
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 4638–4649
November 12-16, 2024 ©2024 Association for Computational Linguistics

How Do Humans Write Code? Large Models Do It the Same Way Too

Long Li1 Xuzheng He2 Haozhe Wang3 Linlin Wang1∗ Liang He1
1East China Normal University, China
2Central Conservatory of Music, China

3INF Technology, Shanghai, China
1longli@stu.ecnu.edu.cn

221sa026@mail.ccom.edu.cn

Abstract
Program-of-Thought (PoT) replaces natural
language-based Chain-of-Thought (CoT) as the
most popular method in Large Language Mod-
els (LLMs) mathematical reasoning tasks by
utilizing external tool calls to circumvent com-
putational errors. However, our evaluation of
the GPT-4 and Llama series reveals that using
PoT introduces more reasoning errors, such as
incorrect formulas or flawed logic, compared to
CoT. To address this issue, we propose Human-
Think Language (HTL), which leverages a suite
of strategies that help integrate PoT and CoT,
encompassing: (1) a new generation paradigm
that uses full CoT reasoning to control code
generation. (2) Focus Attention, that directs
model attention to the CoT reasoning during
PoT to generate more logical code. (3) rein-
forcement learning that utilizes the accuracy of
both CoT and PoT responses as rewards to pre-
vent repetitive reasoning steps in LLMs when
solving difficult math problems. Our method
achieves an average improvement of 6.5% on
the Llama-Base model and 4.3% on the Mistral-
Base model across 8 mathematical calculation
datasets. It also shows significant effective-
ness on five out-of-domain datasets by con-
trolling the model’s information flow, exhibit-
ing strong transferability. Additionally, HTL
shows the most significant improvement in non-
mathematical natural language inference task,
contributing to a unified reasoning task frame-
work1.

1 Introduction

Solving Mathematical reasoning problems is a sig-
nificant challenge for current LLMs (Madaan et al.,
2022; OpenAI et al., 2023). This task requires
interpreting information, identifying relevant math-
ematical concepts, and formulating equations to
solve the problems (Ahn et al., 2024). Due to com-
putational errors in LLMs (Wei et al., 2023; Gao

∗Corresponding Author
1Code is available at: https://github.com/seamoke/Human-

Think-Language

If Lizzie's group is composed of 54 people and they have 
17 more members than the other group, how many people 
are working together to clean the city? Let's write 
program

GroupLayout1 = 54
GroupLayout2 = 17
TotalPeople = 54+17
print(TotalPeople)

Error!

6.97

8.7

8.14

8.33

11.32

9.16

7.17

8.47

9.33

11.28GPT-3.5-turbo

GPT-4-turbo

CodeLlama-7B

CodeLlama-13B

CodeLlama-34B

Mistral-7B

MAmmoTH-Coder-7B

MAmmoTH-Coder-13B

MAmmoTH-Coder-34B

MAmmoTH-Mistral-7B

Code Translation Error

Figure 1: The top section of the chart represents the
average CTE for each model across 5 datasets. Be-
low is a real example from the Asdiv dataset using the
MAmmoTH-Mistral-7B model, which achieved an ac-
curacy of 93.9% on this dataset. The proportion of CTE
remains high across various models, and these errors do
not diminish with an increase in model parameters.

et al., 2023), using CoT (Wang et al., 2023b; Wei
et al., 2022; Chen et al., 2024) solely implemented
in natural language can lead to calculation mis-
takes (Lewkowycz et al., 2022; Wei et al., 2023;
Gao et al., 2023). The most common practice cur-
rently is to use PoT (Chen et al., 2023) for handling
mathematical reasoning tasks, by guiding the large
model to write the code that is then computed using
tool calls.

However, we made a surprising discovery re-
cently: when a problem is phrased in a manner
closer to verbal scenarios (for example, the ques-
tion is “One apple costs three dollars, how much
for three apples?” instead of “3×3=?”), PoT tends
to make more reasoning errors or text comprehen-
sion mistakes, but this phenomenon is almost non-
existent in CoT. For such problems, CoT can cor-
rectly reason out the answer, whereas PoT makes
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mistakes. We refer to this type of error as Code
Translation Error (CTE). We report the percent-
age of CTE on five datasets with multiple types of
models, the results illustrated in Figure 1. This er-
ror is due to the amount of training data for natural
language far exceeding that for code. In the scope
of CodeLlama’s pretraining data, which includes
500 billion code tokens, this represents a small
fraction compared to the 2 trillion natural language
tokens used in the Llama-2 model (Rozière et al.,
2023; Hugo Touvron, 2023). Natural language is
more suitable for semantic analysis, planning, and
abstract reasoning than code (Gou et al., 2023b).

Existing work also finds the advantage of Natu-
ral language, but they have not effectively utilized
the reasoning capabilities of natural language. Cur-
rent research focuses on the following approaches
to integrate natural language to enhance the preci-
sion of code: (1) Using natural language prompts to
guide the model in writing code (Gao et al., 2023;
Toshniwal et al., 2024; Wang et al., 2023a): write
a brief step in natural language before generating
code. (2) Employing methods like self-correction
and hybrid approaches to generate answers in multi-
ple stages (Gou et al., 2023b; Yue et al., 2023; Gou
et al., 2023a). (3) Utilizing prompts like “rethink
question” (Deng et al., 2023) to have the model first
paraphrase the question, thereby avoiding compre-
hension errors. However, existing methods fall
short in two main aspects: First, using few natu-
ral language steps or simple paraphrasing meth-
ods alone is insufficient for effectively controlling
code generation; a more comprehensive natural lan-
guage reasoning process is necessary to generate
more reliable code. Secondly, reasoning within
LLMs is not always faithful (Lanham et al., 2023;
Bao et al., 2024; Turpin et al., 2023). Frequently,
the final answers seem to be derived directly from
the questions themselves rather than aligning with
the reasoning process. Consequently, even correct
reasoning can lead to incorrect answers.

To more effectively utilize natural language rea-
soning to enhance PoT, we propose Human-Think
Language (HTL): A novel information-control-
based approach to utilize complete CoT reasoning
steps to control PoT generation. HTL is inspired
by the way humans write code. Humans consider
the entire reasoning process using natural language,
and the code can fully rely on natural language rea-
soning. On the right side of Figure 2, we highlight
the parallels between our integrated model and the

human approach to solving mathematical problems.
Compared to previous works, our framework offers
a strong capacity for aligning calculation with rea-
soning by integrating CoT and PoT. We design Fo-
cus Attention mechanism that, during code genera-
tion, concentrates solely on information from CoT
to promote the chain reasoning better, thereby bias-
ing the answer to be more faithful to CoT. On the
other hand, using complete CoT reasoning tends
to lead LLMs to use mathematical induction to
enumerate reasoning steps verbosely, which results
in repetitive generation. We incorporate the er-
ror assessment function based on PPO (Schulman
et al., 2017), leveraging reinforcement learning to
penalize repetitive generation. We conduct experi-
ments based on CodeLlama-7B and Mistral-7B and
achieve outstanding results on eight datasets using
only self-distillation data.

In summary, our contributions are as follows:
(1) We are the first to conduct a detailed evalua-

tion of current closed-source models, open-source
base models, and specialized models. We highlight
the shortcomings of PoT and propose that using
full natural language reasoning to enhance PoT
performance is essential.

(2) We propose an advanced model named HTL,
which utilizes the complete reasoning process of
CoT to enhance PoT. HTL incorporates a novel
Focus Attention that approximates chain reasoning,
complemented by an error assessment function de-
signed to prevent repetitive generation.

(3) We evaluate our work on eight mathematical
reasoning datasets, and our experimental results
demonstrate that our method achieves outstanding
results. HTL shows significant effectiveness in in-
domain datasets, out-of-domain datasets, and natu-
ral language inference task, demonstrating strong
usability and potential.

2 Method

The design of HTL is divided into three parts: rea-
soning format, Focus Attention, and error assess-
ment function based PPO.

2.1 Reasoning Format

In Human-Think Language (HTL), we introduce a
new reasoning paradigm that uses full CoT reason-
ing to control the process of PoT, as shown in Fig-
ure 3. The CoT approach, despite sometimes pro-
ducing erroneous computational outcomes, follows
a generally correct skeleton (Wang et al., 2024)
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Figure 2: Dense Attention refers to traditional Attention, while Focus Attention is our approach. In the orange
column on the left, the first four tokens share a consistent mask state of 1. On the right side of the figure, there is a
comparison between human and LLMs in solving mathematical problems.

for reasoning. By adapting code translation after
the CoT reasoning path, the PoT can inherit the
reasoning skeleton of CoT while circumventing its
computational errors. This effectively combines
the advantages of both approaches.

Human-Think Language

Question

If
2

5
=

A

60
=

60

B
, what is A+B?

Generated Solution

We have
2

5
=

60

B
⇒ B =

60

2
= 30.

We also have
60

A
=

2

5
⇒ A = 60.

Thus A+B = 60 + 30 = 90 .
The answer is 90.

# Python program to calculate A + B
from sympy import symbols, solve
# Define the variables
A, B = symbols(’A B’)
# Equation 1: 2/5 = A/60
eq1 = solve(2/5 - A/60, A)[0]
# Equation 2: 60/B = 2/5
eq2 = solve(60/B - 2/5, B)[0]
# Calculate A + B
result = eq1 + eq2
print(result)

Figure 3: Demonstrating a successful example for HTL:
Although the CoT’s answer may contain many calcu-
lation errors (in red), its reasoning skeleton is correct.
HTL enables PoT to follow CoT’s reasoning steps to
arrive at the correct result.

2.2 Focus Attention
Attention Design In our work, we use a local at-
tention (Beltagy et al., 2020) mechanism to control
the information flow during training (Figure 2). We
divide the text of a mathematical problem into three
parts: Q (question), C (CoT), and P (PoT). The
objective in generating the PoT reasoning is for the
model to rely solely on information from the CoT
reasoning, not on the question. However, a recent
study by (Xiao et al., 2023) introduced the concept
of attention-sink, showing that the initial tokens of
a sequence attract a significant portion of attention.
Therefore, while the Focus Attention mechanism
masks the information from Q and focuses solely
on C during PoT generation, it preserves the initial
tokens in the sequence to prevent the loss of sub-
stantial information. Echoing the findings of (Xiao
et al., 2023), we include the first four tokens in the
PoT information generation process. This results
in the following modified formula for the casual
mask matrix:

Mij =

{
0 j ≤ i ∧ (j ∈ {0, 1, 2, 3} ∨ j ∈ C)

−∞ otherwise
(1)

Ultimately, the contextualized representation X l of
at l-th attention layer can be formulated as:

Al = Softmax

(
X l−1W l

Q

(
X l−1W l

K

)T
√

d/N
+M

)

X l = Al
(
X l−1W l

V

)

(2)
WQ, WK , and WV are intermediate matrix repre-
sentations in the attention mechanism. X is the

4640



hidden vector representation of the sequence.

Adaptive Training Strategy To align with the
dense causal matrix used for both pretraining and
inference, which is inconsistent with our Focus At-
tention, we introduce a novel training approach:
during both the initial and final phases of train-
ing, we do not explicitly mask any tokens besides
the causal mask, thereby ensuring alignment with
the pretraining stage and the inference stage. In
the middle of the training process, we incorporate
a mask coverage function, which is a quadratic
function and calculates a proportion of entries to
be randomly masked based on the number of train-
ing steps, allowing the mask to transition between
Dense Attention and Focus Attention:

λmasked = min(1,−α(ρstep −
1

2
)2 + β) (3)

where λ is the percentage of masked entries, and
ρstep is the current training step divided by the total
steps. Then, we randomly select the parts to mask
in the mask matrix based on the values of the mask
coverage function. It is noteworthy that during
the inference phase, HTL utilizes the traditional
causal mask.

2.3 Error Assessment Function Based PPO
In reinforcement-learning stage, We employ PPO
with a clipped objective algorithm for training. Fol-
lowing (Ziegler et al., 2020), the value model Vϕ

is constructed by appending a linear value head on
top of the last hidden states of the policy model.
For the reward model, we replace it with error as-
sessment function. At the terminal state, we use
a reward function to score based on the correct-
ness of the generated answer. All other states are
assigned a value of 0. We categorize the reasons
for their errors and provide more fine-grained feed-
back scores for the model based on the answers
from CoT and PoT. The error assessment function
is as follows:

fr =





1, CoT = y,PoT = y
0.6, CoT ̸= y,PoT = y
0.3, CoT = y,PoT ̸= y
0.1, CoT = null or PoT = null
0, CoT = null and PoT ̸= null

(4)

In cases where the model cannot produce an an-
swer, we consider it as model-level error and apply
the harshest penalty. If the CoT is correct and PoT

is incorrect, we consider it as code translation error.
In cases where only CoT is incorrect but PoT is
correct, we view it as solely a calculation error and
put a slight penalty. Such a partial reward can help
reduce the negative effect of learning from sparse
rewards. Furthermore, in line with (Zheng et al.,
2023), our total reward encompasses both the re-
ward function score and the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951) between
the learned RL policy and the initial policy. For the
remaining details on PPO, we refer to (Luong et al.,
2024).

3 Experiment

3.1 Baseline

Our work is based on the MAmmoTH model (Yue
et al., 2023), which achieves outstanding perfor-
mance in open-source LLM mathematical reason-
ing by Hybrid Instruction Tuning from a mixture
of CoT and PoT for training2. MAmmoTH has two
bases: CodeLlama-7B (Rozière et al., 2023) and
Mistral-7B (Jiang et al., 2023). We compare the
following methods:

PoT/PAL (Gao et al., 2023) uses the LLM to
read natural language problems and generate pro-
grams as intermediate reasoning steps, but offloads
the solution step to a runtime such as a Python in-
terpreter. PAL is a more refined version of PoT,
with each line of code accompanied by a comment.

Hybrid Approach (Yue et al., 2023) first per-
forms a PoT execution. If the program has any
syntax errors, the answer is obtained through CoT.

Rephrase-and-Respond (RAR) (Deng et al.,
2023) enables LLMs to rephrase and expand on
the questions posed by humans, followed by the
responses within a single prompt. This approach
serves as a simple yet effective method for improv-
ing performance with a two-stage generation pro-
cess.

Other Models such as the strong closed-source
model GPT-4 and two 7B open-source models that
integrate natural language and code: ToRA (Gou
et al., 2023b)3 and MathCoder (Wang et al., 2023a).

2OpenMathInstruct (Toshniwal et al., 2024) primarily con-
sists of PoT data, which is not suitable for our experimental
comparisons.

3ToRA perform better on the GSM8K and MATH datasets,
but ToRA has not open-sourced its datasets.
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3.2 Experimental Setting

For reinforcement learning, we set a uniform num-
ber of 10 epochs, with the KL coefficient set to
0.01. The learning rates for CodeLlama-Base and
Mistral are 1e-5 and 2e-6, respectively. For the
SFT stage, the specific parameters are as shown in
Table 1. For the mask coverage function, we set α
to -11.0 and β to 1.76. For fair comparison with
sota, we follow the standard evaluation protocols4.

Model Epoch Batch Size lr
CodeLlama-Base 2 64 2e-5

Mistral-Base 2 64 5e-6

Table 1: Details of training hyperparameters for fine-
tuning the different base models. Batch size = the batch
size per GPU * the number of GPUs * gradient accumu-
lation steps.

3.3 Dataset

Training Dataset We use hybrid data from the
training set of the MAmmoTH model. We first
run the fine-tuned MAmmoTH model to gener-
ate both CoT and PoT answers for them. We
then convert the data into the format of Q, C, and
P and discard any incomplete data. In the end,
we extract 36,000 examples, with 18,000 coming
from GSM8K (Cobbe et al., 2021), 3,000 from
NumGLUE (Mishra et al., 2022), and 15,000 from
MATH. Using training data from self-distillation
can mitigate the effect of performance differences
among models with different bases.

Test Dataset Our experiments test on
eight datasets: GSM8K, NumGLUE, Math,
SimulEq (Koncel-Kedziorski et al., 2016), Deep-
Mind (Saxton et al., 2019), SVAMP (Patel et al.,
2021), MAWPS (Koncel-Kedziorski et al., 2016)
and Asdiv (Miao et al., 2020). These eight datasets
have varying levels of difficulty and length, com-
prehensively reflecting the model’s mathematical
computational capabilities. Meanwhile, GSM8K,
NumGLUE and MATH are in-domain datasets,
whereas others are out-of-domain datasets.

3.4 Main Results

The main results are shown in Table 2. Our method
clearly surpasses other existing methods, achieving
state-of-the-art (SOTA) across multiple datasets.

4https://github.com/TIGER-AI-Lab/MAmmoTH

Most noticeably, our method exhibits a significant
improvement on the NumGLUE dataset, because
the dataset contains a large amount of natural lan-
guage inference, which is unsuitable for direct PoT.
On average, HTL improved 5% performance for
Llama-Base and 4% for Mistral-Base. We will
discuss some detailed findings below.

For the experiments with PoT (4-shot) and PAL
(4-shot), since the current PoT already uses mean-
ingful variable names in the code, adding addi-
tional comments by PAL results in a very slight
improvement. For the experiment with RAR, while
it can reduce some misunderstandings the model
has about the problem, it cannot prevent incorrect
reasoning. For the hybrid approach that switches
to CoT upon errors in code execution, while it has
a 9.8% improvement on NumGLUE over vanilla
PoT, HTL achieves an 8.7% improvement over it
by establishing a closer connection between CoT
and PoT in a unified one-stage generation process.
Compared to proprietary models, GPT-4 still ex-
hibits strong performance, widening the gap with
open-source models. ToRA and MathCoder use
data generated from GSM8K and MATH datasets.
Our performance on these two datasets is not as
good as ToRA’s, but we have excellent generaliz-
ability, showing significant improvements on out-
of-domain datasets. Our method of controlling
information flow exhibits strong transferability be-
cause it directly changes how the model acquires
information, making its effectiveness not limited to
in-domain datasets.

We also conduct experiments for a two-stage
version of HTL and observed no consistent perfor-
mance gain of vanilla one-stage generation over
it. This shows that the performance gain mainly
comes from Focus Attention and Reinforcement
Learning we designed for the one-stage paradigm.

3.5 Ablation Study

We conducted ablation experiments on all datasets
to investigate the contribution of each key compo-
nent or strategy of our proposed method. Ablation
experiments include two aspects: method ablation
and data ablation.

Method Ablation The ablation tests include w/o
Focus Attention and w/o reinforcement learn-
ing. Focus Attention is a powerful enhancement
for HTL, directly improving performance by an
average of 2%. It effectively helps the model focus
on useful information. For reinforcement learn-
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Model Method GSM8K NumGLUE MATH SimulEq DeepMind SVAMP MAWPS ASDiv Avg
GPT-4 PoT 97.0* - 69.7* - - 94.8* 97.7* 92.6* -

MathCoder Mix 67.8* - 30.2* 49.6* - 70.7* - - -
ToRA Tool-integrate 72.6* 46.2 44.6* 48.5 55.9 70.4* 91.3* 78.7* 63.53

CodeLlama
MAmmoTH PoT(4-shot) 58.6 52.5 31.7 37.4 52.0 72.1 91.7 68.2 58.05
MAmmoTH PAL(4-shot) 58.8 53.3 30.9 38.3 52.3 72.0 91.7 70.3 58.45
MAmmoTH PoT 58.9 56.6 32.8 44.1 53.7 70.7 91.9 69.3 59.75
MAmmoTH Hybrid 59.4 66.4 33.4 45.9 59.8 71.4 92.0 69.3 62.20
MAmmoTH RAR 61.2 57.3 32.7 45.3 61.2 72.1 91.6 72.2 61.69

HTL Two-stage 59.6 70.6 32.2 50.5 61.2 70.3 92.3 70.9 63.45
HTL - 61.7 63.0 33.9 48.6 61.1 71.5 92.8 71.6 63.03

+focus 63.9 74.1 34.1 50.9 63.1 72.3 95.0 74.0 65.96
+RL 68.7 66.9 34.5 45.8 61.3 76.1 92.3 72.9 65.81
+focus+RL 65.7 75.1 34.9 50.8 62.8 74.4 94.2 73.1 66.27

Mistral
MAmmoTH PoT 74.5 73.9 37.1 48.2 55.8 80.5 93.9 74.7 67.33
MAmmoTH Hybrid 75.0 73.9 39.7 50.3 61.1 80.6 93.9 74.7 68.65
MAmmoTH RAR 76.3 74.7 37.3 49.3 54.3 80.3 93.7 74.8 67.59

HTL - 74.7 76.3 38.5 51.6 62.9 81.2 93.7 76.2 69.38
+focus 77.9 77.0 39.9 57.8 63.3 82.0 94.5 78.3 71.34
+focus+RL 78.1 78.3 40.6 56.7 64.2 82.4 94.2 78.9 71.67

Table 2: All results are presented as the average of three experimental trials. Results marked as * are copied from
other papers. Unless otherwise specified, the default experimental setting is 0-shot. HTL(-) represents that the
experiment only used Dense Attention and fine-tuning, while “focus” indicates the inclusion of Focus Attention.
The “RL” is reinforcement learning.

Model GSM8K NumGLUE MATH SimulEq DeepMind SVAMP MAWPS ASDiv Avg
CoT

MAmmoTH 44.5 36.0 11.86 14.7 34.2 37.0 75.68 60.78 39.34
HTL 44.1 36.2 12.1 15.03 33.8 36.9 75.72 61.0 39.37

Self Distillation
MAmmoTH(PoT) 58.9 56.6 32.8 44.1 53.7 70.7 91.9 69.3 59.75
HTL(only-PoT) 60.6 59.6 32.7 43.7 52.7 69.7 92.0 71.1 60.26

HTL 61.7 63.0 33.9 48.6 61.1 71.5 92.8 71.6 63.03

Table 3: Based on the performance comparison with Llama-Base, to verify the effectiveness of self-distillation in
our experiments.

ing (RL), it is noteworthy that both Llama-Base
and Mistral-Base models show improvements in
math tasks. Math is currently the most challeng-
ing mathematical dataset, generating solutions that
are often longer than those of other datasets. This
frequently causes the model to repeat generation
until it exceeds the limit. Reinforcement learn-
ing effectively mitigates this issue. But using RL
alone significantly improves performance on simi-
lar in-domain datasets, but it struggles to transfer to
out-of-domain datasets, and its CTE issue remains
unresolved.

Data Ablation We use a self-distillation method
to generate data, a technique that has been proven
to enhance performance (Zhang et al., 2019). To
demonstrate the effectiveness of our approach, we
validate the performance of the HTL model in
terms of CoT, and we fine-tune the model using

only the PoT subset from the HTL dataset. The
results are shown in Table 3. HTL and MAmmoTH
exhibit nearly identical performance in CoT, which
is in line with our expectations. Our enhancements
predominantly arise from the transition from CoT
to PoT, rather than from strengthening the capabili-
ties of CoT. And the data from self-distillation only
provide a marginal improvement.

3.6 Influence of Subsets

By utilizing training subsets with varying sources
and sizes, we can more precisely assess the impact
of each data segment on the model’s performance.
The results show in Table 4. We discover an inter-
esting phenomenon: when we use a specific dataset
for downstream training, the model performs well
on its corresponding test set but weakens its capa-
bilities on other datasets.
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GSM8K NumGLUE MATH SimulEq SVAMP Avg
G 63.3 55.7 32.9 47.4 71.6 54.17
N 59.2 64.6 32.4 46.6 70.7 54.7

G/2+N 61.2 62.3 32.8 47.1 69.4 54.76
G/2+N+M/2 62.0 63.9 33.3 48.9 71.9 55.5

G+N+M 61.7 63.0 33.9 48.6 71.5 55.73
2G+N+2M 63.4 62.7 33.7 49.2 71.8 56.16

Table 4: G: GSM8K, M: MATH, N: NumGLUE. G/2 indicates that we only utilized half of the generated GSM8K
data, with the aim of exploring whether optimal results can be achieved with a lower data volume. 2G indicates
twice the data volume of GSM8K.

GSM8K NumGLUE MATH SimulEq SVAMP
Without Inital Tokens 13.3 7.8 1.1 3.2 17.8

Mask Coverage=1 62.7 72.8 33.6 49.6 71.9
Adaptive Training Strategy 63.9 74.1 34.1 50.9 72.3

Table 5: Influence of different Coverage Function.

When we mix multiple datasets for training,
the model’s improvement in capabilities becomes
more comprehensive. The combination of differ-
ent datasets allows the model to focus more on
the characteristics of mathematical problems rather
than relying on specific patterns present in only one
dataset. At the same time, the addition of GSM8K
and NumGLUE has little impact on the MATH
dataset; simple mathematical problems are difficult
to influence the ability to perform hard reasoning.

Data Volume and Performance Relationship
To explore the appropriate amount of data, we intro-
duced a dataset twice as large for experimentation.
The total size of this dataset is 75k, which includes
36,000 entries from GSM8K, 36,000 entries from
Math, and 3,000 entries from NumGLUE. As more
data is added, the improvement in the model is very
slight because we are not injecting more knowledge
but rather letting it tend to learn a paradigm.

3.7 The Effort of Mask Coverage Function
The phrase “Without Initial Tokens” indicates that
we block all tokens from Q, not preserving the first
four, which significantly decreases model perfor-
mance, almost rendering it unable to reason cor-
rectly. In the second experiment, we set the mask
coverage to always be 1, not adapting the model
during the initial training phase, nor reverting the at-
tention mechanism to a causal mask during the out-
put phase. In this experiment, we find that its loss
convergence rate is significantly slower than the
Adaptive Training Strategy. The adaptive training
strategy performs better across all datasets, serving

Model Method Math23k
CodeLlama

MAmmoTH CoT 14.1
MAmmoTH PoT 34.7

HTL - 33.6
+focus 30.6
+focus+RL 31.8
Mistral

MAmmoTH CoT 28.4
MAmmoTH PoT 36.4

HTL - 37.9
+focus 40.2
+focus+RL 40.4

Table 6: HTL in math23k.

as a transitional phase to balance the Focus At-
tention training mechanism and the inconsistency
during inference. We provide the model with a
buffer, allowing it to gradually learn local attention,
and after training, we restore it to its autoregressive
generation mode. The quadratic function accel-
erates its speed gradually both during ascent and
descent and at the peak, the derivative decreases,
resulting in a longer duration of focused attention
training.

3.8 Influence of Other Language

We use a Chinese math dataset, math23k (Zhao
et al., 2020), to test the advantages of HTL in other
languages. The results shows in Table 6 .We ob-
served that the base model’s capability in Chinese
CoT constrains the effectiveness of HTL, as HTL
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relies on effective CoT to enhance PoT. Specifically,
when the base model exhibits weak performance in
Chinese CoT (e.g., CodeLlama CoT achieves only
14.1% accuracy), the HTL-family methods perform
worse than PoT, potentially because the generated
Chinese CoT is ineffective so that it rarely helps
but rather undermines PoT. Conversely, when the
base model has reasonable Chinese CoT capabil-
ity (e.g., Mistral CoT achieves 28.4% accuracy),
the HTL-family methods show better performance
than PoT.

4 Analysis

4.1 Error Analysis
To explore how HTL affects model performance
and analyze the reasons for errors in various cat-
egories, we have divided the errors into two cat-
egories: code execution errors and code reason-
ing errors. Figure 4 shows the proportions of two
types of errors across different datasets. For sim-
pler datasets like GSM8K and SVAMP, there are
rarely any code execution errors; most are logic
reasoning errors, which HTL reduces. For the
more challenging dataset like MATH, HTL not
only demonstrates stronger logical capabilities but
also reduces code execution errors. In HTL, the
CTE for CodeLlama-Base and Mistral-Base has
been significantly reduced, with CodeLlama-Base
decreasing from 8.33% to 3.96% and Mistral-Base
from 6.97% to 3.55%. However, the CTE has not
been fully resolved because our data only correlates
CoT and PoT based on correctness, not process cor-
respondence. In addition to reducing CTE, part of
the performance improvement in HTL comes from
correctly solving problems that both CoT and PoT
got wrong originally.

1.5
0.3

21.2

1.4
0.4

19.3

GSM8K SVAMP Math

Baseline
HTL

40.4

28.2

58.1

33.5

25.2

56.3

GSM8K SVAMP Math

Code Execution Error Code Reasoning Error

Figure 4: Types of errors and their proportions.

4.2 The Role of Reinforcement Learning
In experiments, the model enhanced with reinforce-
ment learning shows minimal improvement in av-

erage accuracy (only a 0.3% increase). However,
for the MATH dataset, reinforcement learning con-
sistently yields improvements. This improvement
stems from reinforcement learning’s ability to ad-
dress the issue of repetitive generation during the
CoT in LLMs. When using natural language rea-
soning, LLMs tend to enumerate answers, lead-
ing to repetitive loops until reaching the maximum
length limitation. Supervised fine-tuning struggles
to suppress this phenomenon, whereas reinforce-
ment learning can effectively penalize it when it
occurs.

5 Discussion

Do Larger Models Have Issues with PoT?
(Gao et al., 2023) achieved good results in testing
on LaMDA-137B and PaLM-540B (Rohan Anil,
2023) by using text to guide code. (Wang et al.,
2023a) also employed the method of combining
natural language with code, which proved effec-
tive on a 70 billion parameter open-source model
as well. We conduct evaluations on MAmmoTH-
Coder-13B and MAmmoTH-Coder-34B, calculat-
ing the proportion of CTE. On the five datasets,
MAmmoTH-Coder-13B has an average error rate
of 8.2%, while MAmmoTH-Coder-34B has an er-
ror rate of 8.7%. CTE does not decrease with the
increase in model size. In the future, the amount
of training text data will still far exceed that of
code data lakes, making it difficult to solve CTE by
merely increasing the model size and data volume.

The PoTential of Focused Attention in Other
Tasks The current autoregressive inference has
limitations in that it cannot obtain the solution to a
problem before generating the first token (Gloeckle
et al., 2024). CoT can implicitly increase the
model’s depth, allowing it more extended think-
ing time to arrive at accurate answers (Feng et al.,
2023). Extending the model’s thinking time to get
the right answer before generating the first valid
token will be crucial (Goyal et al., 2023). For rea-
soning tasks, Focus Attention can gather informa-
tion and allow large models to concentrate on some
intermediate processes (such as setting special to-
kens) to extend thinking time. On the other hand,
Focus Attention can concentrate on the reasoning
part of all reasoning tasks while ignoring the ques-
tion (Q), making the reasoning process more reli-
able. In several logical/symbolic reasoning tasks,
CoT does not significantly outperform directly gen-
erating answers (Bao et al., 2024). Focus Attention
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may play a crucial role in these cases.

6 Related Work

Current methods primarily rely on the CoT to ad-
dress mathematical problems, generating reason-
ing answers in a step-by-step manner (Nye et al.,
2021; Imani et al., 2023; Miao et al., 2023; Penedo
et al., 2023). The focus of recent research cen-
ters on data engineering and prompt design. In
the realm of data engineering, the efforts aim to
enhance the quality and increase the volume (Luo
et al., 2023) of CoT data. However, another stream
of research identifies several computational chal-
lenges associated with exclusively using the CoT
approach. In response, (Chen et al., 2023) intro-
duces the PoT, a method that employs Python pro-
grams to achieve more accurate results. (Yue et al.,
2023) attempts to merge CoT and PoT data in their
dataset, resulting in significant improvements. Sim-
ilarly, (Gao et al., 2023) seeks to enhance PoT with
CoT by weaving CoT snippets into code lines, em-
ploying few-shot prompting to guide the model.
ToRA (Gou et al., 2023b) uses imitation learning
to allow natural language to correct errors in code.
MathCoder (Wang et al., 2023a) improves accuracy
by closely integrating natural language with code,
distilling large amounts of data from GPT-4. Open-
mathInstruct (Toshniwal et al., 2024) employs Mis-
tral to explore various problem-solving approaches
for each GSM8K and MATH problem, providing a
1.8M open-source dataset to the community.

7 Conclusion

In our paper, we identify CTE in mathematical
problems and explore how to address the gap be-
tween large models’ text and code capabilities
through text and code interaction. We propose
HTL, a method that can more closely integrate CoT
and PoT to achieve more accurate reasoning and
avoid calculation errors. Our experiment shows
that without introducing additional information,
our method achieves excellent results merely by
controlling the flow of information.

Limitations

Lack of Equipment Due to GPU limitations, our
experiments are only conducted on the 7B model,
and we did not attempt larger models like the 34B
or 70B. Although we provide theoretical feasibility,
there is a lack of practical experimental support.

Data Relevance The CoT and PoT data con-
structed through automated methods are only asso-
ciated based on correctness. We still lack human
evaluation to determine whether their reasoning
processes correspond accurately. This is evident
from our experimental results: there is a significant
improvement for simpler datasets like GSM8K, as
the problem-solving approaches are generally sim-
ilar. However, for more challenging datasets that
may have multiple different solutions, the relevance
might be lower.

Exploration of Focus Attention Regarding Fo-
cus Attention, we have not yet determined the spe-
cific reason for the need for a gradual increase in
coverage to adapt to inference. If we extend this
approach to other domains, such as incorporating
it into the pre-training stage, it enables the model
to better learn step-by-step generation, PoTentially
leading to improved results.

Experimental Limitations with Closed-source
Models We conduct experiments only on open-
source large models. Due to the cost of running the
models in the API, we do not attempt to explore
whether this paradigm can enhance the inference
capabilities of models like GPT-4 by constructing
similar prompts. However, in our experiments,
merely adjusting the prompts does not result in
a significant performance improvement. Further-
more, because the training data for GPT-4 is un-
known, its results are challenging to interpret.
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