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Abstract

Contemporary multilingual dependency parsers
can parse a diverse set of languages, but for
Morphologically Rich Languages (MRLs), per-
formance is attested to be lower than other lan-
guages. The key challenge is that, due to high
morphological complexity and ambiguity of
the space-delimited input tokens, the linguistic
units that act as nodes in the tree are not known
in advance. Pre-neural dependency parsers for
MRLs subscribed to the joint morpho-syntactic
hypothesis, stating that morphological segmen-
tation and syntactic parsing should be solved
jointly, rather than as a pipeline where segmen-
tation precedes parsing. However, neural state-
of-the-art parsers to date use a strict pipeline.
In this paper we introduce a joint neural archi-
tecture where a lattice-based representation pre-
serving all morphological ambiguity of the in-
put is provided to an arc-factored model, which
then solves the morphological segmentation
and syntactic parsing tasks at once. Our exper-
iments on Hebrew, a rich and highly ambigu-
ous MRL, demonstrate state-of-the-art perfor-
mance on parsing, tagging and segmentation of
the Hebrew section of UD, using a single model.
This proposed architecture is LLM-based and
language agnostic, providing a solid founda-
tion for MRLs to obtain further performance
improvements and bridge the gap with other
languages.

1 Introduction

Dependency parsing is the task of automatically
analyzing the syntactic structure of a sentence and
exposing the functional relationships between its
words. In the past, dependency parsing was shown
to be extremely useful for many language process-
ing tasks, as machine translation (Galley and Man-
ning, 2009), question answering (Garimella et al.,
2021) and information extraction (Hwang et al.,
2020), to name a few. While nowadays many
English NLP tasks are solved end-to-end using
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large language models (LLMs) and without access-
ing any symbolic structure, for low- and medium-
resource languages, parsers are still indispensable,
enabling a host of downstream applications.

Most neural state-of-the-art dependency parsers
to date presuppose a pipeline architecture (Qi et al.,
2020; Honnibal and Montani, 2017; Minh Nguyen
and Nguyen, 2021) that includes several analysis
stages — tokenization, word segmentation, part-
of-speech (POS) tagging, morphological feature
tagging, dependency parsing, and sometimes also
named entity recognition — and the linguistic fea-
tures from each stage are provided as input to the
tasks that follow it, and contribute to the overall
efficacy.

In morphologically-rich languages (MRLs),
many raw space-delimited tokens consist of mul-
tiple units, each of which serves a distinct role in
the overall syntactic representation (Tsarfaty et al.,
2010, 2020). Consequently, segmentation is es-
sential for accurate MRL parsing. However, due
to high morphological ambiguity, when segmenta-
tion is performed prior to (and independently of)
the parsing phase, segmentation errors may prop-
agate to undermine the syntactic predictions, and
subsequently lead to an overall incorrect parse.

According to the joint hypothesis, that was heav-
ily populated in parsing studies for MRLs in the pre-
neural era (Tsarfaty, 2006; Cohen and Smith, 2007;
Goldberg and Tsarfaty, 2008; Green and Manning,
2010; Seeker and Cetinoglu, 2015), morphological
segmentation and syntactic predictions are mutu-
ally dependent, and hence, these two tasks should
be solved together.

Following these lines, More et al. (2019) de-
veloped a joint morpho-syntactic transition-based
parser that achieved state-of-the-art (SOTA) results
on Hebrew parsing. This system employs a mor-
phological lattice as input for a transition system,
with both syntactic and morphological transitions,
for picking the right arcs and segments in tan-
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dem. Another influential work is that of Seeker
and Cetinoglu (2015), that displays all potential
segments that could be involved in any token’s
analysis, and allows an MST graph-based parser
pick the highest scoring subset of arcs and nodes
as the output dependency tree, showing parsing
improvements for both Hebrew and Turkish. Sim-
ilarly, Krishna et al. (2020a,b) contributed a non-
neural graph-based parser for Sanskrit which em-
ploy energy-based modeling to determine the op-
timal path on a graph which jointly represents a
valid segmentation and syntactic analysis. How-
ever, this architecture is non-neural and Sanskrit
specific, relying on labor-intensive hand-crafted
feature engineering. In neural settings, and still for
Sanskrit, Sandhan et al. (2021) introduced a pre-
training approach which focuses on amalgamating
word representations generated by encoders trained
on auxiliary tasks, such as morphological and syn-
tactic tags. Unlike the present work, this neural
architecture does not make any segmentation deci-
sions nor does it leverage the lattice structure for
joint segmentation and parsing.

All in all, in the case of neural multilin-
gual dependency parsers, the pipeline approach
of segment-then-parse is fully maintained (Kon-
dratyuk and Straka, 2019a,b; Minh Nguyen and
Nguyen, 2021), and no language-agnostic architec-
ture for morphological segmentation and syntactic
parsing is yet to be found.

In this paper we revisit the joint hypothesis as a
viable way to improve neural dependency parsing
for MRLs. The idea, in a nutshell, is as follows.
We start off with an arc-factored model (Dozat and
Manning, 2017) that accepts a sequence of words
as input, and generates a dependency tree by pick-
ing the highest scoring arcs connecting all words.
In our approach, the arc-factored model takes as
input a linearized lattice containing all possible
morphological segments that may potentially act as
nodes, and learns to assign a head and label to each
such node. During training, incorrect segments are
mapped to an auxiliary node, of which subtree is
excluded from the final dependency tree. At infer-
ence time then, the model maps relevant segments
to the main branch and unused segments to the
auxiliary branch, building a complete dependency
tree. In this process, morphological segmentation
decisions get informed by the syntactic arcs, and
vice versa. We further extend the architecture with
a multi-task learning (MTL) component to predict
the features of each node, e.g., POS, gender, num-

ber and person.

Our experiments on the Hebrew Section of UD!
show that in cases where the input morphological
analyses are complete, our model provides new and
improved state of the art results for segmentation
and parsing for Hebrew, in a single, jointly trained,
model. In the more realistic case, where some of
the word lattices may lack possible analyses (the
case of out of vocabulary (OOV) tokens), the model
still delivers competitive results for segmentation,
tagging and parsing, outperforming the state-of-
the-art results of the de-facto standard pipelines,
Stanza and Trankit.

2 Challenge and Research Objectives

The goal of dependency parsing is to automatically
analyze the syntactic structure of a sentence by
indicating the functional relationship between its
words. The input is assumed to be a sequence of
space-delimited tokens that represent words, and
the output is a directed tree where each input word
serves as a node, and each arc represents a relation
between two such words. An arc can be labeled to
indicate the relation type between the two words.

Deep neural networks have recently achieved
unprecedented results in many areas of natural
language processing, including the dependency
parsing task. The architecture of Dozat and Man-
ning (2017) (that followed up on Kiperwasser and
Goldberg (2016)) is currently accepted as the stan-
dard architecture for dependency parsing. Dozat
and Manning present a simple neural architecture
where an arc factored model selects the best set of
dependency arcs and labels. This approach is the
foundation of several SOTA dependency parsers,
including Stanza (Qi et al., 2020) and Trankit
(Minh Nguyen and Nguyen, 2021), which have
been trained and successfully used across differ-
ent languages. Crucially, these parsers and oth-
ers (Dozat and Manning, 2017; Qi et al., 2020;
Minh Nguyen and Nguyen, 2021; Kondratyuk and
Straka, 2019a,b) all subscribe to a pipeline ap-
proach, where the input tokens are pre-segmented,
and these segments uniquely determine the nodes
in the tree.

This pipeline approach has been applied across
many language types, including morphologically
rich languages (MRL). However, MRLs pose a
significant challenge to such architectures. In a

IThe UD initiative https://universaldependencies.
org/treebanks/he_htb/index.html
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Figure 1: The morphological lattice for the Hebrew
phrase bclm hneim and two associated dependency trees
depicting alternative segmentations (Origin: More et al.
(2019)). The upper tree illustrates the syntactic structure
corresponding to "In their pleasant shadow", while the
lower tree corresponds to "Their onion was pleasant".
This highlights the existence of multiple morphological
decompositions and various potential dependency trees.

pipeline architecture, where morphological seg-
mentation is performed prior to parsing. However,
tokens in MRLs are rich and complex, and include
multiple units that can act as individual nodes in
the tree. Hence their segmentation may be highly
ambiguous, and the nodes of the tree are not known
in advance. When these segments are fixed prior
to parsing, wrong segmentation seriously hinders
parsing results. The main challenge is then to find
the appropriate segmentation that is relevant to the
particular syntactic context. This challenge is illus-
trated at Figure 1. here we consider the Hebrew
phrase *bclm hneim’, which can be translated in
various ways depending on the segmentation anal-
ysis applied: "In their pleasant shadow", "In the
pleasant photographer,” or "Their onion was pleas-

nt". Figure 1 provides a lattice representation of
all morphological analyses of the phrase, where
different segmentations give rise to substantially
different syntactic trees.

Pre-neural models addressed this challenge by
jointly modeling morphological segmentation and
dependency parsing, and have shown that it yields
superior results for both tasks. The pressing re-
search question at hand is whether this hypothesis
can also be validated within the context of neural

4

parsing architectures. In other words, can neural
parsing models benefit from a joint approach to
segmentation and parsing, similar to what has been
observed in non-neural models?

This paper addresses two primary objectives.
Firstly, we aim to introduce a unified neural ar-
chitecture that jointly solves segmentation, tagging
and parsing, with the aim of empirically validat-
ing the joint hypothesis within the realm of neural
architectures. Secondly, we seek to attain state-
of-the-art (SOTA) results for Hebrew, a language
renowned for its formidable parsing challenges at-
tributed to its substantial morphological ambigu-

ity.

3 The Proposal: A Model for Joint
Morphological Segmentation and
Syntactic Dependency Parsing

Task Definition Formally, our proposed model is
defined as a structure prediction function f : S —
D, where s € S represents a sequence of raw input
tokens, and d € D denotes a dependency tree with
nodes corresponding to disambiguated units, which
we refer to here as morphological segments. Cru-
cially, we retain morphological ambiguity, and de-
liver all possible analyses of s to the parser. Hence,
we assume a Morphological Analyzer (MA), that
given an input sentence s = Si,..., Sk yields a
token-lattice termed L; = M A(s;) for each to-
ken s;. The complete lattice of the input sentence
Ly = M A(s) is defined as the concatenation of the
token lattices Ly = M A(s1) o -+ o M A(sg). Our
structure prediction function becomes f : L — D,
with L, € L as the morphological lattice of s € S.

Input Linearization Upon receiving an input lat-
tice Ls, we aim to linearize it in order to be able
to encode it as an input vector for the neural archi-
tecture. As shall be seen shortly, the linearization
is a critical phase for obtaining a neural encoding
of the non-linear, morphologically ambiguous, in-
put. We illustrate the linearization process using
the Hebrew sentence ’bkrti bbit hibn’ (lit: "I-visited
in-the-house the-white", trans: "I visited the white
house"). Initially, the M A provides a list of all
potential analyses for each token: bkrti: [("bkrti’)],
bbit: [("b’, "bit’), b, ’h’, *bit’)], hlbn: [(Ch’, ’1bn’),
(Chlbn’)]. Subsequently, each token is linearized
independently: bkrti: [’bkrti’], bbit: [’b’, ’bit’, ’b’,
’h’, ’bit’], hlbn: [’h’, ’lbn’, "hlbn’]. Finally, all
linearized analyses are concatenated according to
the initial order: [’bkrti’, ’b’, ’bit’, ’b’, *h’, ’bit’,
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’h’, ’lbn’, "hlbn’].

Formally, the linearize function takes an input
lattice L and returns a sequence of m analyses
while maintaining the partial order of the tokens.
Within the input lattice Ly, = MA(sy) o --- o
MA(sy), each M A(s;) encompasses a compre-
hensive set of potential analyses — segmentation
options — for the token s;. Let k; be the num-
ber of analyses of the j th token; then, it holds that
>_j_1 kj = m. Also, let a} be the i'" analysis of
the j*" token. The linearization function works as
follow:

linearize(L;) =
linearize(M A(t1) o --- o M A(ty)) =

linearize(M A(t1)) o - - - o linearize(M A(ty)) =

a%,...,alfloa%,...,a?o--'oaﬁ"

J

The number of morphemes in an analysis a; is

T(,)» denoted as

T(4,9)

J 1 T(i,5) 1
i M(i.g)

i = Mgy =TG5y o

Consequently, the total number of morphemes in
the linearized lattice is given by Z?Zl Zfi 1T (i)
Thus, the linearized lattice can be expressed as a
sequence of morphemes:

linearize(L;) =

T(1,1) T(n,kn)

1
m(Ll), e ,m(l’l) yooo ,’I?’L(mk_n)

Joint Prediction We extend the simple and well-
known neural arc-factored model to accept a lin-
earized Lattice as input, and choose a subset of arcs
with the highest scores as the output dependency
tree. Crucially, this selected set of arcs does not
take all segments as nodes. On the contrary, the arc
selection essentially determines which segments
from the lattice are included in the final tree, and is
subject to certain constraints, as we detail shortly.

Let us define A(L;) the set of all possible sub-
sets of arcs in the linearized lattice. In our model
we aim to select a highest scoring subset A as the
DEP tree:

DEP = argmaz gc A(r,)score(A)

To ensure that the nodes of the selected arcs in
A form a valid morpheme sequence, the nodes that
participate in the subset of arcs must adhere to the
following constraints:

1. Exactly one segmentation analysis should be
chosen per token.

2. All morphemes in the chosen analysis should
be included in the selection.

3. Arcs cannot connect morphemes from differ-
ent analyses of the same token.

When enforcing these constraints, the set of sub-
sets A(Ljg) is significantly smaller than a straight-
forward cartesian product over all possible seg-
ments. We thus define the set C":

C = constrained(A(Ly)) = {a},...,a"}x
{a,..., ,akny

And the prediction function becomes

Y x o x fal

DEP = argmax gccscore(A)

Finally, note that in this model, A is not formally
defined to form a tree. In order to ensure a tree
structure, at inference time we employ an Maxi-
mum Spanning Tree algorithm (MST) on top of the
constrained graph.

DEP = argmaz accM ST _score(A)

Note that the highest scoring tree uniquely defines
the set of nodes that participate in it, so the MST in
this proposed method also acts to substantiate the
scoring function for morphological disambiguation
(MD). We thus get:

(MD,DEP) = argmazsccMST_score(A)

4 The Overall Architecture

The Joint Arc-Factored Model The central com-
ponent of the architecture is an arc-factored model
capable of selecting the highest-scoring subset
from the (constrained) set of arcs. Our departure
point is the Biaffine-Score architecture of Dozat
and Manning (2017) , which is in turn based on
Kiperwasser and Goldberg (2016), and is currently
the de factor standard architecture for dependency
parsing. In order to turn this architecture into a
joint segmentation-parsing prediction model, we
introduce several novelties into Dozat and Manning
(2017).

In the original architecture, the input consists of
a tokenized sentence with an additional root token.
However, for joint prediction, we modify the input
to be the linearized lattice of the input sentence
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Figure 2: The Head matrix of the Hebrew sentence bkrti
bbit hibn. Each row depicts the scores assigned to all
heads of a particular segment (including the root and
auxiliary tokens). The darker color indicates a higher
score. The input to Dozat and Manning’s original archi-
tecture consists of the root and gray-marked segments.

and add two nodes: the root node and an auxiliary
node. The linearized lattice represents the list of
all segments from all possible analyses, ordered as
detailed in Section 3.

During training, the head of any segment that
does not appear in the gold dependency tree is
attached under the auxiliary token, and thus, the
model learns to assign to the root only the segments
of the relevant morphological analyses in context.
At inference times, the irrelevant segments are as-
signed to the auxiliary token, and the auxiliary sub-
tree is removed altogether, leaving a single rooted
dependency tree intact. Figure 2 describes the head
matrix of the Hebrew sentence ’bkrti bbit hibn’ in
our model. The gray-marked segments participate
in the final tree.

Input Embeddings The input to our proposed
architecture consists of the contextualized embed-
dings of the segments sequence, including also the
root and auxiliary tokens at the beginning of that
sequence. Unlike the original input, the linearized
lattice representation lacks a coherent context for
generating high-quality contextualized embeddings.
Therefore, we establish a valid context for each to-
ken analysis from the original sentence, and we
employ contextualized embedding that reflect this
context.

To create the embeddings for each of the input
segments, we begin with the original sequence of
tokens si, So,...,S,. For each analysis aé, we
create an analysis where we replace s; with the

sequence of morphological segments and results in
the following sequence:

T3,
M)
Using this modified context, we obtain contextual
embeddings for each of m%i7j),m%i,j), s m;(’jj))
using an LLM encoder. We apply the LLM’s orig-
inal tokenizer to the morpheme sequence. if the
morpheme is present in the LLM’s encoder vo-
cabulary, it remains untokenized and receives a
single vector embedding. Conversely, for out-of-
vocabulary morpheme, tokenization is carried out
based on the LLM’s encoder. Each new token re-
ceives a vector, and the vector of the first token
represents the whole original morpheme.

The embeddings of the root and auxiliary to-
kens are directly derived from the original token

sequence.z

1
S1y-.- ,sj_l,m(

i,3) y Sj+1s- -5 Sk

The Arc Selection Phase The encoded segments
are inputted into Dozat and Manning’s architecture,
which produces two matrices: one for head predic-
tion and another for label prediction. The head pre-
diction matrix assigns a probability to each pair of
segments, including the root and auxiliary tokens,
indicating whether one is the head of the other. A
similar process is carried out for each pair of tokens
with respect to every possible label. The architec-
ture by Dozat and Manning (2017) for dependency
parsing remains unchanged, and the matrices are
employed to represent the syntactic relationships
between segments. The introduction of an auxiliary
token allows for the exclusion of specific segments
from the final tree by removing all segments for
which it serves as the head. All other segments
are retained as nodes in the final tree. This mod-
ification enables the architecture to perform joint
segmentation and parsing predictions.

Input Constraints To ensure that the output con-
forms to the constraints outlined in section 3, it is
imperative to limit the segment-sets that can form
trees constructed beneath the root.

To implement the constrained function, we adopt
a strategy where only one analysis per token is se-
lected in each possible tree. In cases where the
highest scoring subset selects more than one analy-
sis per token, or if no segments from its analyses

*During the embedding process, we may generate differ-
ent embedding vectors for segments with identical forms, e.g.,
the morph b repeats twice in the matrix in Figure 2. How-
ever, these identical forms reside in the context of different

token analyses, and thus their contextualized embeddings are
different.
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were selected, we opt for the next best analysis,
which contains the head segment with the highest
score. When a particular analysis is chosen, we
mask the auxiliary token for each of the segments,
ensuring that all of them are included in the final
tree. Finally, we mask all arcs where a segment
in a chosen analysis that relates to a segment in a
different analysis of the same token.

Multitask Learning We aimed to leverage addi-
tional linguistic tasks such as gender, person, num-
ber, and POS. Consequently, we expanded upon the
original architecture introduced by Dozat and Man-
ning to accommodate these MTL objectives. The
input embedding is processed through a BiLSTM,
and the output is utilized by both the aforemen-
tioned joint architecture and the MTL architecture
designed to handle these linguistic tasks.

The Overall Architecture Figure 3 presents the
proposed architecture from a bird’s eye view. We
illustrate it for the phrase bbit hibn’ ("in the white
house") from Figure 2 which presented the head
matrix of the phrase.

The architecture of our model begins by tak-
ing a sentence and embedding its linearized lattice
representation. These embeddings then undergo
processing through a two-layer BILSTM. The BiL-
STM'’s output is further directed into two distinct
BiLSTMs: one for the Biaffine score architecture
and another for the MTL architecture. Within the
Biaffine module, it is utilized to generate head and
label matrices, facilitating the prediction of a well-
structured dependency tree. In the MTL segment,
the output undergoes dimension reduction through
a linear layer. Subsequently, an additional and
separate linear layer is applied for each MTL task
(POS, gender, number, and person) to predict lan-
guage features. We compute the loss using the
cross-entropy function for the head, label, and each
of the MTL tasks, and then aggregate them into a
combined loss.

5 Experimental Setup

Goal We set out to evaluate the performance of
the proposed joint architecture on segmentation,
tagging and parsing. In all experiments, we show
the segmentation (SEG) and dependency parsing
(DEP) Fscore. Additionally, for experiments with
the POS MTL, we present the POS F} score.

Data All our experiments were trained and tested
on the standard split of the Hebrew section of the

caze amod b bit b h bit h Ibn
{/‘A @ [eor [ rown [ wor | oo [ noun
b h bit h Ibn T  —
4
MTL Predictions
[
I — — —

MTL Linear Layers

=

il 11
e
T

(00 |

AlephBert |
b

|b|h\i|h\bn‘
P\

|b|h‘bﬂ‘hlbn|‘bbltlhl\bnl

Full Context |

} *
[o [ ot ] |h|h|hit||h|lhn‘
\ P /"

Morphological Analyzer |

¥ Y

Figure 3: The comprehensive architecture examines the
phrase *bbit hibn’ (in-the-house the-white), encompass-
ing the processes of morphological analysis, generating
context for each analysis, acquiring contextualized em-
beddings, constructing a dependency tree, and predict-
ing linguistic features.

UD treebank collection (Nivre et al., 2016). The
training set, dev set, and test set consist of 5,168
sentences, 484 sentences, and 491 sentences, re-
spectively. The morphological analysis for the in-
put of our model is provided by the Morphological
Analyzer (MA) of More et al. (2019).> The MA
provides the segmentation, Part-of-Speech (POS)
tags and morphological features for each segment
in each one of the possible analyses.*

Embeddings The way we generate embedding
for the input lattice complements the architec-
tural design and significantly impacts the parser
performance. Alongside our proposed sentence-
contextualized embedding (Section 4), we assessed
two alternative techniques. We tested this struc-
ture with AlephBert’s (Seker and Tsarfaty, 2021)
static (Static) enbeddings and contextualized (Con-
textualized) embeddings generated directly for the

3https ://github.com/OnlpLab/yap

*To address situations where a segment has multiple poten-
tial POS tags or morphological features, we employ a criterion
based on the most common label (or the first one in case of a
tie).
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linearized lattices.

Evaluation Scenarios As part of our model we
use a Morphological Analyzer (MA) component
for generating the lattices. However, any realistic
MA is not exhaustive, as it may lack some analyses,
with certain tokens entirely missing (out of vocabu-
lary, OOV). Hence, we aim to gauge the effect of
the MA coverage on the parser performance. In the
Infused scenario, we experiment in a setup where
for all sentences the correct analysis is guaranteed
to be incorporated as one of the lattice’s internal
paths. To establish the infused scenario, we ex-
amine all tokens in the dataset and integrate the
gold analysis for each token back into the MA. In
the Uninfused scenario, which represents a realis-
tic scenario, we use the MA as is, and there may
be missing analyses in the constructed lattices at
inference time.

Models Current SOTA results in Hebrew de-
pendency parsing are presented by Trankit
(Minh Nguyen and Nguyen, 2021) and Stanza (Qi
et al., 2020), both of which are multilingual neural
parsers. Since our proposed architecture essentially
extends that of Dozat and Manning (2017), we also
evaluate their architecture in a pure pipeline set-
ting. In this paper, we introduce three variations of
Hebrew parsing employing distinct segmentation
techniques, as described below.

o Gold: The pipeline accepts the gold seg-
mentation from the Hebrew treebank.

o Predicted: The pipeline accepts the SOTA
segmentation predicted by Seker and Tsarfaty
(2020)’s segmention model.

o Joint: The joint scenario infers both the
segmentation and the parse tree using the pro-
posed architecture.

For each baseline we present SEG, POS and depen-
dency parsing DEP scores.

Metrics The Labeled Attachment Score (LAS)
serves as the predominant metric for measuring
dependency parsing accuracy. However, this mea-
surement method is incompatible for the complex
segmentation task associated with Morphologically
Rich Languages (MRLs) since the predicted seg-
ments (i.e., nodes in the tree) may differ from the
gold ones. For this reason, we evaluate segmenta-
tion using the aligned multi-set F; score (Seker and
Tsarfaty (2020), Brusilovsky and Tsarfaty (2022))
metric, specifically chosen for to cope with cases

SEG DEP
Biaffine + Oracle SEG 100 86.76
Biaffine + Predicted SEG | 97.6  71.57

Table 1: The original Biaffine architecture of Dozat and
Manning (2017) with gold and predicted SEG.

Model — Stanza/Trankit

Input | SEG POS DEP
Oracle SEG 100/100 94.75/97.2  78.38/89.42
Model SEG 89.51/95.2 85.03/92.68 67.45/83.55
Predicted SEG | 97.6/97.6  92.73/94.92 75.52/85.66

Table 2: Trankit (Minh Nguyen and Nguyen, 2021)
and Stanza (Qi et al., 2020) results for SEG, POS and
DEP parsing in Hebrew. Oracle provides gold seg-
ments, Model provides the internal segmentation of
Stanza/Trankit, and Predicted is the SOTA segmenta-
tion of AlephBERT (Seker and Tsarfaty, 2021).

where gold and predicted segmentations do not
align, and also caters for backwards compatibility
with previous work. All results we present are av-
eraged over five distinct experiments with random
seeds.

6 Results and Analysis

Table 1 demonstrates the performance of the Dozat
and Manning (2017) architecture using both gold
oracle and predicted segmentation as input to the
biaffine architecture. These results establish that
when not using the gold (oracle) segmentation,
even a small drop in segmentation leads to a sub-
stantial decline in dependency parsing accuracy,
thereby emphasizing the importance of segmenta-
tion in parsing.

Table 2 then shows the results of Trankit
(Minh Nguyen and Nguyen, 2021) and Stanza (Qi
et al., 2020) compared with our proposed model.’
Prior to this work, Trankit achieved state-of-the-
art results on Hebrew parsing. The Oracle seg-
mentation scenarios of Trankit and Stanza provide
an idealized and unrealistic scenario, with a sub-
stantial drop when moving to non-gold scenarios.
Notably, the experimental results of Trankit with
our suggested external Hebrew segmentation sets
a new SOTA to which our architecture achieves
comparable results. The difference is minor, yet
our proposed architecture stands out by offering
an efficient full pipeline that delivers segmentation,
tagging and parsing simultaneously, avoiding the

>Qur models and code are publicly available at https://

github.com/OnlpLab/Hebrew-Dependency-Parsing. All
hyperparameters are listed in the Appendix.
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SEG POS DEP
No MTL 97.68 - 84.69
+ Gender 97.67 - 84.88
+ Person 97.61 - 84.99
+ Number 97.75 - 84.76
+ POS 97.71 9441 8545
+ POS (heBERT) | 97.51 939 84.31
+ POS (mBERT) | 96.84 91.8  80.68
All MTLs 97.68 9431 85

Table 3: We evaluated our model under three different
conditions: without employing any MTL, utilizing one
MTL at a time, and incorporating all MTL components
simultaneously.

SEG DEP
Static 96.36 78.19
Contextualized | 97.18 82.23
Proposed 97.68 84.69

Table 4: Our model incorporates various embedding
representations. The ‘Static’ and ‘Contextualized’ em-
beddings use a lattice context, ‘Proposed’ uses a valid
sentence context for each analysis.

need to train, maintain, and install modules sepa-
rately.

Table 3 shows the results of our proposed ap-
proach with ablation of the MTL contribution.
These results demonstrate that our joint architec-
ture surpasses the original Biaffine architecture in
Hebrew parsing, attaining a state-of-the-art (SOTA)
performance with an 85.45 Fjscore, better than the
parsing frameworks of Stanza and Trankit. The re-
sults are comparable for the combination of Trankit
with an external model with a separately trained
decoder, with different training regimes, while in
our model, SEG, POS and DEP are trained, and
predicted, jointly.

Furthermore, Table 4 highlights the significance
of the embedding method used for encoding the
input lattices. While a substantial improvement
is evident between static and contextualized em-
beddings, a notable enhancement is also observed
when altering the context of the linearized lattice
as we propose.

Table 5 illustrates the extent to which limitations
of the MA component affect parsing performance,
in cases where certain analyses may be absent for
some tokens at inference time. It is evident that
when the correct analyses are included in the set of
possible analyses, it selects a better segmentation
that results in more accurate parsing. So, improve-
ment of the MA coverage is expected to yield even

SEG POS DEP
Infused 98.47 - 85.56
Infused + MTL POS 98.52 95.22 86.55
Uninfused 97.68 - 84.69
Uinfused + MTL POS | 97.71 94.41 85.45

Table 5: Our proposed model with infused MA, with
and without POS MTL.

further improvement in parsing.

Finally, since the LLM may be seamlessly re-
placed, further improvement may come from a bet-
ter LLM encoder. Table 3 shows that replacing
mBERT (Libovicky et al., 2019) with the Aleph-
BERT (Seker and Tsarfaty, 2021) encoder gave a
significantly improved performance. This leaves
a promise of further improving performance with
significantly better LLMs.

Error Analysis We performed a manual error
analysis on a subset of 50 sentences from the He-
brew UD HTB dev set. In these, there are merely
8 segmentation errors, with 5 of being a missing
definite article ("he hydia’h’) and the remaining
3 involving incorrect segmentation of fused suf-
fixes. In addition, a total of 108 dependency errors
were identified, classified into four categories: pre-
diction errors, wrong gold, truly ambiguous, and
others (Table 7 in the Appendix). Of these, 70% are
prediction errors. We categorized the errors based
on the dependency labels that are involved. The
predominant error type is associated with PP at-
tachment, where 20% of the errors confuse the obl
and nmod relations, indicating a confusion between
the complements of the verb and modifiers of the
noun, respectively (see further details in Table 8 in
the Appendix).

7 Related and Future Work

Previous research has delved into lattice-based
dependency parsing for MRLs such as Hebrew
(More et al., 2019), Turkish (Seeker and Cetinoglu,
2015), and Sanskrit (Krishna et al., 2020b). How-
ever, these prior contributions predominantly uti-
lized graph-based and transition-based systems
grounded in feature functions that are hand-
engineered. In contrast, our current work takes
a different perspective, presenting a purely neural
architecture. A distinct challenge lies in generating
embeddings for the lattice arcs, which represent
a non-linear structure — an atypical input signal
for language models. The aforementioned lattice-
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based parsing architectures do not attend to this
complexity thereby missing out on the advantages
offered by contemporary Large Language Models
(LLMs). This paper bypasses this divide, proposing
an approach that effectively handles the intricate
context and creates robust representations for lat-
tices using neural encoders.

While neural studies in MRL parsing, such as
the work by Sandhan et al. (2021), also leverage
the Biaffine architecture of Dozat and Manning
(2017), they typically focus on architectures that
handles segmented and unambiguous inputs. Con-
sequently, these models do not cope well with the
challenges posed by the vast number of ambigu-
ous words prevalent in MRLs such as Hebrew. In
contrast, our proposed architecture accommodates
ambiguous input, offering a unified solution that
addresses both segmentation, morphological dis-
ambiguation, and parsing, in a single model.

In future research, we aim to assess our pro-
posed framework on other MRLs, evaluate its per-
formance across various language types and assess
its generalization capabilities for lower-resourced
languages. Additionally, we aim to explore further
enhancements of MTL in parsing, by adding joint
semantic predictions such as NER and SRL.

8 Conclusions

In this paper, we present a novel neural frame-
work for jointly segmenting and parsing morpho-
syntactic structures in Morphologically Rich Lan-
guages (MRLs). We address the intricate and com-
plex nature of words in these languages and pro-
pose a method for incorporating linguistic infor-
mation structured in a lattice into a neural parsing
architecture. The contribution of this paper is man-
ifold. First, we provide a language-agnostic neu-
ral joint architecture that can be used to confirm
or disprove the joint hypothesis juxtaposed in the
pre-neural era for MRLs. Second, we provide a
thorough empirical investigation of Hebrew, pro-
viding SOTA results using a single joint model. Fi-
nally, as the proposed architecture relies on an LLM
encoder, advances are expected to be achieved
as LLMs further improve for low- and medium-
resources MRLs, potentially closing the gap with
non-MRLs.

9 Limitations

In our study, we introduce a joint morpho-syntactic
architecture tailored to address the segmentation

and parsing challenges of Morphologically Rich
Languages (MRLSs) in a single a model. It is impor-
tant to note that the term “segmentation” can have
various meanings, and in our work, we specifically
refer to the segmentation of raw tokens into multi-
ple meaning-bearing units, each of which carrying
its own POS tag. This is compatible with previ-
ous work on Hebrew and other Semitic languages
(Adler and Elhadad, 2006; Seker and Tsarfaty,
2021). All modeling and design decisions made are
language-agnostic. Having acknowledged that, we
conducted experiments using Hebrew as our test
language. This investigation can and should be ex-
tended to any language that has a UD treebank and
a wide-coverage morphological analyzer (MA).

One of the key components of our approach is
the Morphological Analyzer (MA), which provides
a list of possible analyses for each token. This
component is not always freely available. Here,
our experiments focused on Hebrew. It is note-
worthy however that MAs are available for many
languages and specifically for MRLs (More et al.,
2018). MAs are available also for Arabic (Taji et al.,
2018), Turkish (Y1ldiz et al., 2019) and Sanskrit.®
It is also worth noting that the open MAs we can
access is academia are fairly small, but there exist
larger lexical MAs in the industry, for Hebrew and
other languages.” On top of that, creating proper
contextualized embeddings for each segment in the
lattice is more time-consuming than is desired, and
in future work we aim to specifically address these
efficiency concerns.

Finally, when generating contextualized embed-
dings for the input lattice we employed AlephBert,
a pre-trained monolingual language model for He-
brew. Substituting this model with a bigger or more
advanced one could potentially yield further im-
provements. More work in the future may be done
on improving the way we encode the linearized
lattices, either in the realm of pre-tuning, or by
fine-tuning the LLM specifically for the lattice-
encoding task.

Acknowledgements

We thank Eylon Gueta, Refael Shaked Greenfeld
and Amit Seker for fruitful discussions. We also
thank the audience of the NLP-BIU seminar and
three anonymous reviewers for thoughtful com-
ments on earlier drafts. This research was funded

6http: //sanskrit.jnu.ac.in/morph/analyze. jsp
"For instance through https://lexicala.com/

1416


http://sanskrit.jnu.ac.in/morph/analyze.jsp
https://lexicala.com/

by the European Research Council (ERC) grant
number 677352 and a Ministry of science and edu-
cation (MOST) grant number 3-17992, for which
we are grateful. The research was further supported
by a grant from the Israeli Innovation Authority
(KAMIN), and computing resources kindly funded
by a VATAT grant and the Data Science Institute at
Bar-Ilan University (BIU-DSI).

References

Meni Adler and Michael Elhadad. 2006. An unsuper-
vised morpheme-based HMM for Hebrew morpho-
logical disambiguation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 665-672, Sydney,
Australia. Association for Computational Linguistics.

Idan Brusilovsky and Reut Tsarfaty. 2022. Neural token
segmentation for high token-internal complexity. In
arXiv:2203.10845v1.

Shay B. Cohen and Noah A. Smith. 2007. Joint morpho-
logical and syntactic disambiguation. In Proceedings
of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages
208-217, Prague, Czech Republic. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In In International Conference on Learning
Representations (ICLR).

Michel Galley and Christopher D. Manning. 2009.
Quadratic-time dependency parsing for machine
translation. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 773-781, Suntec,
Singapore. Association for Computational Linguis-
tics.

Aparna Garimella, Laura Chiticariu, and Yunyao Li.
2021. Domain-aware dependency parsing for ques-
tions. pages 4562-4568.

Yoav Goldberg and Reut Tsarfaty. 2008. A single gen-
erative model for joint morphological segmentation
and syntactic parsing. In Proceedings of ACL-08:
HLT, pages 371-379, Columbus, Ohio. Association
for Computational Linguistics.

Spence Green and Christopher D. Manning. 2010. Bet-
ter Arabic parsing: Baselines, evaluations, and anal-
ysis. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010),
pages 394402, Beijing, China. Coling 2010 Orga-
nizing Committee.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, So-
hee Yang, and Minjoon Seo. 2020. Spatial depen-
dency parsing for 2d document understanding. CoRR,
abs/2005.00642.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple
and accurate dependency parsing using bidirectional
Istm feature representations. In Transactions of the
Association for Computational Linguistics, volume 4,
pages 313-327.

Dan Kondratyuk and Milan Straka. 2019a. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLPIJCNLP),
pages 2779-2795.

Dan Kondratyuk and Milan Straka. 2019b. 75 lan-
guages, 1 model: Parsing Universal Dependencies
universally. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2779-2795, Hong Kong, China. Association
for Computational Linguistics.

Amrith Krishna, Ashim Gupta, Deepak Garasangi, Pa-
vankumar Satuluri, and Pawan Goyal. 2020a. Keep it
surprisingly simple: A simple first order graph based
parsing model for joint morphosyntactic parsing in
Sanskrit. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4791-4797, Online. Association for
Computational Linguistics.

Amrith Krishna, Bishal Santra, Ashim Gupta, Pavanku-
mar Satuluri, and Pawan Goyal. 2020b. A graph-
based framework for structured prediction tasks in
Sanskrit. Computational Linguistics, 46(4):785-845.

Jindrich Libovicky, Rudolf Rosa, and Alexander Fraser.
2019. How language-neutral is multilingual bert?
volume abs/1911.03310.

Amir Pouran Ben Veyseh Minh Nguyen, Viet Lai and
Thien Huu Nguyen. 2021. Trankit: A light-weight
transformer-based toolkit for multilingual natural lan-
guage processing. In In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: System Demonstra-
tions, volume 322, pages 80-90.

Amir More, Amit Seker, Victoria Basmova, and Reut
Tsarfaty. 2019. Joint transition-based models for
morpho-syntactic parsing: Parsing strategies for
MRLs and a case study from Modern Hebrew. vol-
ume 7, pages 33-48, Cambridge, MA. MIT Press.

1417


https://doi.org/10.3115/1220175.1220259
https://doi.org/10.3115/1220175.1220259
https://doi.org/10.3115/1220175.1220259
https://aclanthology.org/D07-1022
https://aclanthology.org/D07-1022
https://aclanthology.org/P09-1087
https://aclanthology.org/P09-1087
https://aclanthology.org/P08-1043
https://aclanthology.org/P08-1043
https://aclanthology.org/P08-1043
https://aclanthology.org/C10-1045
https://aclanthology.org/C10-1045
https://aclanthology.org/C10-1045
http://arxiv.org/abs/2005.00642
http://arxiv.org/abs/2005.00642
https://aclanthology.org/D19-1279
https://aclanthology.org/D19-1279
https://aclanthology.org/D19-1279
https://doi.org/10.18653/v1/2020.emnlp-main.388
https://doi.org/10.18653/v1/2020.emnlp-main.388
https://doi.org/10.18653/v1/2020.emnlp-main.388
https://doi.org/10.18653/v1/2020.emnlp-main.388
https://doi.org/10.1162/coli_a_00390
https://doi.org/10.1162/coli_a_00390
https://doi.org/10.1162/coli_a_00390
http://arxiv.org/abs/1911.03310
https://aclanthology.org/Q19-1003
https://aclanthology.org/Q19-1003
https://aclanthology.org/Q19-1003

Amir More, Ozlem Cetinoglu, Cagri Coltekin, Nizar
Habash, Benoit Sagot, Djamé Seddah, Dima Taji,
and Reut Tsarfaty. 2018. Conll-ul: Universal mor-
phological lattices for universal dependency parsing.
In International Conference on Language Resources
and Evaluation.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Haji¢, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659-1666, Portoroz,
Slovenia. European Language Resources Association
(ELRA).

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 101-108.

Jivnesh Sandhan, Amrith Krishna, Ashim Gupta,
Laxmidhar Behera, and Pawan Goyal. 2021. A little
pretraining goes a long way: A case study on depen-
dency parsing task for low-resource morphologically
rich languages. arXiv preprint arXiv:2102.06551.

Wolfgang Seeker and Ozlem Cetinoglu. 2015. A graph-
based lattice dependency parser for joint morpholog-
ical segmentation and syntactic analysis. volume 3,
pages 359-373, Cambridge, MA. MIT Press.

Amit Seker and Reut Tsarfaty. 2020. A pointer net-
work architecture for joint morphological segmen-
tation and tagging. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4368—4378, Online. Association for Computational
Linguistics.

Amit Seker and Reut Tsarfaty. 2021. Alephbert:
A hebrew large pretrained language model to
start-off your hebrew nlp application with. In
arXiv:2104.04052.

Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl Eryani,
and Nizar Habash. 2018. An Arabic morphological
analyzer and generator with copious features. In Pro-
ceedings of the Fifteenth Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 140-150, Brussels, Belgium. Association for
Computational Linguistics.

Reut Tsarfaty. 2006. Integrated morphological and syn-
tactic disambiguation for Modern Hebrew. In Pro-
ceedings of the COLING/ACL 2006 Student Research
Workshop, pages 49—-54, Sydney, Australia. Associa-
tion for Computational Linguistics.

Reut Tsarfaty, Dan Bareket, Stav Klein, and Amit Seker.
2020. From SPMRL to NMRL: What did we learn
(and unlearn) in a decade of parsing morphologically-
rich languages (MRLs)? In Proceedings of the 58th

Annual Meeting of the Association for Computational
Linguistics, pages 73967408, Online. Association
for Computational Linguistics.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra
Kuebler, Yannick Versley, Marie Candito, Jennifer
Foster, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical parsing of morphologically rich languages
(SPMRL) what, how and whither. In Proceedings
of the NAACL HLT 2010 First Workshop on Statis-
tical Parsing of Morphologically-Rich Languages,
pages 1-12, Los Angeles, CA, USA. Association for
Computational Linguistics.

Olcay Taner Yildiz, Begiim Avar, and Gékhan Ercan.
2019. An open, extendible, and fast Turkish morpho-
logical analyzer. In Proceedings of the International
Conference on Recent Advances in Natural Language
Processing (RANLP 2019), pages 1364—1372, Varna,
Bulgaria. INCOMA Ltd.

A Appendix

A.1 Hyperparameters and Computing
Resources

For all models we used the hyper parameters in Ta-
ble 6. The research was conducted using a NVIDIA
GeForce GTX 1080 Ti machine. To enhance time
efficiency, we pre-generated embeddings before the
training phase, avoiding the need to create them for
each epoch. The process of generating embeddings
for the entire training dataset took approximately
80 minutes. On average, each epoch lasted 15
seconds, resulting in a total training time of approx-
imately 7 minutes.

For evaluation purposes, we assessed the effi-
ciency of both embedding and inference on the test
dataset, where the longest sentence consisted of 61
tokens with linearized lattice of 217 morphemes
and the shortest contained 2 tokens with linearized
lattice of 4 morphemes. The average linearized
lattice contains 57 morphemes. The average time
for embedding was 0.24 seconds, and for inference,
it was 0.017 seconds. The maximum time recorded
for embedding was 0.94 seconds, and for infer-
ence, it was 0.19 seconds. We acknowledge the
efficiency bottleneck at the embedding generation
phase, which we reserve for future research.

A.2 Error Analysis

We performed a manual error analysis by an expert
on 50 sentences sampled from the dev set, and
found 108 parsing errors. Table 7 presents the types
of dependency errors, where 70% are prediction
errors and the rest are not considered parser errors
by the expert.
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Embedding dimension
BiLSTM hidden size
Batch size
Embedding dropout
ARC MLP dropout
Label MLP dropout
All BiLSTMs depth
MLP depth

Arc MLP size

Label MLP size
Learning rate

MTL linear layer size

768
600
32
0.3
0.3
0.3
1

1
500
100
0.001
600

Table 6: Hyperparameter Settings

number percent
prediction error | 76 70%
gold error 13 12%
ambiguous 11 10%
other 8 8%
all 108 100%

Table 7: Classification of errors by type.

Table 8 further presents the classification of er-
rors by gold labels. For each label we count three
types of errors: exclusively a head error, exclu-
sively a label error, or an error encompassing both
the head and label. We can see that oblique and
nmod are top ranked, followed by apposition, ad-
vmod and conj. Interestingly, at the middle of the
Table we see that on top of coordination conj, cc,
which is known to be challenging to disambiguate,
the construct-state construction compound.:smixut,
a well-known Semitic phenomenon, also appears

to be confusing for the parser.
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gold label head label head +1label number percent
obl 4 1 6 11 10.19%
nmod 7 2 1 10 9.26%
appos 4 1 4 9 8.34%
advmod 5 0 3 8 7.41%
conj 6 1 1 8 7.41%
cc 3 1 1 5 4.63%
ccomp 0 3 2 5 4.63%
compound:smixut | 1 4 0 5 4.63%
dep 0 2 3 5 4.63%
amod 2 3 0 5 4.63%
acl:relcl 3 1 0 4 3.7%
case 3 0 1 4 3.7%
det 1 3 0 4 3.7%
obj 0 3 1 4 3.7%
nsubj 1 0 2 3 2.78%
nmod:poss 2 1 0 3 2.78%
fixed 1 0 2 3 2.78%
mark 2 1 0 3 2.78%
root 0 0 2 2 1.9%
advcl 1 1 0 2 1.9%
acl 0 0 2 2 1.9%
parataxis 0 1 0 1 0.93%
xcomp 0 0 1 1 0.93%
flat:name 0 1 0 1 0.93%
Total 46 30 32 108 100%

Table 8: Classification of errors by gold labels. Each label is divided into three types of errors: exclusively a head
error, exclusively a label error, or an error encompassing both the head and label.
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