 237k 4,540k 4,009k 1k 20k 19k 2k 33k 31k
en-ro 220k 4,594k 4,201k 1k 20k 20k 2k 33k 32k
it-en 231k 4,846k 4,450k 1k 20k 19k 2k 32k 31k
it-nl 233k 4,105k 3,944k 1k 18k 19k 2k 29k 31k
ro-it 217k 4,169k 4,148k 1k 18k 20k 2k 29k 31k
ro-nl 206k 3,809k 3,939k 1k 18k 20k 2k 30k 32k

Table 7: Sizes of the IWSLT 2017 datasets in terms of the number of sentence pairs and the number of tokens on the
source and the target side.
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Vocab. Inf. Morpheme boundary precision Rényi efficiency

cs en es fr hu it mn ru cs en es fr hu it mn ru

W
or

d-
lik

e BPE
Orig 74.3 54.7 59.4 55.3 75.3 51.0 76.0 60.7 .430 .435 .404 .428 .382 .444 .478 .425
Emb. 77.2 63.2 62.8 60.7 80.5 56.4 86.2 63.1 .432 .441 .410 .434 .396 .450 .487 .434
Big. 77.7 63.7 63.0 60.5 79.7 56.3 85.8 64.9 .433 .441 .411 .435 .396 .451 .488 .435

Uni.
Orig 82.9 62.2 61.2 62.5 78.5 51.2 88.9 65.0 .434 .437 .404 .430 .391 .448 .484 .432
Emb. 85.7 66.4 63.4 64.3 80.8 55.6 88.2 66.5 .433 .443 .414 .439 .398 .453 .474 .439
Big. 85.5 66.7 63.3 64.4 80.6 55.6 87.9 67.9 .435 .443 .415 .440 .399 .454 .475 .442

M
or

fe
ss

or BPE
Orig 86.8 68.3 64.5 64.2 80.0 60.1 88.6 67.4 .454 .440 .425 .449 .398 .458 .499 .455
Emb. 87.9 70.4 64.4 65.1 83.1 59.7 90.7 69.9 .456 .443 .428 .452 .407 .460 .502 .460
Big. 87.6 67.9 64.2 65.3 82.5 60.3 90.2 69.6 .457 .443 .429 .452 .407 .461 .503 .461

Uni.
Orig 88.3 68.8 63.9 64.1 82.1 60.1 89.9 68.9 .461 .442 .427 .453 .404 .462 .504 .464
Emb. 90.1 69.0 64.4 65.0 84.1 60.9 90.9 72.3 .461 .443 .430 .456 .409 .461 .497 .461
Big. 89.2 68.1 63.9 65.2 82.8 60.4 90.4 70.7 .462 .443 .431 .456 .409 .462 .497 .463

Vocab. Inf. Morpheme boundary precision Rényi efficiency

cs en es fr hu it mn ru cs en es fr hu it mn ru

W
or

d-
lik

e BPE
Orig 78.1 58.1 61.4 58.6 78.1 54.6 80.3 62.6 .412 .425 .392 .417 .366 .433 .466 .407
Emb. 81.3 67.2 65.1 65.2 83.5 60.1 90.4 64.8 .415 .431 .400 .424 .381 .439 .475 .418
Big. 81.8 68.7 65.4 66.3 83.4 61.0 90.4 67.7 .416 .431 .401 .424 .382 .440 .476 .419

Uni.
Orig 85.6 66.7 65.0 66.9 81.8 55.1 92.0 67.8 .417 .429 .394 .421 .376 .438 .474 .417
Emb. 87.9 69.9 66.7 68.1 83.7 58.7 91.5 68.4 .418 .434 .404 .430 .384 .443 .464 .426
Big. 88.2 71.0 66.4 69.1 83.9 60.5 91.6 70.9 .420 .434 .405 .430 .385 .444 .465 .427

M
or

fe
ss

or BPE
Orig 90.6 73.5 69.1 69.7 85.4 66.8 92.5 71.8 .446 .436 .421 .446 .388 .454 .497 .448
Emb. 89.9 72.6 67.3 68.5 86.3 63.6 93.0 72.6 .449 .439 .424 .448 .397 .456 .499 .453
Big. 89.4 71.4 67.1 68.6 85.5 64.6 92.5 72.5 .449 .439 .424 .448 .396 .456 .499 .454

Uni.
Orig 90.2 70.8 65.7 65.8 85.4 63.3 91.9 71.6 .456 .441 .426 .452 .395 .452 .491 .460
Emb. 91.4 70.4 65.0 65.7 86.9 63.3 92.7 73.7 .456 .441 .428 .454 .400 .458 .492 .456
Big. 90.8 70.0 65.5 66.4 86.1 63.2 92.1 73.1 .457 .441 .429 .454 .400 .459 .492 .459

Table 8: Morpheme boundary precision on the SIGMORPHON 2018 test set and Rényi efficiency estimated on 4k
plain text sentences for tokenizers with 24k and 40k-sized vocabularies. The best results in each column are bolded.
The blue-yellow scale is fit to the value range per column.

Tokenization cs en es fr hu it ru Aggr.

Most frequent unigram 91.70 83.30 88.00 89.60 60.40 90.30 88.80
HMM Tagger 93.70 87.60 91.70 93.00 72.80 93.30 91.00

Word vocab 96.16 (0.19) 92.07 (0.56) 94.43 (0.24) 96.14 (0.30) 79.44 (1.10) 96.45 (0.27) 94.16 (0.51) -2.013
Morfessor 96.01 (0.35) 92.05 (0.64) 94.61 (0.22) 96.19 (0.24) 78.14 (1.86) 96.64 (0.15) 94.48 (0.45) -1.902

W
or

d-
lik

e

BPE Orig. 98.17 (0.03) 93.73 (0.16) 95.50 (0.14) 97.16 (0.08) 87.76 (1.02) 97.47 (0.10) 97.38 (0.05) 0.340
Ours 98.19 (0.03) 93.78 (0.15) 95.58 (0.09) 97.23 (0.12) 88.88 (0.92) 97.56 (0.07) 97.40 (0.03) 0.471

Uni. Orig. 98.09 (0.08) 93.50 (0.17) 95.41 (0.09) 97.00 (0.06) 88.57 (0.50) 97.41 (0.10) 97.30 (0.04) 0.187
Ours 98.17 (0.04) 93.76 (0.20) 95.56 (0.11) 97.11 (0.12) 89.68 (0.50) 97.58 (0.09) 97.43 (0.05) 0.447

M
or

fe
ss

or BPE Orig. 98.18 (0.02) 93.91 (0.16) 95.44 (0.13) 97.21 (0.13) 90.92 (0.40) 97.48 (0.06) 97.39 (0.04) 0.473
Ours 98.21 (0.03) 93.96 (0.17) 95.72 (0.12) 97.33 (0.10) 91.63 (0.31) 97.74 (0.09) 97.52 (0.03) 0.745

Uni. Orig. 98.04 (0.06) 93.86 (0.18) 95.66 (0.06) 97.16 (0.07) 91.12 (0.44) 97.61 (0.07) 97.35 (0.05) 0.541
Ours 98.11 (0.04) 93.95 (0.18) 95.72 (0.14) 97.29 (0.11) 91.51 (0.29) 97.75 (0.09) 97.52 (0.04) 0.712

Table 9: Test accuracies for POS tagging including standard deviations over 10 random seeds and simple baselines
from NTLK.
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Word (Czech) Gold segmentation BPE Unigram Ours

vykrášlit vy kráš l i t vy krá š lit vy krá š lit vy krá šl it
fluorově fluor ov ě flu or ově fl u or ově f lu or ově
horách hor ách horách horách horách
zkamenět z kamen ě t z kamen ě t z ka me ně t z kamen ě t
akcií akci í akcií akcií akcií
zdegenerovat z de gener ova t zde gener ovat zde gen er ovat zde gener ovat
rezervy re zerv y rezervy rezervy rezervy
neměly ne m ě l y neměly neměly neměly
poplatků po plat k ů poplatků poplatků poplatků
obnitkovat ob nit k ova t ob ni tk ovat ob nit kovat ob nit kovat
znesnadňovat z ne snad ň ova t zne snad ňovat z ne snad ňovat zne snad ňovat
přesunovat pře sun ova t přesu novat přesun ovat přesun ovat
jednota jedn ot a jedno ta jedno ta jedno ta
obklíčit ob klíč i t ob klí čit ob klíč it ob klíč it
krysí krys í kry sí krys í krys í
premií prem i í premi í pre mi í pre mi í
bříško bříš k o bří ško bříško bříško
odpovídat od po víd a t odpovídat odpovídat odpovídat
zakuklit za kukl i t za ku kli t za ku kli t za kukl it

Word (English) Gold segmentation BPE Unigram Ours

macroclumps macro clump s macro clum ps macro cl ump s macro clump s
gibbets gibbet s gib bets gibb ets gibb ets
phenoconverts pheno convert s phen o conver ts phe no con vert s ph eno convert s
ahura ahura a hur a a h ura ahu ra
bimonopoles bi mono pole s b im on opol es bi mon o pole s bi mono poles
nonwriter non write r non writer non writer non writer
molelike mole like mol eli ke mole like mole like
barnardsville barnard s ville bar nar d sville barnard sville barnard sville
pogues pogue s po gues po gue s po gu es
infractors infractor s infr actors in fra ctor s in fr actors
battlings battling s batt lings battling s battling s
larrup larrup lar r up la rr up lar ru p
detransformation de trans form ation de transformation de trans form ation de transform ation
deexciting de excit ing de exciting de ex citing de exciting
kalasies kalasie s kal as ies kala s ies kala s ies
canebrakes cane brake s can e brakes can e bra kes ca ne brakes
eskimological eskimo log ical es kim ological es kim ological es kim ological
unmisleading un mis lead ing un misleading un mis leading un misleading
neurofibromins neuro fib r om in s neuro fibro mins neuro fi bro mins neuro fibro mins

Word (French) Gold segmentation BPE Unigram Ours

parassiens parassien s par assi ens par assi ens pa ras siens
complaira com plair a compl ai ra comp la ira com plaira
salindrois salindr ois sal in dr ois sali nd rois sali nd rois
nampontois nampont ois nam pon tois n amp ont ois nam pont ois
sédimentologique sédimentologi que sé di ment ologique s édi ment ologique sé dim ent ologique
esquivée esquiv é e esqui vée es qui vé e es qu iv ée
flanc-garde flanc - garde fl anc - garde flanc - garde flanc - garde
moyen moyen moyen moyen moyen
antigangs anti gang s anti gangs anti g ang s anti gangs
forer forer for er for er fo rer
captivités captivité s capti vités captivité s captivité s
dépolymérisés dé poly m é r is é s dé poly m ér isés dé po ly mé r isés dé poly mé ris és
prévoiriez pré voir iez pré voi riez prévoir iez prévoir iez
déracinerais dé racine r ais dé rac in erais d éra cine rais dé racine rais
corécipiendaire co récipiendaire coré ci pi end aire cor é ci pi end aire co ré cip ien da ire
crustacyanines crustacyanine s cru st ac yan ines crus t ac yan ines crus tac yan ines
chambardés chambard é s cham bar dés chamb ard és cham bard és
joyeusain joyeus ain joy eu sain joy e us ain jo ye usain
influions influ ions influ ions in flu ions inf lu ions

Table 10: Example segmentations from the SIGMORPHON 2018 Czech, English, and French test sets. Green space
symbols denote morphologically valid splits, and the red space symbols denote splits inside morphemes.
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Figure 3: Boundary precision, recall and F1-score on the SIGMORPHON 2018 test set.
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ara-eng Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 38.8 39.4 39.9 39.4
Ours 38.6 39.8 40.3 39.6

Uni. Orig. 40.1 40.6 41.3 40.7
Ours 39.4 40.6 41.0 40.4

M
or

fe
ss

or BPE Orig. 39.9 40.1 40.7 40.2
Ours 39.4 40.2 41.0 40.2

Uni. Orig. 39.5 40.5 40.0 40.0
Ours 40.0 41.3 40.1 40.5

eng-ara Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 33.4 34.2 34.7 34.1
Ours 33.4 34.0 34.4 33.9

Uni. Orig. 33.9 35.2 34.7 34.6
Ours 33.9 34.4 34.9 34.4

M
or

fe
ss

or BPE Orig. 33.6 34.5 34.5 34.2
Ours 34.1 35.0 35.1 34.7

Uni. Orig. 33.3 34.3 34.5 34.0
Ours 33.9 35.0 34.3 34.4

deu-eng Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 43.6 43.8 43.9 43.8
Ours 43.2 43.8 43.9 43.6

Uni. Orig. 42.9 44.3 44.8 44.0
Ours 43.7 44.1 44.6 44.1

M
or

fe
ss

or BPE Orig. 42.6 42.3 42.1 42.3
Ours 43.1 43.2 43.5 43.2

Uni. Orig. 41.9 42.0 41.6 41.9
Ours 43.2 42.9 43.5 43.2

eng-deu Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 44.8 45.4 45.0 45.1
Ours 44.2 45.5 45.0 44.9

Uni. Orig. 44.4 45.6 45.6 45.2
Ours 44.6 44.6 46.2 45.1

M
or

fe
ss

or BPE Orig. 42.2 44.1 45.0 43.8
Ours 44.3 44.8 45.0 44.7

Uni. Orig. 43.2 43.5 43.8 43.5
Ours 44.6 45.2 44.3 44.7

fra-eng Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e
BPE Orig. 50.3 51.3 51.1 50.9

Ours 50.3 50.9 51.6 50.9

Uni. Orig. 50.1 51.1 51.6 50.9
Ours 50.0 51.6 49.3 50.3

M
or

fe
ss

or BPE Orig. 48.9 48.8 48.9 48.9
Ours 50.5 50.3 50.2 50.3

Uni. Orig. 48.6 49.0 48.5 48.7
Ours 49.4 50.3 49.5 49.7

eng-fra Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 52.1 52.9 53.2 52.7
Ours 52.5 52.3 52.9 52.6

Uni. Orig. 52.1 53.4 53.4 53.0
Ours 51.6 53.0 51.0 51.9

M
or

fe
ss

or BPE Orig. 50.7 51.5 51.8 51.3
Ours 51.8 52.0 53.1 52.3

Uni. Orig. 51.0 51.7 51.6 51.4
Ours 52.2 52.8 52.3 52.4

nld-eng Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 47.8 48.6 48.4 48.3
Ours 48.2 47.4 48.1 47.9

Uni. Orig. 48.4 48.3 48.2 48.3
Ours 47.7 48.6 48.4 48.3

M
or

fe
ss

or BPE Orig. 47.5 46.6 47.5 47.2
Ours 47.4 47.7 47.5 47.6

Uni. Orig. 46.8 47.1 46.7 46.8
Ours 47.5 47.2 47.2 47.3

eng-nld Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 47.4 47.9 47.6 47.6
Ours 45.9 48.0 47.7 47.2

Uni. Orig. 46.3 48.1 47.4 47.3
Ours 46.3 47.3 48.1 47.2

M
or

fe
ss

or BPE Orig. 45.7 45.5 46.6 45.9
Ours 46.7 46.8 47.7 47.1

Uni. Orig. 46.1 46.0 46.1 46.1
Ours 46.2 47.4 46.1 46.6

eng-ron Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 44.4 44.6 44.5 44.5
Ours 44.7 45.3 45.1 45.1

Uni. Orig. 43.8 45.4 44.8 44.7
Ours 44.3 45.1 44.5 44.6

M
or

fe
ss

or BPE Orig. 42.7 42.5 42.4 42.5
Ours 42.9 44.6 44.5 44.0

Uni. Orig. 41.7 42.4 43.0 42.4
Ours 43.6 44.2 43.8 43.9

ron-eng Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 46.5 47.1 47.5 47.0
Ours 47.5 47.0 48.5 47.7

Uni. Orig. 47.2 47.5 48.2 47.7
Ours 46.5 46.6 47.6 46.9

M
or

fe
ss

or BPE Orig. 45.4 45.2 45.4 45.3
Ours 46.3 46.8 47.1 46.7

Uni. Orig. 44.3 45.5 44.6 44.8
Ours 46.4 46.0 46.7 46.4

eng-ita Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 46.7 46.8 47.7 47.1
Ours 46.1 47.1 47.1 46.8

Uni. Orig. 46.7 48.2 47.8 47.6
Ours 46.8 47.8 47.5 47.3

M
or

fe
ss

or BPE Orig. 46.2 45.8 45.6 45.9
Ours 46.5 47.2 47.7 47.2

Uni. Orig. 45.7 46.1 45.7 45.8
Ours 46.0 47.3 45.4 46.2

ita-eng Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 46.6 47.3 48.2 47.4
Ours 46.7 47.5 47.4 47.2

Uni. Orig. 47.5 47.6 47.7 47.6
Ours 46.5 47.7 47.6 47.3

M
or

fe
ss

or BPE Orig. 45.4 46.0 45.2 45.5
Ours 46.2 46.5 46.9 46.5

Uni. Orig. 45.2 45.3 45.4 45.3
Ours 46.5 46.7 46.2 46.5

ita-nld Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 36.3 35.8 36.3 36.1
Ours 35.9 36.1 37.2 36.4

Uni. Orig. 35.9 36.2 37.0 36.3
Ours 35.3 35.9 36.9 36.0

M
or

fe
ss

or BPE Orig. 35.4 35.4 34.3 35.1
Ours 34.7 36.3 36.6 35.9

Uni. Orig. 35.0 35.2 35.6 35.3
Ours 36.8 36.5 36.4 36.6

nld-ita Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 36.5 37.0 37.1 36.9
Ours 36.3 36.7 37.8 36.9

Uni. Orig. 36.3 37.5 37.2 37.0
Ours 36.8 35.5 37.3 36.6

M
or

fe
ss

or BPE Orig. 35.3 36.1 36.1 35.8
Ours 37.4 36.8 37.9 37.4

Uni. Orig. 35.7 35.7 36.3 35.9
Ours 36.7 36.8 36.2 36.6

ron-ita Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 40.2 41.1 40.7 40.7
Ours 41.0 40.8 40.4 40.8

Uni. Orig. 40.0 40.1 40.5 40.2
Ours 39.8 40.9 39.8 40.2

M
or

fe
ss

or BPE Orig. 39.4 38.8 38.6 38.9
Ours 40.3 40.3 40.4 40.3

Uni. Orig. 39.0 39.4 39.1 39.2
Ours 40.8 40.0 40.3 40.4

ita-ron Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 37.5 37.9 38.3 37.9
Ours 37.8 38.1 38.0 37.9

Uni. Orig. 37.0 38.1 37.7 37.6
Ours 37.6 37.7 37.6 37.6

M
or

fe
ss

or BPE Orig. 35.6 36.0 36.3 36.0
Ours 38.2 38.2 37.8 38.1

Uni. Orig. 35.0 35.5 35.5 35.3
Ours 37.4 37.3 37.0 37.2

ron-nld Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 36.0 35.9 37.0 36.3
Ours 35.7 36.5 36.7 36.3

Uni. Orig. 35.7 36.0 36.5 36.1
Ours 35.1 35.2 36.6 35.6

M
or

fe
ss

or BPE Orig. 34.7 35.9 35.2 35.3
Ours 36.1 36.0 36.1 36.1

Uni. Orig. 35.3 34.6 35.1 35.0
Ours 35.6 36.8 35.6 36.0

nld-ron Vocabulary Avg.
4k 8k 16k

W
or

d-
lik

e

BPE Orig. 33.6 33.5 34.7 33.9
Ours 33.6 34.1 35.1 34.3

Uni. Orig. 33.4 34.7 35.0 34.4
Ours 33.5 35.2 34.4 34.3

M
or

fe
ss

or BPE Orig. 32.7 32.9 33.1 32.9
Ours 33.6 34.8 33.6 34.0

Uni. Orig. 32.3 32.8 32.3 32.5
Ours 33.1 33.9 33.7 33.6

Table 11: The chrF scores for 18 language pairs of the IWSLT 2017. The blue-yellow scale is fit to the value range
across each table.
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