Building an Efficient Multilingual Non-Profit IR System for the Islamic
Domain Leveraging Multiprocessing Design in Rust

Vera Pavlova
rttl labs, UAE
v@rttl.ai

Abstract

The widespread use of large language mod-
els (LLMs) has dramatically improved many
applications of Natural Language Processing
(NLP), including Information Retrieval (IR).
However, domains that are not driven by com-
mercial interest often lag behind in benefiting
from Al-powered solutions. One such area is
religious and heritage corpora. Alongside sim-
ilar domains, Islamic literature holds signifi-
cant cultural value and is regularly utilized by
scholars and the general public. Navigating
this extensive amount of text is challenging,
and there is currently no unified resource that
allows for easy searching of this data using ad-
vanced Al tools. This work focuses on the
development of a multilingual non-profit IR
system for the Islamic domain. This process
brings a few major challenges, such as prepar-
ing multilingual domain-specific corpora when
data is limited in certain languages, deploying
a model on resource-constrained devices, and
enabling fast search on a limited budget. By em-
ploying methods like continued pre-training for
domain adaptation and language reduction to
decrease model size, a lightweight multilingual
retrieval model was prepared, demonstrating su-
perior performance compared to larger models
pre-trained on general domain data. Further-
more, evaluating the proposed architecture that
utilizes Rust Language capabilities shows the
possibility of implementing efficient semantic
search in a low-resource setting.

1 Introduction

Dense retrieval is an advanced approach in IR
that utilizes embeddings to identify semantically
similar text, known as semantic search. LLMs
are a key component in creating text embeddings
and performing dense retrieval (Karpukhin et al.,
2020; Izacard et al., 2021). One of the first chal-
lenges in building a non-profit multilingual domain-
specific IR system is that the use of publicly avail-
able multilingual large language models (MLLMs)

Mohammed Makhlouf
rttl labs, UAE
mm@rttl.ai

pre-trained on a general domain could deteriorate
performance due to domain shift when applied to
new domains (Lee et al., 2019; Huang et al., 2019).
To overcome this, we begin with pre-training an
MLLM for the Islamic domain to address this issue.
However, pre-training a domain-specific MLLM
brings two additional challenges. Firstly, assem-
bling a multilingual domain-specific corpus for
pre-training a MLLM requires a large amount of
domain-specific data that is often difficult to find in
different languages. Secondly, multilingual mod-
els are heavyweight, frequently exceeding 1GB,
making them challenging to deploy. To effectively
tackle the issue of pre-training domain-specific
MLLM, we employ a continued pre-training ap-
proach and incorporate domain-specific vocabulary
to accommodate the domain shift better (Beltagy
et al., 2019). To deal with the challenge of the
large size of MLLM, we perform language reduc-
tion and remove languages not needed in the cur-
rent deployment. This method helps us reduce the
model’s size by more than half, even after introduc-
ing new domain-specific vocabulary. We use this
lightweight domain-specific MLLM as a backbone
for the retrieval. Evaluation of this model on an
in-domain IR dataset found that our model signif-
icantly outperforms general-domain multilingual
and monolingual models even after performing lan-
guage reduction.

Moreover, deploying non-profit Al systems im-
plies operating on a limited budget, which makes it
challenging to use embedding APIs or libraries that
rely on GPU acceleration to perform search rea-
sonably fast. To tackle this challenge and meet the
requirements of implementing an ad hoc IR system
on a public website, we utilize the multiprocessing
capabilities of Rust Language to create an efficient
and secure semantic search based on CPU archi-
tecture (Abdi et al., 2024; Seidel and Beier, 2024,
Liang et al., 2024). Our system’s evaluation and
comparison against others, such as Faiss, indicates

981

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 981-990
November 12-16, 2024 ©2024 Association for Computational Linguistics

—(Eon) > (R

MLLM Retrieval model : : :
—0Oo: - - -
. o —GO= TTIT1 TTIT1
‘o g’ : Worker 1 Worker 2 Worker N
— ‘23T
_— 2o
—|-—»>28 8 0—
f— U = 00—
Corpus Dispatch
E [(Score ,PassagelD),...]
= Query
_Q mbeddmg (] ==
8 u =
Query Top K
User
A& J
% Y
Output Sort

Figure 1: The main components of building a multilingual IR system. In the upper left corner is the preparation of
the retrieval model that includes language reduction (LR) and domain adaptation (DA). The rest of the figure shows
the implementation of semantics search in Rust with multiprocessing architecture.

that our implementation of semantic search with
underlying Rust multiprocessing architecture can
significantly accelerate search without compromis-
ing performance.

Our main contributions are:

* We have developed a free online multilingual
search tool for exploring well-established lit-
erature in the Islamic domain.!

* To the best of our knowledge, we are the first
to deploy open-source, non-profit semantic
search leveraging multiprocessing using Rust
language.

2 Lightweight Domain-Specific MLLM
2.1 Size Reduction of MLLM

MLLMs allow access to functionality in several
languages using one model and enabling cross-
lingual transfer. Pre-training mBERT (Devlin et al.,
2019) and XLM (Lample and Conneau, 2019) on
Wikipedia brought a new state-of-the-art to multi-
lingual tasks. Conneau et al. (2020) showed that
increasing MLLM’s capacity and training on a
larger corpus like CommonCrawl resulted in better-
performing models such as XLM-R and XILM-

'A system is deployed at https://rttl.ai/

Rpase. However, improved performance comes
at the cost of the model’s larger size (714MB for
mBERT vs. 1.1GB for XLLM-Rgase). The size
of the model makes it heavy to deploy in low-
resource settings. Sun et al. (2019); Tang et al.
(2019); Sanh et al. (2019); Li et al. (2020) showed
that distillation of transformer-based language mod-
els (Vaswani et al., 2017) leads to considerable size
reduction and adequate performance. Another ap-
proach that reduces model size and retains high
performance is language reduction of MLLM (Ab-
daoui et al., 2020). Around 50% of the parameters
in mBERT and 70% in XLM-Rp,. are assigned to
the embedding matrix (see Table 2 in Appendix
A). Thus, applying language reduction is more fa-
vorable in the case of deploying MLLM as it de-
creases the model size while preserving encoder
weights, trimming only the embedding matrix by
removing the languages that are not needed in de-
ployment. Unlike Abdaoui et al. (2020), our reduc-
tion method involves training a new tokenizer (see
Figure 2):

1. We compile the corpus using a multilingual
variant of the C4 corpus for the languages of
interest (English, Russian, Arabic, and Urdu).

2. Train the SentencePiece BPE tokenizer using

982

https://rttl.ai/

this corpus.

3. Find the intersection between the newly
trained tokenizer and the original XLM-Rpase
tokenizer available from Hugging Face,” the
tokens inside of intersection and correspond-
ing weights will be selected for the new em-
bedding matrix of the XLM-R4 model (34k
tokens).

4. We modify the SentencePiece model accord-
ing to the new tokenizer.

5. At the final stage, we copy the encoder
weights from XLM-Rp, to the new XLM-
R4 model.

The main difference in parameter size between
the mBERT and XLM-Rp,s model is in the size of
the embedding matrix (mBERT has 119K tokens,
while the XLLM-Rg,s. has 252K tokens), while the
size of encoder parameters of mBERT and XIL.M-
Rpase are the same. By only reducing the size of
the embedding matrix of the XLM-Rg,., We can
significantly decrease the model’s size to the size
of the bert model or even smaller while benefit-
ing from the extensive training that the XLM-Rpys
model underwent. The resulting XILM-R4 model,
with a size of 481 MB and 119M parameters, is
significantly smaller than XLLM-Rg,s., demonstrat-
ing the practical implications of our method and its
potential for real-world applications (see Table 2).

Table 1 compares how the models perform
on the XNLI dataset (Conneau et al., 2018) in
the cross-lingual transfer (fine-tuning multilingual
model on English training set). As a baseline
model, we use an XLM-Rg,s.. Hugging Face im-
plementation of the tokenizer of XLM-Rps. is dif-
ferent from the original implementation (Conneau
et al., 2020). For a fair comparison, we fine-tune
the XLM-Rg,s and the XLLM-R4 model with the
same hyperparameters on the English training set
of the XNLI dataset (see Appendix A). We also in-
clude in comparison mBERT, DistilmBERT (Sanh
et al., 2019), and a reduced version of mBERT that
consists of 15 languages (Abdaoui et al., 2020). We
compare the four languages left after performing
the language reduction technique (English, Rus-
sian, Arabic, Urdu). Table 1 shows that the best-
performing model for all languages is the XLM-
Rpase (in bold), and the second best-performing

2https://huggingface.co/FacebookAI/
x1lm-roberta-base

Model en ru ar ur

XLM-Rgase 84.19 75.59 71.66 65.27
XLM-R4 83.21 7275 70.48 64.95
mBERT 82.1 684 645 57
mBERT 15lang 822 687 649 57.1
DistilmBERT 785 639 58.6 533

Table 1: Results on cross-lingual transfer for four lan-
guages of the XNLI dataset. XLM-Rg,. and XLM-R4
results are averaged over five different seeds.

Model Size #params EM
mBERT 714MB 178 M 92 M
XLM-Rpye 1.1GB 278M 192M
XLM-R4 481 MB 119M 33M

Table 2: Comparison of models’ size

model (underlined) is the XLLM-R4. We can ob-
serve a slight drop in performance of the XLM-
R4 in comparison to the XLLM-Rg,g., which is the
smallest for Urdu (0.5%) and English and Ara-
bic (1.16% and 1.65% correspondingly), with a
more noticeable drop in Russian (3.76%). How-
ever, XLM-R4 performs better than the rest of the
models, including mBERT. DistilmBERT shows
the lowest results in all languages.

2.2 Domain Adaptation of MLLM

The XLLM-Rp,sc model on which we perform lan-
guage reduction to get the XLM-R4 model is pre-
trained on the general domain. We perform domain
adaptation of XLM-R4 to account for the domain
shift (Lee et al., 2019; Huang et al., 2019). One of
the challenges here is the preparation of a multilin-
gual Islamic corpus to adapt the XLM-R4 to the
Islamic domain. The situation regarding construct-
ing a multilingual corpus in the Islamic Domain
is unusual. In most multilingual corpora, the data
is predominantly in English, but in the Islamic do-
main, it is predominantly in Arabic. The Open
Islamicate Texts Initiative (OpenITI) (Romanov
and Seydi, 2019) has provided a sizable corpus (1
billion words) for pre-training LLMs in Classical
Arabic, which is the language of Arabic Islamic
literature. For English, Russian, and Urdu (50 mil-
lion words altogether), the available text mainly
consists of Tafseer (Qur’an exegesis) and Hadith.
To avoid having a corpus heavily skewed towards
Arabic, we selected a random subset of the Open-
ITI corpus containing approximately 250 million
words. We combine it with content from other lan-

983

https://huggingface.co/FacebookAI/xlm-roberta-base
https://huggingface.co/FacebookAI/xlm-roberta-base

Train tokenizer4i

[)
g—l i8N token
=l
© token
Multilingual = 2] |Z| token
Corpus oS | token ;
E 7 = token
g|T | token |@
4
Y
<@ 9|z | token cé@}
XLM-R base T

Tokenizer. T
Copy encoder weights

Figure 2: Language Reduction technique that gives us
the multilingual XLM-R4 model for four languages
(English, Russian, Arabic, and Urdu).

guages, resulting in a corpus of size 300M words
for domain adaptation. The corpus size is rela-
tively small; nevertheless, since the weights of the
XLM-R4 model are not initialized from scratch,
we can apply continued pre-training. To address
domain shift more effectively, we introduce new
domain-specific vocabulary (Gu et al., 2020; Belt-
agy et al., 2019; Poerner et al., 2020; Pavlova and
Makhlouf, 2023). The domain adaptation of XLM-
R4 involves the following steps (see Figure 3):

1. We train a new SentencePiece BPE tokenizer
using a multilingual Islamic Corpus.

2. We find the intersection between the new Is-
lamic tokenizer and the XLLM-R4 tokenizer.
All the tokens outside of the intersection (9k
tokens) are added to the embedding matrix,
and the weights for new tokens are assigned by
averaging existing weights of subtokens from
the XLM-R4 model.

3. We continue pre-training XLM-R4 using the
domain-specific corpus mentioned above to
get the XLM-R4-ID (Islamic domain) model.
For more details on the hyperparameters, refer
to Appendix A.

3 Domain-specific IR

To prepare the retrieval model, we utilize a dense
retrieval approach (Karpukhin et al., 2020) that
employs dual-encoder architecture (Bromley et al.,
1993). We use the sentence transformer framework
that adds a pooling layer on top of LLM embed-
dings and produces fixed-sized sentence embed-

Continue pre-training on domain-specific corpus.

Train tokenizeri
J Sl token |
&N token
B2
=

token
token E @
token

XLM-R4-ID

Sua%01 346,
id | id

id | i

Multilingual
token

|

token token

Islamic Corpus
2
x
% = d
@}—]\ o | token ; token

id

id

XLM-R4 T
Tokenizer-
Average subtokens weights.

Figure 3: Domain Adaptation of XLM-R4 utilizing
continued pre-training approach on Multilingual Islamic
Corpus. The final domain-specific model is XLM-R4-
ID.

ding (Reimers and Gurevych, 2019). The loss func-
tion is formulated in the framework of contrastive
learning that enables learning an embedding space
that brings closer queries and their relevant pas-
sages and pushes further queries and irrelevant pas-
sages (van den Oord et al., 2018). For efficient
training, we use in-batch negatives (Henderson
et al., 2017; Gillick et al., 2019; Karpukhin et al.,
2020). The transfer language of the XLM-Rpase
is English, while XLM-R4-ID was adapted for the
Islamic Domain, predominately using Arabic. We
experiment with both English and Arabic as trans-
fer languages to compare their transfer potential
for solving the IR task at hand. We utilize the
MS MARCO IR dataset, which contains more than
half a million queries and a collection of 8.8M pas-
sages in English (Bajaj et al., 2018) to allow cross-
lingual transfer from English and we use an Arabic
machine-translated version of MS MARCO (Boni-
facio et al., 2021) employing Arabic as transfer
language. Consequently, we prepared four retrieval
models, training XLM-Rg,s. and XLM-R4-1ID, us-
ing English and Arabic MS MARCO (for hyperpa-
rameters details see Appendix A). For evaluation,
we use Arabic QRCD (Qur’anic Reading Compre-
hension Dataset) (Malhas and Elsayed, 2020) as
IR Dataset and its verified translation to English,
Russian and Urdu. We use train and development
sets (169 queries) for testing. As a collection for re-
trieval, we use the Holy Quran text (Arabic), Sahih
International translation (English), Elmir Kuliev
(Russian) and Ahmed Raza Khan (Urdu) are avail-
able on tanzil.net.> We evaluate the models’ per-
formance using Recall @100 and the order-aware

Shttps://tanzil.net/trans/

984

https://tanzil.net/trans/

EN

AR RU UR

Recall@100 MRR@10 Recall@100 MRR@10 Recall@100 MRR@10 Recall@100 MRR@10

Model
XLM-Rggse (en) 18.7 34 2.94
XLM-Rgyse (ar) 17.8 329 53
XLM-R4-ID (en) 27.2 43.8 28.6
XLM-R4-ID (ar) 27.8 45.5 29.3
ST/multilingual-mpnet-base-v2 21.6 34.3 4.8
ST/all-mpnet-base-v2 25 40.9

6.94 17.9 31.8 20.4 33.7
6.3 20 30.1 20.7 339
45.5 24.5 34.7 26.8 40

45.5 24.1 37.5 27.3 41.5
52 17.2 22.4 135 19.1

Table 3: Performance on in-domain IR dataset for four languages. The best scores are in bold, and color codes

correspond to different languages.

metric MRR@10 (MS MARCQO’s official metric).

In Table 3, we compare different models, includ-
ing the SentenceTransformer model (paraphrase-
multilingual-mpnet-base-v2), which was trained
by distilling knowledge from the teacher model
paraphrase-mpnet-base-v2 and using XLM-Rgyse
as the student model. Additionally, we assess the
performance of the monolingual teacher model
paraphrase-mpnet-base-v2 in English. The ta-
ble shows that both XILM-R4-ID models outper-
form the others, including the monolingual model
(ST/all-mpnet-base-v2). Even though XLLM-R4 is
a reduced version of XLM-Rp,e, it significantly
outperforms XLLM-Rp,se. This improvement in per-
formance shows that domain adaptation was ben-
eficial. It is also important to mention that both
the XLM-Rp,se and the multilingual-mpnet-base-
v2 models perform poorly in Arabic. This obser-
vation may indicate that domain shift might have
a significant impact, particularly with the Arabic
language. Moreover, we observe that XLM-R4-1D
trained on the Arabic machine-translated version
of MS MARCO outperforms XLM-R4-ID trained
on English MS MARCO for all languages with
one exception of Recall @100 metric for Russian.
These results can be explained by the fact that a
significant part of the corpus for domain adaptation
was in Arabic (around 85%). We can suggest that
Arabic can effectively function as a transfer lan-
guage for the Islamic domain. For all subsequent
sections of the paper and for deployment, we will
be using XLM-R4-ID (ar).

4 Deploying Domain-Specific IR System

Using GPUs to train transformer-based LLMs and
retrieval models is often a necessity. However,
GPUs for inference in a production environment
are cost-prohibitive, especially in non-profit organi-
zations. Additionally, given supply availability to

ensure the right size of cloud machines with GPUs
often imposes a fixed set of resources in predefined
bundles of size, which typically leads to vast over-
provisioning and grossly underutilized resources.
Our goal is to maximize software performance and
resource efficiency on widely-used, cost-effective
CPU servers. We argue that leveraging the ubiquity
and flexibility of CPU servers makes it possible
to build a system and improve efficiency indepen-
dently of the underlying substrate, allowing deploy-
ment even on serverless infrastructure, which is
predominately CPU-based.

4.1 Rust for Production AI Workloads

Production use of IR systems requires real-time
processing capabilities. However, the main chal-
lenge of using state-of-the-art retrieval models in
production is their high inference time. Deploy-
ing such models on resource-constrained devices
is even more problematic. A few approaches like
model quantization (Guo, 2018; Jacob et al., 2017;
Bondarenko et al., 2021; Tian et al., 2023), em-
bedding size compression (Zhu et al., 2018; Gupta
et al., 2019; Kusupati et al., 2024; Li et al., 2024)
can help to address this issue at the cost of model
performance. However, in specific applications
of semantic search, such as Islamic Domain, even
a slight decrease in performance is highly unde-
sirable. We argue that it is possible to improve
inference times without compromising search qual-
ity. To minimize the trade-off between latency and
performance, we leverage the advantages of the
Rust language.

Rust is a safe and efficient systems program-
ming language that addresses many pain points
in other commonly used interpreted languages,
such as Python, which imposes the presence of
the Python interpreter in the production environ-
ment. Providing zero-cost abstractions to the hard-

985

Python SQ PQ Rust Rust Rust Rust
SUT HNSW
(e.s.) (es.) (es.) 1w (es.) 2w (es.) 4w (es.) 6w.(es.)
Speedup 1x 5x 39x 9x 2.6x 3.8x 4.5x 4.9x
Recall 100% 90% 90% 85% 100% 100% 100% 100%

Table 4: Comparisons of SUTs for the speedup of retrieval against baseline and percentage of baseline Recall (e.s

stands for exact search and w. for worker).

ware substrate with a lightweight memory footprint,
idiomatically written Rust outperforms identical
equivalents written in JVM-based languages such
as Java (Perkel, 2020). The absence of garbage
collection mechanics in Rust makes systems writ-
ten in Rust more deterministic and better suited for
production deployments in serverless and compact
runtimes where compute is billed by milliseconds
(Liang et al., 2024). The borrow checker of Rust
eliminates an entire class of security vulnerabilities
introduced by references outliving the data they
point to. This feature guarantees safety, especially
when writing concurrent and multiprocessing code,
without sacrificing performance gains (Seidel and
Beier, 2024; Jung et al., 2021; Abdi et al., 2024).
Energy efficiency and reduced carbon footprint are
other crucial features of using Rust in Al produc-
tion workloads (Pereira et al., 2017).

4.2 System Design for Rust-based Semantic
Search

Such libraries as Faiss* offer the best speedup using
GPU architecture, which significantly increases de-
ployment costs. Faiss also provides multi-threading
capabilities but lacks native cost-efficient multipro-
cessing and true parallelism for individual search
queries. The best CPU performance is achieved by
sending queries in batches, which does not align
with real-world online search. Utilizing the Rust
language’s capabilities enables us to implement
a multiprocessing architecture efficiently and se-
curely for our IR system. We built the system
on top of the Candle framework,’ a minimalist
machine-learning framework for Rust. The sys-
tem’s architectural design goes as follows (see Fig-
ure 1):

1. The passages from the corpus are converted
to embeddings and stored for caching during
the search.

*https://ai.meta.com/tools/faiss/
Shttps://github.com/huggingface/candle

986

Speed Up

Figure 4: Speedup and Recall of SUTs.
Recall

—r—

0.9

0.8

Python HHSW 5Q PG Rust1 Rust2 Rustd4 Rusté

Figure 5: Speedup and Recall of SUTs.

2. The corpus embeddings are divided into
chunks and distributed across the specified
number of workers.

3. For multiprocessing during the search, an em-
bedding of a search query is sent to each
worker asynchronously.

4. Each worker conducts an exact search by com-
paring the query with each passage within the
allocated chunk and then assigns a score using
the similarity function.

5. The workers then return scores to the main
thread as a list of tuples, each containing a
score and a passage ID for sorting.

6. At the final stage, the scores are sorted in de-
scending order, and the corresponding pas-

https://ai.meta.com/tools/faiss/
https://github.com/huggingface/candle

sages are returned to the user based on the
topk parameter.

We compare our system’s performance against
Faiss implementation of the following algo-
rithms: Hierarchical Navigable Small World graph
(HNSW), Scalar Quantization with fp16 (SQ), and
Product Quantization (PQ). To compare the Sys-
tems Under Test (SUTs), we assume the following
conditions: the corpus and query embeddings are
precomputed and preloaded in memory. To accom-
modate different minute fluctuations posed by po-
tential hardware condition variance, we average ten
runs of each system across test queries that are pro-
vided linearly. All the systems perform the search
and retrieval using CPU-based architecture. To test
on a bigger retrieval corpus (approx 50k passages),
the dataset used for measuring the time of retrieval
and Recall of SUTs is Hadith Question-Answer
pairs (HAQA) (Alnefaie et al., 2023). The simi-
larity function utilized during the search is cosine
similarity. All the systems employ XLM-R4-ID
(ar) as a retrieval model. The hardware used for the
test is a cloud instance (1x NVIDIA A10) provided
by Lambda Labs’s public cloud.

Table 4 highlights the trade-off between retrieval
time and performance for different SUTs. The
main focus of comparison is the speed of retrieval.
Python implementation of exact search is a base-
line with its score for Recall@100 (Recall) taken
as 100%. We can observe that the speedup of re-
trieval time of Faiss algorithms always comes at
the cost of lower Recall. At the same time, the
implementation of semantic search in Rust doesn’t
endure the trade-off between retrieval time and per-
formance. Figure 35 illustrates the dip in Recall
plot for the highest speedup of the PQ algorithm
while Recall for Rust implementation stays flat at
100% for all instances. Moreover, a speedup of 2.6
times is achievable with Rust implementation with-
out applying multiprocessing (using one worker),
and further speedup is possible by adding more
workers.

5 Related work

There is a substantial amount of work written on
the topic of pre-training domain-specific LLM;
some of them describe more costly approaches
like pre-training a new LLM from scratch Gu et al.
(2020); Beltagy et al. (2019), some more resource-
efficient approaches like continued pre-training Lee
et al. (2019); Huang et al. (2019), and there is a

body of work that research methods of domain-
adaptation in a low resource setting Poerner et al.
(2020); Sachidananda et al. (2021); Pavlova (2023).
The survey Zhao et al. (2022) covers in detail the
topic of dense retrieval, discussing different types
of models’ architecture and training approaches,
including the selection of high-quality negatives.
There is a growing body of research on Rust Lan-
guage memory-safe features that came to be known
as fearless concurrency (Jung et al., 2021; Abdi
et al., 2024; Evans et al., 2020; Perkel, 2020).

6 Conclusion

This work outlines the development of a non-profit
multilingual IR system for the Islamic domain. We
also address the challenges it presents and propose
potential solutions for handling these challenges in
low-resource settings. Our research demonstrates
that utilizing continued pre-training and integrat-
ing new domain-specific vocabulary can help mit-
igate domain shift, even when pre-training on a
small corpus. The retrieval model we built using a
domain-adapted MLLM as a foundation exhibited
better performance compared to general domain
models. Additionally, we found that implement-
ing language reduction can significantly decrease
the model size without deteriorating performance.
Furthermore, we showed that leveraging the mul-
tiprocessing capabilities of the Rust language can
decrease inference time without compromising per-
formance or requiring expensive acceleration hard-
ware like GPUs.

Limitations

To measure the inference time and recall of SUTs
we are restricted to using a smaller retrieval corpus
(around 50k passages). The real size of the data for
retrieval is above 150k passages.

Acknowledgment

Developing a multiprocessing CPU-based search
with Rust would not have been possible without
Mohamed Samir from SYWA Al. We would also
like to express our gratitude to Osama Khalid from
SYWA Al for assisting in verifying the quality of
the Urdu translation of the QRCD queries. We
extend our thanks to the anonymous Reviewers and
the Area Chair for their valuable feedback and to
the Program Chairs for promptly addressing and
resolving all related matters.

987

References

Amine Abdaoui, Camille Pradel, and Grégoire Sigel.
2020. Load what you need: Smaller versions of
mutililingual BERT. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language
Processing, pages 119-123, Online. Association for
Computational Linguistics.

Javad Abdi, Gilead Posluns, Guozheng Zhang, Boxuan
Wang, and Mark C. Jeffrey. 2024. When is paral-
lelism fearless and zero-cost with rust? Proceedings
of the 36th ACM Symposium on Parallelism in Algo-
rithms and Architectures.

Sarah Alnefaie, Eric Atwell, and Mohammad Ammar
Alsalka. 2023. HAQA and QUQA: Constructing two
Arabic question-answering corpora for the Quran
and Hadith. In Proceedings of the 14th International
Conference on Recent Advances in Natural Language
Processing, pages 90-97, Varna, Bulgaria. INCOMA
Ltd., Shoumen, Bulgaria.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
Mir Rosenberg, Xia Song, Alina Stoica, Saurabh
Tiwary, and Tong Wang. 2018. Ms marco: A human
generated machine reading comprehension dataset.
Preprint, arXiv:1611.09268.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615—
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2021. Understanding and overcoming
the challenges of efficient transformer quantization.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7947-7969, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Luiz Henrique Bonifacio, Israel Campiotti, Roberto
de Alencar Lotufo, and Rodrigo Frassetto Nogueira.
2021. mmarco: A multilingual version of
MS MARCO passage ranking dataset. CoRR,
abs/2108.13897.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Siackinger, and Roopak Shah. 1993. Signature verifi-
cation using a "siamese" time delay neural network.
In Proceedings of the 6th International Conference
on Neural Information Processing Systems, NIPS 93,
page 737-744, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised

cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475-2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ana Nora Evans, Bradford Campbell, and Mary Lou
Soffa. 2020. Is rust used safely by software devel-
opers? 2020 IEEE/ACM 42nd International Con-
ference on Software Engineering (ICSE), pages 246—
257.

Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessan-
dro Presta, Jason Baldridge, Eugene Ie, and Diego
Garcia-Olano. 2019. Learning dense representations
for entity retrieval. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 528-537, Hong Kong, China.
Association for Computational Linguistics.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2020. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. CoRR, abs/2007.15779.

Yunhui Guo. 2018. A survey on methods and the-
ories of quantized neural networks. Preprint,
arXiv:1808.04752.

Vishwani Gupta, Sven Giesselbach, Stefan Riiping, and
Christian Bauckhage. 2019. Improving word em-
beddings using kernel PCA. In Proceedings of the
4th Workshop on Representation Learning for NLP
(RepL4NLP-2019), pages 200-208, Florence, Italy.
Association for Computational Linguistics.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun
hsuan Sung, Laszlo Lukacs, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. Preprint, arXiv:1705.00652.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath.
2019. Clinicalbert: Modeling clinical notes and pre-
dicting hospital readmission. CoRR, abs/1904.05342.

988

https://doi.org/10.18653/v1/2020.sustainlp-1.16
https://doi.org/10.18653/v1/2020.sustainlp-1.16
https://api.semanticscholar.org/CorpusID:270258733
https://api.semanticscholar.org/CorpusID:270258733
https://aclanthology.org/2023.ranlp-1.10
https://aclanthology.org/2023.ranlp-1.10
https://aclanthology.org/2023.ranlp-1.10
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/2021.emnlp-main.627
https://doi.org/10.18653/v1/2021.emnlp-main.627
https://arxiv.org/abs/2108.13897
https://arxiv.org/abs/2108.13897
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://api.semanticscholar.org/CorpusID:220302286
https://api.semanticscholar.org/CorpusID:220302286
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049
https://arxiv.org/abs/2007.15779
https://arxiv.org/abs/2007.15779
https://arxiv.org/abs/2007.15779
https://arxiv.org/abs/1808.04752
https://arxiv.org/abs/1808.04752
https://doi.org/10.18653/v1/W19-4323
https://doi.org/10.18653/v1/W19-4323
https://arxiv.org/abs/1705.00652
https://arxiv.org/abs/1705.00652
https://arxiv.org/abs/1705.00652
https://arxiv.org/abs/1904.05342
https://arxiv.org/abs/1904.05342

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. Trans.
Mach. Learn. Res., 2022.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2017. Quan-
tization and training of neural networks for effi-
cient integer-arithmetic-only inference. Preprint,
arXiv:1712.05877.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,
and Derek Dreyer. 2021. Safe systems programming
in rust. Communications of the ACM, 64:144 — 152.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,
Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen,
Sham Kakade, Prateek Jain, and Ali Farhadi. 2024.
Matryoshka representation learning. Preprint,
arXiv:2205.13147.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. CoRR,
abs/1901.07291.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics.

Xianming Li, Zongxi Li, Jing Li, Haoran Xie, and
Qing Li. 2024. Ese: Espresso sentence embeddings.
Preprint, arXiv:2402.14776.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt
Keutzer, Dan Klein, and Joseph E. Gonzalez. 2020.
Train large, then compress: Rethinking model size
for efficient training and inference of transformers.
CoRR, abs/2002.11794.

Zhiying Liang, Vahab Jabrayilov, Aleksey Charapko,
and Abutalib Aghayev. 2024. The cost of garbage
collection for state machine replication. Preprint,
arXiv:2405.11182.

Rana Malhas and Tamer Elsayed. 2020. Ayatec: build-
ing a reusable verse-based test collection for arabic
question answering on the holy qur’an. ACM Trans-
actions on Asian and Low-Resource Language Infor-
mation Processing (TALLIP), 19(6):1-21.

Vera Pavlova. 2023. Leveraging domain adaptation and
data augmentation to improve qur’anic IR in English
and Arabic. In Proceedings of ArabicNLP 2023,

pages 7688, Singapore (Hybrid). Association for
Computational Linguistics.

Vera Pavlova and Mohammed Makhlouf. 2023. BIOp-
timus: Pre-training an optimal biomedical language
model with curriculum learning for named entity
recognition. In The 22nd Workshop on Biomedical
Natural Language Processing and BioNLP Shared
Tasks, pages 337-349, Toronto, Canada. Association
for Computational Linguistics.

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua,
Jacome Cunha, Jodo Paulo Fernandes, and Jodo
Saraiva. 2017. Energy efficiency across program-
ming languages: how do energy, time, and memory
relate? In Proceedings of the 10th ACM SIGPLAN
International Conference on Software Language En-
gineering, SLE 2017, page 256267, New York, NY,
USA. Association for Computing Machinery.

Jeffrey Perkel. 2020. Why scientists are turning to rust.
Nature, 588:185 — 186.

Nina Poerner, Ulli Waltinger, and Hinrich Schiitze.
2020. Inexpensive domain adaptation of pretrained
language models: Case studies on biomedical NER
and covid-19 QA. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1482-1490, Online. Association for Computational
Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Maxim Romanov and Masoumeh Seydi. 2019. Openiti:
a machine-readable corpus of islamicate texts. Zen-
odo, URL: https://doi. org/10.5281/zenodo, 3082464.

Vin Sachidananda, Jason Kessler, and Yi-An Lai. 2021.
Efficient domain adaptation of language models via
adaptive tokenization. In Proceedings of the Second
Workshop on Simple and Efficient Natural Language
Processing, pages 155-165, Virtual. Association for
Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Lukas Seidel and Julian Beier. 2024. Bringing
rust to safety-critical systems in space. Preprint,
arXiv:2405.18135.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages

989

https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:249097975
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://api.semanticscholar.org/CorpusID:232312936
https://api.semanticscholar.org/CorpusID:232312936
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://arxiv.org/abs/2205.13147
https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/1901.07291
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://arxiv.org/abs/2402.14776
https://arxiv.org/abs/2002.11794
https://arxiv.org/abs/2002.11794
https://arxiv.org/abs/2405.11182
https://arxiv.org/abs/2405.11182
https://doi.org/10.18653/v1/2023.arabicnlp-1.7
https://doi.org/10.18653/v1/2023.arabicnlp-1.7
https://doi.org/10.18653/v1/2023.arabicnlp-1.7
https://doi.org/10.18653/v1/2023.bionlp-1.31
https://doi.org/10.18653/v1/2023.bionlp-1.31
https://doi.org/10.18653/v1/2023.bionlp-1.31
https://doi.org/10.18653/v1/2023.bionlp-1.31
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3136014.3136031
https://api.semanticscholar.org/CorpusID:227251258
https://doi.org/10.18653/v1/2020.findings-emnlp.134
https://doi.org/10.18653/v1/2020.findings-emnlp.134
https://doi.org/10.18653/v1/2020.findings-emnlp.134
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.sustainlp-1.16
https://doi.org/10.18653/v1/2021.sustainlp-1.16
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2405.18135
https://arxiv.org/abs/2405.18135
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441

4323-4332, Hong Kong, China. Association for Com-
putational Linguistics.

Raphael Tang, Yao Lu, Linging Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. CoRR, abs/1903.12136.

Rong Tian, Zijing Zhao, Weijie Liu, Haoyan Liu, Wei-
quan Mao, Zhe Zhao, and Kan Zhou. 2023. SAMP:
A model inference toolkit of post-training quanti-
zation for text processing via self-adaptive mixed-
precision. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 123—130, Singapore. Associa-
tion for Computational Linguistics.

Adron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji rong
Wen. 2022. Dense text retrieval based on pretrained
language models: A survey. ACM Transactions on
Information Systems, 42:1 — 60.

Yonghua Zhu, Xuejun Zhang, Ruili Wang, Wei Zheng,
and Yingying Zhu. 2018. Self-representation and pca
embedding for unsupervised feature selection. World
Wide Web, 21(6):1675-1688.

A Appendix

Computing Infrastructure 1x H100 (80 GB)
Hyperparameter Assignment
number of epochs 60

batch size 128
maximum learning rate 0.0005
learning rate optimizer Adam
learning rate scheduler None or Warmup linear
Weight decay 0.01
Warmup proportion 0.06
learning rate decay linear

Table 5: Hyperparameters for pre-training of XLM-R4-
ID model.

Computing Infrastructure 2 x NVIDIA RTX 3090 GPU
Hyperparameter Assignment
number of epochs 10
batch size 8
learning rate 2e-5
weight decay 0.01

Table 6: Hyperparameters for fine-tuning on XNLI
dataset.

Computing Infrastructure 1x H100 (80 GB)
Hyperparameter Assignment
number of epochs 10
batch size 256
learning rate 2e-5
pooling mean

Table 7: Hyperparameters for training retrieval models.

990

https://arxiv.org/abs/1903.12136
https://arxiv.org/abs/1903.12136
https://arxiv.org/abs/1903.12136
https://doi.org/10.18653/v1/2023.emnlp-industry.13
https://doi.org/10.18653/v1/2023.emnlp-industry.13
https://doi.org/10.18653/v1/2023.emnlp-industry.13
https://doi.org/10.18653/v1/2023.emnlp-industry.13
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://api.semanticscholar.org/CorpusID:254044526
https://api.semanticscholar.org/CorpusID:254044526
https://doi.org/10.1007/s11280-017-0497-2
https://doi.org/10.1007/s11280-017-0497-2

