Unlearning Climate Misinformation in Large Language Models

Michael Fore, Simranjit Singh, Chaehong Lee, Amritanshu Pandey, Antonios Anastasopoulos, Dimitrios Stamoulis


Abstract
Misinformation regarding climate change is a key roadblock in addressing one of the most serious threats to humanity. This paper investigates factual accuracy in large language models (LLMs) regarding climate information. Using true/false labeled Q&A data for fine-tuning and evaluating LLMs on climate-related claims, we compare open-source models, assessing their ability to generate truthful responses to climate change questions. We investigate the detectability of models intentionally poisoned with false climate information, finding that such poisoning may not affect the accuracy of a model’s responses in other domains. Furthermore, we compare the effectiveness of unlearning algorithms, fine-tuning, and Retrieval-Augmented Generation (RAG) for factually grounding LLMs on climate change topics. Our evaluation reveals that unlearning algorithms can be effective for nuanced conceptual claims, despite previous findings suggesting their inefficacy in privacy contexts. These insights aim to guide the development of more factually reliable LLMs and highlight the need for additional work to secure LLMs against misinformation attacks.
Anthology ID:
2024.climatenlp-1.14
Volume:
Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024)
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Dominik Stammbach, Jingwei Ni, Tobias Schimanski, Kalyan Dutia, Alok Singh, Julia Bingler, Christophe Christiaen, Neetu Kushwaha, Veruska Muccione, Saeid A. Vaghefi, Markus Leippold
Venues:
ClimateNLP | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
178–192
Language:
URL:
https://aclanthology.org/2024.climatenlp-1.14
DOI:
10.18653/v1/2024.climatenlp-1.14
Bibkey:
Cite (ACL):
Michael Fore, Simranjit Singh, Chaehong Lee, Amritanshu Pandey, Antonios Anastasopoulos, and Dimitrios Stamoulis. 2024. Unlearning Climate Misinformation in Large Language Models. In Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024), pages 178–192, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
Unlearning Climate Misinformation in Large Language Models (Fore et al., ClimateNLP-WS 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/dois-2013-emnlp/2024.climatenlp-1.14.pdf