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Abstract

Improving multilingual language models capa-
bilities in low-resource languages is generally
difficult due to the scarcity of large-scale data
in those languages. In this paper, we relax the
reliance on texts in low-resource languages by
using multilingual lexicons in pretraining to
enhance multilingual capabilities. Specifically,
we focus on zero-shot sentiment analysis tasks
across 34 languages, including 6 high/medium-
resource languages, 25 low-resource languages,
and 3 code-switching datasets. We demon-
strate that pretraining using multilingual lex-
icons, without using any sentence-level sen-
timent data, achieves superior zero-shot per-
formance compared to models fine-tuned on
English sentiment datasets, and large language
models like GPT-3.5, BLOOMZ, and XGLM.
These findings are observable for unseen low-
resource languages to code-mixed scenarios
involving high-resource languages.'

1 Introduction

When it comes to under-represented languages,
multilingual language models (Conneau et al.,
2020; Xue et al., 2021; Devlin et al., 2019; Liu
et al., 2020) are often considered the most viable
option in the current era of pretraining and fine-
tuning, primarily due to the scarcity of labeled
and unlabeled training data. However, the limited
language coverage of these models often results
in poor cross-lingual transfer to under-represented
languages (Xia et al., 2021; Wang et al., 2022).
Prior work has extended multilingual mod-
els (Conneau et al., 2020; Xue et al., 2021) to
other languages by language-adaptive pretraining
(i.e., continuing to pretrain on monolingual text)
(e.g., Wang et al., 2020; Chau et al., 2020) and
leveraging adapters (Pfeiffer et al., 2020). How-
ever, these language adaptation techniques are not

'Code and dataset can be found at: https://github.
com/fajri9l/ZeroShotMultilingualSentiment
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Figure 1: Left: pretraining with a multilingual senti-
ment lexicon. Right: zero-shot inference using sen-
tences or documents.

compatible with low-resource languages due to the
unavailability of adequate unlabeled monolingual
texts.

Lexicons are more readily accessible and offer
broader language coverage than monolingual cor-
pora like Wikipedia and the Bible, making them
a promising resource for extending multilingual
models to under-represented languages. This is be-
cause when studying a new language, a lexicon is
generally the first resource that field linguists de-
velop to document its morpho-phonemics and basic
vocabulary. Of the 7,000+ languages spoken world-
wide, lexicons are available for approximately 70%
of them, while mBERT, Wikipedia/CommonCrawl,
and the Bible are available for only 1%, 4%, and
23%, respectively (Wang et al., 2022).

In prior work, Wang et al. (2022) proposed to
use the Panlex translation lexicon (Baldwin et al.,
2010),% to extend the language coverage of multi-
lingual BERT (mBERT: Devlin et al. (2019)). They
further pretrained mBERT using synthetic texts

2https: //panlex.org/
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generated through word-to-word translation, result-
ing in improvements in named-entity recognition
tasks. Drawing inspiration from their work, our
study aims to reassess the utility of sentiment lexi-
cons in sentiment analysis tasks, which were once
a prominent feature in sentiment analysis prior to
the advent of pre-trained language models. Specif-
ically, we seek to answer the following questions:
(1) To what extent do sentiment lexicons boost sen-
timent analysis using pretrained language models?;
and (2) Do multilingual sentiment lexicons improve
the multilingual generalizability of sentiment anal-
ysis, particularly in low-resource languages?

We chose sentiment classification as the focus of
our study for two reasons. First, there is a wealth of
sentiment classification datasets across diverse lan-
guages, allowing us to conduct experiments across
34 languages, including 6 high/medium-resource
languages, 25 low-resource languages, and 3 code-
switching language pairs. Secondly, compared to
other semantic tasks such as hate speech detection
(Schmidt and Wiegand, 2017; Rottger et al., 2021)
and emotion recognition (Abdul-Mageed and Un-
gar, 2017; Sosea and Caragea, 2020), sentiment
lexicons have been studied extensively and are well-
established in the field.

Cross-lingual transfer in sentiment classifica-
tion is a prime case of low-resource NLP. How-
ever, existing research has predominantly focused
on high/medium-resource languages (Gupta et al.,
2021; Fei and Li, 2020; Lample et al., 2018), rely-
ing on sentence-level sentiment datasets in English.
In this paper, we showcase how models trained on
English datasets are suboptimal for low-resource
languages, and introduce lexicon-based pretrain-
ing that improves multilingual sentiment modeling.
Our contributions can be summarized as follows:

* Our approach is arguably cost-effective since
it relies exclusively on sentiment lexicons, re-
ducing the need for sentence-level sentiment
annotation in any language, and sentence-
level machine or human translation for low-
resource languages, which can be challenging
to access.

* We continue model pretraining using senti-
ment lexicons across 109 languages (see Fig-
ure 1), and demonstrate strong zero-shot per-
formance in low-resource languages, partic-
ularly in low-resource languages that are not
covered by the multilingual lexicons, and in
code-mixing texts that include high-resource

languages. Our approach outperforms En-
glish models fine-tuned on sentence-level sen-
timent datasets, as well as large language
models such as XGLM (Lin et al., 2021),
BLOOMZ (Muennighoff et al., 2022), and
GPT-3.5 (Ouyang et al., 2022).

* We conduct comprehensive experiments in
two sentiment classification scenarios: binary
and 3-way classification. For each scenario,
we benchmark two pretraining strategies: re-
gression and classification. Unlike regression,
the classification-based approach eases the
constraint of determining the neutral class
boundary before performing inference in 3-
way classification in zero-shot setting.

2 Related Work

We briefly review three subtopics that are perti-
nent to this work: (1) sentiment lexicons, (2) cross-
lingual adaptation for sentiment analysis, and (3)
sentiment analysis in low-resource languages.

Sentiment Lexicons A sentiment lexicon is a
curated collection of words and phrases that are
classified as bearing positive or negative polarity.
Such lexicons have applications in fields includ-
ing NLP, cognitive science, psychology, and so-
cial science (Kiritchenko et al., 2014; Mohammad,
2018). There are two broad approaches to creating
a sentiment lexicon: (1) direct annotation (Nielsen,
2011; Baccianella et al., 2010) — have annotators
assign sentiment scores to individual words on a
rating scale, typically ranging from —5 (indicating
very negative) to +5 (indicating very positive), or
based on positive/negative categorical labels (Liu
et al., 2005); and (2) best—worst scaling (BWS: Kir-
itchenko et al. (2014, 2016); Mohammad (2018))
— have annotators select the most positive and least
positive word from a collection of n words, and in-
fer a sentiment score based on the global rank of all
words in the collection. BWS is considered more
reliable than direct annotation as it helps mitigate
annotator bias when assigning sentiment scores to
individual words.

These sentiment lexicons have been constructed
predominantly for English, but they also exist for
languages such as Indonesian (Koto and Rahman-
ingtyas, 2017), Arabic (Kiritchenko et al., 2016),
Persian (Dashtipour et al., 2016), Dutch (Moors
et al., 2013), and Spanish (Redondo et al., 2007). In
this work, we use NRC-VAD (Mohammad, 2018),
which is the largest English lexicon (19,965 words)
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and was built using the BWS method. Existing
non-English lexicons are not just limited in size,
they were also generally curated using a less reli-
able method (i.e., direct annotation). We instead
use multilingual NRC-VAD lexicons in 108 lan-
guages, which is created by the original authors of
NRC-VAD via Google Translate.’

Cross-lingual Transfer in Sentiment Analysis
Most previous studies have primarily focused on
cross-lingual adaptation in sentiment analysis by
transferring models trained on English sentences x;
and sentiment labels y; to other languages. Abdalla
and Hirst (2017) developed a mapper function to
convert non-English word2vec embeddings to the
English embedding space (Mikolov et al., 2013).
Zhou et al. (2016b,a); Wan (2009); Lambert (2015)
translated English datasets to several languages,
such as Chinese and Spanish, and performed joint
training to improve the multilingual capabilities of
the model. Fei and Li (2020) combined sentiment
networks with unsupervised machine translation
(Lample et al., 2018), and Meng et al. (2012); Jain
and Batra (2015) have used unlabeled parallel texts
in two languages to learn multilingual sentiment
embeddings. In more recent work, Sun et al. (2021)
used linguistic features such as language context,
figurative language, and the lexification of emo-
tional concepts to improve cross-lingual transfer,
while Zhang et al. (2021) introduced a representa-
tion transformation technique from source to target
languages which requires labeled English and non-
English datasets.

Cross-lingual transfer in previous work relies
on sentence-level labeled English datasets, and
has been evaluated on high/medium-resource lan-
guages. In this work, we do not use sentence-level
labeled datasets, but solely lexicons, and test our
methods on low-resource languages. To the best
of our knowledge, our work constitutes the first
effort to perform massively multilingual sentiment
pretraining using lexicons.

Sentiment Analysis in Low-resource Languages
Most work in sentiment analysis has been applied
to high/medium-resource languages, such as En-
glish (Nielsen, 2011; Baccianella et al., 2010; Koto
and Adriani, 2015), Chinese (Zhou et al., 2016b,a),
Japanese (Bataa and Wu, 2019), and Indonesian
(Koto and Rahmaningtyas, 2017; Koto et al., 2021).

3The approach aligns with the utilization of bilingual lexi-
cons such as Panlex, as demonstrated in Wang et al. (2022).

There also exists a small body of work on senti-
ment analysis for low-resource languages. First,
NusaX (Winata et al., 2023) is a parallel sentiment
analysis dataset that comprises 10 local Indone-
sian languages, along with Indonesian and English
translations. SemEval-2023 (Muhammad et al.,
2022, 2023) released sentiment analysis datasets
for 14 African languages. In other work, Sirajzade
et al. (2020) annotated Luxembourgish sentences
with sentiment labels, and Ali et al. (2021) built a
sentiment lexicon for Sindhi. In this study, we in-
clude the low-resource languages of NusaX and the
14 African languages from SemEval-2023 among
our test sets.

3 Pretraining with Sentiment Lexicons

3.1 Background and Problem Definition

Prior research (e.g., Zhou et al., 2016b; Zhang et al.,
2021) typically assumes access to sentence-level
annotated data in a source language, often English,
for zero-shot cross-lingual transfer to a target lan-
guage. In this work, we define zero-shot as a set-
ting where there is no sentence-level annotated
data available in the source or target languages.
Instead, we use the multilingual NRC-VAD lexi-
con (Mohammad, 2018) which comprises words
{wy,wa, .., w, } manually annotated with valence
{v1, v2, .., v, }, arousal {ay,as, .., a,}, and domi-
nance {di, da, .., d, } scores. In this work, we train
only over the valence scores v;, and normalize them
from a range of [0, 1] to [—5, 5].

Valence represents the degree of positiveness-
negativeness/pleasure-displeasure and has been
demonstrated to have a strong correlation with sen-
timent classification (Mohammad, 2018). While
the valence scores are suitable for regression, we
also introduce valence classes {s1, s, .., s, } that
are derived from the valence score v;. For 3-way
classification we set the neutral class to [—1, 1),
while we set 0 as the boundary between the posi-
tive and negative classes in the binary setting.

As illustrated in Figure 1, we fine-tune multilin-
gual models (Devlin et al., 2019; Conneau et al.,
2020; Liu et al., 2020; Xue et al., 2021) on the
parallel NRC-VAD lexicon in 109 languages. We
specifically use average pooling over all tokens
prior to the regression or classification layer. Dur-
ing zero-shot inference, we used fine-tuned models
to predict sentiment labels at the sentence level.
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Models NRC train/dev/test

Lang Panlex
mBERT XLM-R mBART mT5 BLOOMZ XGLM GPT-3.5 VAD 3-way Binary
g en 4 v v v v v v v 4 8544/1101/2210  6920/872/1821
;5 ar v v v v v v v v v 3151/351/619 2162/251/428
S es 4 4 4 v v v v v v 4802/2443/7264  3279/1650/5298
§ ru 4 v v v v v v v 4 4113/726/4534  1205/209/1000
%" id v v v v v v v v v 3638/399/1011  3638/399/1011
ja 4 4 4 v v v v v 4 3888/1112/553 2959/851/414
ace X X X X X X X X v 500/100/400 381/76/304
ban X X X X X X X X v 500/100/400 381/76/304
bbc X X X X X X X X v 500/100/400 381/76/304
E bjn X X X X X X X X v 500/100/400 381/76/304
> bug X X X X X X X X v 500/100/400 381/76/304
% jv v v X v X v v v v 500/100/400 381/76/304
S mad X X X X X X X X X 500/100/400 381/76/304
min v X X X X X v X v 500/100/400 381/76/304
nij X X X X X X X X v 500/100/400 381/76/304
su v v X 4 X 4 v v v 500/100/400 381/76/304
am X v X v X v v v v 5984/1497/1999  2880/721/1775
dz X X X X X X X X v 1651/414/958 1309/328/304
ha X v X 4 X 4 v v v 14172/2677/5303  9260/1781/3514
ig X X X v v v v v v 10192/1841/3682  5684/1030/2061
= kr X X X X v X v 4 v 8522/2090/4515 2045/512/633
S ma X X X X X X X X v 5583/1215/2961  3422/745/1994
E pem X X X X X X X X v 5121/1281/4154  5049/1260/3723
i; pt-MZ X X X X X X X X X 3063/767/3662  1463/367/1283
S sw v v X 4 v v v v v 1810/453/748 738/185/304
ts X X X X v X v X v 804/203/254 668/168/211
twi X X X X v X X X v 3481/388/949 2959/330/803
uo v X X 4 v 4 v v v 8522/2090/4515  5414/1327/2899
or X v X X X v v X v 316/80/2096 218/53/1195
tg X X X X X v X X v 318/80/2000 221/55/1613
aeb X X X X X X X X v 4500/250/250 4284/232/235
en-es 4 v v v v v v v 4 2449/306/307 1405/162/182
E en-ml v v v v v v v v v 2856/358/335 2856/358/335
en-ta 4 4 4 v v v v v v 3233/401/398 3233/401/398

Table 1: Languages used in this paper. “v"” (green) and “X” (red) mean that the language has and has not been seen
by the models or language resources. CW indicates code-switching text. The language coverage for GPT-3.5 is

derived from GPT-3 (Brown et al., 2020).

3.2 Extending the Lexicon

As shown in Table 2, the original NRC-VAD lexi-
con (Mohammad, 2018) comprises 19,965 English
words, and has been extended to 108 languages
by the original author resulting in 2.1M parallel
words/phrases.*

In Table 1, we provide an overview of the lan-
guages and datasets used in this paper, categorized
into: (1) high/medium-resource languages; (2)
NusaX, covering local Indonesian languages (low
resource); (3) African languages from SemEval
2023 (low resource); and (4) code-switching texts.
The high/medium-resource languages and individ-
ual languages present in the code-switching texts
are covered by all pretrained models and the NRC-
VAD multilingual lexicon. However, for NusaX
and the African languages, a considerable number
of them are not covered.

*https://saifmohammad.com/WebPages/nrc-vad.
html
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Language coverage of the NRC-VAD multilin-
gual lexicons remains limited in 109 languages.
Therefore, we opt to extend the NRC-VAD lexi-
con using the Panlex lexicon, a “panlingual” lex-
icon containing translation edges between many
languages. As shown in Table 1, only mad and
pt-MZ are not covered by Panlex. Specifically,
we focus on 15 languages that are not covered by
NRC-VAD, and project the sentiment scores from
English. Given an English word and its valence
score pair (w$", v;), we first obtain the translation
of w" in language L. For each translation word
{wZL1 , wf;, o wiLm} we assign v; as the correspond-
ing sentiment score. In total, we add 20K low-
resource lexemes from 15 languages, as detailed in
the Appendix (Table 7).

3.3 Filtering Lexemes

Although translating lexemes is relatively easier
and often more accurate than sentences, the senti-


https://saifmohammad.com/WebPages/nrc-vad.html
https://saifmohammad.com/WebPages/nrc-vad.html
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Figure 2: Lexicon filtering pipeline.

id Lexicon Count
1 Original NRC-VAD 19,965
2 (1) + 108 translations 2,176,185
3 (2) + Panlex extension (15 langs) 2,196,252
4 (3) + Filtering 2,071,691

Table 2: Statistics of the original NRC-VAD lexicon,
translations, Panlex extension, and filtering.

ment score of the translated lexemes can be mis-
leading because of word sense ambiguity. For
example, the English word cottage refers to a
small house, while the Indonesian equivalent gubuk
“shack” from the English-Indonesian lexicon may
have more negative sentiment than cottage.

To address the issue, we implement a filtering
strategy illustrated in Figure 2. Initially, we train
the English NRC-VAD w;" with XLM-R (Conneau
et al., 2020) using a regression approach. The train-
ing and validation data are split 80:20, with the
model trained to predict the valence score v; based
on the input word w". Subsequently, the model is
used to predict the valence scores v; of additional
lexemes (from the extended lexicons by Moham-
mad (2018) and Panlex). As a result, each word
wiLj in the extended lexicon has two valence scores:

the original score v; and the XLLM score 6{; . All
lexemes wé where the absolute difference \@ZLJ — v
falls below a specified threshold « are added to the
training and validation sets proportionally. This
iterative process continues by training over the new
extended lexicon until the number of additional

words added to the training set becomes less than

B2

SWe set the threshold « to 2.5, and 8 to 1000.

4 Experiments

4.1 Data

As shown in Table 1, we use 34 languages in binary
(positive, negative) and 3-way (positive, negative,
neutral) classification scenarios. For binary classi-
fication, we simply remove sentences with neutral
labels, resulting in a smaller dataset size. The 34
languages are grouped into 4 categories:

* high/medium-resource languages, includ-
ing English (en: Socher et al. (2013)), Ara-
bic (ar: Alturayeif et al. (2022)), Spanish
(es: Garcia-Vega et al. (2020)), Russian
(ru: Loukachevitch et al. (2015)), Indonesian
(id: Koto et al. (2020)), and Japanese (ja:
Hayashibe (2020)).

* Low-resource languages from NusaX
(Winata et al., 2023), consisting of 10 lo-
cal Indonesian languages: Acehnese (ace),
Balinese (ban), Batak Toba (bbc), Banjarase
(bjn), Buginese (bug), Madurese (mad), Mi-
nangkabau (min), Javanese (jv), Ngaju (nij),
and Sundanese (su).

* Low-resource African languages, based on
the 14 languages of SemEval-2023 (Muham-
mad et al., 2022, 2023): Ambharic (am),
Algerian Arabic (dz), Hausa (ha), Igbo
(ig), Kinyarwanda (kr), Darija (ma), Nige-
rian Pidgin (pcm), Mozambique Portuguese
(pt-MZ),° Swahili (sw), Xitsonga (ts), Twi
(twi), Yoruba (yo), Oromo (or), and Tigrinya
(tg). We additionally include Tunisian Ara-
bizi (aeb) from Fourati et al. (2021).

* Code-switching texts, involving English—
Spanish (en—-es: Vilares et al. (2016)),
English-Malayalam (en—ml: Chakravarthi
et al. (2020a)), and English—-Tamil (en—ta:
Chakravarthi et al. (2020b))

4.2 Set-Up

We perform comprehensive evaluation over six
multilingual encoder and encoder—decoder pre-
trained language models: (1) mBERTg, (De-
vlin et al., 2019); (2) XLM-Rgase (Conneau et al.,
2020); (3) XLM-Rpyrge (Conneau et al., 2020);
(4) mBARTLyge (Liu et al., 2020); (5) mT5gage
(Xue et al., 2021); and (6) mT5ae (Xue et al.,
2021). We evaluate different scenarios, including:

®Mozambican Portuguese dialect differs in both pronun-
ciation and colloquial vocabulary from standard European
Portuguese.
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(1) lexicon-based pretraining via regression vs. clas-
sification; and (2) binary vs. 3-way classification.

Lexicon-based pretraining We conduct pretrain-
ing on the six multilingual pretrained language
models using three combinations of multilingual
lexicons: (1) NRC-VAD; (2) NRC-VAD + Pan-
lex; and (3) NRC-VAD + Panlex + filtering. For
regression-based pretraining, we use mean square
error (MSE) loss, while for binary and 3-way clas-
sification, we use cross-entropy loss. Please see
the Appendix for detailed hyper-parameter settings
and computational resources.

Full Training, Few-shot and Zero-shot Follow-
ing the lexicon-based pretraining, we examine its
impact on sentence-level sentiment analysis across
three scenarios: (1) full training, (2) few-shot (train-
ing with limited data), and (3) zero-shot. For the
first setting, we fine-tune the model with the com-
plete training and development set of sentence-level
sentiment data for each language listed in Table 1.
For the second, we simulate few-shot training by
randomly sampling 100 training and 50 develop-
ment instances. To ensure robustness and account
for variability, we repeat the experiment five times
using different random seeds, and report the av-
erage performance. Please note that these first
two settings are our preliminary experiments and
we report the average scores of mBERTR,se across
34 languages. Our main experiment in this work
is zero-shot setting, simulating real-world scenar-
ios for low-resource languages where no sentence-
level sentiment data is available. For each of the
six models, we present the average score for each
language group in Section 4.1.

Baselines In both full and few-shot training sce-
narios, the baseline consists of vanilla models with-
out lexicon-based pretraining. For zero-shot setting,
we compare our approaches with (1) models trained
on SST datasets (Socher et al., 2013) — a sentence-
level English sentiment data; and (2) prompting via
LLMs, including BLOOMZ (3B) (Muennighoff
et al., 2022), XGLM (2.9B) (Lin et al., 2021), and
GPT=-3.5 (175B) (Ouyang et al., 2022).” The first
baseline is zero-shot cross-lingual transfer, follow-
ing prior work (Abdalla and Hirst, 2017; Zhang
et al., 2021) that used English as the main training
language. For robustness, we fine-tuned the models
with five different seeds for the first baseline. For

"We do not include Llama-2 (Touvron et al., 2023) and Fal-
con (Penedo et al., 2023) as they are English-centric models.

Models Binary 3-way
Full training

mBERTRe 8195 70.89
+ EN Lex. 8249  71.05
+ ML Lex. 82.84  71.81
+ ML Lex. + Panlex 8340 71.82
+ ML Lex. + Panlex + Filtering  83.39  71.98
Training with limited data

MBERTRe 68.84  56.76
+ EN Lex. 7247  60.58
+ ML Lex. 75.05 6142
+ ML Lex. + Panlex 7534 61.78
+ ML Lex. + Panlex + Filtering  75.39  61.92

Table 3: Preliminary results, based on averaged macro-
F1 scores across 34 languages. “EN Lex.” and “ML
Lex.” indicate the English and multilingual NRC-VAD
lexicons.

the LLMs, we average the results of six English
prompts as detailed in the Appendix. We report
weighted macro-F1 scores for all experiments.

Work discussed in Section 2 is not suitable as
a baseline due to the absence of word embed-
dings and machine translation systems in low-
resource languages. For instance, Abdalla and
Hirst (2017) require word2vec embeddings in the
target language, while Zhou et al. (2016b,a); Wan
(2009); Lambert (2015); Zhang et al. (2021) rely on
sentence-level machine translation. Additionally,
Meng et al. (2012); Jain and Batra (2015) require
unlabeled parallel texts, which are not consistently
available for low-resource languages.

4.3 Results

Preliminary Results: Full and Few-shot Train-
ing Table 3 shows the average performance of
mBERTg,se when training with full and limited
training data at the sentence-level. Here we com-
pare the vanilla multilingual model against four
lexicon-based pretraining models, and its exten-
sions (Panlex and Filtering). For each language
in Table 1, we fine-tune the models and measure
the macro-F1 score over the test set. For this pre-
liminary experiment, we only use regression in
lexicon-based pretraining for the binary and 3-way
classification tasks. The results demonstrate that
lexicon-based pretraining enhances performance,
surpassing vanilla mBERTg,s, in both binary and 3-
way classification settings. The proposed filtering
method further slightly improves performance.
The improvements shown in Table 3 are particu-
larly noticeable in few-shot training, with increases
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Model Binary 3-way

HM-R NusaX African CS AVERAGE HM-R NusaX African CS AVERAGE
XGLM (2.9B) 59.66  49.34 4250 52.61 51.03 38.09 3347 2572 50.08 36.84
BLOOMZ (3B) 77.82  69.85 5492 45.839 62.12 48.43  48.89 33.81 35.85 41.74
GPT-3.5 (175B) 77.50  63.90 53.82 73.66 67.22 67.65 48.50 38.13 5041 51.17
mBERTg,, (110M)
+ SST (sentence-level data) 66.87 4496 46.56  44.50 50.72 46.89  28.94 27.80 24.85 32.12
+ ML Lex. 7457  67.92 5779  69.43 67.43 5572  44.18 35.08 60.14 48.78
+ ML Lex. + Panlex 7493  66.71 5899  71.58 68.05 5542 4347 3513  61.27 48.82
+ ML Lex. + Panlex + Filtering 74.74  63.95 58.00 71.88 67.14 54.21 39.18 3342  58.81 46.40
XLM-Rg,se (270M)
+ SST (sentence-level data) 85.51  59.50 56.59  49.84 62.86 68.27 4134 35.83  36.30 45.43
+ ML Lex. 82.13  70.94 6145 6244 69.24 60.52  33.85 36.31 38.84 42.38
+ ML Lex. + Panlex 82.74  73.59 63.10 63.97 70.85 58.81  46.34 4195 60.31 51.85
+ ML Lex. + Panlex + Filtering  82.88  73.47 63.99  72.50 73.21 61.28  33.33 34.87 40.13 42.40
XLM-Ryage (550M)
+ SST (sentence-level data) 88.39  73.00 61.75 54.38 69.38 70.57  49.63 37.39  36.71 48.58
+ ML Lex. 84.55 78.01 66.16  72.53 75.31 61.78  45.95 41.84 63.52 53.27
+ ML Lex. + Panlex 84.89  70.79 63.85 7647 74.00 64.38  52.84 4247 64.73 56.10
+ ML Lex. + Panlex + Filtering  84.20  66.75 62.28 78.32 72.89 64.74  46.67 4320 59.59 53.55
mBARTY,rge (600M)
+ SST (sentence-level data) 8541 6541 59.62  62.61 68.26 66.58  31.80 2799 31.52 39.47
+ ML Lex. 83.26  72.26 62.89 74.10 73.13 61.25 41.88 39.18 54.43 49.19
+ ML Lex. + Panlex 81.97 74.86 62.74  65.00 71.14 61.16  35.76 31.61  49.51 44.51
+ ML Lex. + Panlex + Filtering  80.66  61.71 58.28  78.02 69.67 5748  30.50 30.24  40.77 39.75
mT5g,s (580M)
+ SST (sentence-level data) 83.16  55.33 57.18  48.39 61.02 62.37  35.58 37.59  31.04 41.64
+ ML Lex. 81.29 75.84 67.45  73.63 74.55 59.27  51.63 43.88  60.04 53.71
+ ML Lex. + Panlex 79.57  71.37 66.81  75.60 73.34 57.14  50.22 44.62 5851 52.62
+ ML Lex. + Panlex + Filtering  82.24  75.52 67.52  76.33 75.40 61.72 4592 4445  59.09 52.79
mTSy e (1B)
+ SST (sentence-level data) 84.74  60.68 58.67 4791 63.00 48.05 31.67 31.53 2475 34.00
+ ML Lex. 83.69 78.26 69.28  72.62 75.96 62.15 51.84 4442 6143 54.96
+ ML Lex. + Panlex 82.78  76.70 7005 7532 76.21 59.59  53.96 4512 62.05 55.18
+ ML Lex. + Panlex + Filtering 81.35  73.37 68.04 7543 74.54 59.52 46.37 4275  60.54 52.29

Table 4: Full zero-shot results. The underlined score indicates the highest performance within the respective
group, while scores in bold indicate the best global performance. “HM-R” = high/medium-resource languages,
excluding English, “CS” = code-switched text, and “ML Lex.” indicates the multilingual NRC-VAD lexicon. “SST
(sentence-level data)” is cross-lingual zero-shot transfer that is trained on English sentence-level sentiment data.

of +6.6 and +5.2 for binary and 3-way classifi-
cation, respectively. In the full training scenario,
the increments are smaller, at only 1.4 and +1.1.
These findings motivate us to further investigate
zero-shot settings using all six multilingual mod-
els.

Zero-shot Results in High/Medium-Resource
Languages Table 4 presents the averaged zero-
shot performance of all models categorized by four
language groups. The reported results use regres-
sion and classification in lexicon-based pretrain-
ing for binary and 3-way classification, respec-
tively. In the case of high/medium-resource lan-
guages (HM-R), English is excluded to ensure a
fair comparison with models fine-tuned on the En-
glish SST dataset. Overall, we observe that multi-
lingual models fine-tuned on SST tend to perform
the best in high/medium-resource languages, with

mBERTR,, being the exception. It is not surprising
to see these multilingual models outperforming the
LLMs (the first three rows), as they are specifically
fine-tuned on a sentence-level dataset.

Interestingly, we also observe that most of the
lexicon-based pretrained models substantially out-
perform the LLMs. For instance, XLM-R[ arge OUt-
performs GPT-3.5 and XGLM by +7 and +24.9 in
binary classification. In 3-way classification, GPT-
3.5 tends to perform better than lexicon-based pre-
training, while XGLM and BLOOMZ tend to per-
form poorly. It’s important to note that our models
are significantly smaller in size, and BLOOMZ has
been fine-tuned on multilingual sentiment analysis
datasets, such as Amazon reviews (Muennighoff
et al., 2022).

Zero-shot Results in Low Resource Languages
For low-resource languages, models fine-tuned on
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SST (i.e., sentence-level English dataset) under-
perform lexicon-based pretraining by a wide mar-
gin in both binary and 3-way classification set-
tings. Notably, despite its significantly smaller
size, lexicon-based pretraining to outperform larger
models like BLOOMZ and GPT-3.5. Among the
models, mT5 ye achieves the best performance in
NusaX and African languages for both classifica-
tion scenarios, with disparities ranging from +8.5
to +15 and +5 to +7 when compared to LLMs.
The impact of incorporating Panlex and/or filtering
varies across models, with notable improvements
observed for XLM-Rpase and mT5y arge.

Expanding the multilingual lexicon with Pan-
lex tends to improve the zero-shot capability for
3-way classification. This can be attributed to the
fact that NusaX and African languages have a rel-
atively small number of new lexemes (9.5K and
8.5K, respectively). Moreover, Panlex has English
as the primary source language, making it inade-
quate to capture the diversity of languages in our
experiments.

Although adding Panlex with the filtering
method showed improvements in the preliminary
experiment (see the full training results in Table 3),
it does not enhance the zero-shot performance in
NusaX and African languages. To investigate this,
we conducted a manual analysis of 100 randomly-
selected samples from the 124K filtered lexemes.
We compared the original sentiment scores of the
corresponding English lexicon with the predicted
scores generated by our filtering model. Upon back-
translating the non-English words to English, we
found that 63 of the original scores were either cor-
rect or better than the predicted scores, 25 predicted
scores were better than the original scores, and 12
were incorrect for both. Additionally, we identified
75 unique languages among the 100 samples, indi-
cating that our English-centric filtering might not
be effective in improving low-resource languages.

Zero-shot Results in Code-switched Text Ex-
tending the lexicon with Panlex and the filter-
ing method yields the best performance for code-
switched text, surpassing LLMs and models fine-
tuned on SST. In binary classification, our method
achieves an average F1-score that is +-24.1 higher
than the models fine-tuned on SST, while in 3-way
classification, our method achieves F1-scores that
are +10 to +20 higher than LLMs, even though the
individual languages in our code-switched texts are
high-resource (i.e., English, Spanish, Tamil, and

Models + ML Lex. Binary 3-way
Reg. Class. Reg. Class.
mBERTp,c 6743  66.29 48.62 48.78
XLM-Rpase 69.24 64.37 49.27 42.38
XLM-Ryarge 75.31 7454 53.69 53.27
MBARTgrgc 7313 71.23 49.08 49.19
mT5p,e 74.55 68.27 19.84 53.71
mTS g 75.96 7221 20.94 54.96

Table 5: Regression vs. classification in lexicon-based
pretraining for zero-shot sentiment analysis.

Model Stance Hate Speech Emotion
Binary classes

mMBERTR 70.27 69.11 58.96
+ EN Lex. 73.25 71.35 75.89
Original classes

MBERTR e 52.55 56.36 18.44
+ EN Lex. 53.04 57.59 23.93

Table 6: Lexicon-based pretraining performance (macro-
F1) over stance detection, hate speech detection, and
emotion classification. The results are based on the
limited training data scenario.

Malayalam).

5 Analysis

Regression vs. classification in lexicon-based pre-
training In Table 5 we present the average perfor-
mance across the four language groups to compare
the effectiveness of lexicon-based pretraining in
regression and classification tasks for both binary
and 3-way classification. Our findings indicate that
regression performs better for binary classification,
while classification leads to better results for 3-way
classification. However, regression in 3-way clas-
sification presents a challenge when determining
the neutral class boundary during inference. In the
zero-shot setting, we lack specific data for hyper-
parameter tuning, leading us to arbitrarily set the
neutral class boundaries to —1 and +1. Although
this setting works reasonably well for XLM-R, it
yields poor performance for mT5. A manual analy-
sis of mTS’s predictions revealed that they tend to
cluster around zero.

Performance over unseen low-resource lan-
guages We compute the average results for lan-
guages that are completely unseen by all models,
including 7 NusaX languages (ace, ban, bbc, bjn,
bug, mad, nij) and 4 African languages (dz, ma,
pcm, pt-MZ, aeb). We exclude lexicon-based pre-
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Figure 3: Average zero-shot performance of seen and
unseen languages in binary classification across differ-
ent models.

training with the Panlex extension since its perfor-
mance is poor for low-resource languages. As a
comparison, we include code-switched text as seen
languages for the models. Figure 3 presents the
performance of XLM-Ry arge and mT5y arge, Which
outperform the LLMs and models fine-tuned on
SST. This suggests that the multilingual sentiment
lexicon is effective at enhancing language general-
ization for low-resource languages.

6 Discussion

Given the positive results, we explore the poten-
tial applicability of our methodology to NLP tasks
beyond sentiment analysis, offering valuable di-
rections for future research. We examine if the
lexicon-based pretraining yields benefits in other
semantic tasks, including stance detection (Li et al.,
2021), hate speech detection (Vidgen et al., 2021),
and emotion classification (Demszky et al., 2020).

For each task, we take two datasets and perform
experiments in few-shot training using mBERTg g,
following the setup described in Section 4.2. In-
stead of using the multilingual lexicon, we use
the English NRC-VAD lexicon since all the data
is in English. For detailed information about the
datasets and results, see the Appendix. Table 6
shows the average F1 scores on each task, demon-
strating that lexicon-based pretraining boosts the
performance of vanilla mBERTg,. Particularly
noteworthy are the substantial improvements in
the emotion classification task, with increments of
416.9 and +5.5 for the binary and original class
settings, respectively. These findings highlight the
potential of sentiment lexicons for various seman-
tic tasks, particularly in the context of investigating

their effectiveness in low-resource languages in
future works.

7 Conclusion

We have demonstrated the efficacy of employing a
multilingual sentiment lexicon for achieving multi-
lingual generalization in language model pretrain-
ing. Without utilizing sentence-level datasets in
any language, we provide compelling evidence of
superior zero-shot performance in sentiment analy-
sis tasks for low-resource languages, surpassing the
performance of large language models. These find-
ings open up new avenues for research in the realm
of low-resource languages, not only for language
understanding but also language generation tasks.
Our results encourage further exploration and in-
vestigation of this exciting research direction.

Limitations

This research focuses on general sentiment analy-
sis, and we acknowledge that aspect-based senti-
ment analysis is a more fine-grained and expressive
way of capturing sentiment, that warrants further
exploration. Unfortunately, due to the scarcity of
relevant datasets in low-resource languages, and
task complexity, we were unable to explore aspect-
based sentiment analysis in this work.

Regarding the proposed technique, we acknowl-
edge four notable limitations. Firstly, due to the
distinct nature of training (i.e., lexicon-level) and
inference (i.e., sentence-level), our model may lack
sensitivity to semantic complexity at the sentence
level, encompassing nuances such as negation and
sentences conveying multiple sentiments. One way
to address this is to expand the NRC-VAD lexi-
con to include phrases, metaphors, culturally rele-
vant words, and syntehtic sentences derived from
the lexicon. Secondly, our lexicon-based pretrain-
ing is solely based on valence scores, and there
is an intriguing avenue to explore the inclusion
of dominance and arousal scores. Thirdly, the
use of machine translation systems for translat-
ing lexicons may introduce errors in both trans-
lation and sentiment scoring. While translating
lexicons is arguably less complex than translating
entire sentences, a comprehensive error analysis
of the translated lexicons and Panlex words could
offer valuable insights into the quality of the ad-
ditional lexicons. Fourthly, our filtering method
(Figure 2) proves less effective in certain scenarios
due to its English-centric nature. This limitation
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arises because the initial filtering model is exclu-
sively trained using English lexicons. To enhance
this method, we propose that incorporating lexi-
cons manually annotated in more diverse languages
could significantly improve its efficacy.

Ethical Considerations

When conducting sentiment analysis in low-
resource languages, there are several important con-
siderations that warrant reflection. First, it is crucial
to ensure that the work benefits the local commu-
nity rather than solely exploiting the language. In
the era of large language models, the lack of com-
puting resources often hinders the deployment of
such systems in regions or countries where the lan-
guage is spoken. Secondly, sentiment analysis can
be subject to cultural ambiguity. Relying solely
on European-centric multilingual models for senti-
ment prediction may introduce biases and produce
inappropriate model predictions in certain cultural
contexts. Therefore, cultural sensitivity and aware-
ness are essential factors to address when conduct-
ing sentiment analysis in low-resource languages,
which we leave for future work.
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A Additional lexemes from Panlex

Language #words

ace 548
aeb 257
arq 91
ary 1702
ban 1435
bbc 857
bjn 377
bug 1001
gaz 1253
min 5755
nij 1326
pcm 58
tir 5367
tso 27
twi 13
Total 20067

Table 7: Total lexemes added from Panlex. For min we
additionally extend the lexicon with a bilingual min id
lexicon from Koto and Koto (2020).

B Languages in Multilingual Sentiment
Lexicon

The NRC-VAD lexicon was initially developed in
English and later translated into 108 languages by
the original author using the Google Translate API
(Mohammad, 2018). The lexicon covers a total of
109 languages, including English, as follows:
Afrikaans (af), Albanian (sq), Amharic (am),
Arabic (ar), Armenian (hy), Azerbaijani (az),
Basque (eu), Belarusian (be), Bengali (bn),
Bosnian (bs), Bulgarian (bg), Catalan (ca), Ce-
buano (ceb), Chichewa (ny), Chinese-Simplified
(zh), Chinese-Traditional (zh), Corsican (co), Croa-
tian (hr), Czech (cs), Danish (da), Dutch (nl),
English (en), Esperanto (eo), Estonian (et), Fil-
ipino (fil), Finnish (fi), French (fr), Frisian
(fy), Galician (gl), Georgian (ka), German (de),
Greek (el), Gujarati (gu), Haitian-Creole (ht),
Hausa (ha), Hawaiian (haw), Hebrew (he), Hindi
(hi), Hmong (hmn), Hungarian (hu), Icelandic
(is), Igbo (ig), Indonesian (id), Irish (ga), Ital-
ian (it), Japanese (ja), Javanese (jv), Kannada
(kn), Kazakh (kk), Khmer (km), Kinyarwanda (rw),
Korean (ko), Kurdish-Kurmanji (ku), Kyrgyz (ky),
Lao (lo), Latin (la), Latvian (lv), Lithuanian
(1t), Luxembourgish (1b), Macedonian (mk), Mala-
gasy (mg), Malay (ms), Malayalam (ml), Maltese
(mt), Maori (mi), Marathi (mr), Mongolian (mn),
Myanmar-Burmese (my), Nepali (ne), Norwegian

(no), Odia (or), Pashto (ps), Persian (fa), Polish
(pl), Portuguese (pt), Punjabi (pa), Romanian (ro),
Russian (ru), Samoan (sm), Scots-Gaelic (sco),
Serbian (sr), Sesotho (st), Shona (sn), Sindhi
(sd), Sinhala (si), Slovak (sk), Slovenian (s1), So-
mali (so), Spanish (es), Sundanese (su), Swahili
(sw), Swedish (sv), Tajik (tg), Tamil (ta), Tatar
(tt), Telugu (te), Thai (th), Turkish (tr), Turk-
men (tk), Ukrainian (uk), Urdu (ur), Uyghur (ug),
Uzbek (uz), Vietnamese (vi), Welsh (cy), Xhosa
(xh), Yiddish (yi), Yoruba (yo), Zulu (zu)

C Model Artifacts

Models (#parameters) Source

mBERTR,se (110M)
XLM-Rgyse (270M)
XLM-RLarge (550M)
mBART 35 (600M)
mT5p,se (580M)
mTSLarge (1B)
XGLM (2.9B)
BLOOMZ (3B)
GPT-3.5 (175B)

bert-base-multilingual-cased
x1m-roberta-base
x1lm-roberta-large
mbart-large-50
google/mt5-base
google/mt5-large
facebook/xglm-2.9B
bigscience/bloomz-3b
text-davinci-003

Table 8: With the exception of GPT-3.5 (Ouyang et al.,
2022), all models used in this study were sourced from
Huggingface (Wolf et al., 2020).

D Prompts

We use six different prompts in evaluating large
language models:
* [INPUT]
What would be the sentiment of the
text above? [LABELS].

e What is the sentiment of this text?

Text: [INPUT]
Sentiment: [LABELS].
e Text: [INPUT]
Please classify the sentiment of
above text: [LABELS].
e [INPUT]

What would be the sentiment of the
text above? [OPTIONS]? [LABELS].

e What is the sentiment of this text?

Text: [INPUT]

Answer with [OPTIONS]: [LABELS].
e Text: [INPUT]

Please classify the sentiment of
above text. Answer with [OPTIONS]:
[LABELS].
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where [INPUT] is the input text, [OPTIONS] list all
sentiment labels, and [LABELS] represent a senti-
ment class. For instance, given the text / love you
in binary classification, for the first prompt, we
compare two normalized log-likelihood of:
e I love you
What would be the sentiment of the
text above? positive
* I love you
What would be the sentiment of the
text above? negative

E Detailed Experimental Results

See Table 9, Table 10, Table 11 for full results
of binary classification, and Table 12, Table 13,
Table 14 for full results of 3-way classification.

F Hyperparameters and Training
Configurations

For lexicon-based pretraining, we utilize a single
32GB A100 GPU. We set the initial learning rate
to 2e-5 and the maximum number of epochs to 100.
A patience value of 5 is used for early stopping,
and a dropout rate of 0.2 is applied. Additionally,
we set the maximum token length to 10. Dif-
ferent batch sizes are employed for each model:
MBERTR.e=4000, XLM-Rpy,=4000, XLM-
Rparge=1000, mBARTY 4:ge=1000, mT5p,5.=500,
and mT5y 45.=500.

For fine-tuning the mBERT model in both the
full and limited training data scenarios, we also
configure the initial learning rate to 2e-5 and set
the maximum number of epochs to 20. A patience
value of 5 is employed for early stopping, while
a dropout rate of 0.2 is utilized. The maximum
token length is set to 512, and a batch size of 32
is used. We also use these settings when training
the English SST baseline model for five different
seeds.

G Additional Experiments

We present details of the datasets used in the ad-
ditional experiments in Table 15, and present the
detailed results in Table 16.

For binary experiment settings, we conduct the

transformations:

e WT-WT (Conforti et al., 2020):: We consider
the label support as the positive class, refute
as the negative class, and discard comment
and unrelated categories.
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* P-Stance (Li et al., 2021): We assign the
label favor as the positive class and against as
the negative class.

* HS1 (Founta et al., 2018): We map the nor-
mal class to the positive class and abusive
and hateful classes to the negative class. We
exclude the spam class as it is unrelated to
sentiment analysis.

* HS2 (Vidgen et al., 2021): We map the none
label to the positive class and the remaining
labels to the negative class. We acknowledge
that this projection introduces noise as there
is no absolute positive class available in this
dataset.

* GoEmotions (Demszky et al., 2020): For the
positive class, we include emotions such as
admiration, amusement, approval, caring, cu-
riosity, desire, excitement, gratitude, joy, love,
optimism, pride, realization, relief, and sur-
prise. For the negative class, we include emo-
tions such as annoyance, confusion, disap-
pointment, disapproval, disgust, embarrass-
ment, fear, grief, nervousness, remorse, and
sadness. Since GoEmotions is a multi-label
dataset, we tally the positive and negative
counts for each sentence and discard sen-
tences with an equal count of positive and
negative labels.

SemEval2018 (Mohammad et al., 2018): For
the positive class, we include emotions such as
anticipation, joy, love, optimism, pessimism,
surprise, and trust. For the negative class,
we include emotions such as anger, disgust,
fear, and sadness. Similar to GoEmotions,
since SemEval2018 is a multi-label dataset,
we employ the same strategy to determine the
final class.



High/Medium-Resource Code-switching

Method

en ar es ru id ja en-es en-ml en-ta
Full training
MBERTR, 88.40 80.94 82.66 81.73 8591 93.34 84.25 88.69 79.83
+ ML Lex. 88.46 81.89 83.21 8245 8573 93.72 85.15 88.98 80.86
+ ML Lex. + Panlex 88.69 82.15 83.59 84.87 86.06 94.58 87.77 89.58 79.73

+ ML Lex. + Panlex + Filtering 88.53 81.46 8324 8595 8592 94.07 86.78 89.28 81.11

Training with limited data

mMBERTRe 63.83 7149 6755 70.04 71.15 80.07 65.69 72.05 77.95
+ ML Lex. 76.66 7341 7855 7544 17645 84.74 80.55 79.97 T71.8
+ ML Lex. + Panlex 7597 75.69 79.69 75.11 7821 83.07 79.92 77.83 78.03

+ ML Lex. + Panlex + Filtering 76.27 75.19 79.95 7691 77.15 84.39 78.19 79.34 77.98
Zero-shot (LLMs)

XGLM (2.9B) 51.18 54.37 53.09 55.08 5632 79.45 55.85 50.50 51.47
BLOOMZ (3B) 95.05 81.08 81.99 71.58 7845 7599 71.83 27.89 37.95
GPT-3.5 (175B) 84.52 72.14 7253 8029 72.68 89.85 79.83 68.50 72.66

Zero-shot (SST and Lexicon-based pretraining with regression)
mBERTg,s (110M)

+ fine-tuned on SST 88.42 69.92 7439 6564 6724 57.17 61.38 29.87 42.26
+ ML Lex. 7142 73.06 76.89 81.84 7273 68.35 69.61 69.58 69.09
+ ML Lex. + Panlex 70.39 7531 77.08 7727 68.40 60.41 72.44 61.18 50.47

+ ML Lex. + Panlex + Filtering 71.44 7520 7886 75.75 70.87 73.00 7043 7229 7293

XLM-Rgse (270M)

+ fine-tuned on SST 9148 81.53 8398 88.40 81.70 91.94 67.79 3575 45.99
+ ML Lex. 73.89 76.16 78.84 84.63 80.22 90.82 68.58 54.54 64.19
+ ML Lex. + Panlex 74.09 77.80 79.45 84.23 81.80 90.43 69.29 57.17 65.46

+ ML Lex. + Panlex + Filtering 75.85 77.80 80.43 83.76 80.92 91.48 7431 7144 71.76

XLMR yrge (350M)

+ fine-tuned on SST 94.00 85.37 8595 92.64 82.88 95.11 7536 38.21 49.57
+ ML Lex. 78.14 79.85 82.12 88.46 8247 89.87 7541 70.70 71.47
+ ML Lex. + Panlex 76.00 80.73 81.76 87.48 82.88 91.61 77.10 7523 77.06

+ ML Lex. + Panlex + Filtering 77.82 78.99 81.55 87.95 80.42 92.06 78.66 79.80 76.49

MBART] yrge (600M)

+ fine-tuned on SST 94.00 85.37 8595 92.64 8288 95.11 7536 38.21 49.57
+ ML Lex. 7573 8231 7631 87.18 80.38 90.15 7845 71.20 72.67
+ ML Lex. + Panlex 78.96 81.18 79.52 87.07 81.49 80.59 7438 5879 61.83

+ ML Lex. + Panlex + Filtering 74.38 58.79 61.83 7438 58.79 61.83 7640 73.67 76.23

mT5ase (S80M)

+ fine-tuned on SST 90.21 79.99 8258 84.00 78.87 90.37 7047 3049 4421
+ ML Lex. 72.55 7648 79.18 83.58 75.11 92.11 77.53 69.86 73.49
+ ML Lex. + Panlex 71.67 76.29 76.53 79.60 7434 91.08 79.65 71.53 75.63

+ ML Lex. + Panlex + Filtering 75.62 77.52 80.93 84.55 75.34 92.83 77.62 7430 77.06

MT5 ] arge (1B)

+ fine-tuned on SST 91.13 8192 83.14 87.48 79.82 91.34 70.18 29.47 44.07
+ ML Lex. 7199 82.82 79.06 8842 76.07 92.06 77.62 68.57 71.67
+ ML Lex. + Panlex 7237 80.44 7734 86.11 7797 92.02 78.66 74.73 72.56

+ ML Lex. + Panlex + Filtering 70.52 80.26 75.80 81.44 78.01 91.22 76.40 73.67 76.23

Table 9: All binary classification results for high/medium-resource languages and code-switched texts.
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NusaX

Method

ace ban  bbc bjn bug jav. mad min nij sun
Full training
mMBERTR 83.84 8544 84.42 8499 83.85 87.82 8431 87.87 83.93 8590
+ ML Lex. 84.96 8597 84.16 89.44 84.19 92.04 86.04 88.28 84.84 89.14
+ ML Lex. + Panlex 85.32 87.26 8558 88.65 83.64 9256 85.51 88.88 86.82 8§9.79

+ ML Lex. + Panlex + Filtering 84.33 87.22 84.52 89.83 83.73 9335 85.17 89.33 87.66 90.06

Training with limited data

mBERTRc 70.64 71.89 69.77 7749 68.61 81.58 72.01 79.57 74.03 79.04
-+ ML Lex. 79.72 76.15 7651 79.20 76.14 89.65 78.13 8573 81.67 87.95
+ ML Lex. + Panlex 80.70 7822 76.84 83.21 7560 9136 80.86 8531 81.00 86.55

+ ML Lex. + Panlex + Filtering 78.85 77.13 76.57 83.70 75.57 9037 79.22 87.27 82.88 85.84
Zero-shot (LLMs)

XGLM (2.9B) 48.19 53.01 41.04 5320 3945 5561 5138 5345 4649 51.55
BLOOMZ (3B) 74.10 74.05 5556 8320 49.92 8135 67.08 78.66 6897 65.56
GPT-3.5 (175B) 63.52 63.53 5537 7284 46.19 7543 61.01 7249 60.28 68.32

Zero-shot (SST and Lexicon-based pretraining with regression)
mBERTg, (110M)

+ fine-tuned on SST 38.05 47.89 39.04 46.86 3494 5490 4048 5126 44.80 51.37
+ ML Lex. 66.00 67.58 6238 69.22 58.68 80.23 65.66 7038 6123 77.88
-+ ML Lex. + Panlex 64.06 6230 59.23 66.60 5398 80.58 68.63 7250 6248 76.73

+ ML Lex. 4 Panlex + Filtering 60.07 58.00 58.64 63.41 4848 8022 6271 72.00 61.62 7431

XLM-Rpae (270M)

+ fine-tuned on SST 56.63 62.59 38.17 74.12 3534 80.86 59.55 6579 58.28 63.71
+ ML Lex. 68.56 80.23 49.21 83.21 4425 90.79 6642 8120 64.39 81.17
-+ ML Lex. + Panlex 66.57 80.77 57.25 83.87 5090 89.80 69.23 84.21 71.13 82.17

+ ML Lex. + Panlex + Filtering 62.47 77.40 64.54 79.22 59.19 86.18 72.37 83.19 70.57 79.59

XLM-Rparge (550M)

+ fine-tuned on SST 68.43 7826 49.79 86.87 4473 91.82 7523 80.73 69.62 84.48
+ ML Lex. 73.19 7761 66.00 8235 6341 9243 7431 84.81 74.88 91.11
+ ML Lex. + Panlex 60.81 64.60 59.76 77.01 5583 89.40 69.28 81.87 64.28 85.01

+ ML Lex. 4 Panlex + Filtering 52.42 6590 5343 72.08 40.84 87.71 6575 7881 6527 85.33

MBARTyrge (600M)

+ fine-tuned on SST 62.93 7097 4623 75.61 46.88 81.68 7192 72.80 63.00 62.09
+ ML Lex. 67.10 66.14 6531 8049 56.64 8235 7517 8175 7123 76.36
-+ ML Lex. + Panlex 70.26 76.38 67.40 81.15 62777 8289 7094 84.54 7136 80.90

+ ML Lex. 4 Panlex + Filtering 50.12 61.09 48.79 70.58 45.53 73.10 6091 7594 64.45 66.59

mT5gase (580M)

+ fine-tuned on SST 4786 61.23 36.09 65.18 3536 82.62 5124 5358 5254 67.63
+ ML Lex. 74.66 7459 64.85 7796 64.62 87.06 7396 80.90 7530 84.46
-+ ML Lex. + Panlex 70.89 7258 56.52 7629 57.11 8475 66.78 7697 73.00 78.78

-+ ML Lex. 4 Panlex + Filtering 71.26 73.04 63.75 80.03 63.09 89.10 75.30 80.26 73.88 85.50

mTSLarge (1B)

+ fine-tuned on SST 57.80 69.19 39.04 6832 36.78 8856 54.81 61.52 5526 7554
-+ ML Lex. 75.37 76.10 6695 82.67 6688 9041 7575 8549 7422 88.75
+ ML Lex. + Panlex 7490 76.62 61.84 8191 6384 89.73 73.88 80.38 7554 88.39

+ ML Lex. 4 Panlex + Filtering 68.17 75.17 62.05 79.53 63.47 8349 67.75 7890 7126 83.86

Table 10: All binary classification results for NusaX.
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African

Method

am dz ha ig kr ma pcm pt SW ts twi yo or tg aeb
Full training
mMBERTR,se 67.44 70.15 88.09 91.23 7625 6791 7510 77.52 7339 63.60 7848 83.17 5496 49.18 75.37
+ ML Lex. 65.50 7195 8889 91.74 79.96 69.86 75.83 78.70 77.37 6471 77.67 84.11 51.76 49.12 7593
+ ML Lex. + Panlex 70.13 72.07 8891 9194 78.03 69.20 7589 79.51 76.09 64.63 77.64 8429 5201 50.01 77.34

+ ML Lex. + Panlex + Filtering 68.37 72.63 89.14 91.96 77.65 6795 76.60 79.19 75.65 6430 79.04 83.67 5533 4936 7588

Training with limited data

mBERTRe 4584 6202 7198 6194 62.18 5272 5623 66.55 6628 56.83 5355 6536 4298 4598 63.91
+ ML Lex. 48.62 6539 7571 7150 71.70 5840 61.62 75.06 70.79 55.63 5497 67.81 4721 4545 62.11
+ ML Lex. + Panlex 50.92 6431 7409 70.68 7096 58.19 6281 7567 7327 5486 56.71 6791 52.80 45.67 64.08

+ ML Lex. + Panlex + Filtering 53.07 65.11 75.05 71.41 69.94 5791 6326 76.17 70.74 5526 5639 6823 53.60 4524 63.73
Zero-shot (LLMs)

XGLM (2.9B) 25.28 3034 4548 41.24 45.14 5224 5075 4725 56.46 4394 43.08 3923 38.70 33.57 4478
BLOOMZ (3B) 6298 6726 51.12 5265 6479 57.67 62.69 80.72 4590 49.09 4490 3846 4945 4834 47.76
GPT-3.5 (174B) 4145 5490 57.76 51.12 5035 5939 63.08 7034 7089 54.10 51.46 50.69 40.06 39.76 52.02

Zero-shot (SST and Lexicon-based pretraining with regression)
mBERTR, (110M)

+ fine-tuned on SST 31.75 59.08 5321 47.76 46.52 55.87 61.74 65.13 3251 3770 40.13 31.84 4933 37.10 4871
+ ML Lex. 51.10 6120 61.06 67.50 62.64 56.61 6510 69.06 72.03 5279 4546 5849 4853 47.10 4824
+ ML Lex. + Panlex 5256 61.67 60.16 69.96 6534 60.17 6672 7227 68.01 4652 5021 6031 49.92 4875 5236

+ ML Lex. + Panlex + Filtering 50.66 61.24 53.87 6889 5836 58.04 6741 7245 6846 5333 5120 62.08 4730 4833 4845

XLM-Rpase (270M)

+ fine-tuned on SST 80.76 7271 65.89 4538 48.62 60.71 6570 83.67 5949 39.69 3823 2730 48.04 60.13 52.57
+ ML Lex. 81.62 68.67 60.54 64.43 5922 5936 6497 8031 7030 5690 51.12 34.80 53.18 6236 54.03
-+ ML Lex. + Panlex 81.17 70.19 60.81 6592 63.80 61.00 66.05 79.58 7292 60.03 52.09 40.16 5450 65.09 53.13

+ ML Lex. + Panlex + Filtering 81.14 70.54 6442 65.06 6092 61.08 67.56 80.31 7535 5816 5196 57.85 5433 62.04 49.19

XLM-Ry rge (350M)

+ fine-tuned on SST 8292 7506 70.90 5231 56.65 64.66 6681 8571 69.60 46.03 4420 36.17 5545 6247 5734
+ ML Lex. 81.52 69.43 7128 70.63 6206 64.88 67.72 80.68 77.75 6123 5334 5372 5395 67.05 57.19
+ ML Lex. + Panlex 7826 69.28 68.08 67.55 52.02 6045 6838 8345 80.70 63.39 5632 60.13 46.16 4627 57.38

+ ML Lex. + Panlex + Filtering 78.84 67.74 67.81 63.83 4645 6122 69.81 8449 8326 5539 51.16 5935 4743 4774 49.62

mBARTLyrge (600M)

+ fine-tuned on SST 65.74 T71.64 6699 5274 5424 6294 67.80 8291 6132 5490 50.94 37.19 53.62 4843 6295
+ ML Lex. 6340 69.53 6493 65.09 6253 6131 7038 83.21 82.08 5491 5644 56.14 48.10 47.62 57.61
-+ ML Lex. + Panlex 63.23 6943 6795 70.72 6520 60.86 68.68 8348 77.31 5293 5099 53.53 5249 4725 57.14

+ ML Lex. + Panlex + Filtering 58.19 62.84 50.86 59.26 49.83 5842 65.55 82.66 83.68 58.04 5325 59.62 3875 46.71 46.58

mT5pase (580M)

+ fine-tuned on SST 7997 6721 68.15 5455 66.64 59.14 6570 79.85 5631 3635 3485 3046 4840 59.71 50.38
+ ML Lex. 7820 68.65 78.16 67.04 7552 6793 69.81 80.59 80.32 5440 51.52 49.12 5630 7256 61.63
+ ML Lex. + Panlex 78.62 69.08 76.56 69.00 7435 68.08 6853 79.27 77.16 5946 5496 4208 5620 7207 56.71

+ ML Lex. + Panlex + Filtering 77.31 6849 7592 67.16 7597 67.01 7045 8265 81.84 54.67 5464 5240 53.69 70.58 60.08

mTSLarge (1B)

+ fine-tuned on SST 81.45 69.14 66.54 5494 7330 5949 6543 81.83 59.14 39.07 36.09 3245 4932 6423 47.66
+ ML Lex. 83.09 7354 77.57 70.64 79.14 67.58 69.18 82.78 80.85 5842 55.06 4831 5627 7445 62.26
-+ ML Lex. + Panlex 81.20 7021 79.67 72.68 7591 67.07 70.03 82.14 82.74 5993 5997 51.87 57.53 7840 61.33

+ ML Lex. + Panlex + Filtering 79.09 70.35 75.20 69.27 7135 66.87 6895 80.86 78.85 59.81 56.89 58.52 5620 71.62 56.74

Table 11: All binary classification results for the 14 African languages from SemEval 2023.
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High/Medium-Resource Code-switching

Method

en ar es ru id ja en-es en-ml en-ta
Full training
MBERTR, 72.65 64.15 6221 80.05 8591 83.04 63.58 88.69 79.83
+ ML Lex. 72.78 64.68 64.11 81.10 8573 83.12 65.42 88.98 80.86
+ ML Lex. + Panlex 7244 65.85 64.14 8197 86.06 82.54 64.34 89.58 79.73

+ ML Lex. + Panlex + Filtering 73.10 64.78 63.57 81.70 8592 82.67 6491 89.28 81.11

Training with limited data

mMBERTRe 49.49 4954 4358 7332 71.15 60.96 4348 7205 7795
+ ML Lex. 59.55 50.05 53.79 7752 7645 66.20 56.05 79.97 71.18
+ ML Lex. + Panlex 59.32 5196 55.65 7820 7821 66.51 54.40 77.83 78.03

+ ML Lex. + Panlex + Filtering 60.03 52.15 57.32 78.35 77.15 68.46 5196 79.34 7798
Zero-shot (LLMs)

XGLM (2.9B) 39.88 29.44 37.37 1652 54.86 52.25 31.89 57.58 60.78
BLOOMZ (3B) 71.12 48.66 52.04 693 80.57 53.95 3420 31.12 4223
GPT-3.5 (175B) 67.61 55.56 60.56 8335 66.58 72.22 5897 42.85 4942

Zero-shot (SST and Lexicon-based pretraining with classification)
mBERTR, (110M)

+ fine-tuned on SST 70.13 4344 52.00 4254 5721 39.26 40.82 1298 20.73
+ ML Lex. 53.06 49.53 50.80 69.44 5421 54.62 5222 65.38 62.81
+ ML Lex. + Panlex 53.76  49.00 48.64 67.20 5572 56.54 53.06 67.10 63.65

+ ML Lex. + Panlex + Filtering 49.90 4948 50.83 64.17 50.87 55.68 5521 60.96 60.27

XLM-Rgse (270M)

+ fine-tuned on SST 73.54 56.51 6246 7720 69.01 76.18 5032 25.64 32.94
+ ML Lex. 50.79 5238 49.41 7299 5875 69.05 4723 31.06 38.23
+ ML Lex. + Panlex 48.79 5282 48.63 7238 5896 68.30 47.89 3324 39.26

+ ML Lex. + Panlex + Filtering 46.10 54.11 5020 73.62 58.87 69.62 51.26 3234 36.79

XLMR yrge (350M)

+ fine-tuned on SST 76.07 61.67 63.52 83.19 64.17 80.30 5475 23.79 31.59
+ ML Lex. 52.82 56.18 53.57 6947 64.13 65.55 5493 66.14 69.50
+ ML Lex. + Panlex 53.07 5794 56.12 73.80 70.06 63.99 56.75 69.11 68.34

+ ML Lex. + Panlex + Filtering 57.25 58.00 57.57 6945 74.67 64.01 59.01 58.74 61.03

MBART] yrge (600M)

+ fine-tuned on SST 74.18 56.87 6134 82.02 5644 76.21 46.81 20.15 27.61
+ ML Lex. 51.98 57.05 5120 6736 59.81 70.84 53770 4822 61.36
+ ML Lex. + Panlex 49.09 56.82 5420 6991 5494 69.95 51.58 4443 5251

+ ML Lex. + Panlex + Filtering 47.30 53.74 49.83 71.56 45.16 67.12 48.30 31.99 42.00

mT5ase (S80M)

+ fine-tuned on SST 71.14 5212 5848 6145 68.82 7098 46.00 18.54 28.58
+ ML Lex. 4754 51.64 48.11 60.88 69.66 66.07 49.57 62.13 68.41
+ ML Lex. + Panlex 47.50 49.59 4896 58.89 62.64 65.62 48.18 60.45 66.90

+ ML Lex. + Panlex + Filtering 51.85 50.53 5223 7095 6898 6593 5256 59.94 64.76

MT5 ] arge (1B)

+ fine-tuned on SST 65.71 37.38 43.89 5595 5191 51.10 3649 14.22  23.55
+ ML Lex. 51.61 5448 53.08 7037 65.08 67.75 51.95 65.78 66.55
+ ML Lex. + Panlex 5024 5271 49.18 6820 62.20 65.68 4755 67.86 70.75

+ ML Lex. + Panlex + Filtering 48.71 54.31 49.56 70.24 56.60 66.88 54.53 58.84 68.24

Table 12: All 3-way classification results for high/medium-resource languages and code-switched texts.
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NusaX

Method

ace ban  bbc bjn bug jav. mad min nij sun
Full training
mMBERTR 75.67 76.09 71.71 7594 7464 7837 72.88 76.60 73.40 76.61
+ ML Lex. 76.74 75.69 75.08 7854 7541 81.07 7239 8121 74.05 79.40
+ ML Lex. + Panlex 7731 76.55 75.01 78.12 76.08 82.09 7490 79.35 74.84 79.35

+ ML Lex. + Panlex + Filtering 7691 7641 74.50 80.17 7479 8234 75.01 7843 75.63 7991

Training with limited data

mBERTRc 60.66 62.71 6040 6641 5891 68.77 60.87 6322 62.09 69.10
-+ ML Lex. 63.21 66.87 63.02 6498 64.08 7634 61.16 69.56 63.56 73.84
+ ML Lex. + Panlex 64.86 67.43 6586 69.42 65.02 7792 64.16 70.73 6530 72.20

+ ML Lex. + Panlex + Filtering 65.51 6693 65.17 68.82 6426 78.03 63.11 70.27 66.74 72.67
Zero-shot (LLMs)

XGLM (2.9B) 3290 3542 2820 35.14 27.02 37.60 34.54 36.28 31.79 35.77
BLOOMZ (3B) 5191 51.68 3936 57.28 3449 56.56 4745 54.08 4891 47.15
GPT-3.5 (175B) 49.19 48.96 33.09 59.82 2638 63.74 45.65 59.10 44.42 54.63

Zero-shot (SST and Lexicon-based pretraining with classification)
mMBERTR s (110M)

+ fine-tuned on SST 2480 30.64 2333 30.83 23.80 34.03 27.41 3343 28.66 32.44
+ ML Lex. 35.04 4333 36.73 43.62 36.73 6091 45.16 4525 4275 5225
-+ ML Lex. + Panlex 3691 4195 39.15 4240 3721 5796 42.18 4458 41.04 5129

+ ML Lex. 4 Panlex + Filtering 35.95 38.95 30.83 40.70 28.02 54.72 37.23 4234 3752 4551

XLM-Rpae (270M)

+ fine-tuned on SST 3436 4039 27.88 5040 25.19 6225 3743 48.13 4143 4596
+ ML Lex. 29.57 3527 1399 4352 13.58 5247 2847 47.01 2554 49.11
-+ ML Lex. + Panlex 29.78 3542 1525 4690 1494 5094 2883 4531 2823 47.82

+ ML Lex. + Panlex + Filtering 32.11 33.78 13.26 44.18 10.57 52770 32.69 45.18 2225 46.56

XLM-Rparge (550M)

+ fine-tuned on SST 42.83 5093 2556 6492 2200 76.62 4420 61.42 4241 6542
-+ ML Lex. 4337 43.84 30.07 51.68 32.12 59.79 4457 5574 4220 56.11
+ ML Lex. + Panlex 48.76 51.25 43.75 5695 37.66 62.81 4842 60.28 52.68 65.80

+ ML Lex. 4 Panlex + Filtering 42.39 47.69 31.67 49.93 26.87 61.18 47.59 56.83 43.68 58.89

MBARTyrge (600M)

+ fine-tuned on SST 25.81 33.64 17.25 46.62 1331 46.02 30.52 4444 32.60 27.76
+ ML Lex. 36.09 41.12 3195 5244 2732 5021 4397 48.85 40.15 46.70
-+ ML Lex. + Panlex 31.24 3897 2654 4426 22.03 4378 3447 4280 33.77 39.76

+ ML Lex. 4 Panlex + Filtering 28.73 34.82 17.64 38.36 15.81 4094 2759 3822 27.60 3531

mT5gase (580M)

+ fine-tuned on SST 29.77 37.00 2570 35.83 2729 5531 31.09 33.12 3425 4641
+ ML Lex. 48.47 4856 44.55 5573 4558 61.24 4894 5549 5253 5526
-+ ML Lex. + Panlex 49.56 4990 38.50 5642 4240 62.17 44.03 5339 49.45 56.43

+ ML Lex. + Panlex + Filtering 45.54 41.50 31.16 53.93 29.57 62.00 41.52 53.02 45.69 55.26

mTSLarge (1B)

+ fine-tuned on SST 2932 3270 28.89 3290 28.10 37.39 29.24 3232 3095 34.90
-+ ML Lex. 4828 4830 41.65 58.03 40.26 62.78 53.14 55.63 5247 57.88
+ ML Lex. + Panlex 5432 5235 4384 5930 47776 6194 4985 58.63 5495 56.65

+ ML Lex. 4 Panlex + Filtering 41.64 48.12 33.72 51.50 3445 59.36 42.19 5499 44.15 53.62

Table 13: All 3-way classification results for NusaX.
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African

Method

am dz ha ig kr ma  pcm pt SW ts twi yo or tg aeb
Full training
mBERTRe 17.51 5838 7527 7773 5641 4821 6293 63.52 5504 49.61 6501 7130 3538 36.89 71.59
+ ML Lex. 10.10 59.99 7598 7893 59.23 4837 63.66 65.08 57.18 51.66 64.59 71.77 32.82 3822 7132
+ ML Lex. + Panlex 11.48 59.75 75.75 7872 5929 4793 6436 65.13 56.15 49.19 64.16 7249 3358 3825 71.80

+ ML Lex. + Panlex + Filtering 12.14 59.04 75.70 79.29 5820 47.27 64.65 64.86 56.36 49.89 6544 71.82 34.67 39.27 73.16

Training with limited data

mBERTR¢ 542 4946 53.66 39.71 4048 31.72 50.61 53.60 47.82 39.86 4232 4256 29.36 32.06 5945
+ ML Lex. 599 52.00 5424 53.02 4034 38.82 55.19 59.76 4738 40.34 41.82 4225 3048 3570 60.20
-+ ML Lex. + Panlex 6.20 51.63 50.19 53.87 39.54 3649 5530 6046 51.81 41.17 4431 4353 31.05 3347 57.72

+ ML Lex. + Panlex + Filtering 527 52.00 50.53 53.84 41.15 3841 56.11 61.02 50.06 42.80 43.12 4297 30.86 35.55 59.43
Zero-shot (LLMs)

XGLM (2.9B) 1623 22.74 2625 18.00 24.12 28.74 4338 17.63 1525 3590 35.80 22.19 17.03 20.51 4198
BLOOMZ (3B) 5247 53.82 2795 23.05 32.61 3412 5469 16.07 13.67 40.01 36.76 21.13 20.70 34.58 45.51
GPT-3.5 (175B) 22.03 4045 45.05 4029 37.67 41.62 50.57 59.19 5148 3349 29.09 33.52 3282 2229 3242

Zero-shot (SST and Lexicon-based pretraining with classification)
mMBERTR, (110M)

+ fine-tuned on SST 16.16 32.77 25.12 31.83 2894 3393 38.70 4491 3926 1571 11.76 2295 3294 17.67 24.35
+ ML Lex. 939 4513 36.55 38.75 3872 40.17 46.68 4593 3488 3197 3511 4021 3149 1524 3597
-+ ML Lex. + Panlex 7.58 40.85 36.55 37.76 40.61 39.75 45.65 47.51 3526 36.60 34.69 4231 3271 1294 36.14

+ ML Lex. + Panlex + Filtering  5.64 39.13 39.13 44.50 34.07 3894 4271 5201 4050 2453 3275 3772 2935 9.81 30.54

XLM-Rpgse (270M)

+ fine-tuned on SST 61.62 4328 33.82 3392 33.74 36.17 47.65 S51.17 4429 1791 2039 23.65 31.96 3430 2351
+ ML Lex. 48.15 37.74 4392 4178 35.17 3631 3130 60.23 55.02 33.12 19.57 24.09 36.74 2048 21.03
+ ML Lex. + Panlex 48.60 4092 43.16 43.11 36.16 37.12 31.05 59.20 5336 33.74 18.96 2441 36.35 2439 1828

+ ML Lex. + Panlex + Filtering 41.84 3522 3944 4271 29.06 3557 33.69 6243 53.13 2466 2209 2427 3509 19.21 24.68

XLM-Rparge (550M)

+ fine-tuned on SST 60.78 49.27 41.82 33.61 3237 4248 45.67 5520 5055 20.05 1849 23.05 3520 27.51 24.76
+ ML Lex. 5271 4298 5026 46.10 38.54 41.44 4993 4345 46.11 4024 4036 3847 2853 3291 35.60
-+ ML Lex. + Panlex 5872 49.15 4526 3279 38.65 4092 52.81 46.26 4554 4724 44.14 3283 28.07 33.10 41.52

+ ML Lex. + Panlex + Filtering 61.22 4935 50.09 49.17 3986 41.90 48.18 44.12 5091 4249 37.08 3339 3547 33.81 30.98

MBARTyrge (600M)

+ fine-tuned on SST 6.19 4210 23.12 3242 29.14 3525 3974 57.52 49.02 1253 14.57 2387 28.16 897 17.25
+ ML Lex. 57.28 42.14 36.71 43.00 3583 38.61 39.75 5571 51.55 29.21 2380 2945 3928 3826 27.17
+ ML Lex. + Panlex 2549 3358 29.64 40.12 2791 3570 3543 60.61 54.16 21.83 18.87 26.18 29.34 1825 16.99

+ ML Lex. + Panlex + Filtering 27.30 21.83 2494 39.75 2931 33.02 29.58 6292 54.19 2133 17.03 30.69 2852 19.56 13.68

mT5p5 (580M)

+ fine-tuned on SST 57.69 44.85 40.66 3480 3691 4086 5048 44.64 38.68 2348 23.66 22.65 31.24 38.38 34.94
+ ML Lex. 60.93 50.01 48.75 41.54 4558 4456 46.89 4497 3691 38.82 39.60 27.89 2833 51.10 52.30
+ ML Lex. + Panlex 62.41 51.19 47.82 43.07 44.17 4495 5356 48.19 42.02 3394 4023 2634 29.17 52.87 4941

+ ML Lex. + Panlex + Filtering 63.52 5095 43.89 4586 44.18 4497 5192 48.81 4898 3452 3456 3442 3124 4992 3898

mTSLarge (1B)

+ fine-tuned on SST 4387 35.09 3322 2986 3375 3212 4647 4447 2631 2038 21.80 21.63 27.80 2745 28.68
+ ML Lex. 55.66 50.79 51.59 43.68 45.17 4339 4726 46.83 40.84 37.76 38.81 36.61 2523 52.16 50.53
+ ML Lex. + Panlex 63.45 54.80 5336 43.53 41.60 44.54 5344 3377 44.00 39.55 4349 3235 31.39 5337 4417

+ ML Lex. + Panlex + Filtering 56.09 48.07 46.59 4485 4435 44.63 46.60 48.82 46.01 3635 3441 37.06 2589 4693 34.57

Table 14: All 3-way classification results for the 14 African languages from SemEval 2023..

Task Data Label Multilabel Original (train/dev/test) Binary (train/dev/test)
Stance WT-WT (Conforti et al., 2020) support, refute, comment, No 41027/5128/5129 8663/1070/1151
unrelated
P-Stance Li et al. (2021) favor, against No 17224/2193/2157 17224/2193/2157
Hate speech HS1 (Founta et al., 2018) abusive, normal, hateful, spam No 79996/10000/10000 68803/8560/8603
P HS2 Vidgen et al. (2021) none, derogation, animosity, No 27256/3422/3356 27256/3422/3356
dehumanization, threatening,
support
Emotion GoEmotions (Demszky et al., 2020) 27 emotions Yes 43410/5426/5427 28264/3566/3551
© SemEval2018 (Mohammad et al., 2018) 11 emotions Yes 6838/886/3259 5902/795/2846

Table 15: Datasets used in our additional experiments.

319



Stance Hate Speech Emotion

WT-WT P-Stance HS1 HS2 GoEmotions SemEval2018

Model

Binary classes

mBERTBase 79.88 60.66 83.72 54.49 57.45 60.46
-+ EN Lex. 85.39 61.16 87.95 54.74 72.17 79.62
Original classes

mMBERTR e 44.43 60.66 69.45 43.26 14.20 17.57
-+ EN Lex. 44.97 61.12 71.28 43.89 1491 32.93

Table 16: Lexicon-based pretraining performance (macro-F1) in six other English semantic tasks. The results are
based on the limited training data scenario.
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