Sandalphon @DravidianLangTech-EACL2024: Hate and Offensive
Language Detection in Telugu Code-mixed Text using
Transliteration-Augmentation

Nafisa Tabassum, Mosabbir Hossain Khan, Shawly Ahsan
Jawad Hossain, and Mohammed Moshiul Hoque
Department of Computer Science and Engineering
Chittagong University of Engineering and Technology
{u1804066,u1704085,u1704057,u1704039}@student.cuet.ac.bd
moshiul_240@cuet.ac.bd

Abstract

Hate and offensive language in online plat-
forms pose significant challenges, necessitating
automatic detection methods. Particularly in
the case of codemixed text, which is very com-
mon in social media, the complexity of this
problem increases due to the cultural nuances
of different languages. DravidianLangTech-
EACL2024 organized a shared task on detect-
ing hate and offensive language for Telugu.
To complete this task, this study investigates
the effectiveness of transliteration-augmented
datasets for Telugu code-mixed text. In this
work, we compare the performance of various
machine learning (ML), deep learning (DL),
and transformer-based models on both original
and augmented datasets. Experimental find-
ings demonstrate the superiority of transformer
models, particularly Telugu-BERT, achieving
the highest f;-score of 0.77 on the augmented
dataset, ranking the 1°¢ position in the leader-
board. The study highlights the potential of
transliteration-augmented datasets in improv-
ing model performance and suggests further
exploration of diverse transliteration options to
address real-world scenarios.

1 Introduction

In recent years, the growing problem of offensive
language in user-generated content on online plat-
forms and its harmful impacts has become a pri-
mary concern. The vast amount of daily user-
generated content poses a significant challenge
in the fight against offensive language. Conse-
quently, automated methods are necessary for han-
dling this task. Understanding code-mixed data is
difficult due to several factors. First, it requires a
deep understanding of the different linguistic lev-
els involved. Second, the complex structure of

code-mixed language makes it challenging to ana-
lyze. Finally, there needs to be more training data
available for code-mixed languages, which hinders
the development of effective classification systems.
These challenges can lead to inaccurate classifica-
tions, mainly when using systems trained only on
monolingual data. When a system trained on a sin-
gle language encounters code-mixed data, it may
be unable to accurately identify the different lan-
guages or understand the complex grammar rules
involved. These challenges were addressed in the
studies of Priyadharshini et al. (2023), which intro-
duced a shared task for detecting hate and offen-
sive language in Telugu. This paper contributes
to the ongoing research efforts explored at the
DravidianLangTech-EACL2024 (B et al., 2024).

The primary contributions of this work are illus-
trated in the following:

* Developed a transliteration-based augmenta-
tion scheme to help transformer models detect
code-mixed Telugu offensive texts with high
fidelity.

* Investigated various MI, DL, and transformer-
based techniques for the task and analyzed
their performance in augmented and non-
augmented datasets.

2 Related Work

Social media can often spread negativity and hurt-
ful content. It is important to recognize such con-
tent because it can offend individuals and groups
based on race, gender, or religion (Das et al., 2022).
To maintain the integrity of the social media ecosys-
tem, researchers and stakeholders must focus on
creating computational models capable of swiftly

167

Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages, pages 167172
March 22, 2024 ©2024 Association for Computational Linguistics

detecting and categorizing offensive content (Sharif
et al., 2021). Hence, to address this growing con-
cern on social media platforms, earlier research uti-
lized diverse machine learning algorithms such as
Linear Regression, Support Vector Machine, and
Naive Bayes for the automated identification of
hate speech (Abro et al., 2020). The performance
of these models falls short as they need help to
capture the semantic and contextual information
present in textual data. Utilizing a publicly avail-
able dataset of tweets, Wei et al. (2021) suggests
a methodology for automating tweets into three
classes: Hate, Offensive, and Neither. Their ap-
proach utilizes BILSTM models with blank embed-
ding and pre-trained Glove embeddings to identify
Offensive Language and Hate Speech. In recent
years, pre-trained models have demonstrated re-
markable accuracy in classifying code-mixed texts
across various languages (Hande et al., 2020). The
current focus of research in text analysis is within
the transliteration domain, which holds the poten-
tial for achieving superior results (Shekhar et al.,
2023).

3 Task and Dataset Descriptions

This task aimed to develop a model that success-
fully detects code-mixed offensive texts. To imple-
ment such a model, we utilized the Telugu-English
code-mixed corpus that the organizers' provided to
the participants. The dataset contains labels of two
classes: hate and non-hate.

Label | Train Augmented Test W
hate 1939 5816 250 18094
non-hate | 2061 6181 250 21378
Total 4000 11997 500 39492

Table 1: Distribution of datasets, where W denotes
total words in the train dataset

Table 1 shows the distribution of different classes
across the train and test datasets. Both the train and
test datasets are well-balanced. The texts in both
the train and test dataset were preprocessed and
cleaned to remove any unwanted symbols, emojis
and punctuation marks before the development of
the system.

"https://codalab.lisn.upsaclay.fr/
competitions/16095

g[8

Mixed to Telugu Pure-Telugu A
Transliteration Script

Augmented Final

Preprocessed P {§}7 Q Dataset

Text L5 {:@}@—>

Mixed to English English-Romanized
Transliteration Script

Figure 1: Augmentation process using transliteration

3.1 Data Augmentation with Transliteration

After cleaning, the dataset was augmented through
transliteration. Transliteration handles code-mixed
data since the dataset includes words in pure Tel-
ugu and English-romanized scripts. The proposed
approach involves converting words between these
scripts and translating code-mixed text to pure Tel-
ugu and English-romanized forms. Expanding vo-
cabulary and providing context helps the model
better understand the meaning of code-mixed text.
We used AI4Bharat/IndicXlit? transformer model
(Madhani et al., 2022) to first transliterate every
single text from the cleaned dataset, to pure-Telugu
text, as shown in Figure 1. Afterward, the cleaned
texts were again transliterated, but this time to
English-romanized text. These two new sets of
texts are added to the original training dataset. In
this way, every word in the original train dataset
is guaranteed to appear at least twice in the aug-
mented dataset: once in pure Telugu form and
once in English-romanized form. This makes many
common words reappear in both pure Telugu and
English-romanized forms in the dataset, which en-
sures our model can learn from both forms of the
exact text. The reason behind using this translitera-
tion tool is that it has been trained on the Aksharan-
tar (Madhani et al., 2023) dataset, which is, at the
time of writing, the most extensive publicly avail-
able corpus on Indic languages. From the analysis
of the authors of this tool, its performance in the
Telugu language shows good potential. Hence, we
chose this to generate synthetic transliterated texts.

4 Methodology

Figure 2 illustrates the overall process, including all
employed models for the task. Various techniques
are used to extract textual features for training the

2ht’cps: //pypi.org/project/
aidbharat-transliteration/

168

https://codalab.lisn.upsaclay.fr/competitions/16095
https://codalab.lisn.upsaclay.fr/competitions/16095
https://pypi.org/project/ai4bharat-transliteration/
https://pypi.org/project/ai4bharat-transliteration/

Feature Extraction Classifier Predictions

ML Models

R

Ensemble

; —> O]
; b A e
p TF-IDF .] O
PN y . R
Input Texts] 1 : DIModels) s
b 7 N ' LSTM i p

LSTM +

: 1
Attention H

Wordzvec + Transformers !

| FastText E 3 s BERT i H Y
) } XLM-R
Indic-BERT

| Telugu-BERT | '

Figure 2: Abstract process of hate and offensive lan-
guage detection in Telegu

respective ML and DL models. This work also
utilized transformer-based techniques, such as m-
BERT, XLLM-R, Indic-BERT, and Telugu-BERT.

4.1 Feature Extraction

Following the approach of Tokunaga and Iwayama
(1994), we utilized the TF-IDF (Term Frequency-
Inverse Document Frequency) technique to extract
unigram features. TF-IDF assigns word weights
based on frequency within a document and across
the entire corpus. This helps capture the impor-
tance of each word for distinguishing documents.
We leveraged two widely used word embedding
techniques for DL models: Word2Vec (Mikolov
et al., 2013) and FastText (Grave et al., 2018). We
implemented Word2Vec using the Keras embed-
ding layer with an embedding dimension of 100
for both original and augmented datasets. Also,
we utilized pre-trained FastText embedding matri-
ces for each dataset. This pre-trained information
incorporates subword information, potentially cap-
turing more nuanced semantic relationships than
Word2Vec.

4.2 ML Models

The ‘lbgfs’ optimizer was chosen for LR models,
with C values 1.0 for both datasets. SVM models
are configured with the linear kernel and C = 1.0
for both datasets.

4.3 DL Models

This research utilized a Bidirectional LSTM (BiL-
STM) architecture with 100 cells per direction. To
ensure robust generalization and prevent overfit-
ting, we leveraged a dropout technique with a rate

of 0.2. This technique randomly discards a small
percentage of neurons during training. This pro-
motes the network to learn relevant features across
diverse data samples. Finally, the output of the
BiLSTM layer is fed into a softmax layer for the
final prediction. Inspired by the work of Vaswani
et al. (2023), the DL model incorporated an atten-
tion mechanism to highlight impactful words in the
input text. This attention layer, consisting of 20
neurons, was added to a BILSTM layer. The BiL-
STM output was then combined with the attention
vector and fed into a softmax layer for the final
prediction. We employed identical architectures
for both datasets and utilized the ‘sparse categor-
ical cross-entropy’ loss function. The model was
trained with the ‘Adam’ optimizer (learning rate =
1e3, batch size = 32) for 15 epochs.

Transformer models often achieve the best re-
sults on various NLP benchmarks. Recognizing
their strength, we employed four pre-trained trans-
former models: m-BERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020), Indic-BERT (Kak-
wani et al., 2020) and Telugu-BERT (Joshi, 2023).
All the transformer models were obtained from
Huggingface® and fine-tuned with our original and
augmented test set using the ktrain library (Maiya,
2020). In both datasets, we used a learning rate
of 2¢77 in all the models and applied the method
fit_onecycle() from the training library. The
original dataset was trained with batch size 12,
whereas the augmented dataset was trained with
batch size 16 for all the models. Both datasets were
used to fine-tune the transformer models for six
epochs.

5 Results and Analysis

This section analyzes the effectiveness of differ-
ent models for detecting hate speech and offen-
sive language in Telugu code-mixed texts. The
performance of the models is evaluated based on
macro-averaged fi-score. The evaluation result re-
port is shown in Table 2, where the performance
is presented in four cases: the original dataset
(Non-Aug.), the original dataset augmented with
Roman-transliterated texts (Roman-Aug.), the orig-
inal dataset augmented with Telugu-transliterated
texts (Telugu-Aug.), and finally, the intended, fully
augmented dataset (Full-Aug.), which contains the
combination of original, Roman-transliterated, and

Shttps://huggingface.co/docs/transformers/
index

169

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index

Classifiers Non-Aug. Roman-Aug. Telugu-Aug. Full-Aug.
P R F P R F P R F P R F

LR 0.65 0.65 0.65]|0.65 0.65 0.65|0.69 0.68 0.68|0.71 0.71 0.71
SVM 0.66 0.66 0.66 |0.66 0.66 0.66|0.71 0.71 0.71 {0.70 0.70 0.70
LSTM (Word2vec) | 0.65 0.65 0.65|0.66 0.67 0.66|0.71 0.72 0.71 | 0.69 0.69 0.69
LSTM (FastText) |0.48 0.47 043|048 048 045|047 046 0.44|0.60 0.65 0.56
LSTM + Attention | 0.62 0.62 0.62 | 0.62 0.62 0.62 | 0.64 0.64 0.64 | 0.67 0.67 0.67
m-BERT 0.67 0.67 0.670.65 0.65 0.65|0.71 0.71 0.71 [0.72 0.72 0.72
XLM-R 0.73 0.72 0.72 1053 0.52 051(0.72 0.72 0.7210.76 0.75 0.75
Indic-BERT 0.67 0.66 0.66 | 0.67 0.66 0.66|0.69 0.68 0.68 | 0.67 0.66 0.65
Telugu-BERT 0.74 0.73 0.730.73 0.73 0.73|0.77 0.76 0.76 | 0.78 0.77 0.77

Table 2: Evaluation results obtained from models on four cases: original, only Roman-transliterated, only Telugu-
transliterated, and fully-augmented test sets. P, R, and F denote macro-averaged precision, recall, and f; score.

Here, “Aug.” is used as shorthand for the word augmented.

Telugu-transliterated texts.

5.1 Discussion

The results indicated that ML models performed
better than all DL models when using a fully aug-
mented dataset. Word embeddings may not be able
to capture the cultural subtleties and context of hate
speech in code-mixed text as they are not trained on
multilingual data. This might be a possible reason
for such poor performance in DL classifiers. Still,
the best result from ML and the best result from DL
when applied to the Telugu-transliterated dataset
was similar (0.71).

The transformer models’ performance is out-
standing compared to ML and DL models. All
the transformer models except Indic-BERT for
the original training dataset exceed the f; score
previously obtained from ML and DL techniques.
Among all the transformer models, Telugu-BERT
shows the best result, with the highest f; score
(0.73) achieved on the original train set and f;
score of 0.77 in the fully augmented dataset. Al-
though Indic-BERT was trained in Indic languages,
it came last in performance, possibly due to many
reasons. Alternatively, Telugu-English code mixed
data might contain words in English rather than
in the Telugu language written in a Roman script.
Indic-BERT might need help finding word relation-
ships better than XLLM-Roberta or m-bert. Another
reason might be because of data quality and context.
XLM-Roberta and m-BERT, since they are trained
on huge datasets, might capture hate-speech-related
contexts better than Indic-BERT.

The results revealed the effect of various
transliteration approaches. When only English-

Romanized transliteration was applied, there
needed to be more improvement in the perfor-
mance. Compared to that, almost all classifiers
performed better when Telugu transliteration was
applied. Finally, in the fully augmented dataset,
where both English-Romanized transliteration and
Telugu transliteration were combined, we can see
most of these classifiers show a slight performance
improvement, which can be because this dataset
is more extensive than all of the datasets above.
Hence, relating different words between Roman
script and Telugu script is easier. Also, the fully
augmented dataset might give better context to the
classifier due to many similar words appearing in
both languages, and the two-way transliteration
makes all forms of the similar words known to
the classifiers. On the other hand, the IndicXlit
transliteration tool is not perfect, and it might not
always produce the best transliteration of every
single word, so it hurts the performance.

The results showed that the proposed approach
produces better f; scores when trained under the
augmented dataset. The Telugu-BERT model
trained on the augmented train set was chosen as
the best overall performer.

5.2 Error Analysis

We conducted a comprehensive error analysis of
quantitative and qualitative ways to gain an in-
depth understanding of the best-performing model
(Telugu-BERT).

Quantitative Analysis: It is shown that the best-
performing model (Telugu-BERT) produced a max-
imum f; score of 0.77 (Table 2). Figure 3 repre-
sents the confusion matrix of this model. Among

170

Confusion Matrix

(2
X
X\’b
&

200

180

160

140

120

True labels

100

80

60

Figure 3: Confusion matrix of the best model (Telugu-
BERT) on fully augmented dataset

the two classes, the hate class has the highest True-
Positive Rate (TPR) of 83.6%, while the non-hate
class has a lower TPR of 70.8%. This might in-
dicate a slight bias towards detecting hate speech
since a higher percentage of non-hate text (29.2%)
was predicted to be from the hate speech class.
Compared to that, 16.4% of actual offensive texts
were predicted to be not offensive.

Qualitative Analysis: Figure 4 represents some
predictions of the best-performing model compared
to the actual labels. We generated the translations
shown in the figure with the help of Google Trans-
late*. The first sample was predicted accurately,
entirely made up of pure Telugu script. Although
the second sample had only Telugu script, it was
not predicted accurately since it was a hate or of-
fensive text, but Telegu-BERT labeled it non-hate.
The third script was comprised of Telugu text in
an English-Roman script, and Telegu-BERT was
able to label it accurately. The fourth sample was
of a code-mixed text, which mostly has text from
Telugu script, with a minimal amount of English
script. It was not predicted accurately. The final
sample also consists of code-mixed text, with an
English-script majority, but our model was able to
predict its label accurately.

Limitations

The presented approach relies heavily on translit-
eration accuracy. Errors in transliteration can in-
troduce misleading information, which can impact
model performance. Furthermore, the diverse ways

4https ://translate.google.com/

171

Text Actual Predicted

AR G 900D DO €od DY & wrHdd &, (How | non-hate | non-hate

many times do you want to hear Chitti Mata Super Maa?)

QO BoGRIE (1) ot YrEotsy § gD bvcﬁlsu (This | hate non-hate

is only possible for Bendapudi Government students.)

dennichusthe chi daridram (If you look at this, you are hate hate

poor)

Dezorrd enAT LT ﬁ&)iyod»&a‘l‘:w worst CM (We
really elected the worst CM without any intelligence.)

non-hate | hate

KCION YCP ki antha seen ledhu exenrd batch hate hate
dhammunte yedhi prnchakunda &o¢>oe (The YCP
doesn't have much of a chance now. Will they not be

scared if the Bulugu batch attacks?)

Figure 4: Predicted outputs for some sample texts using
the proposed (Telugu-BERT) model on fully augmented
dataset

to transliterate a word in real-world scenarios high-
light the importance of exploring methods to incor-
porate multiple transliteration options.

6 Conclusion

This paper explored various ML, DL, and
transformer-based approaches for hate and of-
fensive language detection in Telugu code-
mixed text and demonstrated the effectiveness of
transliteration-augmented datasets. In most cases,
transformer models outperformed ML and DL
methods. Telugu-BERT, trained explicitly on Tel-
ugu text, achieved an impressive fi score of 0.77.
Investigating further augmentation methods and
their combinations presents an exciting future di-
rection to enhance the dataset and improve perfor-
mance.

References

Sindhu Abro, Sarang Shaikh, Zahid Hussain Khand,
Ali Zafar, Sajid Khan, and Ghulam Mujtaba. 2020.
Automatic hate speech detection using machine learn-
ing: A comparative study. International Journal of
Advanced Computer Science and Applications, 11(8).

Premjth B, Bharathi Raja, Prasanna Kumar Kumare-
san, Saranya Rajiakodi, Sai Prashanth Karnati, Sai
Rishith Reddy Mangamuru, and Janakiram Chandu.
2024. Findings of the shared task on hate and of-
fensive language detection in telugu codemixed text
(hold-telugu). In Proc. of the Fourth Workshop on
Speech, Vision, and Language Technologies for Dra-
vidian Languages, Malta. European Chapter of the
Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale.

https://translate.google.com/
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116

Mithun Das, Somnath Banerjee, Punyajoy Saha, and
Animesh Mukherjee. 2022. Hate speech and offen-
sive language detection in bengali. arXiv preprint
arXiv:2210.03479.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Adeep Hande, Ruba Priyadharshini, and Bharathi Raja
Chakravarthi. 2020. KanCMD: Kannada CodeMixed
dataset for sentiment analysis and offensive language
detection. In Proceedings of the Third Workshop
on Computational Modeling of People’s Opinions,
Personality, and Emotion’s in Social Media, pages
54-63, Barcelona, Spain (Online). Association for
Computational Linguistics.

Raviraj Joshi. 2023. L3cube-hindbert and devbert: Pre-
trained bert transformer models for devanagari based
hindi and marathi languages.

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, Gokul N.C., Avik Bhattacharyya, Mitesh M.
Khapra, and Pratyush Kumar. 2020. IndicNLPSuite:
Monolingual Corpora, Evaluation Benchmarks and
Pre-trained Multilingual Language Models for Indian
Languages. In Findings of EMNLP.

Yash Madhani, Sushane Parthan, Priyanka Bedekar,
Gokul NC, Ruchi Khapra, Anoop Kunchukuttan,
Pratyush Kumar, and Mitesh M. Khapra. 2023.
Aksharantar: Open indic-language transliteration
datasets and models for the next billion users.

Yash Madhani, Sushane Parthan, Priyanka A. Bedekar,
Ruchi Khapra, Vivek Seshadri, Anoop Kunchukuttan,
Pratyush Kumar, and Mitesh M. Khapra. 2022. Ak-
sharantar: Towards building open transliteration tools
for the next billion users. ArXiv, abs/2205.03018.

Arun S. Maiya. 2020. ktrain: A low-code library
for augmented machine learning. arXiv preprint
arXiv:2004.10703.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-

1ty.

Ruba Priyadharshini, Bharathi Raja Chakravarthi,
Malliga S, Subalalitha CN, Kogilavani S V, Premjith
B, Abirami Murugappan, and Prasanna Kumar Ku-
maresan. 2023. Overview of shared-task on abusive
comment detection in tamil and telugu. In Proceed-
ings of the Third Workshop on Speech and Language

Technologies for Dravidian Languages, Varna, Bul-
garia. Recent Advances in Natural Language Process-
ing.

Omar Sharif, Eftekhar Hossain, and Mo-
hammed Moshiul Hoque. 2021. Nlp-cuet@
dravidianlangtech-eacl2021: Offensive language
detection from multilingual code-mixed text using
transformers. arXiv preprint arXiv:2103.00455.

Shashi Shekhar, Hitendra Garg, Rohit Agrawal, Shiv-
endra Shivani, and Bhisham Sharma. 2023. Hatred
and trolling detection transliteration framework us-
ing hierarchical Istm in code-mixed social media text.
Complex & Intelligent Systems, 9(3):2813-2826.

Takenobu Tokunaga and Makoto Iwayama. 1994. Text
categorization based on weighted inverse document
frequency.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need.

Bencheng Wei, Jason Li, Ajay Gupta, Hafiza Umair,
Atsu Vovor, and Natalie Durzynski. 2021. Of-
fensive language and hate speech detection with
deep learning and transfer learning. arXiv preprint
arXiv:2108.03305.

172

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://aclanthology.org/L18-1550
https://aclanthology.org/L18-1550
https://aclanthology.org/2020.peoples-1.6
https://aclanthology.org/2020.peoples-1.6
https://aclanthology.org/2020.peoples-1.6
http://arxiv.org/abs/2211.11418
http://arxiv.org/abs/2211.11418
http://arxiv.org/abs/2211.11418
http://arxiv.org/abs/2205.03018
http://arxiv.org/abs/2205.03018
http://arxiv.org/abs/2004.10703
http://arxiv.org/abs/2004.10703
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
https://api.semanticscholar.org/CorpusID:18257943
https://api.semanticscholar.org/CorpusID:18257943
https://api.semanticscholar.org/CorpusID:18257943
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

