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Abstract

As Large Language Models (LLMs) continue
to exhibit remarkable performance in natural
language understanding tasks, there is a crucial
need to measure their ability for human-like
multi-step logical reasoning. Existing logical
reasoning evaluation benchmarks often focus
primarily on simplistic single-step or multi-
step reasoning with a limited set of inference
rules. Furthermore, the lack of datasets for eval-
uating non-monotonic reasoning represents a
crucial gap since it aligns more closely with
human-like reasoning. To address these limi-
tations, we propose Multi-LogiEval, a compre-
hensive evaluation dataset encompassing multi-
step logical reasoning with various inference
rules and depths. Multi-LogiEval covers three
logic types — propositional, first-order, and
non-monotonic consisting of more than 30 in-
ference rules and more than 60 of their combi-
nations with various depths. Leveraging this
dataset, we conduct evaluations on a range of
LLMs including GPT-4, ChatGPT, Gemini-Pro,
Yi, Orca, and Mistral, employing a zero-shot
chain-of-thought. Experimental results show
that there is a significant drop in the perfor-
mance of LLMs as the reasoning steps/depth
increases (average accuracy of ~ 68% at depth-
1 to ~ 43% at depth-5). We further conduct a
thorough investigation of reasoning chains gen-
erated by LLMs which reveals several impor-
tant findings. We believe that Multi-LogiEval
facilitates future research for evaluating and en-
hancing the logical reasoning ability of LLMs!.

1 Introduction

The ability to perform multi-step reasoning — draw-
ing conclusions from provided multiple premises
— is a hallmark of human intelligence. Recently,
Large Language Models (LLMs) such as GPT-4,
ChatGPT, Gemini, and Mistral (Jiang et al., 2023)

'Data is available at https://github.com/Mihir3009/
Multi-LogiEval
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Figure 1: Performance (avg. accuracy across each depth
for PL & FOL) of various LLMs on Multi-LogiEval.

have achieved impressive performance on a vari-
ety of language tasks that were previously thought
to be exclusive to humans (OpenAl, 2023; Brown
et al., 2020; Zhao et al., 2023). However, the abil-
ity of these LLMs to perform multi-step logical
reasoning over natural language remains under-
explored, despite its various real-world applications
(Khashabi, 2019; Beygi et al., 2022). Although
several datasets have been proposed (Luo et al.,
2023) to evaluate the logical reasoning capabili-
ties of LLMs, these datasets are limited in their
scope by (1) evaluating simplistic single-step logi-
cal reasoning such as ProntoQA (Saparov and He,
2023) and (2) evaluating multi-step logical reason-
ing, but only on a single type of logic and covering
only a few logical inference rules as done in FO-
LIO (Han et al., 2022) and ProofWriter (Tafjord
et al., 2021). Furthermore, there are only a few
benchmarks, such as LogicBench (Parmar et al.,
2024) and BoardgameQA (Kazemi et al., 2023),
that cover reasoning such as non-monotonic which
is closer to human-like reasoning. Motivated by
this, our work aims to bridge these gaps by creating
a more comprehensive and logically complex eval-
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uation dataset by incorporating varying numbers of
reasoning depths (i.e., multi-steps) to reach conclu-
sions. In addition, past attempts have been made to
evaluate multi-hop reasoning of language models
(Mavi et al., 2022). In contrast, our work system-
atically evaluates multi-hop logical reasoning over
various inference rules and their combinations.

To this end, we propose Multi-LogiEval, a
systematically created Question-Answering (QA)
dataset covering multi-step logical reasoning
across three different logic types: Propositional
Logic (PL), First-Order Logic (FOL), and Non-
Monotonic (NM) reasoning. Our objective is to
present a preliminary analysis of the LLMs’ ability
to perform multi-step logical reasoning and demon-
strate their failures even when performing simple
reasoning. We believe that, regardless of whether
such reasoning is available in some existing natural
data (e.g., examinations), LLMs should do proper
logical reasoning. Thus, we systematically com-
piled data using various inference rules and vary-
ing numbers of reasoning depths. In particular, our
proposed dataset provides ~ 1.6k high-quality in-
stances that cover 33 inference rules and reasoning
patterns and more than 60 complex combinations
of these inference rules with a different number of
reasoning steps (1 ~ 5). Our choice of inference
rules is further explained in section 3.1. To evaluate
LLMs, we formulate a binary classification task in
Multi-LogiEval where the context represents a natu-
ral language story consisting of logical statements,
and the models have to determine whether the story
logically entails a conclusion given in the question.
Examples of instances are presented in Table 4. To
develop Multi-LogiEval, we propose a two-stage
procedure: (i) creating meaningful combinations
of inference rules to generate data instances with
different reasoning depths, and (ii) prompt LLMs
to generate <context, question, answer> triplets
consisting of different ‘ontologies’ (i.e., a collec-
tion of concepts such as car, person, and animals).
In the end, we perform human validation of each
generated instance to ensure the quality.

We evaluate a range of LLMs, including GPT-4,
ChatGPT, Gemini-Pro, Yi-34B (Young et al., 2024),
Orca-2-13B (Mitra et al., 2023), and Mistral-7B
(Wei et al., 2021) on Multi-LogiEval using Zero-
shot Chain-of-Thought (Zero-shot-CoT) prompting
(Wei et al., 2022). The zero-shot CoT approach
allows us to determine LLM’s ability to do logi-
cal reasoning based on parametric knowledge (ac-
quired during pre-training) since we can not ex-

| Logic Covered | Multi-Step

| PL | FOL | NM | Logical Reasoning

Dataset

LogicNLI X
ProofWriter v
FOLIO X
SimpleLogic v
ProntoQA X
RuleTaker X
LogicBench v
v

SleaAaxaas
NN X X X X X X
SN R I N NN

Multi-LogiEval ‘

Table 1: Comparison of Multi-LogiEval with existing
datasets and benchmarks

pect in-context examples of inference rules for var-
ious reasoning depths will always be available in
prompts. We measure the accuracy of LLMs’ pre-
dictions on the binary classification task. As illus-
trated in Figure 1, our experimental results indi-
cate that LLMs performance decreases as the depth
of reasoning increases, indicating mistakes in the
initial reasoning step propagate further in the rea-
soning chain. The rationale behind the choice of
binary classification task is that it provides system-
atic standard metric-based evaluation (i.e., direct
comparison of LLMs’ performance in terms of ac-
curacy), which could be more challenging with
open-ended question-answer formats. However,
we also provide a manual and thorough analysis of
the reasoning chain generated by LLMs revealing
several findings such as the importance of contex-
tual information, the lack of correlation between
longer reasoning chains and better outcomes, and
the lower performance of larger-scale open-source
LLMs compared to smaller ones.

2 Related Work

Past attempts have been made to assess the logical
reasoning ability of language models. For instance,
LogiQA (Liu et al., 2021) and ReClor (Yu et al.,
2020) evaluate diverse forms of logical reasoning
by compiling multi-choice questions from standard-
ized examinations, including multi-step reasoning.
However, in contrast to our Multi-LogiEval, these
datasets involve mixed forms of reasoning and do
not focus on assessing logical reasoning indepen-
dently. Past attempts have been made to create
datasets focusing on logical reasoning(Luo et al.,
2023). In terms of task formulation, our proposed
dataset is similar to ProofWriter (Tafjord et al.,
2021), RuleTaker (Clark et al., 2021), FOLIO (Han
et al., 2022), ProntoQA (Saparov and He, 2023),
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Rule ‘ Propositional Logic ‘ First-order Logic

MP | ((p—=a)Ap)tq \ (Vz(p(z) = q(x)) Ap(a)) - q(a)

MT | (p=a)A—q) - —p \ (Va(p(z) = q(x)) A =q(a)) - —p(a)

HS | ((p=a))ANl@—=r)F(p—r) \ (Va((p(x) = q(x)) A (g(x) = r(2))) F (pla) = r(a))

DS | ((pvgA-p) g | (Va(p(z) V q(z)) A —pla)) - q(a)

CD | (p=gA(r—=s)ApVr)F(gVvs) | (VI(( () = q(@)) A (r(z) = s(2))) A (pla) Vr(a))) F (g(a) V s(a))
DD | ((p—=q)A(r—s)A(=qV=s) = (=pV—r) | (¥ ) = () A (r(z) = s(2))) A (=q(a) V ~s(a)) F (=p(a) vV —r(a))
BD | ((p—=a)A(r—s)A(pV—s)F(qv-r) | (VI(( () = q(@)) A (r(@) = s(2))) A (pla) V ~s(a))) F (q(a) V —r(a))
CT | (pVaq) - (qVp) \ Va(p(z) V q(x)) 4 Va(q(x) V p(x))
DMT ‘ =(pAq) - -pV g ‘ =Va(p(z) A q(x)) 4+ Jz(=p(z) V —q(z))

co | (b=@A—=r)F(p—(gnr) \ va((p(z) = q(x)) A (p(z) = r(2))) F Va(p(z) = (g(z) Ar(z)))

M | (p—=(g—=r)H((prg =) \ Va(p(z) = (¢(x) = r())) 4= Va((p(z) A q(x)) — ()

MI | (p—q) + (-pVvq) \

EG | \ p(a) - 3z(p(z))

ul | \ Va(p(x)) - pla)

Table 2: Inference rules that establish the relationship between premises and their corresponding conclusions. A
subset of these inference rules is adapted from Parmar et al. (2024). MP: Modus Ponens, MT: Modus Tollens, HS:
Hypothetical Syllogism, DS: Disjunctive Syllogism, CD: Constructive Dilemma, DD: Destructive Dilemma, BD:
Bidirectional Dilemma, CT: Commutation, DMT: De Morgan’s Theorem, CO: Composition, IM: Importation, MI:
Material Implication, EG: Existential Generalization, UI: Universal Instantiation

and LogicBench (Parmar et al., 2024) which are
QA datasets designed to evaluate logical reasoning
ability independently. ProofWriter provides multi-
hop proofs for each example, RuleTaker mainly
covers the simple implication rules such as modus
ponens, while FOLIO gives diverse and complex
logical expressions and covers multi-step reason-
ing. However, it is only limited to FOL. ProntoQA
(Saparov and He, 2023) provides a QA dataset with
explanation and reasoning steps but is limited to
single-step modus ponens in FOL. Although Log-
icBench (Parmar et al., 2024) covers various infer-
ence rules and reasoning patterns comprehensively,
it only contains single-step logical reasoning (see
Table 1 for comparison). Additional datasets for
evaluating multi-step logical reasoning also exist,
such as SimpleLogic (Zhang et al., 2022), which
only covers modus ponens inference rule, and Rule-
Bert (Saeed et al., 2021) which covers only soft
logical rules. In contrast, Multi-LogiEval evaluates
logical reasoning independently beyond modus po-
nens. In addition, FLD (Formal Logic Deduction)
(Morishita et al., 2023) has formal logic theory-
based inference rules, and their combinations to
create multi-step reasoning, but limited to PL and
FOL. However, Multi-LogiEval offers a broader set
of inference rules for PL and FOL, along with their
meaningful combinations for multi-step reasoning,
in addition to NM reasoning.

3 Multi-LogiEval

In developing Multi-LogiEval, we leverage the ca-
pabilities of LLMs while employing different meth-
ods to generate data for NM compared to PL and
FOL since the formulations for PL. and FOL differ
from NM. In particular, our data creation process
consists of two major stages: (i) Generation of rule
combination and (ii) Generation of data instances.

Generation of rule combination We create
a meaningful combination of inference rules to
achieve reasoning depths and define the complex
question for each combination that will require
multiple reasoning steps to answer. Here, each step
generally corresponds to one inference rule.

Generation of data instances Using the combi-
nations of inference rules generated in the above
step, we prompt the LLM to generate a more
human-like natural language story embedded with
logical rules as a context and then the following
complex reasoning question. In this way, we gener-
ate data in the form of <context, question> pairs for
each combination of inference rules at each depth.

3.1 Data Generation for Monotonic Logic

Here, we provide details of the data generation
process for PL and FOL (further details are in Ap-
pendix A). Specifically, we delve into 14 distinct
inference rules of PL and FOL, detailed in Table 2.
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Depth Rule Combinations

Premises in Story Premise in Question Answer

I MT:(P—>QA-QF-P P—Q -Q —P: v
MT: (P — Q) A —Q F —P )
2 DS: PVR)A PR (PVR), (P~ Q —Q R:v
HS: (P> Q) A(Q—R)F(P—R)
3 MP:(P-R)APFR Egj%(R%S) P S: v
MP: R — S) ARF S ’
CD: (P> QAR —=S)APVRF@QVS)
. P—Q),
4 DPS:QVSA-QFS (R = S), (PVR), -Q U: v
MP: (S 5 T)ASFT STy (T 1)
MP: (T - U)ATFU ( :
HS:P—->QYQAQ—R)F (P —R)
MT: (P - R) A -R - —P P—0Q),
5  DS:(PVS)A-PFS (Q—=R),(PVS), -R U: v

MP:(S—-T)ASFT
MP: (T—-U)ATEFU

S—=T),(T—=0)

Table 3: Examples of multi-step reasoning rule combinations for PL. Similar combinations are used for FOL.

Choice of inference rules Since entailment (con-
cluding a formula in logic from another formula
in that logic) in PL is Co-NP Complete, and en-
tailment in FOL is undecidable. Even though we
are interested in multi-step reasoning, our aim is
not to build a “complete” reasoning system (the
system that can make all possible entailments in
that logic), rather, our goal is to make LLMs be
able to at least mimic some key inference rules up
to a depth of five, which itself is challenging. Thus,
we start with the set of 25 inference rules used in
(Parmar et al., 2024) and add eight more inference
rules, resulting in 33 inference rules (with zero or
one variable). For a depth of five that would mean
a 33% possible combination, which is already quite
big (> 39 million). In addition, we also consider
seven FOL inference rules involving three vari-
ables and binary, ternary relations (Appendix H).
In adding the new inference rules, our main consid-
eration was how well they match human intuition.
For example, we left out p A =p I ¢ as that is not
very intuitive to non-logician humans. Similarly,
we left out inference rules such as simplification
((p A q) F p), conjunction (p,q - (p A q)), and ad-
dition (p - (p V q)), as they would lead to infinite
reasoning chains and it did not make sense to add
them as an additional step of reasoning to arrive
at a meaningful conclusion. Conversely, we added
the DMT (—(p A q) 4F —p V —¢q), and show its use
in multi-step, as shown in Table 9 (Appendix B).

3.1.1 Generation of Rule Combination

We apply sequential inference rules for multi-step
reasoning, as illustrated in Figure 2. To ensure a
comprehensive approach to answering a question,

| Premise 1 ] - (Conclusion 1]

@

¥
| Premise 2 | F (Conclusion 2]

@

| Premise 3 | - (Conclusion 3|

Figure 2: Process for combining multiple logical in-
ference rules for PL and FOL: Premise 1 is the set of
premises for the first inference rule, leading to Conclu-
sion 1. Conclusion I and Premise 2 derive Conclusion
2, and so on. : Entails.

we employ a method that involves leveraging con-
textual information and explicit details provided in
the question. This process requires a logical chain
of reasoning, combining knowledge from the given
context with the information presented in the ques-
tion. Each step in the reasoning chain corresponds
to an inference rule, with combinations ensuring
each step aligns with a single rule. To generate the
combinations, we start with the initial rule and as-
sess whether the conclusion of this rule aligns with
the premise of other rules. This iterative process
results in multi-step combinations/reasoning, with
the conclusion of each step serving as a part of the
premise for the subsequent rule.

We create 71 rule combinations, ranging from 2-
step to 5-step reasoning chains. We use each single
inference rule as depth-1. Examples of rule com-
binations in classical logic are presented in Table
3. Let’s consider a specific combination involving
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Rule Combination

Context and Question

PL Rules: MT, DS
Propositions:

p: Capture shots in golden hours.
q: Photo wins awards.

r: Focus on rare wildlife.

Context: In wildlife photography, Olivia was certain that if she captured shots in the golden
hours, her photos would win awards. However, opportunities varied each day. It was evident
that she either captured shots during the golden hours or she focused on rare wildlife, or both.
Olivia’s latest photos did not win any awards.

Question: Is it true that she focused on rare wildlife?

FOL Rules: BD, DS
Predicates:

p: Work extra hours.

q: Meet project deadlines.
r: Take minimal breaks.
s: Increase productivity.

Context: In a company, employees believe that if they work extra hours, they will meet
project deadlines, and if they take minimal breaks, they will increase productivity. However,
they face a dilemma - they either work extra hours or do not increase productivity.
Question: Jane didn’t meet the project deadline. Is it true that Jane took minimal breaks?

NM rule: BDR

PL rule: MP (Sentence Y)
Logic: Conclusion of BDR: X
MP.X—=Y)AXFY

Context: Jim and Pam work at the same office. Normally, employees at that office get free
lunch. Jim does not get free lunch. If Pam gets free lunch, then she gets an hour lunch break.
Question: Can we conclude Pam gets an hour lunch break?

Table 4: NL examples of different rule combinations for all three logic types. Appendix D provides more examples.

the Modus Tollens (((p — ¢) AN —q) F —p) and
Disjunctive Syllogism (((p V r) A —p)  r) rules
for creating combination for depth-2. Given the
context, including natural language statements for
(p — q) and (pVr) and information in the question
as g, we ask about the truth value of . Applying
Modus Tollens, we deduce —p from the (p — q)
from context and —q in question, giving the first
step. Subsequently, using —p as the premise for
Disjunctive Syllogism, we conclude that 7 is indeed
true based on the (p V ) and —p, giving the second
step. Creating rule combinations at higher depths,
and validating the quality of generated instances
is challenging, hence, we limit the number of rule
combinations at d5 for the scope of this study. More
examples provided in Appendix B.

3.1.2 Generation of Data Instances

We generate natural language (NL) data at different
depths by prompting Claude-2 in a few-shot set-
ting with instructions for various rule combinations.
The prompt schema, shown in Figure 3, comprise
five crucial components:

Rule Definition We provide generalized rules
for various combinations containing propositions
represented by labels such as P and Q. For instance,
Rule 1: “If P is true, then Q is true.” Utilizing these
defined rules, we construct the contextual premise
by combining them. Subsequently, we formulate
a question that requires a step-by-step deduction
using all the established rules to derive the answer.

Format We provide model-specific instructions
for generating outputs in a designated format, sim-
plifying the process of parsing it on a large scale.

Generalized Rule Definition
Formatting Instruction

Diversity Instruction

[ Task Definition ]

Examples
< propositions, context, question >
< propositions, context, question >

< propositions, context, question >

Figure 3: Data generation prompt for PL and FOL

Diversity To enhance diversity, we prompt the
model to generate multiple instances across various
domains, such as education and finance.

Task Definitions We provide definitions to per-
form two tasks. First, to generate the context that
serves as a human-like illustration of generalized
rules. This task instructs the generation of a real-
life story with sentences exemplifying the specified
rules, where entity labels such as P,Q, R, S, T,
and U are replaced with actual entities. To en-
sure clarity, entity labels are excluded from the
context. Additionally, the context generation for
FOL incorporates instructions specifying the use of
generalized sentences with indefinite pronouns for
quantification. The second task focuses on question
generation, which entails formulating questions in
the format: "[(....) is true/not true, then is (....)
true?]" This dual-task approach ensures the gen-
eration of <context, question> pair. We provide
examples of generated NL instances in Table 4.
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Examples We present five in-context exemplars
for every rule combination. Each instance com-
prises propositions such as P, (), R, a contextual
narrative, and an associated question. An example
prompt for depth-3 is presented in Appendix C, and
we use a similar structure for all other prompts.

3.2 Non-Monotonic Reasoning

We utilize eight NM reasoning patterns defined in
Lifschitz (1989) (Appendix E), and have generated
data for depths 1 to 5. To increase reasoning depth,
we integrated NM with classical logic, using only
one NM rule per depth due to the 4-5 assumptions
each pattern involves. Thus, combining two NM
patterns with classical logic creates lengthy con-
texts, challenging for LLMs to generate quality
instances. Our rule combinations avoid overly long
contexts while requiring reasoning up to depth-5.

Generation of Rule Combination We consider
reasoning patterns corresponding to default reason-
ing for depth-1. We generalize the rule to generate
simple sentence pairs independently before com-
bining them according to the template-based NM
rule. After generating sentence pairs, we combined
the sentences based on the defined rule and for-
mulated the question-answer pair accordingly. We
have manually generated 12, 2, 2, and 1 rule combi-
nations for depth-2, depth-3, depth-4, and depth-5,
provided in Appendix E. While formulating depth-
wise rule combinations, a logical relationship be-
tween the context and question is followed. The
rule combinations for all depths from 2 to 5 include
6 reasoning rules from NM—BDR, PBD, DRO,
PBD, REII, and REIIl—and 3 inference rules from
PL—MP, MT, and DS. The data for depths 2 to 5 is
generated by forming a logical connection between
two NM rules’ conclusions and the PL rules.

Generation of Data Instances In creating
prompts for data generation, we use a four-part
structure: (1) define the task, (2) explain each rule
as an assumption and conclusion, (3) provide in-
structions for creating context and questions to en-
sure logical connections, and (4) establish format-
ting guidelines for systematic output. Appendix E
shows an example of the prompt.

3.3 Qualitative Analysis

After data generation, we conducted a manual qual-
itative analysis, resulting in 1,552 high-quality sam-
ples for Multi-LogicEval.

Logic | Reasoning Depth | Total

[t [2]3]41]5|

PL 120 | 105 | 135 | 120 | 45 | 525
FOL | 130 | 105 | 135 | 120 | 45 | 535
NM 160 | 232 | 40 | 40 | 20 | 492

Total | 410 | 442 | 310 | 280 | 110 | 1552

Table 5: Statistics of Multi-LogiEval

Statistics Multi-LogicEval has 5 different logical
reasoning depths. Table 5 shows the depth-wise
statistics of samples present for each logic type af-
ter validation. After manual validation, from the
generated data, we selected/updated high-quality
10 data instances for each inference rule in depth 1
and 15 or 20 data instances for each rule combina-
tion, which resulted in 410, 442, 310, 280, and 110
samples for depth-1, depth-2, depth-3, depth-4, and
depth-5, respectively. For evaluation, of the total
1552 samples, 1126 samples have the answer yes,
and the remaining 426 samples have the answer no.

Quality of Data Instances We examine each con-
text for potential discrepancies throughout the data
generation phase, ensuring they are logically cor-
rect and represent the intended logical relations.
We also dedicated considerable effort to eliminat-
ing typos and validating the grammar. While val-
idating, we encountered a few errors within the
synthetically generated story-based context. We
manually mitigate these errors to ensure integrity
and utility (Analysis presented in Appendix F).

4 Results and Analysis
4.1 Experimental Setup

Task Formulation We formulate a binary classi-
fication task using Multi-LogiEval. Let us consider
a set of data instances Zp j, corresponding to depth
D and logic type L. In this set, 7' instance is rep-
resented as Ilil 1 = {(ci, ¢;)} where ¢; represents
context and g; represents question corresponding
to 5*" instance. Here, each context and question
pair is created so that the conclusion provided in
the question always entails context. However, you
require different reasoning steps to conclude. We
prompt the model to assign a label Yes if the con-
clusion logically entails the context; otherwise, No.
To evaluate any LLMs, we provide < p,c,q >
as input to predict a label Yes or No where p is a
natural language prompt.
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Models ‘ Propositional ‘ First-Order ‘ Non-Monotonic
| b | d | & | di | ds | b | A | Ay | du | ds | b | A | & | du | s
GPT-4 89.17 | 69.52 | 82.22 | 71.67 | 66.67 | 83.85 | 70.48 | 71.85 | 59.17 | 66.67 | 36.88 | 51.67 | 65.00 | 67.50 | 60.00
ChatGPT | 91.67 | 56.19 | 63.70 | 62.50 | 44.44 | 97.69 | 59.05 | 57.78 | 50.83 | 37.78 | 33.75 | 41.11 | 50.00 | 62.50 | 60.00
Gemini 90.00 | 62.86 | 68.15 | 65.83 | 60.00 | 76.92 | 62.86 | 65.93 | 57.50 | 53.33 | 46.25 | 46.11 | 62.50 | 55.00 | 60.00
Yi-34B 85.00 | 65.71 | 58.52 | 46.67 | 26.67 | 90.00 | 55.24 | 57.94 | 48.33 | 13.33 | 37.50 | 41.11 | 55.00 | 62.50 | 65.00
Orca-13B | 75.83 | 41.91 | 35.56 | 35.00 | 15.56 | 66.92 | 47.62 | 42.96 | 40.00 | 6.67 | 21.88 | 26.67 | 25.00 | 15.00 | 25.00
Mistral-7B | 80.83 | 68.57 | 61.48 | 53.33 | 44.44 | 83.85 | 63.81 | 56.30 | 52.50 | 20.00 | 37.50 | 39.44 | 52.50 | 47.50 | 65.00
Avg | 8542 | 60.79 | 61.61 | 55.83 | 42.96 | 83.21 | 59.84 | 58.79 | 51.39 | 32.96 | 35.63 | 41.02 | 51.67 | 51.67 | 55.83
Table 6: Evaluation of LLMs in terms of accuracy on Multi-LogiEval.
Experiments We evaluate a range of proprietary ~ LLMs, offering significant insights into their per-

models (i.e., GPT-4, ChatGPT, and Gemini-Pro)
and open-source models (i.e., Yi-34B-Chat, Orca-
2-13B, and Mistral-7B-Instruct) on Multi-LogiEval.
The evaluation is conducted on the versions of Ope-
nAl and Google models released in April 2024.
Each model is evaluated in a zero-shot-CoT setting.
The prompt used for experiments is provided below.
We evaluate LLMs in a zero-shot setting to show
the logical reasoning ability of the model based on
knowledge acquired during pre-training since we
can not expect in-context examples corresponding
to different reasoning patterns and depths during
inference. However, we also evaluate LLMs in a
3-shot setting (results are in Appendix G).

Metrics Since the objective is to assess the
model’s ability to arrive at the correct conclusion,
we measure the accuracy associated with a Yes and
No label. Apart from accuracy, we provide an in-
depth analysis of reasoning chains in section 4.3 to
gain insights into models’ performance. In addition,
we would like to mention that the binary labels Yes
and No indicate whether the conclusion presented
in the question can be derived from the context.
Hence, accuracy is an important evaluation metric,
reflecting the model’s reasoning ability.

Given the context that contains rules of logical rea-
soning in natural language and question, perform
step-by-step reasoning to answer the question. Based
on context and reasoning steps, answer the question
ONLY in ‘yes’ or ‘no.” Please use the below format:
Context: [text with logical rules]

Question: [question that is based on context]
Reasoning steps: [generate step-by-step reasoning]

Answer: Yes/No

\

4.2 Main Results

Objective Evaluation Table 6 illustrates the ac-
curacy of reasoning at different depths for various

formance across distinct logic types and depths.
From Table 6, experimental results reveal a consis-
tent trend across PL and FOL, i.e., as the reasoning
depth increases from 1 to 5, the models’ average
performance drops. In particular, at depths 4 and
5, accuracy drops significantly for the majority of
LLMs we evaluated. For instance, the accuracy
of GPT-4, ChatGPT, and Gemini demonstrates a
substantial drop from 89.17%, 91.67%, and 90%
at dq to 66.67%, 44.44%, and 60.00% at d5 for PL,
respectively, indicating the challenge encountered
even by larger-scale LLMs when handling longer
chains of logical reasoning. In summary, for PL
and FOL, LLMs perform well on d; compared to
other depths. While they show competitive perfor-
mance for dy and d3, there is a significant drop in
performance for d4 and ds in most cases. In con-
trast, moving on to NM, going from d; to ds, there
is an increase in the performance of LLMs from an
average of 35.63% to 55.83%.

Random Baseline We calculated a random base-
line for each depth from Multi-LogiEval as below:

2 2
Accrandom = pyes + pno?

where pyes and pp, represent the probabilities
of predicting “yes” and “no,” respectively. The
random baselines for depths di, ds, ds, d4, and ds,
with corresponding Acciandom Of 86.63%, 67.35%,
53.71%, 58.33%, and 83.33%, respectively. From
Table 6, we can observe that these models perform
lower in terms of average accuracy compared to
the random baseline.

Findings Table 6 reveal that open-source models
experience a significant performance drop from dy
to ds. Also, there is an increasing performance
trend in NM. For PL and FOL, GPT-4, ChatGPT,
and Gemini show improved performance from da
to ds, whereas the performance of open-source
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models consistently decreases. In addition, larger
open-source models demonstrate decreasing per-
formance. Furthermore, ChatGPT performs lower
than GPT-4 and Gemini at d5 in PL and FOL. Also,
FOL performance is lower compared to PL at d.

4.3 Analysis and Discussion

In this section, we manually analyze the generated
reasoning chains ? by different LLMs and investi-
gate the above-mentioned findings in detail.

Performance Improvement from d; to ds in PL
and FOL for GPT-4, ChatGPT, and Gemini
GPT-4, ChatGPT, and Gemini excel at d3 for PL,
with a performance decrease at d4 and d5. This
trend is also observed in FOL for the same mod-
els except ChatGPT. Systematic analysis of all
the reasoning chains with wrong predictions for
PL and FOL shows these models reach incorrect
conclusions often due to the wrong interpretation
of evidence. In d3, increasing context length im-
proves LLMs accuracy in information mapping,
thus achieving peak performance (comparison with
ds to ds). At dg, around ~ 27.4% of reasoning
chains with incorrect conclusions were due to the
models’ failure to correctly map information, either
from context to conclusion or the premise from one
step to the next step. This number drops to ~ 22%
at ds and we observed that a larger context length
at ds helps in reducing this problem. However, at
d4 and ds, the length of the reasoning chain in-
creases further. Since longer reasoning steps are
more prone to error propagation at later stages,
causing the models to deviate further from the true
conclusion, hence, lower performance at d4 and ds.

Lower Performance of ChatGPT compared to
GPT-4 and Gemini at Higher Depths This pat-
tern is particularly evident in FOL and PL at d5
for ChatGPT compared to Gemini, and GPT-4. At
dS, manual analysis shows that ChatGPT tends
to generate longer reasoning chains compared to
Gemini, and GPT-4 when answering question. For
PL and FOL, the average reasoning chain length
for ChatGPT at ds is 13.85, while for Gemini and
GPT-4 at d5 is 8.85 and 10.87, respectively. Longer
reasoning chains do not necessarily correlate with
better reasoning outcomes, highlighting the com-
plexity of complex reasoning task. This suggests
that optimizing reasoning chain length is crucial for
improving model accuracy in complex scenarios.

2https://github.com/Mihir3009/Multi-LogiEval

Increasing Performance Trend in NM In our
analysis of ChatGPT and the open-source model
Yi-34B, we’ve observed consistent performance
improvements with increasing depth in NM rea-
soning. This trend diverges from classical logic
PL and FOL. Specifically, at depths ds to d5 , NM
exhibits novel performance due to unique rule com-
binations in reasoning patterns. For instance, at do,
NM combines one PL rule with one NM reason-
ing pattern, progressing to two PL rules with one
NM pattern at d3, and so forth. The addition of
NM reasoning patterns complements PL. and FOL
by providing supplementary evidence and improv-
ing contextual understanding. Notably, as depth
increases, integrating basic classical rules with NM
significantly enhances model accuracy, particularly
evident at depths 4 and 5. This integration is piv-
otal for the notable performance gains observed in
NM compared to classical logic at higher depths.

Larger Open-Source Models Show Decreased
Performance Compared to Smaller Models
Here, we examine Mistral-7B, Orca-13B, and Yi-
34B, which differ significantly in parameter size.
Mistral-7B, the smallest, performed best across var-
ious depths of classical logic, except at the simplest
di. As reasoning depth increased, Mistral-7B con-
sistently outperformed Orca-13B and Yi-34B, with
Yi-34B only marginally better (1.5%) at d3. For
NM tasks, Mistral-7B and Yi-34B showed similar
performance across all depths. At the most chal-
lenging depth (d5) for both PL and FOL, Mistral-
7B outperformed Orca-13B by achieving 3x perfor-
mance despite Orca-13B’s larger size. We believe
that this capability of Mistral-7B is attributed to
its architecture and training, enhancing its reason-
ing abilities, as discussed in Jiang et al. (2023). In
particular, the training of Mistral-7B focused on
enhancing its reasoning capabilities.

Lower Average Performance in FOL than PL
at d; tods; Upon observing the reasoning chains
with wrong final predictions for the FOL and PL,
we find that the generic rules in FOL contexts lead
to deviations from the correct reasoning path. In
some cases, it assigns predicates incorrectly to the
FOL inference rule. This pattern is more promi-
nent at ds, highlighting the large gap (~ 10%) in
average performance between PL and FOL.

Lower Performance in d; of NM Reviewing the
reasoning chains, we noted that models struggled
to accurately map information. Interpreting various
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assumptions is crucial for effective reasoning at d;.
However, we observed that models have difficulty
concluding based solely on assumptions present in
the context when explicit knowledge is absent.

Preliminary Discussion on Multi-variable FOL
Since our work focuses on evaluating LLMs’ multi-
step reasoning with simple FOL inference rules,
we conducted only a preliminary study on their
reasoning abilities for multi-variable FOL rules,
discussed in Appendix H. This study reveals that
creating natural language instances is challenging
for this kind of setup.

Case Study on Evaluating Multi-LogiEval us-
ing Neural Symbolic Motivated by Olausson
et al. (2023), we evaluate GPT-4 using the neuro-
symbolic approach where we utilized the Prover9°.
It first converts FOL statements into conjunctive
normal form (CNF) and then performs resolution.
Thus, we only evaluated data samples with FOL
from Multi-LogiEval. For this study, we adapt the
evaluation approach presented in Pan et al. (2023)
where GPT-4 is used to convert the context and
question in a formal executable program and use
Prover9 to solve it. We used an implementation
with a similar GPT-4 version compatible with Pan
et al. (2023). We use the below prompt to convert
natural language to an executable logic program:

7

Given a problem description and a question.
The task is to parse the problem and the
question into first-order logic formulas. The
grammar of the first-order logic formula is
defined as follows :

1. logical conjunction: exprl A expr2

2. logical disjunction: exprl V expr2

3. logical exclusive disjunction:
exprl @ expr2

4. logical negation: —exprl

5. exprl implies expr2: exprl — expr2
6. exprl if and only if expr2:
exprl < expr2

7. logical universal quantification: Vx

8. logical existential quantification: 3z

Output format: <logic form ::: description>

We evaluate the performance in terms of the
accuracy of selecting the correct answer. We also

Shttps://www.cs.unm.edu/~mccune/prover9/

report the “Executable Rate”, which reflects the
grammar correctness of the logical form, and the
“Executable Accuracy” of the executable samples
to measure the semantic correctness (Pan et al.,
2023).

Reasoning  Overall Acc  Executable Rate  Executable Acc
Depth (%) (%) (%)
dy 55.83 85.83 51.46
dy 46.67 76.67 47.83
ds3 38.89 77.78 30.00
dy 40.00 77.78 41.43
ds 60.00 77.78 62.86

Table 7: Performance Metrics by Reasoning Depths

As the reasoning depth increases from d; to dy
(Table 7), there is a general trend of decreasing
overall accuracy and executable accuracy, indicat-
ing that higher reasoning depth poses more chal-
lenges for executing code correctly. Interestingly,
at ds, both overall accuracy and executable accu-
racy show a significant improvement.

Human Evaluation and Further Discussion In
this study, we performed a human evaluation on a
selected subset of the Multi-LogiEval. Addition-
ally, we explored potential strategies for enhancing
LLMs’ reasoning capabilities based on the findings
of our current analysis. Please refer to Appendix I
for further details on the human evaluation process
and discussion.

5 Conclusions

In this work, we introduced Multi-LogiEval, a com-
prehensive multi-step logical reasoning benchmark
consisting of three types of logic and over 60 com-
binations of inference rules. Our approach utilized
two-stage methodology to construct data instances
for our benchmark consisting of ~ 1.6k data in-
stances with 1 ~ 5 reasoning depth. We evalu-
ated a range of LLMs, including GPT-4, ChatGPT,
Gemini, Yi, Orca, and Mistral on Multi-LogiEval.
Experimental results revealed that these models
struggle to perform logical reasoning, and their
performance drops as the depth of logical reason-
ing increases (average accuracy of ~ 68% at dy
to ~ 43% at ds) for classical and non-classical
logic. Furthermore, we systematically analyzed
the reasoning chain generated by LLMs at various
depths and presented interesting findings. We hope
that Multi-LogiEval will facilitate future research in
evaluating and enhancing the ability of existing and
upcoming LLMs for multi-step logical reasoning.

20864


https://www.cs.unm.edu/~mccune/prover9/

Limitations

Though Multi-LogiEval facilitates the evaluation
of the multi-step logical reasoning ability of LLMs,
the complexity of reasoning depth presented in
Multi-LogiEval can be improved by adding reason-
ing depth beyond five steps. Multi-LogiEval can be
further extended by incorporating other inference
rules and logic types, for instance, the inference
rules in first-order logic that capture n-ary relations
between multiple variables. We also note that this
research is limited to the English language and can
be extended to multilingual scenarios for evaluating
the logical reasoning ability of LLMs.
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rephrase the sentences.
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A Monotonic Logic Description

Propositional Logic (PL) PL serves as a founda-
tional framework for reasoning about truth values
of statements, represented as propositions denoted
by symbols like p, g, r, etc. Employing logical con-
nectives such as ‘A’ (conjunction), ‘V’ (disjunc-
tion), and ‘—’ (implication), it establishes rela-
tionships between these propositions. PL incorpo-
rates various inference rules, guiding the deriva-
tion of conclusions from given propositions. For
instance, Modus Ponens is an example of such in-
ference rules where if presented with the premises
((p — q) N p)—interpreted as “if p, then q, and p
is true”’—we can deduce the truth of g, denoted as
(p—=a)Ap)Fa

First-order Logic (FOL) FOL builds upon the
foundations of PL by introducing predicates and
quantifiers. Predicates allow us to express rela-
tionships involving variables, and quantifiers such
as the universal (V) and existential (3) quantifiers
enable us to make statements about all or some ele-
ments in a domain. For instance, instead of stating
“John is a student,” we can express it in FOL as
“There exists x such that x is John and x is a stu-
dent.” This logic extends the rules of PL, such as
the Modus Ponens rule, which lets us infer conclu-
sions for specific instances from general premises.

B Combinations of rules for Monotonic
Logic

We created 27 multi-step reasoning inference rule
combinations for Propositional Logic (PL), with
depths ranging from 2 to 5. We use the same rule
combinations for First Order Logic (FOL) for each
depth. All rule combinations for 2-step, 3-step,
4-step, and 5-step reasoning for PL and FOL are
presented in Tables 8, 9, 10, and 11 respectively.
For each combination, we provide the inference
rules to be used for reasoning, the premises present
in the context and in the question, and the complex
reasoning question-answer pair.

C Example of Prompt

Figure 4 illustrates an example prompt for combina-
tion of rules from propositional logic, namely ‘con-
structive dilemma’ (CD), ‘disjunctive syllogism’
(DS), and ‘modus ponens’ (MP). CD is represented
as(p—=>QANr—s)AN(pVr))F(qgVs), which
can be understood in natural language as “If p im-
plies ¢, and if r implies s, and either p or r or

Generalized Rule Definition:
Rule 1: [if {P} is true then {Q} is true, and if {R} is true then {S} is true, and either {P} or {R} or
both are true]
Rule 2: [if {S} is true, then {T} is true]
Formatting Instruction:
Complete the following tasks, only returning text in exactly the format given in the following
examples.

Diversity Instruction:
Generate 5 more examples from multiple domains

Task Definition:

Task 1: Generate a short real life story that includes sentences to illustrate the above rules, replacing
the entities P, Q, R, S, T with real values. Do not include the entity labels like P, Q, R, S, T in the story.
Task 2: Generate the following complex reasoning question using the story and the rules, by replacing

the respective entities.
QI: [If Q is not true, then is T true?]

Examples:

TP} Mark takes Ryan to the park.
{Q}: Ryan gets to play on the swings.

{R}: Jackie makes cupcakes.

{S}: Jackie brings some cupcakes for Ryan.

{T}: Ryan gets a sugar rush.

Context: Mark promised to take his son Ryan to the park on Saturday. If Mark takes Ryan to the
park, then Ryan will get to play on the swings. Jackie said she would make cupcakes on Saturday.
If Jackie makes cupcakes, then she will bring some for Ryan. Ryan was certain that either Mark
would take him to the park, or Jackie would make cupcakes, or both might be true. If Jackie ends
up bringing cupcakes for Ryan, then Ryan will get a sugar rush.

Question: If Ryan did not get to play on the swings, then did Ryan get a sugar rush?

{P}: Jeff meditates regularly.

{Q}: Jeff improves his mental health.

{R}: Jeff eats healthy meals.

{S}: Jeff loses weight.

{T}: Jeff feels more confident about himself.

Context: Jeff wants to improve his health and fitness. If Jeff meditates regularly, he will improve
his overall mental health. Also, if Jeff eats healthy nutritious meals, he is likely to lose weight. Jeff|
decides to either meditate regularly, or eat healthy meals, or do both simultancously. He also knew
that if he loses weight, then he will feel more confident about himself.

Question: If Jeff did not improve his mental health, did he feel more confident about himself?

{P}: Sam studies geography.
{Q}: Sam aces his geography test.

{R}: Sam travels the world.

{S}: Sam gains cultural awareness.

{T}: Sam becomes more open-minded.

Context: Sam wants to improve his geography knowledge. If he studies geography diligently, he
will ace his geography test. Also, if Sam travels the world, he will gain cultural awareness from
experiencing new places. Sam decides that he will either study geography, or travel the world, or
do both. If Sam gains cultural awareness, he will become more open-minded.

Question: If Sam did not ace his geography test, did he become more open-minded?

\ J

Figure 4: An example prompt for 3-step combination
of inference rules CD, DS, and MP from propositional
logic.

both are true, then we can conclude that either ¢
or s or both are true.” DS is formally represented
as (pV q) A —p) F g, which can be understood
in natural language as “If p or ¢ are true, and we
know —p, then we can conclude ¢q.” MP is formally
represented as (p — ¢) A p) - ¢, which can be
understood in natural language as “If p implies q,
and we know p, then we can conclude ¢.”

In this prompt, the generalized rule definitions
provide a description of the premises given in the
story in natural language. The prompt includes in-
structions on how the generated samples should be
formatted, instructions to generate samples from
diverse domains, and detailed definitions for gener-
ating propositions, and then using them to generate
a context and question for each sample. To en-
hance the quality of samples in terms of relevance
and coherence, the prompt includes an examples
section that demonstrates these tasks. In Figure
4, we present three examples with their respective
propositions, contexts, and questions.
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Rule Combinations Premises in Story Premise in Question Answer

DS: (PVQ)A-PFQ

MP: (Q —R) A QF R PVQ. Q=R P R: v
MT: (P — Q) A -QF —P .
DS: (PVR)A PR P=Q.FVR) ~Q R: v
HS: (P~ Q) A(Q—R)F (P—R) _
MP: (P — R) AP R P=Q.Q=R) P R: v
CD: (P> Q AR—S)APVRIF(QVS) P—Q, 0 G/
DS: (QVS)A—QFS (R—S),(PVR) B :
DD: (P> Q) AR — S)A(-QV ~S) - (-PV -R) (P—Q), b Rex
DS: (<P V -R) AP+ -R R = $), (~QV =S) :
BD: P> QAR—=SHAPV-85)F@QV-R) P—=Q, -Q R: X
DS: (QV -R) A -QF —R (R—S),(PV-S) :
HS: (P~ Q) A(Q—R)F (P—R) P 0B . b

MT: (P — R) A =R I —P

Table 8: 2-step reasoning rule combinations for PL and FOL.

Rule Combinations Premises in Story Premise in Question Answer
HS: (P - Q)A(Q—R)F (P —R)

MP: (P — R) APFR (P_’%)’R S P S: v
MP: (R — S) ARF S Q—=R),R=S)

CD: P~ QAR—=S)APVRF(@QVS) P50 (R S,

DS: (QVS)A—-QFS PURLS ) -Q TV
MP: (S 5 T)ASHT :

BD: (P 5 Q AR=SAPY-SFQVR oo

CT: (QV —R) 4 (-R V Q) R > 5) (v -S) R Q:v
DS: (-RV Q) ARFQ :

BD: (P 5 QAR SARY-SFQVR o0 o

DS: (QV —R) A =Q F —R By S, (T o R, -Q T: X
MT: (T — R) A =R F —T ’

CD: (P~ QAR =S)APVRF@QVS) o0

CT: (QV S) - (SV Q) (RS, (PVR) -S Q:v
DS: (SVQ)A-SHQ :

HS: (P = Q)A(Q—=R)F (P —R)

CD: (P 5R)A(S > T)APVS)FRVT) Els) : %)((Sv_;;{) -R T: v
DS:RVT)A-RFT :

HS: P—-QAQ—=R)FP—R)

MT: (P — R) A =R F —P (P_’%)’ Py -R S: v
DS: (PVS)A—PFS Q—=R), ®VS)

DD: (P = Q) AR —S) A (-QV —S) F (—P V —R)

DS: (=P V =R) A P - —R (P~ Q), (R —3), P T: X

MT: (T — R) A —R - =T (=QV =8),(T = R)

DMT: (-Q VV —=R) 4 ~(Q A R)
CO: (P—5Q AP —-RFP—(QAR) (P—Q),(P>R) -QV -R P: X
MT: (P — (Q AR) A ~(Q AR) - —P

Table 9: 3-step reasoning rule combinations for PL and FOL.
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Rule Combinations Premises in Story  Premise in Question Answer
CD: (P AR—=SAPVRF@QVS
o ((Q 78?)/\ ﬁ(Q l——>S )A( )E@QVS) P Q).

, (R—S),(PVR), -Q U:v
MP:(S—T)ASFT ST, (T = U)
MP: (T—-U)ATHU ( ’
BD:P—->QAR—=>S)APV-S)EF@QV-R)
CT: (QV —-R) 4+ (=R V Q) P—Q),R—Y), R T v
DS:(—RVQ)ARFQ Pv-S),Q—T :
MP:(Q—>T)AQFT
BD:P—->QAR—=>S)APV-S)EF@QV-R)

. P—Q),
DS: (QV —-R)A —QF —R (R = S). (PV —S), -0 U: v
MT: (T —-R)A-RF =T T R). (TVU)
DS:(TVUA-THU ( ’
HS: P—->QAQ—=R)F(P—R) P Q)
CD: P—->RAS—-T)APVS)FRVT) Q= R).(S—T), ‘R U: v
DS: RVT)A-RFT (PVS). (T - U)
MP: (T—-UATHU ’
CD:P—>QAR—=S APVR)F@QVYS)
CT: (QVS) =SV Q) P—Q),R—Y), s T v
DS:SVQ A-SFQ (PVR), Q—T) :
MP: Q—=T)AQHFT
HS: P—->QAQ—=R)F({P—R)
MT: (P —+R) A —-RF =P P—Q),(Q—R), R T: v
DS: PVS)A—-PFS PVS),S—T :
MP:(S—T)ASFT
BD:P—-QAR—=>S)APV-S)F@QV-R)

. P—Q),
DS: (Q v -R) A =QF ~R R = S), (PV —S), -Q U: X
MT: (T —-R)A -RF =T T R),(U—T)
MT: (U—T)A-TF-=U ( ’
IM:P—->QAR)FPAQ) —R
MT: (P A Q) = R) A —RF —(P A Q) )
DMT: ~(P A Q) F (<P V Q) F=QAR) Q R P: X
DS: (—PV -Q) AQF —P

Table 10: 4-step reasoning rule combinations for PL. and FOL.

Rule Combinations Premises in Story  Premise in Question Answer
HS: P—-QAQ—=R)F(P—R)
MT: (P — R) A —R I =P P—Q),
DS:(PVS)A-PES (Q—R),(PVYS), -R U: v
MP:(S—T)ASFT S—>T),(T—=1U)
MP: (T—-U)ATFU
BD: P—-QAR—=SAPV-S)FQV-R)
CT: (QV —-R) 4 (-RV Q) P—=Q),
DS:(—RVQ)ARFQ (R—=S), (PV S), R U: v
MP:( Q> THAQHKT Q—-T),(T—=1U)
MP: (T—-U)ATFU
CD:P—>QAR—=>S APVRF@QVYS)
CT: QVvS)1-SVvQ P —Q),
DS: SVQ A-SFQ R —S),(PVR), =S U: v
MP: ( Q> T)AQFT Q—=T),(T=U)

MP:(T—-UATHFU

Table 11: 5-step reasoning rule combinations for PL. and FOL.
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D NL Examples for PL and FOL

In this section, we illustrate multi-step reasoning
for PL and FOL using natural language examples
for depths 2 through 5. Table 12 provides exam-
ples in natural language for PL. We provide one
example of rule combinations for each depth. For
each example, we provide the inference rules and
propositions, as well as the respective context and
complex reasoning question. Table 13 provides
examples in natural language for FOL, with one
combination for each depth. Similar to PL, we pro-
vide the inference rules, predicates, and the context-
question pair for each example.

E More Details on NM

Table 15 displays instances of general rules dis-
cussed in the paper by Lifschitz (Lifschitz, 1989),
specifically chosen for depth-1 non-monotonic
logic. Out of the 11 default non-classical reasoning
rules mentioned in the paper, we opted for 8. These
include Default Reasoning with Several Defaults
(DRS), Default Reasoning with Irrelevant Infor-
mation (DRI), Default Reasoning with a Disabled
Default (DRD), Default Reasoning in an Open Do-
main (DRO), Reasoning about Unknown Expec-
tations I (RE1), Reasoning about Unknown Ex-
pectations II (RE2), Reasoning about Unknown
Expectations III (RE3), and Reasoning about Prior-
ities (RAP). These rules constitute our selection for
depth-1 non-monotonic logical reasoning. Moving
on to depths 2 through 5, we integrated classical
and non-classical logic. Tables 16, 17, 18, and 19
outline the combinations of rules prepared respec-
tively for depth-2, depth-3, depth-4, and depth-5
logical reasoning tasks. In this context, we com-
bined BDR, DRD, PBD, DRO, REII, and REIII
from non-monotonic logic with MP, MT, and DS
from propositional logic to form combinations for
depths 2 to 5 of data. Tables 20, 21, 22, and 23
show the prompts that we used to generate data
instances respectively for depths 2, 3, 4, and 5. The
instruction-based data generation can be seen in
Tables 20, 21, 22, and 23. In addition to instruction-
based generation, one-shot prompts were used for
depth-3, depth-4, and depth-5 data generation as
seen in Tables 21, 22, and 23.

F Validation of Data Instances

We involved four evaluators (who are also authors
of this paper) for data validation. Each evalua-
tor holds a graduate degree in computer science

and has knowledge of logical reasoning. As dis-
cussed in Section 3.3, each sample is evaluated by
one evaluator to ensure its logical correctness. We
categorized errors into three distinct groups. The
categories of errors identified are (i) Incorrect Log-
ical Premises (ILP) which indicates that premises
generated by the model in the context are logi-
cally incorrect (i.e., did not align with the intended
conclusion), (ii) Leaking Conclusion (LC) where
the context inadvertently revealed the conclusion,
bypassing the need for the logical deduction, and
(iii) Repetition of Samples (RS) where identical
or nearly identical contexts are present, reducing
dataset diversity. We found ~ 14.3% (223 sam-
ples) of the total 1552 samples with ILP, ~ 3.7%
(57 samples) with LC, and ~ 3.7% (57 samples)
with RS. We mitigated all these errors manually
from the generated data instances to provide a high-
quality evaluation set. Furthermore, we also ana-
lyzed the number of samples we corrected for PL
(~ 22% - 115/525), FOL (~ 19% - 102/535), and
NM (~ 25.9% - 127/492), highlighting the diffi-
culty of generating instances for specific logics.
Similarly, we also analyzed depth-wise instance
correction where we corrected ~ 17.8% (73/410),
~ 21% (93/442), ~ 23.5% (73/310), ~ 33.2%
(93/280), and ~ 21% (23/110) for the depth d;,
da, ds, d4, and ds, respectively, indicating the chal-
lenges of generating and validating multi-step rea-
soning context with increasing depth.

G Few shot evaluation Multi-LogiEval

We evaluate models in a few-shot setting (specif-
ically, 3-shot) on Multi-LogiEval, revealing a no-
table enhancement in performance, as depicted in
Table 24. In the 3-shot evaluation results, we ob-
serve notable improvements in the performance of
various LLMs. GPT-4 consistently exhibits high
accuracy across all depths, particularly excelling
in PL and FOL. Though showing significant en-
hancements compared to its zero-shot performance
across all the models, they still underperform in
NM, highlighting a persistent challenge in this area.
Open-source models such as Yi-34B and Mistral-
7B, while benefiting from the 3-shot setup, still
display noticeable performance drops in higher
depths. Comparing these findings to the zero-shot
results from Table 6, we see a general trend of im-
proved performance in the 3-shot setting, indicat-
ing the effectiveness of few-shot prompting. How-
ever, the observed performance drop from d4 to
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Rules and Propositions

Context and Question

Rules: CD, DS

Propositions:

P: There is a big snowstorm coming.

Q: Schools will be closed.
R: Boss tells us to work from home.
S: I avoid driving in the snow

Context: If there is a big snowstorm coming, schools will be closed tomorrow.
Also, if my boss tells us to work from home, I can avoid driving in the snow.
It seems either there will be a snowstorm or I’ll be told to work from home,
maybe both.

Question: If schools were not closed tomorrow, then did I avoid driv-
ing in the snow?

Rules: BD, DS, MT

Propositions:

P: The weather is nice.
Q: She goes for a walk.
R: Finishes chores.

S: Has free time.

T: It’s the weekend

Context: It was a beautiful sunny day. Amy knew that if the weather is nice,
she goes for a walk. Amy also had chores to complete today. If Amy finishes
her chores, then she has free time. Amy is certain that either the weather is
nice, or she doesn’t have free time, or the weather is nice and she doesn’t have
free time. She also knows that if it’s the weekend, then she finishes her chores.

Question: If Amy didn’t go for a walk, then is it the weekend?

Rules: HS, CD, DS, MP

Propositions:

P: Studied hard for the exam.
Q: Feel confident.

R: Score well.

S: Cooked nice dinner.

T: Feel relaxed.

U: Sleep soundly.

Context: Jim had a big exam coming up that he needed to prepare for. If Jim
studied hard for the exam, he would feel confident going into it. If Jim felt
confident about the exam, he would end up scoring well on it. His wife Lucy
enjoyed cooking nice dinners. If Lucy cooked a nice dinner, she felt relaxed
afterwards. Last night, either Jim studied hard, or Lucy cooked a nice dinner,
or they both did those things. Jim knew that if Lucy felt relaxed after dinner,
she always slept soundly through the night.

Question: If Jim did not score well on the exam, did Lucy sleep soundly?

Rules: HS, MT, DS, MP, MP

Propositions:
P: Train consistently.
Q: Increase endurance and stamina.

R: complete the 26.2 mile marathon.

S: Ate nutritious food.
T: More steady energy.
U: Train harder staying injury free.

Context: Jessica set a goal to run a marathon. She learned that if she trained
consistently, she could increase her endurance and stamina. Jessica knew
that if her endurance improved, she could complete the 26.2 mile marathon.
To complement her training, Jessica made sure she either trained regularly,
or ate nutritious foods, or did both. Eating nutritious foods gave Jessica
more steady energy for her workouts. With this extra energy, Jessica found
she could train harder while staying injury-free on her road to marathon success.

Question: If Jessica does not complete the marathon, then does she
stay injury-free during training?

Table 12: Natural language examples of rule combinations of each depth for PL.

ds in open-source models comparable across both
settings, suggesting that while few-shot examples
enhance overall accuracy, they do not fully miti-
gate the inherent challenges these models face in
higher depths. Moreover, the performance trends
identified in the zero-shot evaluation, such as the
consistent decrease in accuracy for larger open-
source models and the superior performance of
proprietary models such as GPT-4 and ChatGPT in
PL and FOL, remain similar in the 3-shot setting.

H Extended first-order logic with n-ary
relations

First-order logic often involves handling n-ary re-
lations involving more than two variables—such
as the ternary relation in “If P(a,b,c) A Q(c,d)
then R(a, d)”. Moreover, one can alternate for all
(V), and there exists (3) for any number of times in
FOL, and that means there are an infinite number
of such rules in first-order logic. As discussed in
section 3.1, our aim is not to build a comprehen-
sive set covering all the possible inference rules but

rather to evaluate the reasoning ability of language
models up to a reasoning depth of five on a system-
atically curated set of inference rules. However, to
evaluate the ability of LLMs to reason with such
complex rules, we explore 7 such inference rules
for which we generated data using a similar prompt
structure as depicted in Figure 3. We generate 10
instances for each of the inference rule, resulting in
70 instances for evaluation. The choice of inference
rules can be found in Table 14. We evaluate the
large-scale models GPT-4, ChatGPT, and Gemini.
These models achieve an average accuracy of 80%,
84.3%, and 90%, respectively. This demonstrates
that these LLMs can comprehend multi-variable
FOL, but the rules currently involve only single-
step reasoning. Our work also shows that these
models perform well with single-step reasoning.
Exploring multi-step reasoning with multi-variable
FOL presents an interesting direction for future
research direction.
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Depth Rules and Predicates

Context and Question

Rules: CD, DS

Predicates:

2 P: Compose original music.
Q: Work would be Unique.
R: Promote music online.
S: Gain following.

Context: An aspiring musician decided to try writing their own songs. They realized
that if they composed original music, their work would be unique; if they promoted
their music online, they would gain a following. The musician could write original
songs or promote their music online.

Question: Given that Maria’s music was not unique, is it true that she gained a
following online?

Rules: BD, DS, MT

Predicates:

P: It’s Monday.

Q: There is a staff meeting.
R: Finish report.

S: Submit the report.

T: Good Employee.

Context: It was a busy morning at the office. If it was Monday, then there would be a
staff meeting. If they finished the report, then they could submit it to their manager.
They were certain that either it was Monday, or they did not submit the report. It is
known at the office that if someone is a good employee, they finish their reports on
time.

Question: Sam did not have a staff meeting, is Sam a good employee?

Rules: BD, DS, MT, DS

Predicates:

P: First day of school.

4 Q: students feel nervous and excited.
R: Study Hard.

S: get good grades.

T: teacher is very strict.

U: class textbook is very long.

Context: If it is the first day of school, then students feel nervous and excited. If
someone studies hard, then they get good grades. Either it is the first day, or they do
not get good grades, or it is the first day and they do not get good grades. If a teacher
is very strict, then students have to study hard for that class. Either the teacher is very
strict, or the class textbook is very long, or perhaps both are true.

Question: Emma was not nervous on the first day, does this mean did she
have a very long textbook in one of her classes?

Rules: HS, MT, DS, MP, MP

Predicates:

P: Practice drawing techniques.

5 Q: improve artistic skills.

R: sell their artwork.

S: studies art history and famous artists.
T: gain inspiration.

U: develop creative style.

Context: Someone wanted to become an artist. They learned that if they practiced
drawing techniques consistently, they would improve their artistic skills. With im-
proved artistic skills, they could sell their artworks. Either someone practices drawing
techniques consistently, or someone studies art history and famous artists, or they do
both. If someone studies art history and famous artists, then they gain inspiration
for their own art. If they gain inspiration, then they can develop their own creative style.

Question: If Emma cannot sell her artworks yet, then has she developed her
own creative style?

Table 13: Natural language examples of rule combinations of each depth for FOL.

I Human Evaluation and Discussion

We have conducted a human evaluation on a subset
of Multi-LogiEval. Specifically, we selected 15
unique instances covering all 5 depths (5 instances
for each logic type) from Multi-LogiEval. This se-
lection resulted in a total instances of 75 <context,
question> pairs. We hired three graduate student
volunteers to provide the evaluations. Task instruc-
tions provided to all three annotators are similar to
prompts provided to LLMs. Each instance pair is
answered/annotated by three different annotators
with 0.853 inter-annotator agreement (measured
with raw/observed agreement). Here are the results
for three logic types averaged across three anno-
tators for each depth. The average accuracies are
di-75.56, dy - 64.71, d3 - 64.44, d4 - 66.67, and
ds - 64.44. From the results, we can observe that
humans perform better at d; compared to higher
depths. For higher depths, the human performance
is low and consistent.

Discussion on Future Work Our results provide
deeper insights into LLMs’ logical reasoning abil-
ities by analyzing reasoning chains (Section 4.3)
manually to some extent. Specifically, we analyzed

where these models make mistakes and what are
their limitations. We believe that such insights can
help design better pre-training or alignment strate-
gies to improve the reasoning abilities of LLMs.
For instance, during pre-training, logical connec-
tives can be treated differently at various stages of
the transformer architecture. Additionally, in align-
ment techniques involving preference optimization,
preference data can be created to prefer outputs
with more logical correctness. The proposed ap-
proaches and findings in our paper can help in cre-
ating such datasets. Furthermore, exploring newer
techniques such as DPO (Rafailov et al., 2024),
and KTO (Ethayarajh et al., 2024) for their suitabil-
ity in improving logical reasoning also can be an
interesting future direction.
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Rule ‘ Extended First-order Logic with Multi-variable

| Vavy((p(x) A q(e)) = r(z,y)) A FJuv(p(u) A —r(u,v) F Fy=q(y)

| Vavy((p(z) A q(x)) = —s(2,y)) AV2(r(z) = p(2)) Ar(a) As(a, b) = =q(b)

| Va3y((p(z) = q(z,y)) AVuro((q(u,v) A r(u,v)) = s(v)) A 323k(p(z) Ar(z, k) F Sws(w)
VavVyVz(p(x,y, z) — (q(z,2) Vr(y))) A FJuFvIw(p(u, v,w) A —q(u, w)) F sr(s)

Va((p(z) = Jyr(y,z)) Apla) - Jzr(z,a)

NN || AW =

|
|
‘ Vavy(p(z,y) V q(z,y)) A JuFv—g(u,v) F zTwp(z, w)
| Vavy(p(z,y) = (¢(z) Ar(y)) Apla,b) - q(a) Ar(b))

Table 14: FOL inference rules that establish the relationship between multiple variables

Basic Default Reasoning

Default Reasoning with Irrelevant Information

Context: Blocks A and B are heavy.
Heavy blocks are typically located on the table.
A is not on the table.

Conclusion: B is on the table.

Context: Blocks A and B are heavy.

Heavy blocks are typically located on the table.
A is not on the table.

B isred.

Conclusion: B is on the table.

Default Reasoning with a Disabled Default

Default Reasoning in an Open Domain

Context: Block A and B are heavy

Heavy blocks are normally located on the table.

A is possibly an exception to this rule.

Conclusion: B is on the table.

Context: Block A is heavy.
Heavy blocks are normally located on the table.
A is not on the table.

Conclusion: All heavy blocks other than A are on the table.

Reasoning about Unknown Expectations I

Reasoning about Unknown Expectations II

Context: Blocks A, B, and C are heavy.

Heavy blocks are normally located on the table.

At least one of A, B, is not on the table.

Conclusion: C is on the table.
Exactly one of A, B is not on the table.

Context: Heavy blocks are normally located on the table.
At least one heavy block is not on the table.

Conclusion: Exactly one heavy block is not on the table.

Reasoning about Unknown Expectations I11

Reasoning about Priorities

Context: Blocks A is heavy.

Heavy blocks are normally located on the table.

At least one heavy block is not on the table.

Conclusion: A is on the table.

Context: Jack asserts that block A is on the table.
Mary asserts that block A is not on the table.
When people assert something, they are normally right.

Conclusion: If Mary’s evidence is more reliable than Jack’s.
then block A is not on the table

Table 15: Illustrative examples of non-monotonic reasoning adapted from (Lifschitz, 1989).
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Rule

Examples

BDR_MP

Conclusion of BDR: X
MP:X—=>Y)AXFY

Context: Jim and Pam work at the same office. Normally, employees at that office get free
lunch. Jim does not get free lunch. If Pam gets free lunch, then she gets an hour lunch break.

Question: Can we conclude Pam gets an hour lunch break? (Yes)

BDR_MT

Conclusion of BDR: X
MT: (X = Y)A Y F =X

Context: Emma and Jacob are students in the same class. Usually students in that class
submit homework assignments. Emma did not submit the last homework. If Jacob missed
over 3 classes, that means he likely did not submit the homework.

Question: Can we conclude Jacob missed over 3 classes? (No)

DRD_MP

Conclusion of DRD: X
MP: X—=>Y)AXEFY

Context: The Honda and Toyota are sedans. Sedans normally have four doors. The Honda
might not have four doors even though it’s a sedan. If the Toyota has a four doors then it has
four windows.

Question: Can we conclude the Toyota likely has four windows? (Yes)

DRD_MT

Conclusion of DRD: X
MT: (X = Y)A Y F =X

Context: Oaks and pines are types of trees. Typically trees grow from seeds. Oaks may not
grow from seeds even though they are trees. If a pine is artificial, then it does not grow from
a seed.

Question: Can we conclude the pine is artificial? (No)

DRI_MP

Conclusion of DRI: X
MP:. X—=>Y)AXEFY

Context: John and Mary are students in the same class. Usually students in their class do
homework every day. John did not do his homework yesterday. Mary studied extra material
last night. If Mary did her usual homework, she would have also reviewed her notes.

Question: Can we conclude that Mary reviewed her notes last night? (Yes)

DRI_MT

Conclusion of DRI: X
MT: X —=>Y)A-YHF =X

Context: Sara and David ordered dessert at a restaurant. Usually, people who order dessert
also order coffee. Sara did not order coffee. David requested extra whipped cream. If a
customer asks for extra toppings, it means they did not order coffee.

Question: Can we conclude David asked for extra toppings? (No)

PBD_MP

Conclusion of PBD: X
MP.X—=>Y)AXEY

Context: Jenny said the dog dug up the flower bed. Her brother said the dog did not dig up
the flower bed. People usually tell the truth. Jenny is more trustworthy than her brother. If
the dog dug up the flowers, it likely made a mess.

Question: Can we conclude the dog made a mess? (Yes)

PBD_MT

Conclusion of PBD: X
MT: X —=>Y)A-YHEF =X

Context: John said the shirt was blue. Mary said the shirt was not blue. Normally people
are correct when they make assertions. John had a closer look at the shirt than Mary. If the
shirt was purple, it could not be blue.

Question: Can we conclude the shirt was purple? (No)

REI_MP

Conclusion of REL: X
MP: X = Y)AXFY

Context: Ben, Mark, and Jacob took a history test. Students who study many hours usually
pass history tests. Ben and Mark did not study many hours. If Jacob passed the history test,
he must have paid attention in class.

Question: Can we conclude Jacob paid attention in class? (Yes)

REI_MT

Conclusion of REI: X
MT: X —=Y)AYHE =X

Context: John, Peter and Kate are students in math class. Students in math class normally
do homework. John and Peter did not do their math homework. If Kate missed class then
she did not do her math homework.

Question: Can we conclude Kate missed class? (No)

REII_MP

Conclusion of REII: X
MP. X > Y)AXEFY

Context: John bought a new phone. New phones usually come with a warranty. However,
some new phones do not come with a warranty. If a phone has a warranty, then it has
customer support.

Question: Can we conclude John’s new phone has customer support? (Yes)

REII_MT

Conclusion of REII: X
MT: X—=Y)A-YF =X

Context: Kate booked a room at hotel Y. Rooms at hotel Y are usually clean. There is at
least one room at hotel Y that is not clean. If Kate’s room has mold, then it is probably not
clean.

Question: Can we conclude Kate’s room has mold? (No)

Table 16: Natural language examples of rule combinations of depth-2 for NM.

20874



Rule

Examples

Rule: d3_1

Assumptions:

1: A and B are objects of type T and have property S.

2: Normally objects of type T with property S have property U.
3: if A has property U implies C has property D

4: if C has property D implies E has property F

Question 1:

Can we conclude if E does not have F then B has U? (YES)
Question 2:

Can we conclude if E does not have F then B does not have U?
(NO)

Context: Smartphone A and Smartphone B both have GPS technology.
Normally, smartphones with GPS technology also have internet
connectivity. If smartphone A has internet connectivity, then Mike can
access online maps. If Mike can access online maps, then Emily can get
driving directions from Mike.

Question 1: Can we conclude if Emily can not get driving di-
rections from Mike, then smartphone B has internet connectivity? (Yes)
Question 2: Can we conclude if Emily can not get driving directions
from Mike, then smartphone B does not have internet connectivity? (No)

Rule: d3_2

Assumptions:

A and B are objects of type T and have property S.

: Normally objects of type T with property S have property U.
: if C has property G implies C has property D

: if A has property U implies E has property F

: either C has property G or E does not have property F or both

DA W =

Question 1:

Can we conclude if C does not have D then B has U? (YES)
Question 2:

Can we conclude if C does not have D then B does not have U?
(NO)

Context: Car A and car B are electric vehicles. Normally, electric
vehicles (cars) have fast-charging capabilities. If car C is a hybrid, then
car C has good fuel efficiency. If car A has a fast-charging capability,
then it implies that the environment is very eco-friendly. Either car C is a
hybrid or the environment is not very eco-friendly, or both.

Question 1: Can we conclude if car C is not a good fuel effi-
cient then Car B has a fast-charging capability? (Yes)
Question 2: Can we conclude if car C is not a good fuel efficient then
Car B does not have a fast-charging capability? (No)

Table 17: Natural language examples of rule combinations of depth-3 for NM.

Rule

Examples

Rule: d4_1

Assumptions:

: A and B are objects of type T and have property S.

: Normally objects of type T with property S have property U.
: if C has property G implies C has property D

: if E has property L implies E has property F

: either C has property G or E has property F or both

: if A has property U then E has property L

[ I O R S

Question 1:

Can we conclude if C does not have D then B has U? (YES)
Question 2:

Can we conclude if C does not have D then B does not have U?
(NO)

Context: Apple tree and Orange tree are fruit trees. Normally, fruit
trees produce edible fruit. If Garden is regularly watered, then its plants
are flourishing. If Orchard receives enough sunlight, then it yields
high-quality fruit. Either Garden has regular watering or Orchard yields
high-quality fruit or both. If the apple tree produces edible fruit, then
Orchard receives enough sunlight.

Question 1: Can we conclude if Garden does not have flourish-
ing plants then the orange tree produces edible fruit? (Yes)

Question 2: Can we conclude if Garden does not have flourishing plants
then the orange tree does not produce edible fruit? (No)

Rule: d4_2

Assumptions:

A and B are objects of type T and have property S.

: Normally objects of type T with property S have property U.

: if C has property G implies C has property D

: if E has property L implies E has property F

5: either C does not have property D or E does not have property
F or both

6: if A has property U then E has property L

W N

&~

Question 1:

Can we conclude if C has property G then B has U? (YES)
Question 2:

Can we conclude if C does not have G then B does not have U?
(NO)

Context: Assume A and B are plants of species T and they both produce
flowers. Normally, flowering plants of species T also bear fruit. If
an animal C is a bird, then it can fly. If an environment has a lot of
sunlight, then it supports plant growth. Either the bird cannot fly or the
environment does not support plant growth or both. If plant A bears fruit,
then the environment has a lot of sunlight.

Question 1:

Can we conclude if the bird is capable of flying then plant B bears fruit?
(Yes)

Question 2:

Can we conclude if the bird can fly then plant B does not bear fruit? (No)

Table 18: Natural language examples of rule combinations of depth-4 for NM.
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Rule Examples

Rule: d5_1
Assumptions: Context: Rose and Lily are plants that flower. Normally, plants that
1: A and B are objects of type T and have property S. flower also produce seeds. If a plant is a Cactus, and it has thorns, then it
2: Normally objects of type T with property S have property U. can survive in the desert. If a plant is an Orchid, and it has broad leaves,
3: if C has property G implies C has property D then it can grow in tropical areas. Either a Cactus has thorns, or an
4: if E has property L implies E has property F Orchid can grow in tropical areas, or both. If a Lotus has flowers, then
5: either C has property G or E has property F or both an Orchid has broad leaves. If a Rose produces seeds, then a Lotus has
6: if T has property H then E has property L flowers.
7: if A has property U then I has property H
Question 1:
Can we conclude if a Cactus cannot survive in the desert then a Lily
Question 1: produces seeds? (YES)
Can we conclude if C does not have D then B has U? (YES) Question 2:
Question 2: Can we conclude if a Cactus cannot survive in the desert then a Lily does
Can we conclude if C does not have D then B does not have U? | not produce seeds? (NO)
(NO)
Table 19: Natural language examples of rule combinations of depth-5 for NM.
Rule:
Assumptions:

1: A and B are objects of type T and have property P.

2: Normally objects of type T with property P have property Q.
3: A does not have property Q.

4: If B has property Q then it implies B has property C.
Question: Can we conclude B has property C?

Task 1:

Generate a short generic story that should only contain the natural
language sentences for assumptions 1, 2, 3, and 4 using propositions to
replace the labels A, B and so on.

The story should not include labels like p or q and so on.

Task 2:
Generate the question by replacing them with the entities with respective propositions.

Table 20: An example of prompt used to generate data instance for depth-2 using NM-BDR and PL-MP
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Rule: d3_1

Assumptions:

1: A and B are objects of type T and have property S.

2: Normally objects of type T with property S have property U.
3: if A has property U implies C has property D

4: if C has property D implies E has property F

Question 1:
Can we conclude if E does not have F then B has U? (YES)

Question 2:
Can we conclude if E does not have F then B does not have U? (NO)

Task 1: Generate a short context paragraph by replacing all the entity labels A, B,

and so on in the above context with propositions and real entities. The generated context
should have natural language sentences for all the sentences 1-4. It should not

include label representations like A or B and should not mention the words "property".

Task 2: Generate questions 1 and 2 by replacing the respective labels from the generated context.

Example 1:

Assumptions:

Smartphone A and Smartphone B both have GPS technology.

Normally, smartphones with GPS technology also have internet connectivity.

If smartphone A has internet connectivity, then Mike can access online maps.

If Mike can access online maps, then Emily can get driving directions from Mike.

Question 1:
Can we conclude if Emily can not get driving directions from Mike,
then smartphone B has internet connectivity?

Question 2:
Can we conclude if Emily can not get driving directions from Mike,
then smartphone B does not have internet connectivity?

Table 21: An example of prompt used to generate data instance for depth-3 for NM
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Rule: d4_1

Assumptions:

: A and B are objects of type T and have property S.

: Normally objects of type T with property S have property U.
: if C has property G implies C has property D

: if E has property L implies E has property F

: either C has property G or E has property F or both

: if A has property U then E has property L

AN N BN =

Question 1:
Can we conclude if C does not have D then B has U? (YES)

Question 2:
Can we conclude if C does not have D then B does not have U? (NO)

Task 1: Generate a short context paragraph by replacing all the entity labels A, B,

and so on in the above context with propositions and real entities. The generated context
should have natural language sentences for all the sentences 1-4. It should not

include label representations like A or B and should not mention the words "property".

Task 2: Generate questions 1 and 2 by replacing the respective labels from the generated context.

Example 1:

Assumptions:

Apple tree and Orange tree are fruit trees.

Normally, fruit trees produce edible fruit.

If Garden is regularly watered, then its plants are flourishing.

If Orchard receives enough sunlight, then it yields high-quality fruit.

Either Garden has regular watering or Orchard yields high-quality fruit or both.
If the apple tree produces edible fruit, then Orchard receives enough sunlight.

Question 1: Can we conclude if Garden does not have flourishing
plants then the orange tree produces edible fruit?

Question 2: Can we conclude if Garden does not have flourishing
plants then the orange tree does not produce edible fruit?

Table 22: An example of prompt used to generate data instance for depth-4 for NM

20878



Rule: d5_1

Assumptions:

. A and B are objects of type T and have property S.

: Normally objects of type T with property S have property U.
: if C has property G implies C has property D

: if E has property L implies E has property F

: either C has property G or E has property F or both

: if I has property H then E has property L

: if A has property U then I has property H

N O N AW~

Question 1:
Can we conclude if C does not have D then B has U? (YES)

Question 2:
Can we conclude if C does not have D then B does not have U? (NO)

Task 1: Generate a short context paragraph by replacing all the entity labels A, B,

and so on in the above context with propositions and real entities. The generated context
should have natural language sentences for all the sentences 1-4. It should not

include label representations like A or B and should not mention the words "property".

Task 2: Generate questions 1 and 2 by replacing the respective labels from the generated context.

Example 1:

Assumptions:

Rose and Lily are plants that flower.

Normally, plants that flower also produce seeds.

If a plant is a Cactus, and it has thorns, then it can survive in the desert.

If a plant is an Orchid, and it has broad leaves, then it can grow in tropical areas.
Either a Cactus has thorns, or an Orchid can grow in tropical areas, or both.

If a Lotus has flowers, then an Orchid has broad leaves.

If a Rose produces seeds, then a Lotus has flowers.

Question 1: Can we conclude if a Cactus cannot survive
in the desert then a Lily produces seeds? (YES)

Question 2: Can we conclude if a Cactus cannot survive
in the desert then a Lily does not produce seeds? (NO)

Table 23: An example of prompt used to generate data instance for depth-5 for NM

Models ‘ Propositional ‘ First-Order Non-Monotonic

| di | do | ds | ds | d5 | & | d2 | ds | dy | d v | dy | ds | ds | ds

ChatGPT | 96.67 | 82.86 | 77.78 | 79.17 | 80.00 | 94.44 | 86.67 | 84.44 | 64.17 | 64.44 | 45.63 | 41.67 | 57.50 | 65.00 | 45.00
Gemini 9222 | 73.33 | 81.48 | 88.33 | 77.78 | 90.00 | 83.81 | 81.48 | 76.67 | 57.78 | 59.38 | 42.78 | 75.00 | 62.50 | 75.00
Yi-34B 68.89 | 61.90 | 66.67 | 64.17 | 64.44 | 76.67 | 61.90 | 62.96 | 45.00 | 51.11 | 59.38 | 33.33 | 52.50 | 52.50 | 50.00

Orca-13B | 85.56 | 80.00 | 72.59 | 75.83 | 68.89 | 91.11 | 73.33 | 63.70 | 55.00 | 42.22 | 56.88 | 46.67 | 60.00 | 50.00 | 50.00

GPT-4 90.00 | 85.71 | 84.44 | 79.17 | 73.33 | 97.78 | 84.76 | 73.33 | 68.33 | 73.33 | 54.38 | 56.11 | 75.00 | 90.00 | 75.00
Mistral-7B | 80.00 | 64.76 | 71.11 | 73.33 | 66.67 | 93.33 | 71.43 | 62.96 | 62.50 | 42.22 | 37.50 | 36.11 | 45.00 | 57.50 | 70.00

Avg | 84.22 | 75.05 | 74.52 | 74.33 | 70.67 | 90.67 | 75.62 | 69.48 | 59.00 | 54.66 | 50.75 | 42.78 | 60.83 | 62.92 | 60.83

Table 24: Few-shot Evaluation of LLMs in terms of accuracy on Multi-LogiEval.
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