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Abstract

Reinforcement Learning from Human Feed-
back significantly enhances Natural Language
Processing by aligning language models with
human expectations. A critical factor in this
alignment is the strength of reward models used
during training. This study explores whether
stronger reward models invariably lead to better
language models. In this paper, through exper-
iments on relevance, factuality, and complete-
ness tasks using the QA-FEEDBACK dataset
and reward models based on Longformer, we
uncover a surprising paradox: language mod-
els trained with moderately accurate reward
models outperform those guided by highly ac-
curate ones. This challenges the widely held
belief that stronger reward models always lead
to better language models, and opens up new
avenues for future research into the key factors
driving model performance and how to choose
the most suitable reward models.

1 Introduction

Language models (LMs) have made remarkable
progress, achieving close-to-human capabilities in
a wide range of tasks (Shen et al., 2017; Radford
et al., 2019; Brown et al., 2020; Su et al., 2022;
Achiam et al., 2023; Yuan et al., 2024). While tradi-
tional fine-tuning has been effective, it often suffers
from exposure bias, where models are trained on
ground truth data rather than their own predictions,
leading to inconsistencies during generation (Shen
et al., 2019; Wang and Sennrich, 2020). Addition-
ally, fine-tuning lacks the ability to optimize for
sequence-level rewards, limiting its effectiveness in
capturing complex, human-like preferences (Zhu
et al., 2024). RLHF addresses these limitations
by incorporating feedback from humans, allow-
ing models to generate more contextually relevant
and aligned outputs (Stiennon et al., 2020; Ouyang
et al., 2022; Su et al., 2024; Madaan et al., 2024).
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It is commonly assumed that higher accuracy
in reward models enhances language model per-
formance because these models provide precise
feedback during training (Chaudhari et al., 2024).
This perspective suggests that accurate feedback
directly improves the effectiveness of LMs, espe-
cially in complex tasks like machine translation
and question answering (Bai et al., 2022).

In this paper, we conducted extensive exper-
iments using the QA-FEEDBACK dataset (Wu
et al.,, 2024). Reward models based on Long-
former (Beltagy et al., 2020) were evaluated for
their binary classification accuracy in predicting
task relevance, factuality, and completeness. To
ensure fair evaluation, the performance of LMs
trained with these reward models was assessed us-
ing independent high-accuracy models tailored to
each task. Surprisingly, our findings reveal a para-
dox: LMs achieve their best performance not with
the most accurate reward models, but with those of
moderate accuracy (Casper et al., 2023), challeng-
ing the prevailing assumption that higher reward
model accuracy directly correlates with improved
outcomes. This result raises important questions
about the relationship between reward model ac-
curacy and language model performance in RLHF,
warranting further investigation.

The main contributions of this study include:

* Demonstrating that moderate reward model
accuracy and balanced training lead to better
language model performance, contradicting
the assumption that higher accuracy is invari-
ably beneficial.

* Providing insights into reward dynamics,
revealing that moderately accurate reward
models offer more task-appropriate rewards,
which are intuitively more beneficial for train-
ing LMs than those provided by the most ac-
curate models.
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* Analyzing KL divergence trends, showing that
moderately accurate reward models facilitate
a balanced and stable training process, pro-
moting better generalization and challenging
the notion that higher accuracy alone ensures
optimal training outcomes.

2 Motivation and Problem Settings

Motivation. Findings indicate that the strength of
reward models in RLHF does not consistently cor-
relate with improved language model performance,
challenging the assumption that stronger reward
models always lead to better outcomes (Casper
et al., 2023). Understanding the dynamic rela-
tionship between reward model accuracy and lan-
guage model performance is essential for optimiz-
ing RLHF in complex NLP tasks (Ouyang et al.,
2022). This study posits that there exists an op-
timal range of reward model accuracy that max-
imizes language model performance (Wu et al.,
2024). Therefore, the primary aim of this research
is to identify this optimal range and examine its
implications for various NLP applications.

Problem Settings. This study investigates the ef-
fect of reward model strength on language model
performance in RLHF, focusing on tasks that eval-
uate the factuality, relevance, and completeness
of generated text (Wu et al., 2024). Specifically,
reward model strength is defined by binary classifi-
cation accuracy on test sets (Wu et al., 2024), and
language model performance is measured using
high-accuracy, independent reward models.

Formally, for a language model trained with
RLHEF, this study analyzes how the reward model’s
classification accuracy (Srm) and the number of
training steps (7) affect language model perfor-
mance (Pry) (Qin et al., 2024). This relationship
is mathematically represented by:

Pim = f(Srm, 7) (D

The objective is to determine the optimal condi-
tions that maximize language model performance
across various tasks, providing insights for the de-
velopment of more effective RLHF strategies in
NLP (Li et al., 2023).

3 Experiment and Results

3.1 Basic Experimental Setup

Models. We examine three models from the
T5 language model family (Raffel et al., 2020;

Kaplan et al., 2020): T5-small', T5-base?, and
T5-large®>. Each model underwent supervised
fine-tuning (SFT). Reward models were based
on Longformer-base-4096, suitable for processing
long sequences, necessary for tasks requiring exten-
sive context (Beltagy et al., 2020). These models
were trained for tasks involving factuality, rele-
vance, and completeness, with training steps and
accuracy ranges summarized in Table 1.

Task Type Steps Range  Accuracies Range
Factuality 2-1256 0.64-0.77
Relevance 2-2852 0.49-0.69
Completeness 30-5730 0.44-0.70

Table 1: Training steps and accuracy ranges for reward mod-
els by task type.

Datasets. The QA-FEEDBACK dataset (Wu
et al., 2024), derived from the ASQA dataset (Stel-
makh et al., 2022), is used for this study. This
dataset focuses on generating long-form answers
to ambiguous factual questions in an open-domain
setting. The data is split into 3,853/500/948 for
training, validation, and testing, requiring the gen-
eration of detailed answers from multiple knowl-
edge passages (Min et al., 2020).

Hyperparameter Settings. We follow the hyper-
parameter settings recommended by Wu et al. (Wu
et al., 2024), whose configuration has been specifi-
cally designed and empirically validated for RLHF
tasks involving QA-feedback. These settings are
selected to ensure an optimal trade-off between
model performance and training stability, based on
prior experimental findings. For a detailed descrip-
tion of all hyperparameters used in the experiments,
please refer to Appendix D.

Training and Evaluation Paradigm. Following
common practice (Schulman et al., 2017), we begin
by fine-tuning LMs, followed by applying RLHF
using Proximal Policy Optimization (PPO). In ad-
dition, a separate instance of the T5-base model
was specifically initialized as the value model for
the PPO algorithm. Finally, we evaluate the trained
LMs using three independent, highly accurate re-
ward models, which assess various aspects of the
LMs’ outputs, including relevance, factuality, and

1ht’cps: //huggingface.co/t5-small
2ht’cps: //huggingface.co/t5-base
Shttps://huggingface.co/t5-1arge
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completeness. A summary of the reward models’
performance is provided in Table 2.

Reward Model Accuracy (%) F1 Score (%)
R¢1 (Relevance) 69.6 68.5
R¢2 (Factuality) 77.8 67.5
R¢3 (Completeness) 70.9 N/A

Table 2: Summary of independent high-accuracy reward
models used for evaluation.

A common pitfall in performing RLHF is reward
gaming, where LMs maximize rewards in unin-
tended ways, such as finding shortcuts in genera-
tion that attain high reward scores from the reward
models, yet misalign with human preferences (Pang
et al., 2022). To mitigate this, we following (Wu
et al., 2024) and set a KL threshold. When the
divergence between the current policy and the ref-
erence policy exceeded this threshold, the training
process was interrupted. This approach ensured
that the model did not deviate excessively from the
reference policy, effectively reducing the likelihood
of reward manipulation.

3.2 Are High-Accuracy and Deeply Trained
Reward Models Always the Best?

Setup. Building on the Basic Experimental
Setup, reward models for relevance, factuality, and
completeness from the QA-FEEDBACK dataset
were used in PPO training. Performance was as-
sessed at regular intervals, and top-performing in-
stances were identified and visualized in three-
dimensional plots.

Results. Figures 1 to 3 show that optimal lan-
guage model performance is achieved using reward
models with moderate accuracy and an appropriate
number of trained steps. For the relevance task, the
T5-small model performed best with moderately
accurate reward models, effectively mitigating the
risk of overfitting. Similarly, the results for fac-
tuality emphasized the importance of maintaining
balanced reward model accuracy to prevent overfit-
ting and ensure reliable outcomes. These findings
suggest that overly accurate reward models can
result in overfitting, which impairs the generaliza-
tion ability of LMs. These trends were consistent
across the T5-base and T5-large models, further
supporting the conclusion that moderate accuracy
in reward models strikes the best balance between
training stability and performance. Detailed results
for T5-base and T5-large are available in the Ap-

pendix A.
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Figure 1: 3D surface plot evaluating relevance ratios for T5-
small. Optimal performance was achieved with reward models
having moderate accuracy.
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Figure 2: 3D surface plot evaluating factuality ratios for T5-
small. The best performance was seen with reward models of

moderate accuracy.
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Figure 3: 3D surface plot evaluating completeness rewards
for TS-small. Intermediate reward model strength yielded the
best language model performance.

3.3 How Do Best and Most Accurate Reward
Models Differ?

Setup. This evaluation utilized three models: T5-
small, T5-base, and T5-large, to compare the
best-performing and most accurate reward mod-
els across relevance, factuality, and completeness
tasks. The analysis focused on understanding the
differences in reward behavior during training for
each model. While the primary analysis in this sec-
tion is based on the T5-small model, similar trends
were observed with the T5-base and T5-large mod-
els, whose results are provided in the appendix for
reference.
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Results. Figures 4, 5, and 6 illustrate the dis-
tinct strategies of the best-performing reward mod-
els compared to the most accurate models using
the T5-small model. For the relevance task, the
best-performing reward model provided higher and
more variable rewards (Figure 4), indicating an
aggressive approach that likely stimulated the gen-
eration of more relevant outputs. In the factuality
task, this model maintained higher mean rewards
with less variability (Figure 5), promoting factual
accuracy. Conversely, for the completeness task, it
employed a conservative strategy with lower aver-
age rewards but greater variability (Figure 6).
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Figure 4: Reward analysis for relevance task (T5-small
model): training steps vs. rewards (left), mean and variance
of rewards (right).
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Figure 5: Reward analysis for factuality task (TS5-small
model): training steps vs. rewards (left), mean and variance
of rewards (right).

Best-Performing RM
Most Accurate RM

Mean Value

Raw Reward

0.0100

g
£ o075

2 00050

0.0025
o 500 1000 1500 2000 2500 0.0000

Training Steps Best-Performing RM Most Accurate RM

Figure 6: Reward analysis for completeness task (T5-small
model): training steps vs. rewards (left), mean and variance
of rewards (right).

Analysis. Moderately accurate best-performing
reward models typically align rewards with task re-
quirements. In both relevance and factuality tasks,
these models provide higher and more varied re-

wards, thus encouraging the generation of more
relevant and accurate outputs. This variability al-
lows LMs to explore a broader range of responses,
improving the quality of the generated text. Con-
versely, in completeness tasks, a conservative strat-
egy with lower average rewards but greater vari-
ability helps ensure thorough and comprehensive
text evaluation. The trends observed in T5-small
models are consistent with those seen in T5-base
and T5-large models, further supporting the conclu-
sion that moderate accuracy in reward models ef-
fectively balances overfitting and underfitting. De-
tailed results for T5-base and T5-large can be found
in the Appendix B.

3.4 How Do Best and Most Accurate Rewards
Impact Models?

Setup. This section evaluates the impact of re-
ward models on the training dynamics of T5-small,
T5-base, and T5-large models in relevance, factu-
ality, and completeness tasks, with a focus on KL
divergence trends to assess stability and adaptabil-
ity. While the results presented here focus on the
T5-small model, similar trends were observed for
the T5-base and T5-large models, whose results are
provided in the appendix.

KL Divergence and Its Role in RLHF KL diver-
gence (Kullback-Leibler divergence) is a measure
of how one probability distribution P diverges from
a second, expected probability distribution @ (Kull-
back and Leibler, 1951). It is commonly used in
reinforcement learning to constrain the difference
between the current policy and a reference policy
during training. Mathematically, KL divergence is
defined as:

D (Pl Q) =X Pios () @
: Q)

In the context of RLHF, KL divergence serves as

a regularization term to prevent the trained policy

from deviating excessively from the reference pol-

icy. This constraint helps to stabilize the training

process by reducing the chance of reward hacking

or reward gaming, where the model could exploit

the reward system without truly improving perfor-
mance (Pang et al., 2022).

Results. Comparing KL divergence trends re-
vealed significant differences in how LMs aligned
with the training data. For the relevance task, the
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best reward model resulted in consistently lower
KL divergence and variance, indicating stable align-
ment (Figure 7). In the factuality task, the best re-
ward model exhibited higher mean KL divergence
but lower variance, suggesting a consistent yet var-
ied alignment process (Figure 8). For the complete-
ness task, the best reward model showed higher
mean and variance in KL divergence, indicating a
flexible approach suitable for evaluating complex
texts (Figure 9).
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Figure 7: Relevance task KL divergence (T5-small model):
training steps vs. KL divergence (left), mean and variance of
rewards (right).
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Figure 8: Factuality task KL divergence (T5-small model):
training steps vs. KL divergence (left), mean and variance of
rewards (right).
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Figure 9: Completeness task KL divergence (T5-small
model): training steps vs. KL divergence (left), mean and
variance of rewards (right).

Analysis. Best-performing reward models, which
are typically of moderate accuracy, create a bal-
anced training environment that facilitates both sta-
bility and adaptability. In relevance and factuality
tasks, these models encourage stable learning, en-
hancing the relevance and accuracy of outputs. For
the completeness task, the flexibility in handling

complex texts is demonstrated by higher variance
in KL divergence. The observed trends in T5-small
models were consistent with those seen in T5-base
and T5-large models, further validating the conclu-
sion that moderate accuracy in reward models ef-
fectively balances overfitting and underfitting. De-
tailed results for T5-base and T5-large models can
be found in the Appendix C.

4 Conclusion and Future Work

This study demonstrates that LMs trained with
moderately accurate reward models in RLHF
achieve optimal performance, challenging the con-
ventional belief that higher accuracy is always more
beneficial. The results show that moderately accu-
rate reward models offer more task-aligned feed-
back and foster a balanced, stable training process,
promoting better generalization. This research
highlights the limitations of relying exclusively on
highly accurate reward models, as excessive focus
on accuracy may lead to suboptimal outcomes. In
future work, it will be crucial to further explore the
potential overfitting of reward models, particularly
in their ability to generalize to out-of-distribution
(OOD) tasks. Techniques such as regularization,
data augmentation, and explicit OOD evaluation
will be key areas of investigation to enhance the ro-
bustness of reward models across diverse scenarios
and ensure their effectiveness in guiding LMs in
broader, more complex NLP tasks.

Limitations

Dataset Constraints. The conclusions are drawn
from the QA-FEEDBACK dataset (Wu et al., 2024),
which is specialized in generating long-form re-
sponses to factual inquiries. This focus may limit
the generalizability of the results, necessitating val-
idation across various datasets, including those per-
taining to conversational and question-answering
contexts.

Model Scope. The evaluation utilized T5 models
of different scales for initial validation (Raffel et al.,
2020). Future investigations should incorporate
more complex models, such as Llama2 (Touvron
et al., 2023), to gain deeper insights and verify the
robustness of the proposed methodologies across a
broader range of model architectures.

Reward Model Variations. This study did not
explore the impact of different reward model sizes
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and architectures on RLHF performance. The re-
ward models used were based on a single archi-
tecture, which may limit the applicability of the
findings. Future research should systematically
investigate how variations in reward model size,
capacity, and design affect the learning process,
generalization, and overall RLHF performance, par-
ticularly in diverse NLP tasks. Understanding the
influence of these factors will be crucial for devel-
oping more robust and scalable reward models that
can generalize across a wider range of applications.
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Figure 10: 3D surface plot evaluating factuality ratios for T5-
base. Optimal performance was achieved with reward models

having moderate accuracy.
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Figure 11: 3D surface plot evaluating factuality ratios for
T5-large. The best performance was seen with reward models
of moderate accuracy.
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Figure 12: 3D surface plot evaluating relevance ratios for T5-
base. Optimal performance was achieved with reward models
having moderate accuracy.

2986


https://arxiv.org/abs/2403.06563

RM Accuracy
LM Performance
Raw Reward
Mean Value

Variance

[ . . #  Most Accurate RM
08 0675 250 Ly J © Best-performing RM
/ s C. .
0.650 ] it -
o7 .. S . X
Ll 0s
062 O
Los B . "
L) uré -F i
o Y 3 Most Accurate R st erorming Rt
Los ] o Y
CE
0.575 Ch 0.10
Lo N
Los 008
0550 £ oos
03 o3 0.04
0s2s 002
0.2 o 250 500 750 1000 1250 1500 1750 2000 0.00
’ ot Accurte A est. perorming
o> Training Steme Most Accurte A est perorming ot
0500

500 1000 1500 2000 2500
RM Trained Steps

Figure 17: Reward analysis for factuality task (T5-base
model): training steps vs. rewards (left), mean and variance

Figure 13: 3D surface plot evaluating relevance ratios for of rewards (right).

T5-large. Optimal performance was achieved with reward
models having moderate accuracy.
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Figure 18: Reward analysis for completeness task (T5-base
model): training steps vs. rewards (left), mean and variance
of rewards (right).

Figure 14: 3D surface plot evaluating completeness rewards
for T5-base. Intermediate reward model strength yielded the
best language model performance.
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Figure 15: 3D surface plot evaluating completeness rewards
for T5-large. Intermediate reward model strength yielded the
best language model performance.

Figure 19: Reward analysis for relevance task (T5-large
model): training steps vs. rewards (left), mean and variance
of rewards (right).
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of rewards (right). of rewards (right).
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Figure 23: Factuality task KL divergence (T5-base model):

training steps vs. KL divergence (left), mean and variance
(right).
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Reward Model Setting

Relevance Model (Positive Reward) 0.3
Relevance Model (Negative Reward) -0.3
Factuality Model (Positive Reward) 0.5
Factuality Model (Negative Reward) -0.5
Completeness Model (Mean) -0.4468
Completeness Model (Std) 8.3012
Completeness Model (Bias) 0.0
Completeness Model (Scale) 0.3

Table 4: Reward Model Hyperparameters

Environment Parameter Setting
Maximum Input Length 1024
Maximum Generated Length 200
Train Samples per Input 4

Table 5: Environment Configuration Hyperparameters

PPO Parameter Setting
KL Coefficient 0.3
Lambda 0.95
Gamma 1.0
Policy Gradient Coef. 1.0
Value Function Coef. 1.0
Clip Range (Policy) 0.2
Clip Range (Value) 0.2
Whiten Rewards True

Table 6: PPO Training Hyperparameters

Training Parameter Setting
Total Episodes 80,000
Learning Rate 0.00001
Warmup Steps 100
PPO Epochs per Rollout 4
KL Threshold 20.0
Clip Gradients False
Max Gradient Norm 0.5
Random Seed 42

Table 7: Training Procedure Hyperparameters
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