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Abstract

Conversational recommender systems (CRS)
aim to recommend relevant items to users by
eliciting user preference through natural lan-
guage conversation. Prior work often utilizes
external knowledge graphs for items’ seman-
tic information, a language model for dialogue
generation, and a recommendation module for
ranking relevant items. This combination of
multiple components suffers from a cumber-
some training process, and leads to semantic
misalignment issues between dialogue genera-
tion and item recommendation. In this paper,
we represent items in natural language and for-
mulate CRS as a natural language processing
task. Accordingly, we leverage the power of
pre-trained language models to encode items,
understand user intent via conversation, per-
form item recommendation through semantic
matching, and generate dialogues. As a uni-
fied model, our PECRS (Parameter-Efficient
CRS), can be optimized in a single stage, with-
out relying on non-textual metadata such as a
knowledge graph. Experiments on two bench-
mark CRS datasets, ReDial and INSPIRED,
demonstrate the effectiveness of PECRS on
recommendation and conversation. Our code
is available at: https://github.com/
Ravoxsg/efficient_unified_crs.

1 Introduction

Conversational recommender systems (CRS) have
become an active research topic, which leverages
both natural language processing and recommen-
dation techniques to provide high-quality recom-
mendations through interactive conversations with
users (Jannach et al., 2021; Gao et al., 2021;
Pramod and Bafna, 2022).

CRS consists of two sub-tasks: 1) generating nat-
ural language responses to interact with user (con-
versation); and 2) recommending desirable items to
user based on dialogue context (recommendation).
An example of CRS data and model prediction is
shown in Figure 1. In general, CRS represents a

Figure 1: An example of dialogue from ReDial (Li et al.,
2018), where blue color denotes the movie items.

significant advancement in the field of recommen-
dation, which could be applied to various possible
use cases, such as e-commerce, entertainment and
content platforms.

Existing CRS methods can be roughly catego-
rized into attribute-based and generation-based
methods. The attribute-based methods (Lei et al.,
2020; Ren et al., 2020; Zou et al., 2020) focus on
collecting user preferences on item attributes to
narrow down recommendation space to items with
desired properties. The generation-based meth-
ods (Zhou et al., 2020a, 2022; Wang et al., 2022c)
aim to acquire feedback from users, generate natu-
ral responses, and establish a comprehensive under-
standing of conversation to recommend the most
desirable items to user. In this work, we focus on
generation-based CRS, which was greatly facili-
tated with the rise of task-specific CRS datasets
like ReDial (Li et al., 2018), INSPIRED (Hayati
et al., 2020), TG-ReDial (Zhou et al., 2020b) and
DuRecDial (Liu et al., 2020).

The key challenge of CRS methods consists in
how to jointly model language generation and item
recommendation, which are tasks of entirely differ-
ent natures. Early approaches (Chen et al., 2019;
Zhou et al., 2020a; Zhang et al., 2022; Zhou et al.,
2022) mainly model conversation and recommen-
dation tasks separately by incorporating external
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knowledge graphs (KG) for item semantics and
designing auxiliary strategies to enhance the inter-
actions between two tasks. They generally treat
items as nodes, which neglects the affluent textual
information of items. They also sustain semantic
misalignment issue due to inconsistent item and
word representations, because conversation and
recommendation modules are separately learned.
Recent approaches (Wang et al., 2022a,b,c; Yang
et al., 2022) explore to seamlessly integrate con-
versation and recommendation modules for bet-
ter knowledge sharing and semantic alignment via
unified frameworks. However, due to the natural
gap between recommendation and conversation,
they still require multiple training phases (Wang
et al., 2022c) and/or additional modules (Wang
et al., 2022a; Yang et al., 2022) to integrate the two
tasks, failing to reach desired level of integration.

With the rapid development of language models
(LMs), LMs for recommendation has gained sig-
nificant attention. Based on LMs, recent work (Wu
et al., 2023; Lin et al., 2023) also shows a growing
correlation between recommendation and language
tasks. Thus, instead of applying structured KGs,
we stick to using item text descriptions together
with dialogue contexts for CRS, which formulates
the CRS directly as a natural language processing
task. Specifically, we devise a Parameter-Efficient
Conversational Recommender System (PECRS),
which jointly solves recommendation and conver-
sation by training a single model once, to bypass
the shortcomings of prior work in CRS. PECRS
only relies on a frozen pre-trained LM as backbone
and employs a parameter-efficient plugin module
to unify response generation and item recommen-
dation in a simple yet flexible manner. Besides, we
design a shared negative sampling strategy to sam-
ple negative items across subtasks and data points
within the same mini-batch to boost both train-
ing efficiency and model performance. Moreover,
thanks to the parameter-efficient plugin module,
PECRS can easily scale up to larger LM backbones
without significantly increasing training parame-
ters. In brief, our contributions are the following:

• To the best of our knowledge, this is the first work
solving CRS by optimizing a single model in a
single training phase and bypassing the need for
either KGs or additional item encoders.

• We demonstrate how to jointly generate response
and learn item representations using a single
and frozen language model. Through parameter-

efficient fine-tuning techniques, our method is
with low computation cost, and can easily scale
to larger backbones for higher performance.

• Experiments on two benchmark datasets, ReDial
and INSPIRED, demonstrate the effectiveness of
our proposed PECRS method, which is competi-
tive with SOTA.

2 Related Work

Existing conversational recommender systems
(CRS) can be roughly categorized into attribute-
based and generation-based CRS methods. The
attribute-based CRS methods utilize predefined
actions to interact with users and target on ac-
complishing the recommendation task with fewer
turns (Christakopoulou et al., 2016; Sun and Zhang,
2018; Lei et al., 2020; Ren et al., 2020; Zou et al.,
2020; Hu et al., 2022a). Our work belongs to the
generation-based CRS, which focuses on develop-
ing natural language based approaches to make
high-quality recommendation and generate human-
like responses simultaneously (Li et al., 2018; Hay-
ati et al., 2020; Zhou et al., 2020b; Liu et al., 2020).

Generation-based CRS methods usually devise a
recommendation module and a conversation mod-
ule to implement item recommendation and re-
sponse generation, respectively. Li et al. (2018) pro-
pose the first CRS dataset named ReDial, and solve
it via encoder-decoder-based dialogue generator
and autoencoder-based recommender. Subsequent
work commonly adopts external resources to incor-
porate sufficient contextual information for better
performance. Numerous works (Chen et al., 2019;
Zhou et al., 2020a, 2021; Ma et al., 2020; Zhang
et al., 2022; Liang et al., 2021; Li et al., 2022;
Liu et al., 2023; Zhang et al., 2023b) use knowl-
edge graphs (KG) (Auer et al., 2007; Speer et al.,
2017) coupled with graph networks (Schlichtkrull
et al., 2018) to enhance the items and user pref-
erence understanding by designing sophisticated
semantic alignment strategies. RevCore (Lu et al.,
2021) and C2-CRS (Zhou et al., 2022) further in-
corporate movie reviews to enrich the contextual
knowledge via cross-attention (Lu et al., 2021) and
contrastive learning (Zhou et al., 2022). Despite
consecutive improvements, these works rely on
different architectures for conversation and recom-
mendation, making them difficult to be effectively
integrated for end-to-end training and knowledge
sharing. Consequently, they still suffer from a mis-
match between conversation and recommendation
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modules as well as inferior efficiency.

To remedy the aforementioned issues, recent
approaches explore to jointly learn both conver-
sation and recommendation tasks by pre-trained
LMs. UniCRS (Wang et al., 2022c) adopts the
DialoGPT (Zhang et al., 2020) for both con-
versation and recommendation by tuning soft
prompts (Lester et al., 2021) dedicated to each
task. Nevertheless, UniCRS requires three rounds
of optimization, i.e., semantic fusion pre-training,
conversation tuning, and recommendation tuning.
UniMIND (Deng et al., 2023) follows the Uni-
CRS paradigm with BART (Lewis et al., 2020)
as the backbone, which unifies multi-goal CRS, i.e.,
multi-tasks, using prompting strategy with multiple
training stages. RecInDial (Wang et al., 2022a) aug-
ments items into DialoGPT vocabulary and designs
a pointer mechanism for dynamic word and item
prediction to achieve single multi-tasking process.
Similarly, BARCOR (Wang et al., 2022b) utilizes
BART to recommend items with encoder and gener-
ate responses with decoder concurrently. Instead of
using KG, MESE (Yang et al., 2022) encodes item
representations using metadata and fuses them into
dialogue for joint conversation and recommenda-
tion learning using GPT-2 (Radford et al., 2019) as
the backbone. Although these methods attempt to
integrate conversation and recommendation tasks
for joint optimization, they rely on extra modules
(e.g., R-GCN (Schlichtkrull et al., 2018) and Distil-
BERT (Sanh et al., 2019)) for either item encoding
or semantic fusion, and multi-round training stages.
In contrast, our goal is to design a framework to
unify the CRS training under a single model opti-
mized in a single training stage.

Our work also employs parameter-efficient fine-
tuning (PEFT) strategies. PEFT, including prompt
tuning (Lester et al., 2021), Adapters (Houlsby
et al., 2019), and LoRA (Hu et al., 2022b), is a se-
ries of techniques to adapt (large) LMs with fewer
parameters and low computation costs to achieve
same or even better performance comparing to the
standard fine-tuning on downstream tasks. PEFT
has shown great promise in various natural lan-
guage (Zhang et al., 2023a; Dettmers et al., 2023),
computer vision (He et al., 2022; Chen et al., 2023),
and recommendation (Fu et al., 2023) tasks, but re-
mains underexplored in CRS area. In this work,
we aim to train CRS via PEFT plugins without
touching the parameters of the backbone LM.

3 Methodology

In this section, we first describe the problem state-
ment of conversational recommendation systems
(CRS). Then we present the proposed Parameter-
Efficient Conversational Recommender System
(PECRS) method in detail. The overall architec-
ture of PECRS is shown in Figure 2.

3.1 Problem Formulation

Let I = {I1, I2, . . . , INitem} represent the item
database, which contains Nitem unique items, and
D = {D1, D2, . . . , DNdial} denote a CRS dataset
with Ndial dialogues. Each dialogue D consists of
nutt utterances denoted by D = {ut}nutt

t=1, where ut
represents the utterance at the t-th turn and each
utterance ut = {wj}nj=1 contains a sequence of
n words. The task of CRS is to generate the re-
sponse and recommend desirable items based on
the given dialogue history and item database. To
be specific, given the dialogue history up to the
t-th turn Dt = {ui}t−1

i=1 and the item database I ,
the CRS needs to recommend a set of candidate
items It from I , and generate the response ut
which includes the items It. The recommended
candidate items set It could be empty when no
recommendation is needed, or contain one or more
items depending on the responses.

In this work, we apply our method to the movie
recommendation (i.e., I denotes a movie items
set), but the process would be identical with other
types of items. We follow prior work (Wang et al.,
2022c; Yang et al., 2022) to adjust data samples
and predict response with a single recommended
movie per utterance.

3.2 Model Input

In PECRS, items are represented by their textual de-
scriptions, hence both input streams are modeled as
text. Nevertheless, we design a few special tokens
to distinguish the various elements in PECRS.

Special Tokens. Our PECRS is built upon a pre-
trained LM under the decoder-only style, param-
eterized by θ (e.g, GPT-2). However, LMs gen-
erally do not have the capacity for recommenda-
tion task. Thus, we define four special tokens, i.e.,
“[ITEM]”, “[SEP]”, “[REC]” and “[REC_END]”,
and add them into the LM’s vocabulary to guide
the model’s understanding of recommended items.

Item Metadata. Prior work (Zhou et al., 2020a;
Zhang et al., 2022; Wang et al., 2022a; Zhou et al.,
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...... 
Seeker: You really like the movies you suggest. Any
other Will Ferrell movies you can suggest? 
Recommender: Yes, otherwise I would be wasting
your time. 
Seeker: True. 
------------------------------------------------------------------ 
Recommender: I recommend you to check [MOVIE].

Item DB
...
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[SEP] genre [SEP] plot ...
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Figure 2: The overall architecture of the proposed Parameter-efficient Conversation Recommendation System (PECRS), where
the PEFT denotes the parameter-efficient fine-tuning. Instead of fine-tuning backbone model, we inject PEFT plugins into
backbone model and fine-tune the PEFT weights (see the figure in the right).

2022; Wang et al., 2022c) usually exploits external
KG to encode item representations. They generally
regard items as nodes and model relations among
items through R-GCN (Schlichtkrull et al., 2018),
but neglect the rich textual descriptions of the items.
In contrast, similar to Yang et al. (2022), we explore
to use the static textual metadata of items. Item de-
scriptions can be fed into a language model directly,
hence bypassing the semantic misalignment issue.
To be specific, each item Ij is represented by afflu-
ent relevant information of the item rather than just
its title. For movie recommendation, we use the
following format “Movie title [SEP] Actors [SEP]
Director(s) [SEP] Genre(s) [SEP] Plot” to describe
a movie item, where [SEP] is used to mark the sepa-
ration among different fields. Note this process can
be directly generalized to other domains by using
the meta information of items in the target domain.
Formally, let Ij = {cj,k}lk=1 denotes the j-th item
textual data with l tokens, its output from LM is
Ij = [cj,1, . . . , cj,l]. We further adopt a MLP layer
hitem with learnable pooling weight w to aggregate
the item representation as:

vj = hitem(w
T · Ij). (1)

Dialogue Context. The dialogue context is made
of all utterances up to the current t-th utterance:
Dt = {ui}t−1

i=1. The word embeddings of the i-th ut-
terance are denoted as ui = [ci,1, . . . , ci,n]. If any
utterance ui contains an item, it will be replaced by
“[ITEM]” token and its item representation is also
concatenated to the left side of the utterance’s word

embeddings. Otherwise, it remains unchanged. Let
vsep, vrec and vrec_end denote the token represen-
tations of “[SEP]”, “[REC]” and “[REC_END]”,
respectively. Suppose the i-th utterance contains
an item, if it is from seeker, its token embeddings
are represented as ũi = [vsep,vj ,vsep,ui]; if it
is from recommender, its token embeddings are
ũi = [vrec,vj ,vrec_end,ui]. Thus, the token em-
bedding sequences of dialogue context are the con-
catenation of all utterances with vrec representation:

Dt = [ū1, . . . , ūt−1,vrec], (2)

where ūi = ũi if the utterance contains items,
otherwise ūi = ui.

3.3 Recommendation

The recommendation module contains two pro-
cesses: retrieval and re-ranking. The retrieval pro-
cess is to select candidate items relevant to dialogue
context from item database. The re-ranking process
further re-ranks the selected candidate items after
aggregating knowledge from the dialogue context.

Retrieval. We use the movie item in the response
to be predicted as the ground-truth item, and sam-
ple M negative items from item database. Then,
we use their textual descriptions to encode item
representations via Equation (1) and derive ground-
truth item vp and negative items {v′

j}Mj=1. As the
dialogue context is ended with “[REC]” token (ref.
Equation (2)) and decoder-only LM can aggregate
all contextual information via causal self-attention,
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we utilize LM’s output of “[REC]” token, denoted
as dt, to represent query representation of dialogue
context. We adopt a noise-contrastive estimation
(NCE) (Gutmann and Hyvärinen, 2012; Mnih and
Teh, 2012; Mnih and Kavukcuoglu, 2013) objective
to bring together the query dt with the positive key
vp and push apart M negative (query, key) pairs
formed by the set N = {(dt,v

′
j)}Mj=1.

The NCE objective is written as:

EDt =
ef(dt)⊤⊙vp

ef(dt)⊤⊙vp +
∑

(dt,v′
j)∼N

ef(dt)⊤⊙v′
j

, (3)

where f is a projection head with two-layer
MLP and ReLU activation; ⊙ denotes the angu-
lar distance,

√
2(1− cos(a, b)), which measures

the similarity between two vectors, a and b. The
recall loss for retrieval process is defined as:

Lrecall = − 1

|D|
∑

Dt∈D
log(EDt). (4)

Note we stop the gradients of LM and only op-
timize the pooling and MLP layers for item repre-
sentations encoding during training (ref. Figure 2)
to accelerate the learning process. The item repre-
sentations will be reused in re-ranking process and
the LM will be optimized at this stage accordingly.

Re-ranking. The item representations derived
from retrieval process are reused in the re-ranking
process to aggregate the knowledge of dialogue
context. To be specific, given both positive
and negative items, we concatenate them with
the token embeddings of dialogue context as
[Dt,vp,v

′
1, . . . ,v

′
M ] and feed into LM then MLP

f to compute the context-aware item representa-
tions [qp, q1, . . . , qM ]. Note that we adopt a spe-
cial attention mask to enforce that each item vj
only attends to tokens from Dt, and positional
embeddings are removed for item tokens to avoid
any position leakage. Then another MLP layer
g is applied to compute the final item scores as
r = [rp, r1, . . . , rM ].

The training objective of re-ranking process is:

Lrerank =
1

|D|
∑

Dt∈D
fXE(r,Y ), (5)

where Y = [1, 0, . . . , 0] and fXE denotes cross-
entropy loss. Note we shuffle r and Y jointly to
avoid the positional bias of ground-truth labels. If
a data point has no recommended item in the re-
sponse, we set Lrecall = Lrerank = 0.

3.4 Response Generation

The response generation aims to predict the cur-
rent utterance ut = {wj}nj=1 by giving the dia-
logue context. During training, if the ut contains
an item to be recommended, the representations
of the ground-truth item is appended to the corre-
sponding dialogue context to guarantee that the LM
generates the response relevant to the item. Then,
the input for response generation is:

D̃t = [ū1, . . . , ūt−1,vrec,vp,vrec_end]. (6)

Otherwise, the input for response generation
stays as D̃t = [ū1, . . . , ūt−1]. In general, the
response generation is optimized by the standard
next-token prediction objective as:

Lgen = − 1
|D|

∑
Dt∈D

1
n

n∑
j=1

log(pθ(wj |w1:(j−1), D̃t).

(7)

3.5 Parameter-Efficient Learning

We exploit parameter-efficient fine-tuning (PEFT)
techniques for training. PEFT can achieve compara-
ble performance to standard fine-tuning (Hu et al.,
2023) with higher training efficiency and avoid
the catastrophic forgetting issue of LM. Specifi-
cally, we leverage the LoRA (Hu et al., 2022b)
method, which incorporates low-rank weight ma-
trices into transformer layers to adapt LM to down-
stream tasks by fine-tuning the injected weights
only. In addition to LoRA layers, we also fine-tune
the task-specific MLP layers f , g and hitem and
the token embeddings of the four special tokens.
PECRS only updates a small proportion (around
5%) of the total number of parameters in the model.

3.6 Training and Inference

The PECRS is trained in a singe-stage end-to-end
manner by minimizing the following loss:

L = α× Lrecall + β × Lrerank + γ × Lgen, (8)

where α, β and γ are hyperparameters to balance
the three losses. During training, we randomly sam-
ple Mtrain negative items and share them for com-
puting the Lrecall and Lrerank losses. Besides, we
share the negative samples across batch elements
and ensure that none of them is a positive for the
dialogue contexts within a batch.

During inference, we first use PLM to encode the
representations of all items in the database, which
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Dataset Unique
items Dialogues Utterances Recommender

utterances
Rec. utt.
w/o rec.

Rec. utt.
w/ rec.

ReDial 6,637 11,348 139,557 73,999 31,119 42,880
INSPIRED 1,546 999 21,124 10,122 7,243 2,879

Table 1: Statistics on ReDial and INSPIRED datasets, com-
bined over train, dev and test sets.

are reused for all dialogue contexts. Then the top-
Minference items with highest similarities to the dia-
logue context query are retrieved via f(dt)

⊤ ⊙ vj
(see Equation (3)). We further re-rank the Minference
items to obtain the top-1 item as the recommenda-
tion output. In practice, we set Mtrain < Minference.
We show that M yields an important trade-off be-
tween efficiency and recommendation performance
both during training and inference in Section 5.2.
Moreover, the predicted item is appended at the
end of the dialogue context rather than the ground
truth in Equation (6) in order to prompt the model
for response generation. To determine whether a
movie should be recommended at inference, we
check whether the “[ITEM]” token is present in the
generated response.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on two com-
monly used datasets, i.e., ReDial (Li et al., 2018)
and INSPIRED (Hayati et al., 2020). ReDial1

contains 11, 348 conversations (10, 006 for train
and 1, 342 for test) about movie recommendation
between seeker and recommender, which is con-
structed through crowd-sourcing workers on Ama-
zon Mechanical Turk. INSPIRED2 is also about
movie recommendation with smaller size of 999
(801 for train, 99 for development and 99 for test)
and more flexibility given to workers. The statistics
of both datasets are summarized in Table 1.

Evaluation Metrics. We follow the common
practices (Yang et al., 2022; Wang et al., 2022c)
to evaluate PECRS on both recommendation per-
formance and response generation quality. For rec-
ommendation subtask, we measure recall with Re-
call@K (R@K) metric, taking K ∈ {1, 10, 50}. In
order to assess the recommendation coverage, we
also report the number of different items predicted
by the model over the test set, denoted as Unique.
ReDial and INSPIRED contain 6,637 and 1,546

1https://redialdata.github.io/website/
2https://github.com/sweetpeach/Inspired

unique items in total (Table 1) and 1,872 and 264
items in the test set, respectively.

We use both reference-based and reference-free
metrics to evaluate response generation quality.
For reference-based metrics, we adopt ROUGE@K
(RG-K) (Lin, 2004) with K ∈ {1, 2}. To verify
whether the model could correctly predict a movie
in response when required, we inspect the pres-
ence of the “[ITEM]” token in generated responses
w.r.t. ground truth requirement of movie prediction
via F-1 score. For reference-free metrics, we use
Perplexity (PPL) to assess the text fluency and Dis-
tinct@K (Dist@K) with K ∈ {2, 3, 4} to measure
the diversity of generated responses.

Implementation. We choose GPT-2 (Radford
et al., 2019) as the backbone LM, and experiment
with two different model sizes, i.e., GPT-2 small
and GPT-2 medium, which enable us to compare
against popular CRS approaches. Accordingly, we
have PECRS-small and PECRS-medium. We
highlight that PECRS is flexible and can support
other choices of decoder-only LMs. We use the
public pre-trained checkpoints from HuggingFace
transformers library (Wolf et al., 2020). We set
Mtrain = 150 for training and Minfer = 700 for
inference. For ReDial, we train for 10 epochs
with effective batch size 8; while for INSPIRED,
we train for 20 epochs with an effective batch
size of 2. Parameter optimization is performed
by AdamW (Loshchilov and Hutter, 2019) with
linear learning rate warmup strategy. We set maxi-
mum learning rate as 3e− 5 for PECRS-small and
PECRS-medium and warmup for 1 epoch. Dur-
ing training, we balance losses with α = 0.15,
β = 0.85, and γ = 1.0. We cap dialogue context
length at 256 tokens and response length at 64 to-
kens. We use checkpoint with the highest mean
of R@1, R@10 and R@50 for inference. PECRS
generates the response with top-k sampling, using
k = 50. The movie item metadata is obtained from
The Movie Database through tmdbv3api library3.

4.2 Comparison with State-of-the-Art

The results on recommendation task are summa-
rized in Table 2. Note that RevCore (Lu et al.,
2021) and C2CRS (Zhou et al., 2022) are not di-
rectly comparable to our method as they use addi-
tional movie review information. PECRS gener-
ally outperforms the baselines using KG and extra

3https://github.com/AnthonyBloomer/tmdbv3api
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Model Metadata Model Properties ReDial INSPIRED
KG Reviews Description Extra Model PEFT Rounds R@1 R@10 R@50 Unique R@1 R@10 R@50 Unique

ReDial (Li et al., 2018) ✗ ✗ ✗ ✓ ✗ 3 2.4 14.0 32.0 _ _ _ _ _
KBRD (Chen et al., 2019) ✓ ✗ ✗ ✓ ✗ 2 3.0 16.3 33.8 _ _ _ _ _
KGSF (Zhou et al., 2020a) ✓ ✗ ✗ ✓ ✗ 3 3.9 18.3 37.8 _ _ _ _ _
KECRS (Zhang et al., 2022) ✓ ✗ ✗ ✓ ✗ 2 2.3 15.7 36.6 _ _ _ _ _
BARCOR (Wang et al., 2022b) ✓ ✗ ✗ ✓ ✗ 1 2.5 16.2 35.0 _ _ _ _ _
UniCRS (Wang et al., 2022c) ✓ ✗ ✗ ✓ ✓ 3 5.1 22.4 42.8 _ 9.4 25.0 41.0 _
RecInDial (Wang et al., 2022a) ✓ ✗ ✗ ✓ ✗ 1 3.1 14.0 27.0 _ _ _ _ _
VRICR (Zhang et al., 2023b) ✓ ✗ ✗ ✓ ✗ 3 5.7 25.1 41.6 _ _ _ _ _
RevCore (Lu et al., 2021) ✓ ✓ ✗ ✓ ✗ 2 6.1 23.6 45.4 _ _ _ _ _
C2-CRS (Zhou et al., 2022) ✓ ✓ ✗ ✓ ✗ 2 5.3 23.3 40.7 _ _ _ _ _
MESE (Yang et al., 2022) ✗ ✗ ✓ ✓ ✗ 1 5.6 25.6 45.5 _ 4.8 13.5 30.1 _
PECRS-small ✗ ✗ ✓ ✗ ✓ 1 4.7 20.8 40.5 463 5.4 16.1 33.3 34
PECRS-medium ✗ ✗ ✓ ✗ ✓ 1 5.8 22.5 41.6 634 5.7 17.9 33.7 72

Table 2: Results of the recommendation task compared with the state-of-the-art on ReDial and INSPIRED. Results are taken
from respective papers. Best numbers are in bold, second best underlined.

Model Reference-based Reference-free
RG-1 RG-2 F-1 PPL Dist@2 Dist@3 Dist@4

C2-CRS _ _ _ _ 0.163 0.291 0.417
UniCRS _ _ _ _ 0.492 0.648 0.832
RecInDial _ _ _ _ 0.518 0.624 0.598
MESE _ _ _ 12.9 0.822 1.152 1.313
PECRS-small 36.28 14.77 86.04 9.89 0.745 1.462 2.132
PECRS-medium 36.86 15.27 86.36 8.98 0.820 1.552 2.154

Table 3: Results of conversation task compared with the
state-of-the-art on ReDial.

Aspect MESE PECRS-small Tie

Fluency 28.00 (1.63) 46.67 (5.91) 25.33 (6.24)
Relevancy 26.33 (2.62) 46.00 (0.82) 27.67 (2.87)

Table 4: Human evaluation on 100 random ReDial test data
points. We show the average scores for three human raters,
with standard deviation in parenthesis.

model, such as KGSF (Zhou et al., 2020a) and Uni-
CRS (Wang et al., 2022c), on both datasets. Com-
pared to the baselines with single training stage,
PECRS surpasses BARCOR (Wang et al., 2022b)
and RecInDial (Wang et al., 2022a). MESE (Yang
et al., 2022) also uses the item descriptions and em-
ploys two additional modules to encode items. In
contrast, our PECRS is simpler and more straight-
forward, and it is the first approach without using
either KG or supplementary module, but only rely-
ing on the pre-trained LM. PECRS-medium outper-
forms MESE for Recall@1 on ReDial, achieving
SOTA, and largely surpasses MESE for all met-
rics on INSPIRED. Besides, PECRS-medium is
superior to -small on all metrics, which demon-
strates that fine-tuning a larger LM brings more
gains thanks to its stronger representation ability.

Table 3 summarizes the results on conversation
task, where PECRS achieves promising perfor-
mance on both types of metrics. Both PECRS-
small and -medium surpass all baselines over

Model Time/
batch (s)

Rec. Conv.
R@50 Unique RG-1 Dist@2

PECRS-small 6.1 40.5 463 36.28 0.745
w/o Recall loss 6.1 19.3 21 37.67 0.678
w/o Rerank loss 6.1 12.2 87 36.50 0.745
w/o Generation loss 6.1 39.2 451 7.76 11.907
w/o Neg. sharing (batch) 8.6 39.8 291 36.40 0.747
w/o Neg. sharing (tasks) 9.1 40.8 434 35.98 0.727
w/o Item pooling 6.1 39.6 530 36.60 0.748
w/o Item head 6.1 37.9 453 36.33 0.726
w/o Metadata (just title) 4.2 35.8 384 36.38 0.765

Table 5: Models comparison with different modules and
optimization strategies on ReDial with PECRS-small.

Removed None Title Actor(s) Director(s) Genre(s) Plot
R@50 33.3 29.8 26.9 32.5 30.5 20.7

Table 6: Effect of pruning fields of items metadata at infer-
ence on INSPIRED with PECRS-small.

Dist@3 and Dist@4. Comparing PECRS-small
and -medium shows that Dist@K improvements
can be achieved by scaling up the backbone model.
Thus, we believe that larger LMs can bring better
results, and fine-tuning them with plugin style to
acquire CRS capability is a promising research di-
rection. A human evaluation (Table 4) for fluency
and relevancy on ReDial test set with three vol-
unteer graduate students with professional English
proficiency confirms a preference for PECRS-small
generated text over MESE outputs.

4.3 Ablation Study

We also conduct ablative experiments to analyze
the architecture and optimization design of PECRS.
Reported in Table 5, all the components and train-
ing strategies contribute to the performance gains
on both recommendation and conversation tasks.
In particular, recommendation collapses without ei-
ther loss from its two-stage processes, i.e., retrieval
and re-ranking ; and suffers without the genera-
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Model Rec. Conv.
R@1 R@10 R@50 Unique RG-1 RG-2

PECRS-small 5.4 16.1 33.3 34 29.72 8.26
Llama-2-7B-chat 9.3 9.3 9.3 26 19.88 2.88
Vicuna-1.5-7B 8.2 8.2 8.2 23 21.18 3.50

Table 7: Comparison between PECRS-small and two popular
LLMs in zero-shot on INSPIRED test set.

Decoding Strategy Reference-based Reference-free
RG-1 RG-2 Dist@2 Dist@3 Dist@4

Greedy decoding 38.54 16.25 0.208 0.311 0.390
Beam search 38.23 16.83 0.235 0.353 0.444
Diverse beam search (diversity=0.5) 39.94 17.30 0.190 0.287 0.361
Diverse beam search (diversity=1.0) 40.29 17.40 0.179 0.264 0.320
Diverse beam search (diversity=1.5) 40.07 17.23 0.172 0.246 0.290
Top-k sampling (k=25) 33.54 14.40 0.593 1.177 1.806
Top-k sampling (k=50) 33.37 14.17 0.647 1.300 1.989
Top-k sampling (k=75) 33.48 14.15 0.644 1.303 1.992
Nucleus sampling (p=0.90) 36.35 16.04 0.329 0.555 0.760
Nucleus sampling (p=0.95) 36.44 16.02 0.351 0.594 0.804
Nucleus sampling (p=0.99) 36.60 16.07 0.352 0.593 0.809

Table 8: The conversation performance of PECRS-small
with different decoding strategies on ReDial. Except Greedy
decoding, all other techniques use a beam width of 4.

tion loss. Sharing negative samples across batch
elements and tasks leads to significant improve-
ments on training efficiency and marginal gains on
recommendation performance.

In Table 6, we conduct a further ablation on the
textual fields within items description. We observe
that every field contributes to the recommendation
performance, especially the plot. This suggests that
richer metadata would yield even more recall gains.

4.4 Comparison with Large Language Models

Lastly, we compare our fine-tuning approach with
Large Language Models (LLMs). Instruction-
tuned LLMs have brought a seismic shift in NLP
recently, due to their ability to seamlessly conduct
many tasks in a zero-shot fashion through prompts,
by-passing the need for task-specific supervised
fine-tuning (Sanh et al., 2021; Wei et al., 2021;
Ouyang et al., 2022), including in recommender
systems (Hou et al., 2023).

We use two popular LLMs: Llama-2-7B-chat4

(Touvron et al., 2023b), and Vicuna-1.5-7B5 (Chi-
ang et al., 2023). For each model, we condition on
the context, and prompt the LLM to predict the Rec-
ommender response, which should include a movie
name. We infer in bfloat16, decode with greedy de-
coding, and check if the ground-truth movie name
is included in the generated response. As seen in
Table 7, the conversational recommendation capa-
bility of LLMs in zero-shot is very promising, as

4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
5https://huggingface.co/lmsys/vicuna-7b-v1.5
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Figure 3: The R@50 results of PECRS-small using the dif-
ferent Mtrain and Minference pairs on ReDial dataset.

they outperform PECRS-small in Recall@1 on IN-
SPIRED. However, due to the lack of a dedicated
recommendation module, LLMs used in this fash-
ion cannot suggest a full list of items, hence their
recall plateaus at the Recall@1 value. They also
tend to recommend fewer different movies (lower
Unique). Exploring the ranking of a larger list
of recommended items with LLMs is a promising
future research avenue.

5 Analysis

In this section, we provide more detailed insights
about the behavior of PECRS.

5.1 Conversation Evaluation
We first study the effects of different LM’s de-
coding strategies on conversational performance
over Dist@K metric. Specifically, we ana-
lyze the greedy decoding, beam search, diverse
beam search (Vijayakumar et al., 2018), top-k
sampling (Fan et al., 2018) and nucleus sam-
pling (Holtzman et al., 2020) strategies on PECRS-
small. Reported in Table 8, reference-based metrics
(RG-K) show much less variance on different de-
coding strategies compared to the reference-free
metrics (Dist@K). Meanwhile, the correlation be-
tween reference-based and reference-free metrics
is weak under different decoding strategies. More-
over, PECRS without training for generation can
achieve 11.907 on Dist@2 metric (see w/o Genera-
tion loss in Table 5), but merely 7.76 on RG-1 met-
ric. This observation implies that Dist@K metrics
are not reliable to evaluate the quality of response
generation. Since Dist@K metrics have become
the most popular choice in evaluating conversation
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Figure 4: R@50 of PECRS on ReDial per number of conver-
sation turns prior to the CRS response.

performance of CRS (Zhou et al., 2022; Wang et al.,
2022c; Yang et al., 2022), we advocate for applying
other metrics, in particular reference-based metrics
including n-gram overlap like ROUGE or semantic
similarity like BERTScore (Zhang et al., 2019), to
provide more accurate evaluation on the response
generation of CRS.

5.2 Negative Sampling
Now we analyze how the hyper-parameters of neg-
ative sampling, i.e., Mtrain and Minference, affect
the recommendation performance. Figure 3 illus-
trates the results of different choices of Mtrain and
Minference pairs. In general, Mtrain and Minference
have significant impacts on the recommendation
performance, and larger Mtrain and Minference lead
to better results. However, increasing M will re-
duce the training and inference efficiency. Thus,
there is a trade-off between efficiency and recom-
mendation performance for the selection of M .

5.3 Conversation Turns
Lastly, we investigate how robust is PECRS with
regards to the richness of dialogue context. In Fig-
ure 4, we group data points by number of utterances
happening before the CRS response. We observe
that PECRS performs well in recommendation for a
wide range of context length, with only a moderate
drop when there is only one prior utterance.

6 Conclusion

In this work, we formulate conversational recom-
mendation as a language processing task and pro-
pose a unified parameter-efficient CRS (PECRS)
framework to solve it in a single-stage end-to-end
manner. PECRS effectively addresses the infe-
rior training efficiency via parameter-efficient fine-
tuning techniques and semantic misalignment is-
sues via joint conversation and recommendation
modeling. Through experiments, we show that
PECRS achieves performance competitive with

SOTA on both recommendation and response gen-
eration on benchmark datasets. Moreover, for re-
sponse evaluation, we reveal the commonly used
Dist@K metrics are not reliable, and advocate for
reference-based metrics (e.g ROUGE) for more ac-
curate evaluation. Generally, we show that it is
promising to explore unified framework for CRS
under the natural language paradigm via language
model and rich textual items data.

Limitations

Our work adheres to standard practices for dataset
construction and model evaluation. However, we
acknowledge three limitations: (1) Recommender
utterances containing multiple items are separated
into individual data points, which is sub-optimal as
the model may only be accurate for the top-ranked
item in each data point. (2) If we train PECRS to
predict multiple items within the same utterance,
it is challenging to compare with current methods,
as they do not make simultaneous predictions. (3)
All items mentioned by the recommender are con-
sidered recommendations, although some may be
references to previous discussions or express dis-
likes rather than actual recommendations.

The maximum context length for the backbone
LM is another limitation. We have demonstrated
that increasing Minference yields better recommen-
dation performance (ref. Section 5.2). However,
we are constrained by the maximum input length
of 1024 for GPT-2, which limits the candidate set
size after concatenating with dialogue context. The
potential extensions may involve performing infer-
ence with multiple forward passes to score batches
of Minference items, or using a backbone that sup-
ports longer input lengths, albeit at a higher com-
putational cost. We only experiment with relatively
small backbone, i.e., GPT2-small and -medium,
due to resource limitation. However, PECRS is
flexible and can be seamlessly applied to larger
backbones like LLaMA (Touvron et al., 2023a).
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A System Outputs

We show an example from PECRS-medium on the
INSPIRED dataset, in the same format as Figure 1.

Figure 5: An example of dialogue from IN-
SPIRED (Hayati et al., 2020), where blue color denotes
the movie items.

Genre Items (%)
Test set

Recommendation (%)
Correctly

Predicted (%)

Comedy 24.48 23.74 46.37
Action 21.88 30.67 57.65
Drama 17.89 13.74 32.93
Adventure 6.18 6.02 29.72
Horror 5.82 7.94 46.95
Crime 5.66 4.50 20.56
Animation 5.40 6.71 62.38
Biography 4.11 2.50 12.61
Documentary 3.27 0.76 22.22
Fantasy 1.00 0.61 6.90
Thriller 0.67 0.46 31.82
Family 0.62 0.38 0.00
Mystery 0.47 0.57 7.41
Romance 0.46 0.04 0.00
TV 0.43 0.08 0.00
Music 0.26 0.20 0.00
Western 0.25 0.04 0.00
Science 0.23 0.13 0.00
Short 0.23 0.11 0.00
War 0.21 0.11 0.00
Sci-fi 0.20 0.06 0.00
History 0.11 0.00 _
Musical 0.10 0.23 9.09
Film-noir 0.05 0.08 0.00
Adult 0.02 0.02 0.00

Table 9: Accuracy w.r.t genre prediction on ReDial test
set broken down by movie genre.

B Genre Analysis

In this section, we conduct a fine-grained analysis
of PECRS top-1 recommendation. We investigate
how the model performs on several types of items.
To categorize items, we use the first genre tag in
the Genre(s) field in the items metadata, yielding
a partition of the movies set into 25 unique genres
for ReDial, 22 genres for INSPIRED. We report
the fraction of data points where the model outputs
a top-1 movie of the correct genre per genre on
ReDial and INSPIRED in Table 9 and Table 10,
respectively.

As we can see, there is wide variance in gen-
res accuracy. Among wrong movie predictions,
PECRS-medium outputs the correct genre 41.20%
times on ReDial and 30.04% on INSPIRED. Ran-
dom performance would yield 16.26% and 19.39%
accuracy, respectively. The performance is much
higher on highly represented genres such as Com-
edy, Action, or Horror, where it can surpass a ratio
of correctly predicted genre of 50%, but quickly
falls to 0 for rare genres such as Romance. Future
work may focus on better handling the long tail dis-
tribution in items variety, for instance through data
augmentation techniques crafted for rare genres
movies.

C Packages

Our framework was implemented in Python 3.8.0.
We used the following Python package versions to
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Genre Items (%)
Test set

Recommendation (%)
Correctly

Predicted (%)

Action 24.01 36.20 50.50
Comedy 22.66 17.92 52.00
Drama 17.67 13.98 10.26
Horror 7.45 9.68 14.81
Adventure 4.86 2.15 66.67
Animation 4.86 4.66 7.69
Crime 4.86 6.09 23.53
Biography 4.50 2.15 0.00
Documentary 3.20 1.79 0.00
Thriller 0.92 0.36 0.00
Fantasy 0.86 0.36 0.00
Romance 0.80 0.36 0.00
Mystery 0.62 0.00 _
TV 0.37 0.00 _
Short 0.37 0.00 _
Science 0.31 0.72 0.00
Music 0.25 0.00 _
Sci-fi 0.25 0.36 0.00
War 0.12 0.00 _
Western 0.12 0.00 _
Musical 0.06 0.00 _
Reality-TV 0.06 0.00 _

Table 10: Accuracy w.r.t genre prediction on INSPIRED
test set broken down by movie genre.

conduct all experiments:

• numpy 1.24.3

• torch 1.9.1

• transformers 4.33.2

• rouge-score 0.1.2

• nltk 3.8.1

• peft 0.1.0

• spacy 3.6.0

All packages and datasets used are freely avail-
able and open-source, and were used for research
purpose only. We refer to the specific papers for
more details on the use of each dataset.
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