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Abstract

Instruction tuning has been proven effective in
enhancing zero-shot generalization across vari-
ous tasks and in improving the performance
of specific tasks. For task-specific improve-
ments, strategically selecting and training on
related tasks that provide meaningful super-
vision is crucial, as this approach enhances
efficiency and prevents performance degrada-
tion from learning irrelevant tasks. In this light,
we introduce a simple yet effective task selec-
tion method that leverages instruction informa-
tion alone to identify relevant tasks, optimiz-
ing instruction tuning for specific tasks. Our
method is significantly more efficient than tra-
ditional approaches, which require complex
measurements of pairwise transferability be-
tween tasks or the creation of data samples for
the target task. Additionally, by aligning the
model with the unique instructional template
style of the meta-dataset, we enhance its abil-
ity to granularly discern relevant tasks, lead-
ing to improved overall performance. Experi-
mental results demonstrate that training on a
small set of tasks, chosen solely based on the in-
structions, results in substantial improvements
in performance on benchmarks such as P3,
Big-Bench, NIV2, and Big-Bench Hard. Sig-
nificantly, these improvements surpass those
achieved by prior task selection methods, high-
lighting the superiority of our approach.1

1 Introduction

Recently, instruction tuning has gained attention
as an innovative approach for improving zero-shot
performance (Sanh et al., 2022; Wei et al., 2022;
Wang et al., 2022; Ouyang et al., 2022; Taori et al.,
2023; Chiang et al., 2023). This method offers the
advantage of improving a model’s generalization
capabilities to unseen tasks by training on diverse
tasks accompanied by instructions. The robustness

∗ Equal contribution.
1Code, model checkpoints, and data resources are available

at https://github.com/CHLee0801/INSTA.

of instruction tuning improves as the diversity of
training tasks increases (Sanh et al., 2022; Wang
et al., 2022; Longpre et al., 2023; Chung et al.,
2022). In this light, recent studies have concen-
trated on broadening the diversity and increasing
the number of tasks within the meta-dataset (Tri-
antafillou et al., 2020) used for instruction tuning
(Wang et al., 2022; Chung et al., 2022; Wang et al.,
2023c; Yin et al., 2023; Lee et al., 2023).

Besides applying instruction tuning for general
unseen tasks, there is also growing interest in in-
struction tuning as a methodology to improve the
performance of specific unseen tasks (Wang et al.,
2023a; Zhang et al., 2023; Feng et al., 2023). In-
struction tuning focuses on specific tasks and trains
not all but only informative tasks with instruction
format. This strategy is based on the insight that
not all tasks are helpful to specific tasks, and some
tasks could even lead to performance degradation
due to negative transfer during multi-task train-
ing (Muennighoff et al., 2023; Wang et al., 2023b;
Zhou et al., 2023; Jang et al., 2023; Kim et al.,
2023a; Shi et al., 2023). However, selecting rele-
vant tasks for training presents a significant chal-
lenge. First, manually reviewing through the vast
array of datasets for instruction tuning is not feasi-
ble. Additionally, discerning the relevance of cer-
tain tasks in the training dataset to the target task is
often ambiguous.

To address this challenge, studies have been con-
ducted to automatically quantify the relevance be-
tween tasks (Lin et al., 2022; Ye et al., 2022; Jang
et al., 2023; Paranjape et al., 2023; Kim et al.,
2023a). These methods are primarily divided into
two categories. The first assesses pairwise task
transferability by training models on one task and
evaluating their performance on another (Vu et al.,
2020a; Poth et al., 2021a; Zhou et al., 2023; Kim
et al., 2023a). The second calculates similarity
scores between tasks by comparing small samples
from each task’s dataset (Lin et al., 2022; Ye et al.,
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2022; Jang et al., 2023; Paranjape et al., 2023).
However, the former approach, which measures
pairwise transfer for every task, can be exceedingly
time-consuming and compute-intensive. Moreover,
the latter approach still necessitates the construc-
tion of data for unseen target tasks, which not only
introduces additional burdens but also does not
fully align with the fundamental goal of instruction
tuning, which is to enhance zero-shot capabilities.

In this study, we explore a straightforward yet
effective method for choosing relevant tasks for op-
timized instruction tuning. We focus on the feature
of instruction tuning, where the instructions2 de-
fine the characteristics of each task. Building upon
this, we introduce an Instruction-based Task se-
lector (INSTA) that leverages instruction similarity
scores to determine task relevance and select in-
formative tasks for training. Through experiments,
we discover that this simplified instruction-only se-
lection method adequately identifies related tasks
and significantly improves performance. Moreover,
by further aligning INSTA through training on the
instruction style and format of a meta-dataset, it is
able to closely understand the instructional nuances,
achieving significant performance improvements.

A notable finding from our study is that task
selection based exclusively on instructions sur-
passes previous sample-based methods (Lin et al.,
2022; Ye et al., 2022; Jang et al., 2023; Paranjape
et al., 2023) that employ both instructions and in-
stances. Moreover, instruction information alone
shows a high correlation with task similarity as
determined by complex pairwise transfer methods
(Zhou et al., 2023) and even achieves slightly better
average zero-shot performance. This indicates that
the instruction-based approach for selecting related
tasks is not only easily applicable but also highly
effective.

In summary, our contributions are as follows:

• We introduce an instruction-based task se-
lection method for optimized instruction tun-
ing. This method efficiently identifies relevant
tasks without the extensive computation and
data construction as in previous approaches.

• By aligning INSTA with the instruction styles
and formats of meta-datasets, we significantly
improve performance, demonstrating the im-

2Following Sanh et al. (2022); Wei et al. (2022); Wang
et al. (2022), instruction means prompt, template, and task
description without instance.

portance of understanding instructional nu-
ances in instruction-based task selection.

• Extensive experiments and comprehensive
analyses across various benchmarks validate
the superiority of our methodology, showcas-
ing its enhanced efficiency, effectiveness, and
practical applicability compared to previous
methods.

2 Related Work

2.1 Instruction Tuning: Generalist or
Specialist

Instruction tuning shows remarkable zero-shot per-
formance on unseen tasks by training models on
various tasks integrated with corresponding instruc-
tions. This approach can be broadly categorized
into two main streams: instruction tuning as a gen-
eralist, which aims to perform well across various
unseen tasks (Wei et al., 2022; Sanh et al., 2022;
Wang et al., 2022; Ouyang et al., 2022; Taori et al.,
2023; Chiang et al., 2023), and instruction tuning
as a specialist, which focuses on excelling in spe-
cific tasks rather than achieving proficiency across
all tasks (Wang et al., 2023a; Feng et al., 2023;
Asai et al., 2023), as denoted by previous research
(Shi et al., 2023).

According to Kung and Peng (2023), instruction
tuning as a generalist can be categorized based on
its objectives: generalizing to "unseen tasks" and
generalizing to "unseen instructions". Early stud-
ies propose the approach of generalizing to unseen
tasks, which involves training on various natural
language processing (NLP) tasks and evaluating on
unseen tasks (Wei et al., 2022; Sanh et al., 2022;
Wang et al., 2022). However, the task-based ap-
proach to instruction tuning faces limitations as it
is challenging to define all instructions as corre-
sponding tasks, making it difficult to generalize to
diverse, user-oriented instructions. In response, a
methodology that trains LLMs on diverse instruc-
tions without clear task boundaries has been pro-
posed, aiming to generalize to unseen instructions
rather than unseen tasks (Ouyang et al., 2022; Taori
et al., 2023; Chiang et al., 2023).

Recent trends have seen the emergence of re-
search focusing on enhancing the zero-shot capa-
bilities of specific tasks through instruction tuning
(Zhang et al., 2023; Wang et al., 2023a; Feng et al.,
2023). Instead of learning all tasks, the model se-
lectively learns tasks related to the target task in
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instruction format, aiming to perform well on spe-
cific target tasks. Notably, Shi et al. (2023) demon-
strates that training exclusively on tasks related to
a specific target task outperforms the instruction
tuning as a generalist in terms of performance.

2.2 Quantifying Task Relationship

Research on understanding which tasks can be help-
ful for other tasks has been extensively conducted
across various fields. Vu et al. (2020b); Poth et al.
(2021b); Pruksachatkun et al. (2020) calculate inter-
mediate task transfer scores to discern the relation-
ships between tasks, aiming to determine beneficial
tasks to train the model before fine-tuning on spe-
cific target tasks. Additionally, Vu et al. (2022);
Su et al. (2022) measure tasks that are helpful in
parameter-efficient tuning through prompt transfer.

The research on identifying task relationships
has been extended to the field of instruction tuning
as well. Zhou et al. (2023); Kim et al. (2023a) mea-
sure pairwise task transfer between every task pair
to identify helpful source tasks on specific target
tasks. On the other hand, Jang et al. (2023); Paran-
jape et al. (2023) have calculated task similarity
using only a few data samples from training and
evaluation tasks instead of training and evaluating
every task pair individually.

Previous task selection approaches, which au-
tomatically measure task similarities, are time-
consuming because they require training and eval-
uating every task pair or still rely on the avail-
ability of data samples. Our method simplifies
this process by evaluating task relationships solely
through instructions, eliminating the need for labo-
rious measurements across every task or generating
test data. For more detailed descriptions of our
method’s practicalities and efficiency compared to
prior works, please refer to Appendices A and B.

3 Instruction-based Task Selector
(INSTA)

To enhance the zero-shot capability of LLMs for
specific target tasks, we select informative tasks
that positively impact the performance of the target
task. Our task selection method exclusively relies
on instruction information to assess the relevance
between tasks, which is efficient as it removes the
necessity of measuring correlations between all
training and evaluation task pairs. Furthermore, un-
like previous methods, our approach has the advan-
tage of easy applicability with just the instruction

(task description) of the target task, without the
need for constructing data samples for the target
task.

3.1 Formulation

The meta-dataset M consists of multiple task clus-
ters C and each task cluster comprises several tasks
T with the same task type. Each task T includes
various instructions I and corresponding instances.
We aim to find tasks related to the target task T̄.
To identify tasks related to the target task T̄, we
measure instruction-based task similarity score as
follows:

Score(I T̄i , I
T
j ) = cos(E (I T̄i ),E (ITj )) (1)

where I T̄i denotes the ith instruction of the target
task T̄ , and ITj denotes the jth instruction of some
arbitrary task T ∈ M chosen for similarity as-
sessment. For measuring similarity, we employ co-
sine similarity, and for the embedding function E,
we utilize the Sentence Transformer (Reimers and
Gurevych, 2019) as an off-the-shelf embedding
model, following Jang et al. (2023). For more spe-
cific details, please refer to the Appendix D.

3.2 Aligning Instruction-based Task Selector
with Meta-dataset

The off-the-shelf embedding model often lacks the
capability to accurately identify related tasks based
on instructions, as it is not trained in the unique
instruction styles present in meta-datasets. To miti-
gate this issue, our approach includes an additional
aligning process that fine-tunes our selector model
to adapt to the distinctive instruction styles of each
meta-dataset. For training, we select a random in-
struction from the same task as the given instruc-
tion as a positive sample and designate instructions
from different task clusters as negative samples.3

The training objective is as follows:

L(Ii, Ij , y) = (y − Score(Ii, Ij))
2 (2)

where y ∈ {0, 1} denotes the truth label of a given
instruction pair (Ii, Ij). y = 1 indicates that Ij is in
same task; otherwise, y = 0. The similarity score is
measured using Equation 1.

3The rationale behind not utilizing task instructions from
the same task cluster as positive or negative samples is twofold:
in the former case, even though tasks may have the same task
type, they can still be clearly differentiated, and in the latter
case, false negatives may occur, even within the same task
type.
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3.3 Multi-task Selection for Instruction
Tuning

To efficiently perform instruction tuning for a spe-
cific target task, we select the most relevant training
tasks by employing an INSTA model as detailed
in Section 4.3. In this process, for each instruction
I T̄i of the unseen target task T̄ , we compute the
similarity scores with every instruction ITj across
all tasks T in the training set, as defined by Equa-
tion 1. Based on these computed scores, we then
select the top-k tasks T that exhibit the highest
degrees of similarity. This selection mechanism is
encapsulated by the following formula:

k-argmaxT
{
Score(I T̄i , I

T
j ) ,∀i, j

}
(3)

where the "k-argmax" operation in the formula sig-
nifies selecting the top-k tasks that have the highest
scores.

4 Experimental Setup

4.1 Dataset
We conduct experiments on two representative in-
struction tuning meta-datasets: P3 (Public Pool of
Prompts) (Sanh et al., 2022; Bach et al., 2022) and
NIV2 (SuperNaturalInstructions V2) (Wang et al.,
2022). P3 is a meta-dataset comprised of 12 task
clusters. It contains a total of 35 tasks across 8 task
clusters for training and 11 tasks across 4 task clus-
ters for held-out evaluation. Note that each task
in P3 includes 11.7 instructions on average. Con-
versely, NIV2 encompasses 72 task clusters of En-
glish tasks. The training set comprises a total of
756 tasks across 60 clusters, while the held-out
evaluation tasks include 119 tasks across 12 task
clusters. In the case of NIV2, each task consists
of a single instruction. We additionally evaluate
BIG-Bench (bench authors, 2023) and BIG-Bench
Hard (BBH) (Suzgun et al., 2023) as supplementary
evaluation datasets. For more detailed information,
please refer to Table 1 and Appendix F.1.

4.2 Task Selector Setup
P3 consists of an average of 11.7 instructions
per task. In P3, there are some instructions that
are designed to diversify task types in a single
dataset4, and we exclude such instructions from
selector training since they may hinder the selec-
tion of relevant tasks. Furthermore, instructions

4For example, "generating documents from its summary"
for summarization task.

Statistics P3 NIV2

# of training tasks 35 756
# of training task clusters 8 63
Avg. # of instructions (per task) 8.45 1(+1)
Max # of training instance (per task) 50,000 5,000
# of selected task for training 5 70

# of evaluation tasks 11 33
# of evaluation task clusters 4 12
Additional evaluation Big-Bench BBH
# of additional evaluation tasks 14 27
Evaluation metric ACC ROUGE-L

Table 1: Statistics of P3 and NIV2. (+1) in Avg. # of
instructions for NIV2 represents GPT-4 augmented in-
struction.

for P3 tasks include unique placeholders5. These
placeholders could act as misleading shortcuts and
may negatively influence training. Therefore, we
have standardized them to {{text}} and {{candi-
date}} for input snippets and label space, respec-
tively. Please refer to the Appendix F.2 for more
detail about P3 instruction formulation.

NIV2 instructions feature human-crafted, human-
readable Task Definition, Positive Task Examples,
Negative Task Examples, and Explanation. We uti-
lize the Task Definition for training the task selec-
tor. Moreover, since NIV2 has only one instruction
per task, there are no positive samples for train-
ing the task selector. To address this, we generate
instructions for all NIV2 tasks using GPT-4 (Ope-
nAI, 2023). Specifically, we generate a paraphrased
one and employ it as a positive sample for train-
ing the task selector. For more information about
a query used for GPT-4 API calls and generated
instructions, please refer to the Appendix G.1.

4.3 Training Setup
Following previous studies (Sanh et al., 2022;
Wang et al., 2022), we employ all tasks, exclud-
ing those held out for evaluation, as our training
set. In contrast to traditional approaches that train
on all tasks, our strategy specifically trains only
the top-k tasks considered the most informative for
each target task.

For the P3, we select the top-5 highest scor-
ing training tasks out of 35 tasks for each target
task. For each training, we randomly sample 50k
instances for each training task, totaling 250k in-
stances. Unlike the P3, each task in NIV2 has only

5{{-}} represents placeholder in the instruction. An ex-
ample instruction from the WiC task: "Does the word
{{word}} have the same meaning in these two sentences?
Yes, No?\n{{sentence1}}\n{{sentence2}}.
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Method NLI Sentence Completion Coref. Resol. WSD Total Avg.
RTE CB AN. R1 AN. R2 AN. R3 COPA Hellasw. StoryC. Winogr. WSC WiC

T0-11B 80.83 70.12 43.56 38.68 41.26 90.02 33.58 92.40 59.94 61.45 56.58 60.77
GPT-3(175B) 63.50 46.40 34.60 35.40 34.50 91.00 78.90 83.20 70.20 65.40 45.92 59.00

T5(3B) 54.37 36.73 33.13 33.67 32.83 60.13 23.35 46.30 50.29 41.35 50.80 41.61
T0-3B 60.61 44.64 35.17 33.37 33.55 74.75 27.42 84.82 50.84 63.22 51.21 50.87
T5(3B) + Random 53.07 44.13 33.13 33.61 34.02 62.38 27.92 51.48 51.66 41.35 50.58 43.94
T5(3B) + Pairwise Transfer 64.95 58.42 39.17 35.90 41.73 90.13 30.59 97.37 60.19 63.70 54.33 57.86
T5(3B) + PE W/ ROE 64.01 43.57 35.49 34.64 31.22 79.25 34.60* 86.33 61.60 62.21 52.97 53.26
T5(3B) + INSTA 73.86 55.10 36.82 34.77 35.27 91.00 27.63 94.10 55.26 56.13 52.84 55.70
T5(3B) + INSTAAligned-P3 77.87 56.89 38.28 36.30 37.18 92.50 31.40 95.86 56.37 64.42 50.61 57.97

Table 2: Evaluation performance on P3 datasets. We report the performance of 11 different unseen datasets
categorized into 4 task categories. We select top-5 datasets from pairwise transfer results from Zhou et al. (2023) for
T5(3B) + Pairwise Transfer model, which measured transferability from every source task to every target task. PE
W/ ROE represents Prompt Experts with Retrieval of Experts (RoE) from (Jang et al., 2023). Note that Hellaswag*
performance from Jang et al. (2023) includes auxiliary tasks, showing comparably higher performance. The best
comparable performances are bolded and second best underlined.

Dataset (metric)
T0 Cos PE

T5(3B) +
T0 GPT-3 PaLM

INSTA

3B 3B Aligned-P3 11B 175B 540B

Known Un. 50.00 58.70 65.22 65.22 60.87 56.52
Logic Grid 32.90 30.70 35.40 33.67 31.20 32.10
Strategy. 53.06 42.36 55.50 54.67 52.30 64.00
Hindu Kn. 35.43 51.43 58.29 42.86 32.57 56.00
Movie D. 52.84 46.72 52.48 57.33 51.40 49.10
Code D. 43.33 66.67 51.67 51.67 31.67 25.00
Concept 63.18 72.82 78.34 71.72 26.78 59.26
Language 15.08 25.95 21.31 18.33 15.90 20.10
Vitamin 61.28 46.55 64.77 57.33 12.30 14.10
Syllogism 51.08 50.00 50.94 48.33 50.50 49.90
Misconcept. 52.05 47.03 53.42 52.97 47.95 47.47
Logical 43.18 42.40 46.06 54.67 23.42 24.22
Winowhy 44.29 44.33 44.33 55.00 51.50 45.30
Novel Con. 21.88 - 25.00 28.13 46.88 46.88

BIG-bench AVG 44.26 48.13* 50.20 51.06 37.57 41.77

Table 3: Evaluation performance on 13 BIG-bench tasks.
COS PE represents the PE trained on COSMOS-QA from
Jang et al. (2023). Note that the average performance
of COS PE excludes the score for NOVEL CONCEPTS
since it is not publicly available. The best comparable
performances are bolded and second best underlined.

one instruction, and data instances are limited to
6.5k. Considering this difference, we select top-
70 tasks out of 756 tasks for each target task and
randomly sample up to 5k instances for each task,
which ends up with 350k instances in total. These
training quantities are significantly smaller than the
2M instances of T0 (Sanh et al., 2022) and 5.7M
instances of Tk-INSTRUCT (Wang et al., 2022),
which correspond to the instruction-tuned models
on P3 and NIV2, respectively.

We use the T5 LM-adapted model(3B) (Lester
et al., 2021) as our base model and train for 3
epochs with a constant learning rate of 1e-4 and 5e-
5 for P3 and NIV2, respectively. We configure vali-
dation from training datasets and select the model
that shows the best performance in the validation.

Our experiment is in a true zero-shot setting, where
no samples from the held-out task are used for
checkpoint selection. Please refer to the Appendix
E for more detail.

Models For the P3 dataset, we use the follow-
ing baselines. GPT-3(175B) is an autoregressive
LM that has shown remarkable ability in following
demonstrations provided in its instructions (Brown
et al., 2020). T0-11B / T0-3B have same architec-
ture as T5 but trained on millions of samples from
35 different P3 tasks (Sanh et al., 2022). T5(3B)
is text-to-text pretrained LM without instruction
tuning (Raffel et al., 2020). T5(3B) + Random is
trained on 5 random tasks from P3. T5(3B) + Pair-
wise Transfer is trained on top-5 tasks with the
highest transferability scores demonstrated in Zhou
et al. (2023), representing pairwise transfer task se-
lection. T5(3B) + PE W/ROE denotes a model that
selects relevant tasks by measuring cosine similar-
ity between training and evaluation data samples
(Jang et al., 2023).

For NIV2, we set Tk-INSTRUCT-3B as our base-
line, which has the same architecture as T5-3B but
trained on millions of samples from 756 different
NIV2 tasks.

Finally, to demonstrate the effectiveness of
instruction-based task selection, we introduce the
following model variants:

• T5(3B) + INSTA: Model trained on selected
top-k tasks by INStruction-based TAsk Selec-
tor (Off-the-shelf embedding model).

• T5(3B) + INSTAAligned-P3/NIV2: Models
trained on selected top-k tasks by further
aligned INSTA on instructions from P3 and
NIV2, respectively.
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Figure 1: Evaluation performance on NIV2 datasets. We report the performance of 33 different tasks from 12
different task clusters, and the average performance of Tk-INSTRUCT-3B and T5(3B) + INSTAAligned-NIV2. We use a
Tk-INSTRUCT model trained on [Def + Pos(2)] setting.

Dataset (metric) Tk-INSTRUCT-3B
T5(3B) +

INSTAAligned-NIV2

Boolean Expressions 54.00 63.20
Causal Judgement 58.29 58.29
Date Understanding 26.00 33.20
Disambiguation QA 44.00 53.80
Dyck Languages 0.00 0.00
Formal Fallacies 53.60 53.80
Geometric Shapes 0.24 9.20
Hyperbaton 48.40 49.60
Logical Deduction Three Objects 13.51 47.20
Logical Deduction Five Objects 17.71 31.6
Logical Deduction Seven Objects 16.23 30.00
Movie Recommendation 23.20 60.40
Multistep Arithmetic 0.55 3.60
Navigate 58.00 53.60
Object Counting 35.60 38.40
Penguins in a Table 28.76 24.66
Reasoning about Colored Objects 24.80 29.40
Ruin Names 29.60 28.40
Salient Translation Error Detection 14.00 28.80
Snarks 46.63 57.30
Sports Understanding 52.80 52.80
Temporal Sequences 18.80 20.80
Tracking Shuffled Objects (3) 32.40 33.20
Tracking Shuffled Objects (5) 17.20 14.80
Tracking Shuffled Objects (7) 13.20 12.00
Web of Lies 51.60 55.60
Word Sorting 44.79 44.88

BBH Average 30.52 36.61

Table 4: Evaluation performance on BigBench-
Hard(BBH) tasks. We generate instruction (Task Defi-
nition) of each task using GPT-4 API. The query used
for GPT-4 API and all the generated instructions are
presented in the Appendix G.2 The best comparable
performances are bolded.

4.4 Evaluation Setup

For P3 evaluation, following the evaluation method
from Sanh et al. (2022), we apply rank classifica-
tion and measure the model’s performance on every
instruction of the target task. We then calculate the
average performance for the task. Note that each
target task in P3 has 10.09 instructions on average.
For NIV2 evaluation, we follow the same evalua-

tion protocol as in Wang et al. (2022) and report
ROUGE-L (Lin, 2004) score. We adopt greedy de-
coding with a maximum generation length of 256.

5 Result

5.1 P3 Results

Table 2 shows experimental results on the 11 un-
seen datasets from P3. Compared to T0-3B, which
is fully instruction-tuned on all 35 tasks from P3,
the T5(3B) + Random model shows inferior per-
formance, but both T5(3B) + INSTA model and
T5(3B) + INSTAAligned-P3 model outperform 10
tasks out of 11 tasks, with each exhibiting a per-
formance gap of 4.83% and 7.10% on average, re-
spectively. They also show superior performance
compared to T5(3B) + PE W/ ROE, highlighting
the instruction itself is sufficient enough to choose
informative tasks without the use of data samples.
Moreover, T5(3B) + INSTAAligned-P3 outperforms
T5(3B) + INSTA across 10 tasks, suggesting further
aligning task selector on instructions from the meta-
dataset increases the precision of task selection.
Additionally, our approach exhibits marginally su-
perior performance compared to T5(3B) + Pairwise
Transfer, suggesting that instruction-only task se-
lection can effectively identify related tasks with-
out the need for exhaustive pairwise evaluations.
Notably, we observe a strong correlation between
pairwise task transferability and our task selection
approach, further elaborated in Appendix H.

5.2 Big-Bench Results

Table 3 evaluates the performance of instruction-
based task selection on the 14 Big-Bench tasks em-
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Method NLI Sentence Completion Coref. Resol. WSD Total Avg.
RTE CB AN. R1 AN. R2 AN. R3 COPA Hellasw. StoryC. Winogr. WSC WiC

T0-3B 60.61 44.64 35.17 33.37 33.55 74.75 27.42 84.82 50.84 63.22 51.21 50.87
T5(3B) + DSTA 54.44 55.36 35.41 33.99 34.14 73.63 29.97 94.27 54.68 39.54 51.36 50.62
T5(3B) + INSTA 73.86 55.10 36.82 34.77 35.27 91.00 27.63 94.10 55.26 56.13 52.84 55.70

Table 5: Comparison between Data Sample-based Task Selector(DSTA) and Instruction-based Task Selector
(INSTA). The best comparable performances are bolded and second best underlined.

ploying P3 held-in tasks in Section 5.1 as the train-
ing dataset. We compare our method to baselines
T0-3B and T5(3B) + COS PE of Jang et al. (2023).
Our model, T5(3B) + INSTAAligned-P3, surpasses
T0-3B in 12 out of 14 tasks, achieving an average
performance increase of 5.94%. Tasks like Movie
D. and Syllogism, where results are comparable to
random guesses, indicate informative tasks are in-
sufficient in P3. When compared to COS PE (Jang
et al., 2023), our T5(3B) + INSTAAligned-P3 model
shows improvements in most tasks, with an average
increase of 2.07%. Notably, it also surpasses T0-
11B in a majority of tasks. These findings demon-
strate that instruction-based task selection enables
more effective training even with a small number
of tasks.

5.3 NIV2 Results

Figure 1 illustrates the experimental results for 33
tasks within NIV26. We adhere to [Def + Pos(2)]
setting in NIV2, which includes Task Definition and
two Positive Task Examples in the instruction, but
note that we only use Task Definition for task selec-
tion. The precise input format utilized for training
and evaluation is elaborated in the Appendix F.3.

The experimental result reveals our T5(3B) +
INSTAAligned-NIV2 surpasses the baseline in most
tasks, highlighting the efficacy of our method in
NIV2 meta-dataset. We observe notable improve-
ments in performance for specific tasks, such as
TASK614, TASK1385, and TASK1388. This sug-
gests that training all tasks could lead to perfor-
mance degradation in certain tasks. However, train-
ing informative tasks selected by our method can
alleviate this problem.

5.4 Big-Bench Hard Results

To further validate the effectiveness of our ap-
proach, we assess our T5(3B) + INSTAAligned-NIV2
model on 27 BBH tasks. This model is trained on
the top-70 tasks chosen from 756 NIV2 tasks. In

6Though NIV2 has 12 task clusters and 119 tasks for eval-
uation, we randomly select up to 3 tasks per task cluster due
to computational cost.

contrast to Section 5.3, we adopt the Tk-INSTRUCT-
3B [Def ] setting as our baseline due to the lack of
Positive Task Examples in the BBH datasets. More-
over, given the absence of Task Definition for the
BBH tasks, we utilize the GPT-4 API to generate
definition for each task.

Consistent with results highlighted in Section
5.3, we observe performance enhancements across
most tasks. Tasks such as Movie Recommenda-
tion, which exhibit suboptimal performance with
Tk-INSTRUCT-3B, demonstrate enhanced perfor-
mance when only informative tasks are learned.
This outcome underscores the robustness of T5(3B)
+ INSTAAligned-NIV2 in mitigating negative transfer
by exclusively learning relevant tasks.

6 Further Analysis

For further analysis, we conduct experiments to
compare instruction-based versus data sample-
based task selection, examine the effects of instruc-
tion refinement in the P3 dataset, and assess the
impacts of varying the number of related tasks se-
lected (k). Additionally, changes in task selection
performance based on the number of instructions
used for alignment, as well as experiments on learn-
ing different styles of meta-datasets and their im-
pact on performance, are detailed in Appendices K
and L.

6.1 Instruction-based vs. Data Sample-based
Task Selection

We conduct experiments shown in Table 5 to com-
pare our instruction-based approach with the tradi-
tional method (Ye et al., 2022; Jang et al., 2023)
of selecting related tasks using data samples (in-
tegration of instruction and instance). The T5(3B)
+ DSTA model identifies relevant tasks similar to
T5(3B) + INSTA, with the key distinction being the
use of data samples for similarity comparison.

While the T5(3B) + DSTA model outperforms
on specific tasks like Hellaswag, it falls short
in others, including RTE and WSC. Conversely,
T5(3B) + INSTA consistently enhances perfor-
mance across the majority of tasks relative to
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Task T0-3B
T5(3B) + INSTA T5(3B) + INSTAAligned-P3

Unfiltered Filtered Unfiltered Filtered

RTE 60.61 73.39 73.86 74.69 77.87
CB 44.64 50.26 55.10 54.08 56.89
Anli R1 35.17 34.00 36.82 35.08 38.28
Anli R2 33.37 33.91 34.77 34.72 36.3
Anli R3 33.55 33.97 35.27 35.19 37.18
COPA 74.75 82.63 91.00 87.50 92.5
Hellaswag 27.42 36.31 27.63 36.46 31.4
StoryCloze 84.82 43.27 94.10 48.42 95.86
Winogrande 50.84 55.54 55.26 55.01 56.37
WSC 63.22 64.06 56.13 64.06 64.42
WiC 51.21 50.69 52.84 51.22 50.61

Average 50.87 50.73 55.70 52.4 57.97

Table 6: Evaluation performance of P3 datasets before
and after the instruction refinement. The best compara-
ble performances are bolded.

T0-3B, and achieves an impressive average per-
formance enhancement of 5.08% over T5(3B) +
DSTA. This outcome suggests that instances within
data samples might obstruct the extraction of rep-
resentative task features, diminishing the task se-
lector’s ability to identify related tasks effectively.
Please refer to Appendix I for more experimental
details.

6.2 Impact of Instruction Refinement
As mentioned in Section 4.2, our approach operates
based on the premise that the instruction accurately
describes the characteristics of the task, necessi-
tating the process of instruction refinement. Table
6 demonstrates the impact of such instruction re-
finement on performance. The term "Unfiltered"
denotes the training conducted without instruction
refinement, while "Filtered" indicates the use of
refined models.

Unfiltered models, while showing performance
improvements in most tasks compared to T0-3B,
encounter performance degradation in certain tasks,
notably StoryCloze, due to the selection of irrel-
evant tasks. Conversely, models that use filtered
and refined instructions accurately select related
tasks and generally demonstrate improved perfor-
mance over unfiltered models. This result empha-
sizes the significance of instruction quality in task
selection. Furthermore, the notable performance
enhancement seen in T5(3B) + INSTAAligned-P3 un-
derscores the substantial role of instruction quality,
particularly when additional training for the align-
ment is applied.

6.3 Scaling Relevant Tasks
We explore how the model performance is affected
by the number of selected tasks during instruc-
tion tuning. Figure 2 illustrates the average per-

Figure 2: Top-k relevant task performance of P3 and
NIV2 datasets. The left figure represents the average
performance of 11 unseen tasks using T5(3B) + IN-
STAAligned-P3, and the right figure represents the average
performance of 33 unseen tasks using T5(3B) + IN-
STAAligned-NIV2.

formance of T5(3B) + INSTAAligned-P3 and T5(3B)
+ INSTAAligned-NIV2, as the number of selected tasks
(k) increases. The performance of the top-35 tasks
for P3 and top-756 tasks for NIV2 corresponds
to the fully instruction-tuned models, representing
the scores of T0-3B and Tk-INSTRUCT-3B, respec-
tively. On average, we observe a progressive im-
provement in performance up to five tasks for P3
and seventy tasks for NIV2, after which it declines,
affirming the adverse impact of non-relevant tasks
during training. For more analysis and detailed re-
sults, please refer to Appendix J.

7 Conclusion

In this study, we discover that selecting informa-
tive tasks for instruction tuning can be effectively
achieved by exclusively using task instructions.
Our experiments reveal that this method, partic-
ularly when aligned with the meta-dataset’s instruc-
tions, surpasses traditional methods which depend
on data samples to determine task relevance. Be-
yond its robust performance, our approach’s most
significant advantage is its simplicity: as long as
the instruction (task description) of the target task
can be described, our method can be applied. This
approach marks a significant shift away from tra-
ditional methods that require exhaustive pairwise
comparisons or the labor-intensive creation of data
samples for new tasks. By adopting an instruction-
only strategy, our method simplifies and automates
the task selection process for instruction tuning,
providing a more efficient and practical approach
to developing models in real-world scenarios.
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Limitations

While highlighting the effective task selection
method in instruction tuning, we do not perform ex-
perimental results over the different sizes of model
parameters other than the T5(3B) parameter model
due to computational cost. For example, a language
model bigger than 11B parameters may be less sus-
ceptible to negative transfer due to model capacity,
or the effectiveness of our task selection method
might stand out even more. Moreover, we only
use the encoder-decoder architecture model in the
paper. We leave the investigation on the decoder
model, such as LLaMA 7B/13B, to our future work.

In this study, our focus is on two prominent meta-
datasets, P3 and NIV2. Nonetheless, it is worth
noting the existence of various other instruction
tuning meta-datasets, such as FLAN-T5 (Chung
et al., 2022) and the CoT (reasoning) collections
(Kim et al., 2023b). Extending our methodology
to incorporate these additional meta-datasets will
be an intriguing prospect for future research and
exploration.
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A Previous Task Selection Methods in
NLP

Task selection is actively researched in two main
fields. One is task selection from the perspective of
intermediate-task transfer learning, and the other
is task selection within the realm of instruction
tuning, which is the focus of our research.

A.1 Task selection in Intermediate-Task
Transfer Learning

Within the scope of intermediate-task transfer learn-
ing, the goal of task selection is to enhance the
performance by further training the model on re-
lated intermediate tasks before fine-tuning it on a
target task (Phang et al., 2018; Vu et al., 2020b;
Kung et al., 2021; Poth et al., 2021b). Therefore, it
presupposes the availability of a labeled dataset for
the target task.

Vu et al. (2020b) use BERT as a feature extractor
to identify related tasks by comparing embeddings
with an auxiliary task pool. In contrast, Kung et al.
(2021) develop a more efficient method, training a
task discriminator with just 500 samples from each
dataset, thereby reducing data needs. However, cre-
ating 500 labeled samples for a target task can still
be burdensome, especially in an instruction-tuning
setting. Moreover, in line with Vu et al. (2020b),
this approach entails a high computational cost for
training task discriminator and inference on all aux-
iliary instances.

Poth et al. (2021b) opt for a different approach,
directly measuring pairwise transfer for all datasets
instead of using samples’ embedding. To reduce
computational costs, they employ adapter struc-
tures. Nonetheless, this method still incurs signifi-
cant costs in terms of target data construction and
computational overhead because it requires training
and inference across all models.

A.2 Task Selection in Instruction Tuning

In task selection in instruction tuning, the objective
is to select and train related tasks for improving the
zero-shot performance of the target task. Unlike
intermediate-task transfer learning, where samples
consist solely of instances, data samples in instruc-
tion tuning include both instructions and instances.
A model trained with such instructions can tackle
new tasks when given new instructions, leveraging
previously learned instructions as a basis.

Ivison et al. (2023) propose a sample-based task
selection methodology in instruction tuning. They
encode all instances from a vast multitask data pool
using a T5-3B model, then build a search index
from the resulting representations. A key advan-
tage of their approach is that there’s no need to
train an embedding generator with the target task’s
data samples, unlike task selection in intermediate-
task transfer learning. However, the method still
requires 1,000 unlabeled data samples from the tar-

18631

https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.48550/ARXIV.2210.03029
https://doi.org/10.48550/ARXIV.2210.03029
https://doi.org/10.18653/v1/2023.emnlp-main.245
https://doi.org/10.18653/v1/2023.emnlp-main.245
https://doi.org/10.18653/v1/2023.emnlp-main.245
https://doi.org/10.48550/ARXIV.2305.13225
https://doi.org/10.48550/ARXIV.2305.13225
https://doi.org/10.48550/ARXIV.2305.13225
https://openreview.net/pdf?id=KGV-GBh8fb
https://openreview.net/pdf?id=KGV-GBh8fb


Task Target Needed Target Target Data Model
Research Selection Perspective Data Data Labels Selector Training Training &

Method Needed Samples Required Inference

Vu et al. (2020b) Sample-based
Intermediate-task

Yes All Yes
All samples in

No
transfer learning target task

Kung et al. (2021) Sample-based
Intermediate-task

Yes 500 samples Yes
500 samples for

No
transfer learning all task (Total 18000)

Poth et al. (2021b)
Measaure all Intermediate-task

Yes All Yes No
All task

task pair transfer learning needed

Ivison et al. (2023) Sample-based Instruction tuning No
1000 samples

No No No
(1 instruction)

Jang et al. (2023) Sample-based Instruction tuning No
32 samples

No No No
(10 instructions)

Zhou et al. (2023) Measaure all
Instruction tuning No All No No

All task
task pair needed

Kim et al. (2023a)
Measaure all

Instruction tuning No All No No
All task

task pair needed

INSTA Instruction-based Instruction tuning No (10 instructions) No No No

10 instructions for
INSTAAligned Instruction-based Instruction tuning No (10 instructions) No training task + 1500 STS No

samples (Total 1950)

Table 7: Characteristics and practicalities of task selection methodologies for the P3 meta-dataset in an instruction
tuning setting. Bold indicates the studies used as baselines.

get task. Jang et al. (2023) adopt a method similar
to Ivison et al. (2023) to retrieve experts related to
the target task for instruction tuning by encoding 32
data samples for each expert to calculate similarity.

Zhou et al. (2023); Kim et al. (2023a) apply a
methodology similar to Poth et al. (2021b) in the
context of instruction tuning, performing pairwise
transfer across a variety of tasks. Notably, Zhou
et al. (2023) conduct pairwise transfer for all tasks
in the P3 dataset, and these results are utilized as a
baseline in their paper.

A.3 Baseline for Task Selection in Instruction
Tuning

As noted by Ivison et al. (2023), task selection in
intermediate-task transfer learning has several dis-
advantages compared to the task selection method-
ologies used in instruction tuning settings. These
methodologies are primarily applied to classifica-
tion tasks, require a large number of labeled sam-
ples for the target task, and involve high computa-
tional costs for training a model to generate task
embeddings. For these reasons, we exclude these
studies in our baselines. Additionally, we used Jang
et al. (2023)’s methodology as the baseline for the
sample-based task selection instead of Ivison et al.
(2023) because Jang et al. (2023)’s approach re-
quires fewer data samples, making implementation
easier. The characteristics and practical applicabil-
ity of each methodology are summarized in the
Table 7.

Model Time Complexity P3 Avg.

T5(3B) + PE W/ROE
O((Tt + Te) · k · n)

53.26
+ O(Tt · Te · k2 · n2)

T5(3B) + INSTA
O((Tt + Te) · k) 55.71
+ O(Tt · Te · k2)

Table 8: Comparison between T5(3B) + PE W/ROE and
T5(3B) + INSTA. The top operand in the time complex-
ity column represents the encoding complexity, while
the bottom operand represents the similarity measure-
ment complexity.

Model Selection Time (Training) P3 Avg.

T5(3B) + Pairwise Transfer 35 * 32h 57.86
T5(3B) + INSTAAligned 5m 57.97

Table 9: Comparison between T5(3B) + Pairwise Trans-
fer and T5(3B) + INSTAAligned. Note that the pairwise
transfer approach takes considerable selection time
since it individually trains on every training dataset.

B Efficiency Analysis

To evaluate the efficiency of our task selection
method relative to other alternatives, we quantify it
based on time and complexity. Specifically, we con-
duct a comparative analysis of the sample-based
approach and the pairwise transfer approach using
the same configurations and models as outlined in
Table 2.

Sample-Based Selection vs. INSTA Table 8
demonstrates the efficiency differences between
the sample-based approach and our instruction-
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based approach. For this comparison, we uti-
lize the sample-based T5(3B) + PE W/ROE and
our instruction-based T5(3B) + INSTA. Both ap-
proaches employ SentenceBERT-based cosine sim-
ilarity, enabling us to evaluate their efficiency by ex-
amining differences in time complexity. This time
complexity incorporates both the sentence encod-
ing process and the similarity computation. Let Tt

represent the number of training tasks, Te the num-
ber of evaluation tasks, k the average number of
instructions, and n the number of data samples. The
time complexity for encoding in the sample-based
approach can be expressed as O((Tt+Te)·k ·n). In
contrast, the instruction-based methodology, which
does not require processing multiple data samples
per instruction, has an encoding time complexity of
O((Tt+Te)·k). The time complexity for similarity
computation is also derived similarly. Considering
all combinations of training and evaluation tasks,
the complexity for the sample-based scenario is
O(Tt · Te · k2 · n2), whereas for the instruction-
based scenario, it is O(Tt · Te · k2). This indicates
that our approach is at least 32 times faster than the
sample-based T5(3B) + PE W/ROE, which requires
32 samples (n = 32).

Pairwise Transfer vs. INSTAAligned Table 9
presents the training time required for our method
compared to the pairwise transfer method, which
trains and evaluates every task pair. In this compar-
ison, we analyze T5(3B) + Pairwise Transfer and
T5(3B) + INSTAAligned. Following the experimen-
tal setting on Zhou et al. (2023), with a batch size
of 512 and 1000 steps, it takes approximately 32
hours on 1 A100 GPU for one task training. The
P3 has 35 training datasets, and the total time re-
quired is approximately 35 * 32 hours. Conversely,
our methodology takes about 5 minutes to train the
SentenceBERT model on a single A100 GPU. This
is only considering the training time, and the time
difference becomes even greater when including
inference time.

As indicated in Tables 8 and 9, our task selection
approach is overwhelmingly efficient and demon-
strates robust performance. This facilitates the de-
velopment of an optimized model for the specific
target task in an instruction tuning setting.

C Addressing Potential Concerns

Potential for Bias Our task selection process,
which relies solely on instructions, might initially
raise concerns about potential bias. If the training

data selected is biased, the tasks chosen could per-
petuate this bias in the fine-tuned LLM. However,
it is crucial to note that our methodology robustly
counters such biases for two key reasons. Firstly,
many of the publicly available instruction tuning
datasets are composed of diverse datasets, which
are predominantly high-quality and unbiased. Sec-
ondly, even if some of the selected datasets exhibit
bias, this issue is effectively mitigated by the ma-
jority of other selected unbiased datasets. For in-
stance, in the NIV2 experiment, we used 70 out
of 756 datasets for training. Even if some datasets
contained biases, the impact is neutralized by train-
ing with the remaining datasets. Our experiments
support this approach, as we confirmed no perfor-
mance degradation due to bias across a total of 791
training datasets and 85 evaluation tasks (P3: 11,
NIV2: 33, BB: 14, BBH: 27). These results demon-
strate that our approach ensures robustness against
potential biases.

Limited Generalizability Our task selection
method relies on the quality and completeness of
instructions for the target task. Therefore, there
may be concerns that if the instructions are inaccu-
rate, performance could deteriorate. However, it’s
important to note that our methodology can effec-
tively operate with just one well-written instruction.
Creating such an instruction is not typically burden-
some. Moreover, should challenges arise in defin-
ing the instruction, they can be readily resolved
using models like GPT-4 (please refer to Table 13
for the GPT-4 query). For instance, for the BBH
datasets, which initially lacked instructions, we uti-
lized GPT-4 to generate one instruction per task for
evaluation purposes. The results demonstrated sig-
nificant performance improvements in most tasks
(see Table 4). Overall, while our methodology can-
not completely eliminate issues with instruction
quality, these limitations do not severely restrict its
generalizability and can be easily alleviated.

D Off-the-shelf Embedding Model

We employ the Sentence Transformer (Reimers
and Gurevych, 2019) as an off-the-shelf embed-
ding model in our study. Specifically, we uti-
lize the "sentence-transformers/bert-large-nli-stsb-
mean-tokens" checkpoint, which constitutes a 340
million parameter sentence-bert model trained on a
combination of Natural Language Inference (NLI)
data and the Semantic Textual Similarity (STS)
benchmark data. To quantify the similarity between
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two given instructions, we measure the cosine sim-
ilarity of their extracted embedding representations
derived from this model.

We further train the Sentence Transformer us-
ing instructions from the meta-dataset to learn the
style of the instructions. Besides the instructions,
we sample 500 instances from MRPC, PAWS, and
QQP datasets each and append them to training
samples. These datasets are paraphrase identifica-
tion datasets, ensuring that the model retains its
generality throughout the training process.

During training, we employ a learning rate of 1e-
6 for the P3 dataset and 1e-5 for the NIV2 dataset.
The remaining training configurations align with
those described in Reimers and Gurevych (2019).
Specifically, we conduct training for five epochs
and select the checkpoint corresponding to the best
validation performance for subsequent analysis and
evaluation.

E Training Details

Following (Sanh et al., 2022), we conduct our ex-
periments in a held-out setting. Specifically, we ex-
clude the task clusters of the evaluation tasks from
the training dataset pool and then train our model,
subsequently evaluating it on the excluded held-out
tasks. For instance, in the case of the P3 dataset,
we remove task clusters such as sentence comple-
tion, NLI, coreference resolution, and word sense
disambiguation from the training set and train only
on the selected tasks from the remaining datasets.
It ensures that the evaluation set remains entirely
unseen, thereby achieving a true zero-shot setting.

Additionally, SentenceBert training for IN-
STAAligned follows the same principle. We exclude
all instructions from the evaluation clusters for task
selector training and train using only instructions
from the training dataset pool, thus preventing data
contamination issues.

We truncate input and target sequences to 768
and 256 tokens, respectively. We train all models
with a batch size of 256 using Adafactor Optimizer
for both P3 and NIV2 instruction tuning. We train
the model using 16 NVIDIA A100 GPUs (each
with 40GB). Each training for top-k P3 and NIV2
instruction tuning requires less than 1 hour per
epoch, and ends up 2-3 hours for 3 epochs.

Note that P3 and NIV2 meta-datasets are license
free for research purpose and open-sourced with
the code.

F Examples and Formulation of
Instructions of P3 and NIV2.

F.1 Examples of P3 and NIV2 Instructions.

Sanh et al. (2022) introduces natural language
prompts for all datasets to enable zero-shot experi-
mentation. They name it as prompt, template, and
instruction, and we only use term instruction for
this paper. The instruction they define consists of
an input template and a target template, along with
a collection of associated meta-data. The instruc-
tions are in functions mapping a data instance into
natural language for the input and target sequences.
For example, in the case of an NLI dataset, the ex-
ample includes fields for PREMISE, HYPOTHESIS,
LABEL, and input instruction would be

If {{Premise}} is true, is it also true that
{{Hypothesis}}?

The target instruction can be defined with the
label choices {{CHOICES[LABEL]}} but we only
used input instruction without replacing the place-
holder with actual data instance to find similar
tasks.

In contrast with P3, NIV2 defines Instruction
schema and divides the component as DEFINITION,
POSITIVE EXAMPLES, NEGATIVE EXAMPLES.
DEFINITION defins a given task in natural language
of how input text is expected to be mapped to an
output text. Each task has a single DEFINITION,
and we only use DEFINITION part as an instruction
for each task and utilize it for task selection. The
example below is DEFINITION part of task1640,
an ANSWERABILITY CLASSIFICATION task. Note
that, unlike P3 instruction, NIV2 instruction com-
prises of natural language without any placeholder.

Given a paragraph from a wikipedia article
about some topic, and a question related
to the topic, determine whether the ques-
tion is answerable from the paragraph. If
the question is answerable, answer “True”,
otherwise, answer “False”.

F.2 P3 Instruction Formulation

The original P3 instructions contained unique place-
holders, which could potentially act as misleading
shortcuts. In order to preserve the integrity of the
instruction’s original meaning, we have replaced
these placeholders with the terms "{{text}}" and
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"{{candidate}}". In the classification task, if the
options are provided within the instruction, we sub-
stitute them with "candidate"; otherwise, we use
"text" for all replacements. Since we utilize only
the input instruction and not the output label, we
recommend examining the examples in the Table
10 to understand the appearance of the original P3
instruction and how it has been modified.

F.3 NIV2 Input Formats
Wang et al. (2022) demonstrate various instruction
composition using Task Definition, Positive Task
Examples, Negative Task Examples, and Explana-
tion. Out of various composition settings, we use
[Def + Pos(2)] setting for Section 5.3 and [Def ] set-
ting for Section 5.4. Figure 3 and Figure 4 represent
input encoding for the above settings, respectively.

G GPT-4 API Generation

G.1 NIV2 Instruction Generation
To reproduce positive example for NIV2 instruc-
tions, we use GPT-4 API to generate similar in-
struction to original ones. Table 13 represents API
query used for instruction generation, and Table 14
represents examples of generated instruction from
GPT-4.

G.2 Big-Bench Hard Instruction Generation
The BBH tasks don’t have refined Task Definition
like NIV2 datasets. In order to select relevant tasks
using NIV2 datasets, and to compare the perfor-
mance with Tk-INSTRUCT, we generate instruction
for BBH tasks using GPT-4. Table 15 represents

Figure 3: Input encoding for [Def + Pos(2)] setting.

Figure 4: Input encoding for [Def ] setting.

Task Instruction

RTE Suppose {{premise}} Can we infer that
"{{hypothesis}}"? Yes or no?

↓
Suppose {{text}} Can we infer that

"{{text}}"? Yes or no?

Amazon Title: {{title}}\nProduct review: {{text}}\n
Would you say this review depicts the product in a

{{choices[1]}} or {{choices[0]}} light?\n
↓

Title: {{text}}\nProduct review: {{text}}\n
Would you say this review depicts the product in a

{{candidate}} or {{candidate}} light?\n

Winogrande {{text}}\nReplace the _ in the above
sentence with the correct option: \n

- {{choices[0]}}\n- {{choices[1]}}\n
↓

{{text}}\nReplace the _ in the above
sentence with the correct option: \n
- {{candidate}}\n- {{candidate}}\n

QuaRel Here’s a short story: {{question}}.\n\nWhat is
the most sensical answer between "{{choices[0]}}"

and "{{choices[1]}}"?\n
↓

Here’s a short story: {{text}}.\n\nWhat is
the most sensical answer between "{{candidate}}"

and "{{candidate}}"?\n

Wiki Bio Facts:\n{{concepts}}\nBased on these
bullet points, write a short biography

describing the life of {{person}}.
↓

Facts:\n{{text}}\nBased on these
bullet points, write a short biography

describing the life of {{text}}.

PAWS Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}
\nQuestion: Do Sentence 1 and Sentence 2 express

the same meaning? Yes or No? \n
↓

Sentence 1: {{text}}\nSentence 2: {{text}}
\nQuestion: Do Sentence 1 and Sentence 2 express

the same meaning? Yes or No? \n

MultiNews Write a summary of the following articles:\n\n
Document: {{text}}\n

↓
Write a summary of the following articles:\n\n

Document: {{text}}\n

Table 10: Examples of P3 instruction formulation. The
unique values in placeholder are unified using {{text}}
and {{candidate}}. Note that we use unified instructions
to train the selector model.

API query used for instruction generation, and Ta-
ble 16, 17 and 18 show generated 27 instructions
for each task.

H Pairwise Transfer Task Selection vs.
Instruction-Based Task Selection

Zhou et al. (2023) measure pairwise transfer re-
lationships on T5(3B) in all task pair of P3 meta-
dataset. They measure the value of its average score
on different instructions for every dataset, and they
include instructions only related to the original
tasks for evaluation. The T5(3B) + Pairwise Trans-
fer model in Figure 5 selects top-5 tasks that scored
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the highest transferability per target tasks. Figure
5 represents top-5 selected tasks from T5(3B) +
INSTAAligned-P3 and all the transferability scores.
It can be verified that T5(3B) + INSTAAligned-P3
selects relevant tasks in accordance with pairwise
transferability result in many tasks.

I Experimental Detail for Data
Sample-based Task Selection

In our experiments, we adopt the data sample-based
task selection approach as detailed in the exper-
imental settings of Ye et al. (2022); Jang et al.
(2023). To ascertain the similarity between tasks,
previous works randomly sample 32 instances from
each dataset, which are then paired with the corre-
sponding instructions. Following this, embedding
information are extracted using a dense retriever,
and cosine similarities are calculated through ma-
trix multiplication between the embedding vectors
of the training and target tasks. Consistent with
prior studies, we select 32 instances for all instruc-
tions in our training datasets, measure the simi-
larity, and prioritize tasks that feature the highest
scoring instructions. Apart from the task selection
methodology, the instruction tuning procedures re-
main identical to those used in training the T5(3B)
+ INSTA model.

J Analysis on Selecting Top-k Relevant
Tasks

In our experiments, we utilize the top-k tasks selec-
tion approach, following previous work (Kim et al.,
2023a; Zhou et al., 2023), while acknowledging
its potential risks. This method may occasionally
include tasks with marginal relevance or exclude
significant ones. Figure 6 presents the performance
of 11 unseen datasets in P3 as k varies. The exper-
imental results show that training the model with
all 35 tasks reveals a performance, but note that the
optimal k for each dataset varies across datasets.
WiC and Winogrande demonstrate optimal results
when the k is 10, while other datasets perform best
when the k is 5.

Although we have attempted to use the selector’s
probability score to determine the cutoff, variations
in the data used for training the selector and the
type of models that could serve as selectors have
introduced inconsistencies. These issues are rec-
ognized but beyond the scope of this study. Thus,
we do not address this directly in our research and
intend to investigate more precise measures of task

relevance in future work.

K Scaling The Number of Instructions in
Alignment

Table 11 shows how performance changes in the P3
meta-dataset based on the number of instructions
learned during task selection. The same instruc-
tions are used across task selection, model training,
and inference, but what varies is the number of in-
structions used for INSTA alignment. For training
selector model using instructions for alignment, we
scale the number of instructions by average of 2,
4, and 6.54, and 6.54 represents the aligned model
INSTAAligned-P3 used in the entire paper.

Experimental results demonstrate an increase
in the robustness of task selection as the number
of instructions increases. We hypothesize that by
learning a variety of instructions, the task selector
becomes proficient in handling different styles of
instruction formats. This enables it to effectively
identify relevant tasks when presented with various
formats of instructions for new tasks.

L Learning Different Formats of Meta
Datasets and Its Impact on
Performance

In the previous section, we explore how task se-
lection performance varies with the number of in-
structions in the same meta dataset. In this section,
we conduct experiments to see if learning meta
datasets with different instruction formats together
would lead to performance degradation compared
to learning each meta dataset separately. Perfor-
mance is measured on the held-out tasks of the P3
dataset, and the T5(3B) + INSTAAligned-(P3+NIV2) is
further aligned using INSTA on instructions from
both the P3 and NIV2 datasets.

Our results, summarized in Table 12, indi-
cate that the average performance T5(3B) + IN-
STAAligned-(P3+NIV2) of is on par with that of P3
alone, with some tasks even showing improved re-
sults. This evidence suggests that integrating the
unique instructional style of the NIV2 dataset does
not substantially impair the task selection capabili-
ties in P3. It implies that training the task selector
on diverse meta-datasets enables it to adapt to a
broader range of instruction formats and tasks with-
out declining performance.
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Figure 5: Pairwise transferability result datasets and top-5 selected tasks from T5(3B) + INSTAAligned-P3. The y-axis
represents similarity scores for pairwise transferability scores, and tasks selected by T5(3B) + INSTAAligned-P3 are
marked as black cross.

Figure 6: Top-k relevant task performance of P3 datasets. The connected line represents the performance of T5(3B)
+ INSTAAligned-P3, and note that the score of top-35 tasks represents the performance of T0-3B.

Method NLI Sentence Completion Coref. Resol. WSD Total Avg.
RTE CB AN. R1 AN. R2 AN. R3 COPA Hellasw. StoryC. Winogr. WSC WiC

T5(3B) + INSTA 73.86 55.10 36.82 34.77 35.27 91.00 27.63 94.10 55.26 56.13 52.84 55.70

T5(3B) + INSTAAligned-P3(i=2) 77.51 57.91 37.80 36.19 37.07 91.50 30.62 91.69 55.12 56.85 52.02 56.75
T5(3B) + INSTAAligned-P3(i=4) 75.67 63.27 40.21 37.47 39.17 89.25 27.74 92.78 55.58 53 50.49 56.78
T5(3B) + INSTAAligned-P3 77.87 56.89 38.28 36.30 37.18 92.50 31.40 95.86 56.37 64.42 50.61 57.97

Table 11: Performance of the T5(3B) + INSTAAligned-P3 as the number of instructions used for selector training varies.
The expression (i=N) indicates a number of instructions used for the alignment process. Note that our T5(3B) +
INSTAAligned-P3 uses 6.54 instructions on average. The best comparable performances are bolded and second best
underlined.
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Method NLI Sentence Completion Coref. Resol. WSD Total Avg.
RTE CB AN. R1 AN. R2 AN. R3 COPA Hellasw. StoryC. Winogr. WSC WiC

T0-3B 60.61 44.64 35.17 33.37 33.55 74.75 27.42 84.82 50.84 63.22 51.21 50.87
T5(3B) + INSTAAligned-P3 77.87 56.89 38.28 36.30 37.18 92.50 31.40 95.86 56.37 64.42 50.61 57.97
T5(3B) + INSTAAligned-(P3+NIV2) 72.17 57.65 40.67 38.35 38.63 91.50 29.32 95.00 55.62 63.10 51.27 57.57

Table 12: Comparison between performance of INSTAAligned when the selector trained with P3 instructions only
(T5(3B) + INSTAAligned-P3), and with combination of P3 and NIV2 instructions (T5(3B) + INSTAAligned-(P3+NIV2)).
The best comparable performances are bolded and second best underlined.

GPT-4 Query

You have to paraphrase definition of task when one definition of the task is given. Make sure you do not mention type of given task in definition.
Make a similar definitions without repetition. Separate each definition by two newline character.

Example -
Task : Answerability Classification
Definition 1 : Given a paragraph from a Wikipedia article about some topic, and a question related to the topic, determine whether the question
is answerable from the paragraph. If the question is answerable, answer "True", otherwise, answer "False".
Definition 2 : In this task you will be given a question and a passage. You need to determine if the answer to the question is contained in the passage.
If the answer can be found in the passage you should output ’True’. If the answer cannot be found in the passage you should output ’False’.

Read the examples above and generate similar task definition for given task type and definition.

Table 13: GPT-4 query used for NIV2 instruction generation.

Answer Verification TASK846

Original Given a passage with a question and an answer to that question, classify if the answer actually answers the question
into ’yes’ or ’no’. Output ’yes’ if the answer answers the question and output ’no’ if the answer does not

answer the question.

GPT-Generated For this activity, you will be presented with a passage, alongside a question and a proposed answer.
Your objective is to evaluate whether the provided answer satisfactorily addresses the question. If it does,

you should indicate this with a ’yes’; if it does not, your response should be ’no’.

Program Execution TASK850

Original In this task you will be given a string and you should find the longest substring that is a palindrome.
A palindrome is a string that is the same backwards as it is forwards. If the shortest possible palindrome

is length 1 you should return the first character.

GPT-Generated In the given activity, the objective is to analyze a sequence of characters and identify the most
extensive segment within it that reads identically from both ends. Should the minimal length for such
a segment be a single character, the initial character of the sequence should be returned as the result.

Text Categorization TASK681

Original Given a comment text in Malayalam, classify the comment into one of these categories (i) Hope speech,
(ii) Not Hope Speech or (iii) Not in Expected Language. A hope speech contains content that is

encouraging, positive or supportive contents and talks about equality, diversity or inclusion

GPT-Generated In this activity, you will be presented with a piece of text in Malayalam. Your objective is to assign the text to
one of the following classifications: (i) Hopeful discourse, which includes messages that are uplifting,

affirmative, or bolstering, and often pertains to themes of unity, variety, or acceptance;
(ii) Non-hopeful discourse, or (iii) Text that is not composed in the anticipated language.

Table 14: Examples of NIV2 task instruction generated by GPT-4.
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GPT-4 Query

You have to generate definition of the given task. You will be given two examples and each example will have a instance and definition.

Example 1 -
Task : sentiment analysis
Input: Tweet: @KimWalshUk aw poor sarah shouldn’t it be Cheryl upset cause it’s in Newcastle isn’t it lol? Question: is it a negative tweet?
Output : yes
Definition : In this task, you are given a text from tweets and a boolean question whether this tweet has positive sentiment or negative
sentiment. Your task is to generate answer ""yes"" when the tweet
has that particular sentiment, otherwise generate answer ""no"".

Example 2 -
Task : question answering
Input: What is a place that is far away from your house and where you could consume beer?
(A)refrigerator (B)friend’s house (C)keg (D)neighbor’s house (E)kitchen
Output : B
Definition : You are given a question and some answer options (associated with ""A"", ""B"", ""C"", ""D"", ""E"").
You should choose the correct answer based on commonsense knowledge. Avoid answering questions based on associations,
the set of answers are chosen deliberately to capture common sense beyond associations.
Do not generate anything else apart from one of the following characters: ’A’, ’B, ’C’, ’D’, ’E’ and only give one answer for each question.

Read the examples above and generate task definition for given task type and instance.

Table 15: GPT-4 query used for BBH instruction generation.
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Task Instruction

Boolean Expressions In this task, you are provided with a boolean expression composed of boolean values (True or False),
logical operators (and, or, not), and parentheses. Your objective is to evaluate the given boolean

expression and determine whether the overall expression is True or False. You must strictly adhere
to the rules of boolean algebra and the precedence of logical operators while evaluating the

expression. The output should be a single word, either "True" or "False", based on the result of the
evaluation. No intermediate steps or explanations are required, just the final boolean result.

Causal Judgement The task of causal judgement involves evaluating a narrative to determine whether a specific factor
or event caused a particular outcome. You will be provided with a detailed account of events or

circumstances leading up to an outcome. Based on the information given, you must decide if the factor
or event in question directly caused the outcome. Your response should be binary, choosing either

"Yes" if you believe the factor or event caused the outcome, or "No" if you believe it did not.
You should consider only the information provided in the narrative and not rely on any external
knowledge or assumptions. The goal is to make a judgement about the direct causality between

the given factor or event and the outcome.

Date Understanding In the date understanding task, you are presented with a sentence or sentences that describe how dates
are formatted or understood in a particular context or region. You are then given a date-related

question that requires you to apply the information from the input to determine the correct date. The input
may include a specific date and require you to perform a calculation, such as finding a date a certain

number of days, weeks, months, or years in the past or future. The output is a selection from
multiple-choice options, each representing a possible date in a specific format (e.g., MM/DD/YYYY). Your job

is to choose the option that accurately reflects the answer to the question based on the input information.
You must use only the information provided in the input and the common knowledge about date calculations

without assuming any additional facts. Do not generate anything else apart from one of the following
characters: ’A’, ’B, ’C’, ’D’, ’E’, ’F’.

Disambiguation QA In this task, you are presented with a sentence that contains a pronoun. Your job is to determine the antecedent
of the pronoun—the specific noun that the pronoun is replacing—or to declare that the antecedent is ambiguous.

You will be given a sentence and a set of options. Each option will propose a possible antecedent for the
pronoun in question. You must select the option that correctly identifies the antecedent. If the

sentence does not provide enough information to determine the antecedent with certainty, you should choose
the option that indicates the pronoun’s antecedent is ambiguous. You are also given 4 answer options

(associated with "A", "B", "C", "D"), out of which only one is correct. Your output should be the
letter corresponding to the correct option.

Dyck Languages In this task, you are presented with a sequence of opening and closing brackets of various types, such as
parentheses (), square brackets [], and angle brackets <>. Your objective is to complete the sequence by

adding the appropriate closing brackets in the correct order, ensuring that all brackets are properly matched
and closed. The input will consist of a partial sequence of brackets, and you must determine the correct

sequence of closing brackets to complete it. The output should be the minimal sequence of closing
brackets that, when appended to the input, results in a properly balanced string of brackets with

all pairs correctly matched.

Formal Fallacies In this task, you are presented with an argument that consists of premises and a conclusion. Your role is to
determine whether the argument is deductively valid or invalid based on the explicitly stated premises.

An argument is considered deductively valid if the conclusion logically follows from the premises, meaning
that if the premises are true, the conclusion must be true. An argument is deductively invalid if the
conclusion does not logically follow from the premises, meaning that even if the premises are true,
the conclusion could still be false. You must choose between two options: "valid" if the argument is

deductively valid, or "invalid" if the argument is deductively invalid. Do not consider any
outside knowledge or unstated assumptions; your judgment should be based solely on the information

provided in the input.

Geometric Shapes In this task, you are presented with an SVG (Scalable Vector Graphics) path element, which is a string of characters
that defines the shape of a two-dimensional graphic. The path element is followed by a list of options, each

representing a different geometric shape. Your job is to identify which geometric shape the given SVG
path element represents from the provided options. The correct shape must match the structure and

number of sides as indicated by the SVG path’s drawing commands. There is only one correct answer
from the given list of geometric shapes.

Hyperbaton The task of hyperbaton involves determining the proper syntactic arrangement of words in a sentence. You are
presented with multiple sentences, each with a different sequence of adjectives before a noun. Your

objective is to select the sentence that adheres to the conventional order of adjectives in English.
The correct order typically follows the sequence: quantity or number, quality or opinion, size, age, shape,

color, proper adjective (often nationality, other place of origin, or material), and purpose or qualifier.
Choose the option that places the adjectives in the correct order, resulting in a grammatically coherent

and standard sentence. Only one option will be the correct sentence with the proper adjective order.
Answer either ’A’ or ’B’.

Table 16: Generated BBH task instructions using GPT-4[0:8]
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Task Instruction

Logical Deduction In this task, you are presented with a paragraph that describes a series of some objects with a given attribute,
Three/Five/Seven such as age, arranged in a specific order. The statements provided are logically consistent and relate to each other
Objects to form a sequence based on that attribute. Your job is to use logical deduction to determine the relative ordering

of these objects based on the information given. After analyzing the statements, you must choose the
correct option from a list that accurately reflects the order of one of the objects in relation to the others.

There is only one correct answer for each set of statements.

Movie Recommendation In this task, you are provided with a list of movies and a request to find a movie that is similar to the ones listed.
The input consists of several movie titles that may share common themes, genres, or elements. You are also
given a set of options, each representing a different movie. Your task is to select the movie from the options
that best matches the similarity criteria based on the given list. The output should be the letter corresponding

to the most similar movie. When determining similarity, consider factors such as plot, genre, themes,
directorial style, and cultural impact. The response must be one of the provided options, represented by

a single letter within parentheses. - (A), (B), (C), or (D)
Multistep Arithmetic In this task, you’re presented with a complex arithmetic expression that requires multiple steps to solve.

Your job is to calculate the value of the entire expression step by step, following the order of operations,
which is parentheses first, then exponents, multiplication and division from left to right, and finally addition
and subtraction from left to right. The expression may include negative numbers and a variety of operations.

Provide the final numerical answer as the output.

Navigate In this task, you are provided with a set of instructions that describe movements from a starting point.
The movements can be in different directions and for a specified number of steps. Your task is to analyze

these instructions to determine if following them would lead you back to the starting point. You must always
assume that you are facing forward at the beginning and continue to face in the direction of the last
movement made. You will answer with "Yes" if the instructions lead you back to the starting point,

or "No" if they do not. Only the options "Yes" or "No" should be provided as the output.

Object Counting In this task, you are presented with a sentence that lists various objects. Your job is to count the number
of individual objects mentioned in the sentence. The input will contain the names of the objects and the

quantities associated with them. You must provide an output that is the total sum of all the objects. Ensure
that the count is accurate and reflects the information provided in the input. The output should be

a numerical value representing the total count of all objects listed.

Penguins in a Table In this task, you are presented with a table of data where the first row contains column headers and each subsequent row
represents information about a penguin, including its name, age, height in centimeters, and weight in kilograms.

Your job is to analyze the table and answer a question about the penguins based on the data provided. The question
will require you to sort or manipulate the data in some way, such as alphabetically sorting the names of the

penguins. You will be given multiple-choice options to select the correct answer. You are given 5 answer options
(associated with "A", "B", "C", "D", "E"). The output should be the letter corresponding to the correct

answer from the provided options.

Reasoning about You are presented with a scenario that describes the arrangement of various colored objects. Given this scenario, you must
Colored Objects answer a question that requires logical reasoning to determine the color of a specific object based on its position

relative to another object. A list of color options, each associated with a letter from (A) to (R), is
provided. Your task is to select the correct color option that answers the question by indicating the corresponding

letter. Only one letter should be provided as the answer, and it should accurately reflect the color of the object
in question as described in the input scenario.

Ruin Names You are presented with a list of similar-sounding or similarly spelled names based on a given artist or movie name.
Your task is to identify the option that represents a humorous or intentionally altered version of the original

name. The input will include the original name and a set of options labeled (A), (B), (C), and (D). Your output
should be the letter corresponding to the option that is a playful or comical modification of the original

name. Only select one letter as your answer.

Salient Translation You are presented with an English translation of a sentence originally in German and a list of potential
Error Detection types of errors that could be present in the translation. The types of errors include issues with Named Entities,

Numerical Values, Modifiers or Adjectives, Negation or Antonyms, Facts, and Dropped Content. Your task is to identify
which type of error is present in the given translation. You must choose from the provided options (A to F) that

correspond to the types of errors. Your output should be the letter of the option that accurately describes the
error found in the translation. The goal is to ensure the accuracy of the translation by detecting and

categorizing the specific error made.

Snarks In this task, you are provided with a set of statements and asked to identify which one is sarcastic. Sarcasm often
involves saying the opposite of what is meant, typically for humorous or emphatic effect. Your job is to read

each option carefully and select the statement that is intended to be taken ironically or in a way that is opposite
to its literal meaning. The output should be the letter corresponding to the sarcastic statement. Only one

of the options is considered sarcastic for the purpose of this task. The output will be in the form of A or B,
corresponding to which option is chosen.

Sports Understanding In this task, you are presented with a sentence related to sports. Your job is to determine whether the sentence
is plausible within the context of the sport mentioned. You must answer with "yes" if the sentence could realistically

occur in the sport, or "no" if it could not. Do not consider any external information or specific events;
simply assess the plausibility based on general knowledge of the sport. There are only two types of valid

responses: yes and no.

Table 17: Generated BBH task instructions using GPT-4[8:21]. Note that Logical Deduction Three/Five/Seven share
the same instruction.
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Task Instruction

Temporal Sequences You are given a scenario that includes a series of events with associated times, and a question that asks you
to determine the possible time range for a particular event within that sequence. Additionally, you are provided

with a set of time range options labeled "(A)", "(B)", "(C)", and "(D)". Your task is to select the
correct time range in which the event could have occurred based on the information provided in the scenario. You
should only answer with the choice letter that corresponds to the correct time range, without providing additional

explanation or the full text of the option.

Tracking Shuffled In this task, you are presented with a scenario involving a group of individuals who are initially paired with partners.
Objects (3)/(5)/(7) As the scenario unfolds, these individuals swap partners multiple times. Your task is to track the sequence of swaps

and determine the final partner of a specified individual from a list of options labeled "A" through "E". You should
analyze the given sequence of events carefully and provide the correct answer based on the final arrangement. Only

one option is the correct answer, and you should generate the corresponding letter (A, B, C, D, or E) without
any additional information or explanation.

Web of Lies In the "web of lies" task, you are presented with a series of statements involving multiple individuals, each making a claim
about another individual’s truthfulness or dishonesty. Your objective is to determine the truthfulness of the

final individual mentioned based on the information provided in the input statements. The output should be "Yes"
if you conclude that the final individual is telling the truth, and "No" if you conclude they are lying. To solve

this task, you must analyze the chain of claims to infer the credibility of each individual, leading to a conclusion
about the final individual’s honesty. Only "Yes" or "No" are valid responses.

Word Sorting In this task, you are provided with a list of words. Your task is to rearrange these words in alphabetical order,
starting with the word that comes first in the alphabet and ending with the word that comes last. You should
generate the sorted list in a single line, with each word separated by a space. Do not add any words that are
not included in the original list, and do not omit any words from the original list. The output should consist

solely of the given words, sorted alphabetically.

Table 18: Generated BBH task instructions using GPT-4[21:27]. Note that Tracking Shuffled Objects (3)/(5)/(7)
share the same instruction except for the label space.
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