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Abstract

Development of pre-trained language models
has predominantly relied on large amounts of
datasets. However, this dependence on abun-
dant data has limited the applicability of these
models in low-resource settings. In this work,
we investigate the utility of exploiting synthetic
datasets acquired from different sources to pre-
train language models for Arabic. Namely, we
leverage data derived based on four different
methods: optical character recognition (OCR),
automatic speech recognition (ASR), machine
translation (MT), and generative language mod-
els. We use these datasets to pre-train mod-
els in three different architectures: encoder-
only (BERTBase), encoder-decoder (T5), and
decoder-only (GPT-2). We test the capabilities
of resulting models on Arabic natural language
understanding (NLU) tasks using the ORCA
benchmark. Our results show that utilizing
synthetic data can achieve performance com-
parable to, or even surpassing, those trained
on gold data. For example, our model based
on a GPT-2 architecture trained on a combined
synthetic dataset surpasses the baseline model
ARBERTv2. Overall, our models pre-trained
on synthetic data demonstrate robust perfor-
mance across various tasks. This highlights
the potential of synthetic datasets in augment-
ing language model training in low-resource
settings.

1 Introduction

The quality and quantity of training data signif-
icantly affect model performance in many natu-
ral language processing (NLP) tasks. Often, large
amounts of training data are essential for neural
models to achieve strong performances across a
wide range of tasks (Sutskever et al., 2014; Bow-
man et al., 2015). In areas such as natural lan-
guage understanding (NLU) (Wang et al., 2022)
and neural machine translation (NMT) (Maguer-
esse et al., 2020) consistent improvements with

Figure 1: Our four synthetic data sources— optical char-
acter recognition (OCR), automatic speech recognition
(ASR), machine translation (MT), and text generation
(TG) models—used for pre-training Arabic models in
different architectures - encoder-only (BERT), decoder-
only (GPT-2), and encoder-decoder (T5), tested on the
ORCA benchmark.

increased training datasets have been shown, under-
scoring the significance of abundant training data.
However, this becomes particularly challenging in
low-resource settings where preparing extensive
annotated data is costly, time-consuming, and in-
feasible to relabel every example whenever new
data comes in. This highlights the need for re-
search towards learning with limited labeled data
for various NLP tasks (Chen et al., 2023).

There has been growing interest in data aug-
mentation (DA) strategies to generate new data
by modifying existing data through transforma-
tions (Feng et al., 2021; Wei and Zou, 2019). More-
over, with the recent surge of pre-trained Large
Language Models (LLMs) and Multimodal Large
Language Models (MLLMs), capabilities in gener-
ating data across domains such as images, audio,
and text have expanded (Alemohammad et al.,
2023). Renowned generative models like ChatGPT
(for text) (Brown et al., 2020) and Stable Diffusion
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(for images) (Rombach et al., 2022) are now read-
ily accessible via APIs, making the generation of
high-quality synthetic data across various domains
more accessible (Veselovsky et al., 2023).

In this study, we investigate how training data
from various sources and methods affect the perfor-
mance of pre-trained language models (PLMs) on
Arabic NLU tasks on the ORCA benchmark (El-
madany et al., 2022). We primarily focus on
the Arabic language due to its complex grammar,
rich morphology, and limited resources, which
present significant challenges. We compare the
performance of three different model architectures:
encoder-only (BERTBase architecture), encoder-
decoder (T5 architecture), and decoder-only (GPT-
2 architecture), trained on data extracted through
automatic speech recognition (ASR), optical char-
acter recognition (OCR), machine translation (MT),
and text generation (TG). This evaluation aims to
determine whether synthetically generated text data
can match or potentially replace gold standard data.
Our contributions in this paper are as follows:

1. We showcase the importance of leveraging
different text extraction and text generation
methods to obtain valuable pre-training data.

2. We compare the performance of models pre-
trained on gold standard text data against mod-
els pre-trained purely on synthetic data.

3. We highlight the limitations of relying on sole
and non-diverse data sources, such as solely
Wikipedia, in model pre-training.

2 Related Works

Data Augmentation. Data augmentation has be-
come a cornerstone in enhancing training datasets
without the need for additional data collection, due
to its efficiency, simplicity, and cost-effectiveness.
This has led to a surge in its adoption across vari-
ous domains (Hernández-García and König, 2018;
Shorten and Khoshgoftaar, 2019). Earlier meth-
ods include rule-based approaches, such as token-
level random perturbations (Wei and Zou, 2019),
and predetermined transformations without model
components (Zhang et al., 2015). These methods
have demonstrated improved outcomes in various
text classification tasks (Xie et al., 2020). With
the recent development of large language models
(LLMs), the potential for more advanced and adapt-
able data augmentation techniques has significantly
increased (Ding et al., 2020), allowing for greater

gains in model performance and robustness across
different natural language processing tasks (Perez
and Wang, 2017; Yang et al., 2022; Zhuo et al.,
2023).

Multimodal Augmentation. Multimodal Aug-
mentation (MA) leverages generative advance-
ments in AI to synthesize data across multiple do-
mains, including image, audio, text, and video (Be-
wersdorff et al., 2024). These techniques either
generate entirely new content or modify existing
content to maintain semantic relationships, similar
to how traditional Data Augmentation (DA) tech-
niques adapt training examples (Liu et al., 2022).
The notable growth and results from publicly re-
leased generative models have established MA as
a critical component in numerous research sectors,
particularly those involving multimodal data (Ale-
mohammad et al., 2023). MA has demonstrated sig-
nificant effectiveness in various domains, such as
developing SoTA image models like Stable Diffu-
sion using the synthetic LAION-5B dataset (Schuh-
mann et al., 2022). In the vision domain, innova-
tions like MixGen excel in joint data augmenta-
tion by combining images and text to create new
image-text ensembles (Hao et al., 2023). In the au-
dio domain, advancements such as AudioLM push
the boundaries of speech synthesis, capturing the
unique voice and nuances of previously unheard
speakers (Borsos et al., 2023). These achievements
highlight the convergence of self-supervised repre-
sentation learning and language modeling, pointing
to a promising future for the field (Liu et al., 2022).

Arabic NLP. Arabic Natural Language Process-
ing (NLP) faces significant challenges due to its
characteristics as a low-resource language, which
has historically hindered achieving SoTA results
due to data scarcity (Abdul-Mageed et al., 2020b;
Belkebir and Habash, 2021). Despite this, there
have been multiple efforts to address these chal-
lenges. For instance, the KIND dataset collects
nuanced dialectal data through social collabora-
tion (Aloui et al., 2024). Similarly, the ArQuAD
dataset, a comprehensive, expert-annotated corpus
designed for Arabic machine reading comprehen-
sion, emphasizes the urgent need for substantial,
high-quality datasets to advance Arabic NLP (Obei-
dat et al., 2024). Furthermore, recent efforts in spe-
cific tasks such as Grammatical Error Correction
(GEC) (Kwon et al., 2023; Solyman et al., 2021)
and task classification (Refai et al., 2023), as well
as efforts for evaluation (Khondaker et al., 2023)
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Source Num Sentences Num Words
Arabic Wikipedia 8.8M 102M
Translated English Wikipedia 6M 103M
OCR 11.6M 101M
ASR 1.9M 25M
TG 8.8M 110M

Table 1: Gold and synthetic data statistics.

and model development (Nagoudi et al., 2022) for
Arabic, illustrate ongoing endeavors to enhance
the linguistic capabilities and robustness of NLP
models for the Arabic language.

3 Datasets & Experimental Setup

3.1 Training Datasets

We consolidate four unique datasets acquired
through four distinct methods: (1) machine trans-
lation (MT), (2) optical character recognition
(OCR), (3) automatic speech recognition (ASR),
and (4) text generation (TG). While having all gen-
erated data based on the same corpus or covering
the same genre would ensure consistency and fair
comparison, this was challenging for certain data
extraction techniques. MT and TG datasets align
with this criterion, as they both utilize Wikipedia
content. For OCR data, we aimed for consistency
by selecting academic works from the Arabic pub-
lic library Hindawi. However, for ASR, achieving
this level of consistency was difficult due to the
limited availability of domain-specific data. In fu-
ture work, we aim to improve consistency across
data sources where feasible.

We introduce each dataset and outline the extrac-
tion methods below. Details on the data statistics
can be found in Table 1.
Gold Data. We collect the most recent articles
from Arabic Wikipedia dumps and extract raw text
at the article level using wikiextractor (Attardi,
2015) as our primary data source. This dataset
remained unaltered throughout our study, serving
as our baseline dataset for comparison.
MT Data. Following the same approach as the
gold data, we gather a subset of English articles
from English Wikipedia dumps and translate them
into Arabic using Meta’s No Language Left Behind
model (NLLB) (Costa-jussà et al., 2022). The arti-
cles were randomly sampled to ensure a diverse and
representative subset of content. After translation,
we remove any text that contains repeated dupli-
cates of a word to avoid potential issues during
training.

OCR Data. We collect and preprocess 3,000 books
from the Arabic public library Hindawi (Ali, 2023).
Subsequently, we employ Google Tesseract (Smith,
2007) and perform OCR on all the PDF books, ex-
tracting raw text at the page level, then segmenting
it into paragraphs.
ASR Data: We utilize a wide range of Arabic
speech datasets, covering both Modern Standard
Arabic (MSA) and various Arabic dialects. For
datasets lacking transcriptions, we transcribe the
audio using the Arabic whisper model from Ta-
lafha et al. (2023). For those datasets that include
transcriptions, we consider them only if they were
transcribed via ASR systems. The datasets are de-
tailed below:

Multi Genre Broadcast-2 (MGB-2) (Ali et al.,
2016) includes 1,200 hours from Aljazeera TV pro-
grams. These programs were manually captioned
without specific timing details. The QCRI Arabic
ASR system (Dalvi et al., 2017) was employed to
transcribe all the output, facilitating the alignment
of manual captions to generate speech segments
for speech recognition training.

Mozilla’s Common Voice Project (Ardila et al.,
2019) features recordings of sentences in MSA by
contributing volunteers. Each recording is vali-
dated by at least two users. We use all 11 versions
of the dataset, which total 690 hours of audio.

Arabic Speech Corpus (Halabi, 2016) is dedi-
cated to MSA speech synthesis. It features over 3.7
hours of MSA speech, with both phonetic and or-
thographic transcriptions aligned with the recorded
speech at the phoneme level.

Massive Arabic Speech Corpus (Al-Fetyani et al.,
2021) contains over 1000 hours of speech from
more than 700 YouTube channels. It is multi-genre,
multi-regional, and multi-dialect.
TG Data. We take samples from the Gold Data and
leverage Jasmine (Nagoudi et al., 2022), an Arabic
GPT model, to generate synthetic data by asking it
to complete sentences given their beginnings. We
chose to use the Jasmine model for generating syn-
thetic data because it is specifically tailored for
Arabic, ensuring that the generated text aligns with
the linguistic nuances and characteristics of the lan-
guage. By leveraging Jasmine, we can produce
high-quality completions that are coherent and con-
textually appropriate for Arabic. Additionally, to
maintain the quality and diversity of the generated
dataset, we implemented measures to prevent repe-
tition. This approach enhances the richness of the
synthetic data, which is crucial for robust model
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training and evaluation. Examples of the prompts
and generated text can be found in Appendix A.1.
Combined Datasets For our final experiment, we
compare the performance of the models trained on
all the subsets of data used above. We train models
with different combinations of the Gold, MT, OCR,
ASR, and TG data. Table 2 outlines the different
data combinations.

Name Components
C1 MT + OCR
C2 MT + OCR + ASR
C3 MT + OCR + ASR + TG
C4 MT + OCR + ASR + TG + Gold

Table 2: Configuration of combined datasets.

3.2 ORCA Benchmark
We evaluate our models using the ORCA bench-
mark, a diverse NLU benchmark for the evalua-
tion of language models in Arabic NLU tasks (El-
madany et al., 2022). The benchmark includes both
Modern Standard Arabic (MSA) and Dialectal Ara-
bic (DA), ensuring broad linguistic spectrum and
geographical representation. It is comprised of 60
publicly available datasets and is segmented into
seven distinct task clusters: Sentence Classification
(SC), Text Classification (TC), Structured Predic-
tion (SP), Semantic Text Similarity (STS), Natural
Language Inference (NLI), Question-Answering
(QA), and Word Sense Disambiguation (WSD).
These are further organized into 29 tasks within the
mentioned task clusters. For evaluation, a macro-
average of scores (F1) is taken across all tasks and
task clusters, with each task given equal weight,
referred to as the ORCAscore. For all individual
tasks, the metric is F1, except for tasks within the
STS clsuter and emotion-Reg task within the SC
cluster, which use spearman correlation. Samples
from distinct tasks are in Table 3. Details regarding
the different task clusters, tasks, and data splits can
be found in Table 4.

3.3 Models & Pre-training

Common Training Configuration. To pre-train
all models outlined below, we run for ten epochs,
using a batch size of 16, a learning rate of 5e− 3,
and a maximum sequence length of 512.

Baseline Setting. The ARBERTv2 (Abdul-
Mageed et al., 2020a) model (164 million param-
eters) serves as baseline for comparative analysis

in our experiments. We choose ARBERTv2, as
it achieved the highest ORCAscore on the ORCA
benchmark as is shown in the ORCA leaderboard.1

This ensures a consistent and reliable metric for
comparison across our studies.

Encoder-Only. For the encoder-only model, we
use the BERTBase model (Devlin et al., 2018)
(110 million parameters). We pre-train BERTBase
following the methods outlined by Devlin et al.
(2018). We employ a BERT Word Piece Tokenizer
and adopt the default network architecture of the
BERTBase model. We adhere to the hyperparame-
ters and architectural details specified in the origi-
nal paper, including the tokenizer’s vocabulary size,
minimum word frequency, and the configuration of
special tokens. This approach allows us to main-
tain alignment with established benchmarks while
focusing on the innovations introduced in our work.

Decoder-Only. We use the GPT-2 (Radford et al.,
2019) model (1.5 billion parameters) for our
decoder-only experiment. To pre-train the GPT-
2 model, we use the configured vocabulary size
of 50, 257, including special tokens such as <s>,
</s>, <pad>, <unk>, and <mask>.

Encoder-Decoder. The T5 (Raffel et al., 2020)
model (220 million parameters) serves as the base-
line model for our encoder-decoder model experi-
ment. We employ a Sentence Piece Tokenizer with
a vocabulary size of 32, 128 and special tokens
<unk>, <s>, </s>, and <pad>.

Model Selection. We acknowledge the differ-
ences in model sizes across the architectures used
in our experiments. The choice of ARBERTv2,
BERTBase, GPT-2, and T5 is driven by their popu-
larity and established benchmarks in the field. Our
primary goal is to utilize base "representative" mod-
els to ensure the relevance and applicability of our
findings. In future work, we aim to focus on sim-
ilarly sized models for a fairer comparison across
different architectures.

3.4 Fine-Tuning on the ORCA Benchmark

Encoder and Decoder Only Models. After pre-
training, we fine-tune both the BERTBase and GPT-
2 model on the ORCA benchmark, covering all
29 tasks across seven task clusters encompassing
60 datasets. Examples of the specific ORCA tasks
are presented in Table 3 while further details on

1https://orca.dlnlp.ai/main_leaderboard

268

https://orca.dlnlp.ai/main_leaderboard


Task Content Label

Age ½¾m� 	�@ ú
ÍAª
�K èPñ¢�@ AK
 Zú
æ

�� �IK
ñ�AÓ ú

	G @ é<Ë @ð Under 25

Arabic-NER . ( H. Q 	ªÖÏ @ ÈAÖÞ
�� ) 	­K
QË@ Éë@

	¬ñ 	®� Ygð O O O O B-LOC O O B-LOC O O

Ans-Stance
Sentence 1: PBðYË@ 	­ª 	� P@QÒ�J�@ ©Ó I. ë

	YË@ P@Q�®�J�@
Sentence 2: I. ë

	YË@ P@Q�®�J�@ èAm.�
�'AK. Ñ«YK
 PBðYË@ 	­ª 	� agree

Topic

, �éJ
ºK
QÓ


B@ �èYj�JÖÏ @ �HAK
BñËAK. É�KAJ
� ú


	̄ �é£Qå��Ë @ �I	JÊ«


@

A�JÊ�KA �®Ó 	à@
 F-15 É�KAJ
� PA¢Ó 	áÓ �IªÊ�̄


@ �èQ
KA£ A�J�®kB

,¨C�̄B
 AK.
	à 	X@
 úÎ« Èñ�mÌ'@ 	àðX , �éªÒm.Ì'@ Qm.

	̄ , AÓñ» A�K
International News

MQ2Q
Sentence 1: ? 	áÒJ
Ë @ ©�̄ñÓ ñë AÓ
Sentence 2: ? AK. ðPð



@ �èPA�̄ ©�®�K 	áK




@ No

QA

Question: ? 	Q�KP@ñºË@ ð


@ ðQÖÏ @ 	­ ����ºÓ ñë 	áÓ

Context:
(ø
 Pñ» Q�
J
K.) ú
æ�

	�Q 	®Ë @ úÍ@
 é 	̄ A ����» @ XñªK
 	àYªÓ ñë 	Q�KP@ñºË@ ð


@ ðQÖÏ @

�é 	J� ú

	̄ ÉÓQË@ 	áÓ �é 	JJ
« 	àA�PYK
 A 	K A¿ 	à@ 	YÊË @ (¼Ag. ) èñ 	k



@ð1880 �èQëA 	£ A 	¢kB �IJ
k

ú
Í
�
@ Yêm.Ì ( 	àñºJ
ÊJ
�Ë@ YJ
�»



@ ú


	GA�K) 	Q�KP@ñºË@ 	��
Qª�K Y 	J« é 	K @ ù
 ëð , �éJ. K
Q 	«
	Q�KP@ñºË@ �èPñÊK. �I 	�Qª�K ÈAg ù


	® 	̄ �ºªËAK. ð , ù


KAK. Qê» PAJ
�K YËñ�JK
 é 	K A


	̄

	P @ 	Q��ëB@ @ 	Yë 	à


@ Yg. ð AÒ» , 	á�
ªÓ XXQ��K. 	Q��î�Eð H.

	YK.
	Y�J�K Aî 	EA


	̄ , ù


KAK. Qê» ÈAj. ÖÏ

�I 	̄Q« ú

�æË@ð �èQëA 	¢Ë@ è 	Yë . �éJ
ËAªË @ �é�̄YË@ð ÐA 	¢�J 	KBAK. Õæ��JK
 H.

	YK.
	Y�JË @ð

, �é�A�mÌ'@ �è 	Qêk.


B@ 	áÓ Q�
�JºË@ ©J
 	���� 	áÓ 	á�
�JkAJ. Ë @ �I	JºÓ , �éJ

KAK. Qê»ð 	Q�
J. Ë AK.

	Q�KP@ñºË@ I. �
�
	� 	©ÊK. �IJ
k , �éJ
ËA« �é�̄YK. �I�̄ñË@ �AJ
�®Ë �éÒÒ�ÖÏ @ �HA«A�Ë@ AêÒë



@ 	áÓ

h.
	XñÖ 	ß Èð



@ XñªK
ð . �éJ
ÖÏ AªË @ �HA«A�Ë@ ��ñ� 	áÓ 85 	áÓ Q��»



@ �HA«A�Ë@ �é«A 	J� ú


	̄

ÉJ. �̄ 	áÓ �é«A�Ë@ è 	Yë h. A�J 	K @
 Õç�' �IJ
k 1967 �é 	J� úÍ@
 	Q�KP@ñºË@ 	áÓ �é«ñ	J�Ó �é«A�Ë
�é 	J� ú


	̄ ð , @Qå��
ñ� ú

	̄ É�J ���
ñ	K ú


	̄ �éJ
 	KðQ��ºËB
 @ �HA«A�Ë@ 	Q»QÓ ú

	̄ 	á�
�JkAJ. Ë @

�Im��' �éJ
 	K AK. AJ
Ë @ ñºJ
� ÉJ. �̄ 	áÓ 	àAK. AJ
Ë @ ú

	̄ 	Q�KP@ñ» �é«A� Èð



@ �é«A 	J� �IÖ �ß 1969

. 	àðQ���


@ Õæ� @

(¼Ag. ) èñ 	k


@ð (ø
 Pñ» Q�
J
K.)

Table 3: Samples from ORCA tasks.

ORCA’s diverse task clusters, tasks, and data splits
are provided in Table 4. During training, tasks were
categorized into token-level tasks, classification
tasks, and question-answering tasks, as outlined in
the original paper (Elmadany et al., 2022). Each
model is fine-tuned according to this categoriza-
tion to handle the respective tasks. We fine-tune
each model for ten epochs using a batch size of
16 and a learning rate 5e − 5. We then select the
best-performing model based on our Dev data for
blind-testing on the Test sets. We report the mean
score of the three runs, along with its standard de-
viation. Results of the Dev set can be found in
Appendix A.4.

Encoder-Decoder Model. Since the T5 model is
inherently a generative model, we had to adapt the
model for classification tasks on the ORCA bench-
mark. Given that the ORCA benchmark does not
naturally accommodate encoder-decoder architec-
tures, we tailor the tasks to suit a generative format.
To achieve this, we use the Dolphin benchmark
as a framework (Nagoudi et al., 2023), which is

specifically designed for natural language genera-
tion (NLG) tasks. To maintain consistency across
all model types, including BERTBase and GPT-2,
we modify the dataset structures while keeping the
same sets of inputs and labels. For tasks that in-
volve a direct single input-output relationship, the
original structure is preserved. However, for more
complex tasks that require multiple inputs, such as
the Word Sense Disambiguation (WSD) task, we
concatenate the inputs into a unified context. The
consolidated context is then used as the input dur-
ing the fine-tuning phase of the T5 model, ensuring
a consistent approach across various task types.

4 Results

4.1 Encoder Only Model

Table 5 presents the performance of the BERTBase
model. The model trained on ASR data achieves
the highest ORCAscore, surpassing the scores of
the gold dataset and significantly enhancing perfor-
mance, particularly in the adult, dialect-binary, and
emotion-reg tasks, with improvements of 15.20,
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Cluster Task Level #Data Train Dev Test

SC

SA Sent 19 50K 5K 5K
SM Sent 11 50K 5K 5K
Dia-b Sent 2 50K 5K 5K
Dia-r Sent 3 38.5K 4.5K 5K
Dia-c Sent 4 50K 5K 5K
CL Sent 1 3.2K 0.9K 0.4K
MG Sent 1 50K 5K 5K

SP
NER Word 2 5.2K 1.1K 1.2K
POS Word 2 5.2K 1.1K 1.2K

TC Topic Doc 5 47.5K 5K 5K

QA QA Parag 4 101.6K 517 7.4K

STS
STS-reg Sent 1 0.8K 0.2K 0.2K

STS-cls Sent 1 9.6K 1.2K 1.2K

NLI
XNLI Sent 1 4.5K 0.5K 2.5K
FC Doc 2 5K 1K 1K

WSD WSD Word 1 21K 5K 5K

Total 60 487.1K 46.0K 55.1K

Table 4: The different task clusters, tasks, and data splits
in the ORCA benchmark. SC: Sentence Classification. SP:
Structured Prediction. TC: Topic Classification. STS: Textual
Semantic Similarity. NLI: Natural Language Inference. QA:
Question Answering. SM: Social Meaning. This table is
adapted from the ORCA Elmadany et al. (2022).

15.02, and 17.36 points respectively. The model
trained on TG data demonstrates strong perfor-
mance within the SC and SP task cluster, achieving
the highest scores in adult (87.19), age (41.92),
dialect-country (23.99), sarcasm (65.74), arabic-
ner (66.35), and aqmar-ner (57.68). Notably,
this model also outperforms the gold dataset in
ORCAscore. In contrast, the model trained on both
OCR and MT data scores lower than the gold data.
However, the model trained on OCR data shows
notable improvements in the emotion-reg task, with
an increase of 17.51.

4.2 Decoder Only Model

Table 6 outlines the performance of the GPT-2
model. The model scores the highest ORCAscore in
all datasets compared to all other model architec-
tures, with the model trained on gold data scoring
the best. However, the model struggles in tasks
within the STS cluster. Consistent trends are ob-
served across all tasks with the BERTBase model,
with the model trained on OCR and ASR data show-
ing significant performance improvements. The
model trained on OCR data excels in hate-speech,
scoring 72.47, and emotion-reg, with a notable in-
crease to 61.59. Meanwhile, the model trained
on ASR data achieves strong results in sarcasm
(63.22) and dialect-binary (79.99). The TG dataset

also show competitive performance, particularly in
adult (86.63) and emotion (46.53) tasks. In con-
trast, the model trained on the MT dataset gener-
ally underperforms compared to the gold dataset
but shows comparable results in irony (78.61) and
offensive (78.60) tasks.

The results from the GPT-2 model suggest that
this architecture is particularly adept at learning
from limited data quantities. Overall, the results
from GPT-2 are better than those from BERTBase
and T5 model. This may be attributed to the fact
that GPT-2 has the largest model size among those
tested. Additionally, while most other model ar-
chitectures benefit from training on ASR data, the
GPT-2 model does not show the same improve-
ments. This is likely because ASR data is the
smallest among those used.

4.3 Encoder-Decoder Model

Table 7 presents the performance of the T5 model.
The model trained on the ASR data achieves the
highest ORCAscore, surpassing the gold dataset.
The model trained on ASR data excels particularly
in tasks such as abusive (64.77), emotion (45.97),
and emotion-reg (11.12), demonstrating signifi-
cant improvements. The model trained on the TG
dataset also shows strong performance, especially
in dialect-binary (84.22), offensive (77.98), and sar-
casm (57.10) tasks, while maintaining competitive
scores in most other tasks. The OCR-trained model
has notable success in offensive (81.54) and sar-
casm (67.79), although it underperforms in tasks
like emotion-reg (2.52). The MT dataset gener-
ally enable lower performance than the gold data
but is effective in enabling irony (73.07) and adult
(88.56) tasks. Overall, the ASR and TG datasets
support superior performance in the majority of
tasks compared to the gold dataset.

5 Discussion

5.1 MT, OCR, ASR, and TG Data

The ORCAscore from each model suggests that mod-
els trained on synthetic data from various sources
can be as effective as those trained on gold data.
Specifically, the BERTBase model trained on the
ASR dataset outperformed all other datasets by an
average of approximately 5 F1 points. This can be
attributed to the diverse domain sources included
in the ASR data, unlike other datasets confined to a
single domain. Furthermore, the T5 model trained
on ASR data exhibits comparable performance to
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Cluster Task Gold MT OCR ASR TG

SC

abusive 67.86±2.30 65.68±0.75 61.73±2.73 65.20±0.43 65.85±1.45

adult 72.00±17.94 74.92±16.64 73.52±19.02 87.20±0.30 87.19±0.19

age 33.49±11.47 41.73±0.40 33.50±1.41 41.40±1.11 41.92±0.54

ans-claim 55.06±10.54 56.41±11.50 60.95±2.07 62.49±1.93 61.20±1.57

dangerous 59.74±1.60 57.03±2.29 54.61±5.88 62.84±1.97 61.13±2.75

dialect-binary 65.74±20.07 65.89±20.17 66.58±0.66 80.76±0.44 79.95±0.78

dialect-country 16.93±10.40 17.03±0.98 22.61±0.87 23.72±0.27 23.99±0.25

dialect-region 59.36±7.76 60.89±0.97 60.09±1.80 60.59±1.30 60.71±0.92

emotion 47.10±0.28 48.53±0.46 46.34±0.35 47.00±0.09 46.29±0.94

emotion-reg 14.49±13.91 14.98±11.78 32.03±0.66 31.85±0.54 23.71±7.06

gender 50.07±10.91 41.94±10.31 35.72±1.48 34.86±0.29 42.89±11.65

hate-speech 63.87±10.73 65.34±9.64 55.40±1.81 72.19±1.12 62.02±8.13

irony 79.14±1.16 79.71±0.88 79.48±0.88 79.58±1.36 78.89±1.02

offensive 78.56±0.63 79.08±0.63 80.07±0.45 79.61±0.60 78.84±0.62

machine-generation 73.97±2.85 72.12±3.71 74.87±0.94 75.89±0.61 74.87±0.97

sarcasm 59.58±9.96 59.57±6.81 61.78±1.96 65.34±1.70 65.74±2.01

sentiment 70.56±0.43 69.64±0.46 69.36±0.46 69.76±0.46 69.64±0.46

SP

arabic-ner 63.81±0.54 57.33±0.72 57.94±0.79 64.40±0.30 66.35±0.49

aqmar-ner 53.92±1.06 47.29±1.32 45.82±0.93 53.76±0.72 57.68±0.72

msa-pos 14.71±1.23 12.40±0.71 14.38±1.74 16.10±0.59 13.18±0.59

dialect-pos 81.67±0.32 81.38±0.18 81.18±0.37 86.03±0.71 84.20±0.13

NLI ans-stance 37.87±8.62 42.25±4.29 43.07±2.89 51.25±2.97 47.91±2.92

baly-stance 25.65±4.11 25.70±4.29 19.98±0.04 29.29±0.97 26.79±0.00

xlni 36.33±13.92 16.70±0.04 35.93±1.69 47.89±1.10 36.88±14.29

STS sts 11.08±6.61 15.43±2.06 17.54±4.23 20.99±4.48 14.28±4.79

mq2q 55.09±0.50 63.89±15.97 52.80±0.29 52.92±0.29 53.26±0.43

TC topic 91.63±6.35 90.86±6.44 89.82±0.99 91.36±0.50 90.95±0.38

QA qa 23.19±16.36 13.57±4.29 14.42±0.99 23.41±0.50 33.75±5.37

WSD wsd 42.04±6.27 36.24±4.05 48.01±6.68 55.76±12.58 33.30±0.19

ORCAscore 51.88±0.43 50.81±1.35 51.36±0.50 56.33±0.97 54.60±0.38

Table 5: Performance of BERTBase model on Test splits (F1). Metric for the sts and emotion-reg tasks is spearman correlation.
Gold : Data obtained from Arabic Wikipedia, MT : Data obtained through Machine Translation, OCR : Data obtained

through Optical Character Recognition, ASR : Data obtained through Automatic Speech Recognition, TG : Data obtained
through Text Generation.

the gold data in tasks such as adult, dialect-binary,
hate-speech, and sarcasm within the SC task clus-
ter. This improvement is likely because, unlike
the more formal and academically oriented texts
from datasets like Wikipedia articles, ASR data are
varied and include informal content, thus aiding
in tasks such as predicting hate-speech and adult
content. Additionally, other datasets contain pre-
dominantly Modern Standard Arabic (MSA) and
lack sufficient exposure to different Dialectal Ara-
bic (DA), impacting their effectiveness in DA clas-
sification tasks. Notably, the ASR dataset includes
DA data, enhancing its performance in these tasks.

Models trained on MT data consistently score
a lower ORCAscore than any other dataset. This is
likely due to the fact that, unlike datasets sourced
from completely new domains, MT is generated by
translating different subsets of English Wikipedia.
Therefore, it is expected to perform worse than
the original source. However, for the TG dataset,
although it is also generated with Wikipedia as

a base, it is more novel as it is produced from a
language model (JASMINE) trained to perform
well on both MSA and DA, giving it a slight edge
over models solely trained on Wikipedia data or
translated text.

We see a similar pattern to MT in the OCR
dataset with larger declines in performance on tasks
involving informal language. This can be attributed
to the fact that OCR data is acquired from a reposi-
tory of academic texts, making it very unlikely to
have encountered foul language during training.

Ablation Study We conduct an ablation study
to determine if aggregating synthetic data from
different sources improves results. We choose spe-
cific data combinations based on these principles
to assess their individual and collective impact on
model performance. We only compare ARBERTv2
against the GPT-2 model, as GPT-2 achieved the
best results among the three model architectures.
As shown in Table 8, GPT-2 exhibit continuous
improvements with additional data, achieving the
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Task Gold MT OCR ASR TG

abusive 66.88 66.03 69.14 63.62 66.53

adult 86.68 86.69 86.68 86.76 86.63

age 43.08 41.94 41.91 41.99 41.83

ans-claim 64.68 62.83 64.09 63.55 62.73

dangerous 60.10 59.54 59.88 57.93 61.12

dialect-binary 79.94 79.71 79.82 79.99 79.74

dialect-country 24.87 23.13 24.33 23.09 22.92

dialect-region 60.05 59.78 59.93 59.76 59.96

emotion 49.73 44.06 46.09 43.80 46.53

emotion-reg 44.27 32.94 41.59 33.92 34.16

gender 62.03 61.54 61.77 61.59 60.57

hate-speech 69.60 69.07 72.47 68.75 69.42

irony 80.22 78.68 81.47 78.52 79.31

offensive 80.09 78.97 80.60 78.82 79.33

machine-generation 76.04 75.05 75.32 76.00 75.51

sarcasm 65.59 64.65 65.52 65.41 63.22

sentiment 69.75 69.67 69.84 69.70 69.98

arabic-ner 75.35 69.88 71.53 66.29 71.20

aqmar-ner 66.91 62.57 63.08 55.87 64.78

msa-pos 27.38 17.95 12.40 19.52 22.27

dialect-pos 82.33 82.03 82.41 82.04 82.27

ans-stance 44.82 41.49 45.15 38.81 38.70

baly-stance 29.12 25.75 26.00 25.70 26.69

xlni 52.74 47.93 48.45 45.58 50.69

sts 5.20 6.61 13.29 18.37 14.07

mq2q 58.15 52.88 55.51 52.04 52.02

topic 91.68 91.37 91.70 90.89 91.34

qa 37.20 33.24 34.71 21.39 36.20

wsd 68.01 66.84 66.71 67.44 68.09

ORCAscore 59.40 57.40 58.32 56.45 57.86

Table 6: Performance of GPT2 model on Test splits (F1).
Metric for the sts and emotion-reg tasks is spearman correla-
tion. Gold : Data obtained from Arabic Wikipedia, MT :
Data obtained through Machine Translation, OCR : Data ob-
tained through Optical Character Recognition, ASR : Data
obtained through Automatic Speech Recognition, TG : Data
obtained through Text Generation.

highest ORCAscore of 62.58 on the C4 dataset. This
improvement can be attributed to GPT-2’s larger
model size, which benefits more from increased
training data. Notably, the GPT-2 model consis-
tently outperform ARBERTv2 across most tasks,
particularly in the SC and SP clusters, demonstrat-
ing its superior ability to handle a diverse range of
tasks when trained on combined datasets.

5.2 Comparing Against Baseline

We compare the results from our trained models
against our baseline model, ARBERTv2. Despite

Task Gold MT OCR ASR TG

abusive 48.85 48.76 25.48 64.77 49.60

adult 88.52 88.56 88.06 83.19 87.84

age 43.22 44.59 29.10 45.97 45.01

ans-claim 61.92 61.53 40.15 61.01 61.62

dangerous 65.91 65.60 46.75 63.50 60.61

dialect-binary 82.41 82.47 84.61 78.69 84.22

dialect-country 12.01 6.60 3.58 22.63 14.53

dialect-region 58.99 58.41 61.77 61.84 59.98

emotion 27.08 29.49 24.36 45.97 29.70

emotion-reg 3.18 5.17 2.52 11.12 7.02

gender 62.87 62.10 60.16 51.91 62.84

hate-speech 64.14 56.05 48.70 71.13 48.70

irony 76.05 73.07 78.07 79.29 77.00

offensive 78.15 75.59 81.54 84.08 77.98

machine-generation 76.41 75.77 78.84 79.43 77.25

sarcasm 54.05 55.45 45.55 67.79 57.10

sentiment 69.00 70.63 71.84 73.07 70.91

ans-stance 27.23 33.77 25.98 35.97 27.13

baly-stance 24.38 29.06 19.9 26.24 26.12

xlni 32.67 30.17 57.32 48.99 46.93

sts 5.5 5.10 16.34 7.11 12.21

mq2q 85.41 84.10 89.77 78.46 88.08

topic 87.53 88.68 40.21 91.67 90.47

qa 40.74 36.46 36.83 21.36 36.55

wsd 64.63 64.99 65.67 63.69 65.85

ORCAscore 45.84 45.57 42.55 49.98 47.27

Table 7: Performance of T5 model on Test splits (F1). Met-
ric for the sts and emotion-reg tasks is spearman correlation.
Gold : Data obtained from Arabic Wikipedia, MT : Data

obtained through Machine Translation, OCR : Data obtained
through Optical Character Recognition, ASR : Data obtained
through Automatic Speech Recognition, TG : Data obtained
through Text Generation. Token Level Tasks were excluded
as they yielded scores of 0 F1 score.

ARBERTv2 being trained on a vast and diverse
dataset specifically designed for Arabic, our mod-
els achieve comparable results in tasks such as
dialect, age, adult, dangerous, and topic classifi-
cation. Additionally, the Spearman Correlation
between the highest ORCAscore from ARBERTv2
and each model architecture shows significant pos-
itive correlations, indicating a strong relationship
between the two sets of scores. Specifically, the
decoder-only architecture exhibit a high correla-
tion of 0.85, suggesting a close alignment with the
ARBERTv2 model. The encoder-only and encoder-
decoder models also show substantial correlations,
with coefficients of 0.728 and 0.725, respectively.
These results demonstrate not only the competitive
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Task c1 c2 c3 c4 BL

abusive 69.06 68.98 69.14 67.27 75.99

adult 86.48 87.00 86.76 87.20 89.67

age 42.68 42.60 43.08 42.79 45.57

ans-claim 63.23 61.56 64.68 63.08 67.38

dangerous 58.43 60.94 61.12 59.44 64.96

dialect-binary 80.00 79.72 79.99 79.91 86.92

dialect-country 24.76 24.19 24.87 23.06 35.69

dialect-region 60.61 59.89 60.05 59.37 65.21

emotion 46.15 49.46 49.73 45.43 64.81

emotion-reg 43.39 40.28 44.27 42.10 67.73

gender 61.94 61.39 62.03 62.12 63.18

hate-speech 70.99 73.43 72.47 70.59 82.26

irony 80.40 80.29 81.47 81.46 83.83

offensive 79.54 81.08 80.60 80.47 89.55

machine-generation 76.52 75.80 76.04 76.79 87.94

sarcasm 64.15 63.53 65.59 65.82 74.16

sentiment 70.18 69.88 69.98 70.15 78.60

arabic-ner 73.58 74.30 75.35 72.64 90.83

aqmar-ner 66.36 66.11 66.91 65.88 81.70

msa-pos 26.19 29.63 27.38 21.23 52.55

dialect-pos 82.49 82.98 83.54 83.09 93.92

ans-stance 43.14 45.58 45.15 42.14 91.02

baly-stance 28.39 32.24 29.12 27.16 49.34

xlni 50.99 52.82 52.74 51.34 68.17

sts 7.97 22.94 36.23 11.99 71.90

mq2q 55.77 58.37 91.80 54.47 96.73

topic 91.70 91.63 91.70 91.64 93.96

qa 37.20 39.42 41.30 35.08 61.56

wsd 67.97 67.96 68.32 67.63 71.01

ORCAscore 58.65 58.99 60.16 62.58 74.02

Table 8: Performance of GPT2 model on Test splits (F1) and
ARBERTv2. Metric for the sts and emotion-reg tasks is spear-
man correlation. C1 : Combined dataset 1, C2 : Combined
dataset 2, C3 : Combined dataset 3, C4 : Combined dataset
4, BL : Baseline Model ARBERTv2.

performance of our models against a fully trained
PLMs but also highlight the robustness of training
on various sources across different architectures.

6 Conclusion

In this work, we highlight the importance of lever-
aging different data extraction techniques for the
augmentation and development of LMs. Our re-
sults show noticeable benefits from leveraging dif-
ferent sources of text to augment the performance
of LMs. Our findings indicate that models trained
on diverse synthetic data sources can achieve per-
formance comparable to those trained on gold data.
Specifically, the diverse domain sources in ASR

data and the informal content included in such
datasets significantly enhance model capabilities
in various tasks. While MT data enable lower per-
formance due to its translation-based generation,
TG data demonstrate improved results due to its
novelty and the robust language model used in its
creation. Our work, emphasizes the value of in-
corporating a variety of data sources to improve
the effectiveness of language models in handling
different linguistic tasks.

7 Limitations

We identify the following limitations in this work:

1. Only the ASR dataset contains dialectal Ara-
bic (DA) data, whereas all other datasets are
limited to Modern Standard Arabic (MSA).
This inclusion of DA data in the ASR dataset
boosts the performance of models trained on
ASR data, particularly for tasks related to DA.
Furthermore, the varying number of datasets
from each source makes it challenging to en-
sure a fair comparison of the efficacy of these
datasets.

2. The model sizes differ significantly, which
may affect performance and does not ensure a
fair comparison. Larger models, such as GPT-
2, benefit more from increased training data,
potentially biasing the results. This variability
in model size complicates direct performance
comparisons across different architectures.

3. The scope of this study is primarily centered
around NLU tasks. While our findings pro-
vide valuable insights into the performance of
various datasets and model architectures for
NLU, they may not generalize to other types
of natural language processing tasks, such as
NLG tasks.

4. The datasets used in this study may carry in-
herent biases specific to their domains of ori-
gin. For example, the OCR dataset, sourced
from academic texts, may not adequately rep-
resent informal language use, affecting model
performance on tasks involving colloquial or
slang expressions. This domain-specific bias
can limit the applicability of our findings to
more diverse linguistic contexts.
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8 Ethics Statement and Broad Impact

Promoting inclusive NLP research and resource
development. NLP for Arabic languages has been
under-resourced compared to other languages. This
scarcity of resources has hindered the develop-
ment of robust NLP applications for Arabic. Our
work aims to bridge this gap by leveraging diverse
datasets to improve model performance across var-
ious tasks. We hope to stimulate further research
and development in Arabic NLP, fostering innova-
tion and enabling the creation of more effective and
culturally aware language technologies.
Encouraging future research and innovation.
Our research underscores the potential of using
diverse data sources to enhance the performance of
language models. We hope that our findings will in-
spire further exploration into the integration of un-
derrepresented language varieties in NLP research.
This pursuit can lead to the creation of more ro-
bust, adaptable, and inclusive language models. By
advancing the state of NLP for Arabic and other
less-represented languages, we contribute to the
broader goal of developing AI technologies that
serve a global audience, promoting cross-cultural
understanding and communication.
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A Appendices

A.1 Jasmine Sample
The prompt and generated examples from Jasmine
can be found in Table 9.

A.2 Test Results with Standard Deviation
Results of the Test sets differences in respect to the
gold data for each model architecture and standard
deviation can be found in Table 10, 11.

A.3 Test Results as Compared to Gold
Results of the Test sets with positive and nega-
tive differences in respect to the gold data for each
model architecture can be found in Table 12, 13, 14.

A.4 Dev Results
Results of the Dev sets for each model architecture
can be found in Table 15, 16, 17.
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Jasmine Generated Text
Sample 1

, �é�J
mÌ'@ �HA 	J
KA¾Ë@ ©J
Ôg. ú

	̄ É
K @ñ�ÊË ½Ë 	Y»ð �HA¢J
jÖÏ @ð PAjJ. Ë @ð �H@Q�
jJ. Ë @ð Èð@Yj. ÊË ú
æ�A�



B@ 	à �ñºÖÏ @ ñëð , �ém�
' @QË @ð 	àñÊË @ �éÖß
Y« ��é 	̄ A 	® �� ��èXAÓ ZAÖÏ
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ºË@ �HAJ.

�
»QÖÏ @ Q��»
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ÒJ
ºË@ é�J 	ªJ
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@

Table 9: Examples of generated wikipedia text. We color the initial prompt with blue.
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Task Gold MT OCR ASR TG

abusive 66.88±1.52 66.03±1.51 69.14±1.95 63.62±2.22 66.53±2.92

adult 86.68±0.91 86.69±0.23 86.68±0.23 86.76±0.19 86.63±0.15

age 43.08±0.84 41.94±0.45 41.91±0.56 41.99±0.71 41.83±0.71

ans-claim 64.68±0.60 62.83±1.71 64.09±0.59 63.55±0.76 62.73±0.44

dangerous 60.10±1.56 59.54±1.45 59.88±3.35 57.93±2.65 61.12±3.42

dialect-binary 79.94±0.69 79.71±0.29 79.82±0.78 79.99±0.27 79.74±0.47

dialect-country 24.87±1.40 23.13±0.97 24.33±0.73 23.09±0.56 22.92±0.30

dialect-region 60.05±0.56 59.78±0.18 59.93±0.29 59.76±0.29 59.96±0.07

emotion 49.73±1.93 44.06±0.26 46.09±2.37 43.80±0.59 46.53±1.85

emotion-reg 44.27±0.47 32.94±1.99 41.59±1.28 33.92±3.24 34.16±1.33

gender 62.03±4.04 61.54±0.36 61.77±0.58 61.59±0.35 60.57±0.86

hate-speech 69.60±1.64 69.07±0.87 72.47±1.94 68.75±5.32 69.42±1.59

irony 80.22±0.73 78.68±0.56 81.47±0.48 78.52±0.97 79.31±0.98

offensive 80.09±0.95 78.97±0.37 80.60±0.46 78.82±0.46 79.33±0.49

machine-generation 76.04±0.35 75.05±0.38 75.32±0.39 76.00±0.55 75.51±1.06

sarcasm 65.59±2.07 64.65±1.99 65.52±2.08 65.41±1.91 63.22±1.05

sentiment 69.75±0.58 69.67±0.23 69.84±0.83 69.70±0.34 69.98±0.26

arabic-ner 75.35±0.64 69.88±0.31 71.53±0.56 66.29±0.44 71.20±0.44

aqmar-ner 66.91±1.35 62.57±0.56 63.08±2.01 55.87±0.72 64.78±0.72

msa-pos 27.38±2.45 17.95±1.27 12.40±0.77 19.52±2.13 22.27±2.42

dialect-pos 82.33±0.32 82.03±0.20 82.41±0.38 82.04±0.41 82.27±0.52

ans-stance 44.82±8.62 41.49±1.83 45.15±2.39 38.81±0.40 38.70±2.32

baly-stance 29.12±0.23 25.75±2.21 26.00±2.30 25.70±0.91 26.69±1.19

xlni 52.74±2.69 47.93±1.72 48.45±5.36 45.58±1.39 50.69±1.39

sts 5.20±2.26 6.61±3.64 13.29±4.29 18.37±6.78 14.07±8.10

mq2q 58.15±2.95 52.88±2.37 55.51±2.16 52.04±2.40 52.02±2.52

topic 91.68±0.31 91.37±0.21 91.70±0.24 90.89±0.69 91.34±0.26

qa 37.20±0.99 33.24±0.38 34.71±0.34 21.39±0.62 36.20±0.62

wsd 68.01±0.18 66.84±0.59 66.71±1.97 67.44±0.19 68.09±0.25

ORCAscore 59.40±0.32 57.40±0.40 58.32±0.25 56.45±0.25 57.86±0.25

Table 10: Performance of GPT2 model on Test splits (F1).
Metric for the sts and emotion-reg tasks is spearman correla-
tion. Gold : Data obtained from Arabic Wikipedia, MT :
Data obtained through Machine Translation, OCR : Data ob-
tained through Optical Character Recognition, ASR : Data
obtained through Automatic Speech Recognition, TG : Data
obtained through Text Generation.

Task Gold MT OCR ASR TG

abusive 48.85±0.20 48.76±0.53 25.48±1.95 64.77±0.39 49.60±0.40

adult 88.52±0.36 88.56±0.16 88.06±0.76 83.19±0.19 87.84±0.26

age 43.22±0.10 44.59±0.44 29.10±0.76 45.97±0.50 45.01±0.35

ans-claim 61.92±0.87 61.53±0.16 40.15±2.66 61.01±1.47 61.62±2.66

dangerous 65.91±0.85 65.60±0.88 46.75±1.87 63.50±1.87 60.61±1.87

dialect-binary 82.41±0.17 82.47±0.29 84.61±0.11 78.69±0.40 84.22±0.39

dialect-country 12.01±0.21 6.60±0.12 3.58±0.45 22.63±0.19 14.53±0.33

dialect-region 58.99±0.15 58.41±0.13 61.77±0.09 61.84±0.04 59.98±0.17

emotion 27.08±0.58 29.49±0.25 24.36±0.36 45.97±0.23 29.70±0.36

emotion-reg 3.18±1.18 5.17±2.30 2.52±1.64 11.12±1.78 7.02±1.78

gender 62.87±0.39 62.10±0.23 60.16±0.31 51.91±0.12 62.84±0.86

hate-speech 64.14±0.89 56.05±1.34 48.70±1.31 71.13±1.15 48.70±1.26

irony 76.05±0.81 73.07±0.50 78.07±0.62 79.29±0.27 77.00±0.27

offensive 78.15±0.94 75.59±1.57 81.54±0.63 84.08±0.47 77.98±0.47

machine-generation 76.41±0.18 75.77±0.26 78.84±0.77 79.43±0.21 77.25±0.21

sarcasm 54.05±2.00 55.45±1.67 45.55±1.66 67.79±1.27 57.10±1.28

sentiment 69.00±0.19 70.63±0.25 71.84±0.34 73.07±0.03 70.91±0.23

ans-stance 27.23±1.40 33.77±3.96 25.98±1.83 35.97±0.85 27.13±2.02

baly-stance 24.38±0.27 29.06±0.98 19.98±0.31 26.24±0.71 26.12±1.49

xlni 32.67±0.73 30.17±0.66 57.32±0.31 48.99±0.76 46.93±0.69

sts 5.5±2.89 5.10±3.64 16.34±4.27 7.11±0.58 12.21±5.10

mq2q 85.41±0.31 84.10±0.35 89.77±0.19 78.46±0.24 88.08±0.45

topic 87.53±2.11 88.68±1.17 40.21±0.33 91.67±1.58 90.47±2.71

qa 40.74±0.84 36.46±0.18 36.83±0.49 21.36±0.17 36.55±0.72

wsd 64.63±0.48 64.99±0.15 65.67±0.23 63.69±0.57 65.85±0.06

ORCAscore 45.84±2.11 45.57±1.17 42.55±0.33 49.98±1.58 47.27±2.71

Table 11: Performance of T5 model on Test splits (F1). Met-
ric for the sts and emotion-reg tasks is spearman correlation.
Gold : Data obtained from Arabic Wikipedia, MT : Data

obtained through Machine Translation, OCR : Data obtained
through Optical Character Recognition, ASR : Data obtained
through Automatic Speech Recognition, TG : Data obtained
through Text Generation. Token Level Tasks were excluded
as they yielded scores of 0 F1 score.
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Cluster Task Gold MT OCR ASR TG

SC

abusive 67.86 −2.18 −6.13 −2.66 −2.01
adult 72.00 +2.92 +1.52 +15.20 +15.19
age 33.49 +8.24 +0.01 +7.91 +8.43
ans-claim 55.06 +1.35 +5.89 +7.43 +6.14
dangerous 59.74 −2.71 −5.13 +3.10 +1.39
dialect-binary 65.74 +0.15 +0.84 +15.02 +14.21
dialect-country 16.93 +0.10 +5.68 +6.79 +7.06
dialect-region 59.36 +1.53 +0.73 +1.23 +1.35
emotion 47.10 +1.43 −0.76 −0.10 −0.81
emotion-reg 14.49 +0.49 +17.54 +17.36 +9.22
gender 50.07 −8.13 −14.35 −15.21 −7.18
hate-speech 63.87 +1.47 −8.47 +8.32 −1.85
irony 79.14 +0.57 +0.34 +0.44 −0.25
offensive 78.56 +0.52 +1.51 +1.05 +0.28
machine-generation 73.97 −1.85 +0.90 +1.92 +0.90
sarcasm 59.58 −0.01 +2.20 +5.76 +6.16
sentiment 70.56 −0.92 −1.20 −0.80 −0.92

SP

arabic-ner 63.81 −6.48 −5.87 +0.59 +2.54
aqmar-ner 53.92 −6.63 −8.10 −0.16 +3.76
msa-pos 14.71 −2.31 −0.33 +1.39 −1.53
dialect-pos 81.67 −0.29 −0.49 +4.36 +2.53

NLI ans-stance 37.87 +4.38 +5.20 +13.38 +10.04
baly-stance 25.65 +0.05 −5.67 +3.64 +1.14
xlni 36.33 −19.63 −0.40 +11.56 +0.55

STS sts 11.08 +4.35 +6.46 +9.91 +3.20
mq2q 55.09 +8.80 −2.29 −2.17 −1.83

TC topic 91.63 −0.77 −1.81 −0.27 −0.68

QA qa 23.19 −9.62 −8.77 +0.22 +10.56

WSD wsd 42.04 −5.80 +5.97 +13.72 −8.74

ORCAscore 51.88 −1.07 −0.52 +4.45 +2.72

Table 12: Difference in performance of BERTBase model on Test set compared to Gold(F1). Metric for the sts and emotion-reg
tasks is spearman correlation. Gold : Data obtained from Arabic Wikipedia, MT : Data obtained through Machine Translation,
OCR : Data obtained through Optical Character Recognition, ASR : Data obtained through Automatic Speech Recognition,
TG : Data obtained through Text Generation.
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Task Gold MT OCR ASR TG

abusive 66.88 −0.85 +2.26 −3.26 −0.35

adult 86.68 +0.01 +0.00 +0.08 −0.05

age 43.08 −1.14 −1.17 −1.09 −1.25

ans-claim 64.68 −1.85 −0.59 −1.13 −1.95

dangerous 60.10 −0.56 −0.22 −2.17 +1.02

dialect-binary 79.94 −0.23 −0.12 +0.05 −0.20

dialect-country 24.87 −1.74 −0.54 −1.78 −1.95

dialect-region 60.05 −0.27 −0.12 −0.29 −0.09

emotion 49.73 −5.67 −3.64 −5.93 −3.20

emotion-reg 44.27 −11.33 −2.68 −10.35 −10.11

gender 62.03 −0.49 −0.26 −0.44 −1.46

hate-speech 69.60 −0.53 +2.87 −0.85 −0.18

irony 80.22 −1.54 +1.25 −1.70 −0.91

offensive 80.09 −1.12 +0.51 −1.27 −0.76

machine-generation 76.04 −0.99 −0.72 −0.04 −0.53

sarcasm 65.59 −0.94 −0.07 −0.18 −2.37

sentiment 69.75 −0.08 +0.09 −0.05 +0.23

arabic-ner 75.35 −5.47 −3.82 −9.06 −4.15

aqmar-ner 66.91 −4.34 −3.83 −11.04 −2.13

msa-pos 27.38 −9.43 −14.98 −7.86 −5.11

dialect-pos 82.33 −0.30 +0.08 −0.29 −0.06

ans-stance 44.82 −3.33 +0.33 −6.01 −6.12

baly-stance 29.12 −3.37 −3.12 −3.42 −2.43

xlni 52.74 −4.81 −4.29 −7.16 −2.05

sts 5.20 +1.41 +8.09 +13.17 +8.87

mq2q 58.15 −5.27 −2.64 −6.11 −6.13

topic 91.68 −0.31 +0.02 −0.79 −0.34

qa 37.20 −3.96 −2.49 −15.81 −1.00

wsd 68.01 −1.17 −1.30 −0.57 +0.08

ORCAscore 59.40 −2.00 −1.08 −2.95 −1.54

Table 13: Difference in performance of GPT2 model on Test
set compared to Gold(F1). Metric for the sts and emotion-reg
tasks is spearman correlation. Gold : Data obtained from
Arabic Wikipedia, MT : Data obtained through Machine
Translation, OCR : Data obtained through Optical Charac-
ter Recognition, ASR : Data obtained through Automatic
Speech Recognition, TG : Data obtained through Text Gen-
eration.

Task Gold MT OCR ASR TG

abusive 48.85 −0.09 −23.37 +15.92 +0.75

adult 88.52 +0.04 −0.46 −5.33 −0.68

age 43.22 +1.37 −14.12 +2.75 +1.79

ans-claim 61.92 −0.39 −21.77 −0.91 −0.30

dangerous 65.91 −0.31 −19.16 −2.41 −5.30

dialect-binary 82.41 +0.06 +2.20 −3.72 +1.81

dialect-country 12.01 −5.41 −8.43 +10.62 +2.52

dialect-region 58.99 −0.58 +2.78 +2.85 +0.99

emotion 27.08 +2.41 −2.72 +18.89 +2.62

emotion-reg 3.18 +1.99 −0.66 +7.94 +3.84

gender 62.87 −0.77 −2.71 −10.96 −0.03

hate-speech 64.14 −8.09 −15.44 +7.00 −15.44

irony 76.05 −2.98 +2.02 +3.24 +0.95

offensive 78.15 −2.56 +3.39 +5.93 −0.17

machine-generation 76.41 −0.64 +2.43 +3.02 +0.84

sarcasm 54.05 +1.40 −8.50 +13.74 +3.05

sentiment 69.00 +1.63 +2.84 +4.07 +1.91

ans-stance 27.23 +6.54 −1.25 +8.74 −0.10

baly-stance 24.38 +4.68 −4.40 +1.86 +1.74

xlni 32.67 −2.50 +24.65 +16.32 +14.26

sts 5.50 −0.40 +10.84 +1.61 +6.71

mq2q 85.41 −1.31 +4.36 −6.95 +2.67

topic 87.53 +1.15 −47.32 +4.14 +2.94

qa 40.74 −4.28 −3.91 −19.38 −4.19

wsd 64.63 +0.36 +1.04 −0.94 +1.22

ORCAscore 45.84 −0.27 −3.29 +4.14 +1.43

Table 14: Difference in performance of T5 model on Test
set compared to Gold(F1). Metric for the sts and emotion-reg
tasks is spearman correlation. Gold : Data obtained from
Arabic Wikipedia, MT : Data obtained through Machine
Translation, OCR : Data obtained through Optical Charac-
ter Recognition, ASR : Data obtained through Automatic
Speech Recognition, TG : Data obtained through Text Gen-
eration. Token Level Tasks were excluded as they yielded
scores of 0 F1 score.

280



Cluster Task Gold MT OCR ASR TG

SC

abusive 67.66 67.43 64.84 67.97 66.07
adult 73.06 76.76 74.60 88.37 89.35
age 68.37 87.47 69.94 96.09 96.41
ans-claim 56.62 55.89 62.07 64.81 65.15
dangerous 65.44 64.59 57.53 64.42 66.19
dialect-binary 67.12 67.01 67.59 83.18 82.54
dialect-country 16.11 15.99 21.73 22.68 22.91
dialect-region 82.35 84.57 83.11 84.29 84.38
emotion 48.86 47.69 47.62 48.24 47.38
emotion-reg 11.61 10.33 26.51 24.39 20.03
gender 49.74 41.90 35.27 35.27 43.09
hate-speech 64.10 65.12 54.71 72.11 66.27
irony 79.36 77.72 78.84 77.89 78.45
offensive 80.44 78.19 79.88 78.98 78.97
machine-generation 75.41 73.02 75.89 75.89 75.70
sarcasm 60.08 61.67 60.01 70.04 66.89
sentiment 80.73 80.01 79.62 80.22 79.72

SP

arabic-ner 61.35 54.95 55.14 62.11 65.59
aqmar-ner 55.58 49.77 49.22 53.52 56.87
msa-pos 16.85 15.22 17.02 19.60 15.39
dialect-pos 81.78 81.91 81.64 86.16 84.79

NLI ans-stance 38.93 43.45 37.44 50.09 45.35
baly-stance 30.99 33.73 20.44 39.14 38.51
xlni 34.32 17.62 30.16 46.27 36.43

STS sts 71.06 70.51 70.17 69.85 70.20
mq2q 55.66 53.84 54.02 53.64 53.36

TC topic 91.99 90.71 90.14 91.86 91.94

QA qa 31.19 14.60 15.64 21.06 29.43

WSD wsd 42.39 36.22 47.64 56.14 38.87

ORCAscore 51.88 50.81 51.36 56.33 54.60

Table 15: Performance of BERTBase model on Dev set (F1). Metric for the sts and emotion-reg tasks is spearman correlation.
Gold : Data obtained from Arabic Wikipedia, MT : Data obtained through Machine Translation, OCR : Data obtained

through Optical Character Recognition, ASR : Data obtained through Automatic Speech Recognition, TG : Data obtained
through Text Generation.
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Task Gold MT OCR ASR TG

abusive 66.37 64.91 68.32 63.53 64.15
adult 88.93 88.75 89.24 89.03 88.30
age 99.61 98.86 98.61 99.14 99.21
ans-claim 65.81 65.72 65.45 65.39 65.99
dangerous 67.38 65.78 64.90 64.28 65.14
dialect-binary 82.23 81.66 81.91 81.76 81.88
dialect-country 23.42 22.35 22.93 21.78 22.43
dialect-region 83.32 83.32 83.20 84.29 83.49
emotion 47.72 45.12 47.57 44.21 45.79
emotion-reg 36.76 30.45 32.50 31.28 31.82
gender 60.65 60.32 60.77 60.20 59.90
hate-speech 73.15 71.26 72.54 70.04 70.66
irony 80.16 78.52 81.88 80.18 78.42
offensive 80.87 79.81 83.21 78.93 80.01
machine-generation 76.10 75.27 75.29 75.45 75.15
sarcasm 66.00 65.88 67.25 67.66 66.24
sentiment 81.04 80.75 80.69 79.94 79.98

arabic-ner 75.19 68.80 70.82 66.01 70.71
aqmar-ner 67.85 62.78 63.86 57.91 64.53
msa-pos 28.79 20.42 15.51 22.21 24.30
dialect-pos 83.12 82.41 83.36 83.06 82.52

ans-stance 45.26 41.65 45.14 44.14 45.68
baly-stance 43.43 41.65 40.44 39.99 42.03
xlni 45.66 42.52 44.84 41.10 45.29

sts 75.31 71.96 72.19 71.22 71.38
mq2q 58.99 54.14 55.76 52.32 54.11

topic 92.56 92.21 92.49 91.42 92.10

qa 67.84 67.23 66.80 67.32 68.15
wsd 65.41 63.44 64.15 62.48 63.98

ORCAscore 65.00 61.80 63.32 62.48 63.22

Table 16: Performance of GPT-2 model on Dev set (F1). Met-
ric for the sts and emotion-reg tasks is spearman correlation.
Gold : Data obtained from Arabic Wikipedia, MT : Data

obtained through Machine Translation, OCR : Data obtained
through Optical Character Recognition, ASR : Data obtained
through Automatic Speech Recognition, TG : Data obtained
through Text Generation.

Task Gold MT OCR ASR TG

abusive 47.25 48.47 25.03 63.88 47.90
adult 88.26 88.38 89.79 90.24 89.70
age 44.92 43.88 32.15 65.99 47.94
ans-claim 61.17 61.01 40.47 64.72 61.65
dangerous 53.86 53.37 43.37 65.48 55.77
dialect-binary 84.16 85.25 86.45 86.45 85.62
dialect-country 11.74 11.27 3.79 22.10 12.92
dialect-region 80.42 80.40 84.75 85.44 81.35
emotion 28.81 27.88 24.27 44.15 30.91
emotion-reg 1.34 1.90 −1.50 12.06 6.61
gender 61.19 61.01 59.54 61.62 62.45
hate-speech 61.65 69.67 48.88 71.49 48.88
irony 73.98 73.61 78.46 81.61 77.95
offensive 80.70 79.50 84.20 84.20 80.93
machine-generation 76.82 77.33 80.28 79.30 78.09
sarcasm 54.80 54.86 45.86 69.40 60.60
sentiment 79.04 58.51 82.18 83.30 80.81

ans-stance 26.60 25.61 25.61 36.18 28.47
baly-stance 32.08 20.44 20.44 36.82 30.87
xlni 30.21 55.25 55.25 47.69 47.13

sts 58.51 55.12 55.12 68.08 68.47
mq2q 86.62 90.14 90.14 81.14 90.51

topic 90.58 92.10 92.10 92.01 90.51

qa 36.77 36.77 36.77 21.05 31.62

wsd 64.53 64.53 64.53 63.11 66.20

total 56.64 52.30 52.30 63.08 58.34

Table 17: Performance of T5 model on Dev set (F1). Met-
ric for the sts and emotion-reg tasks is spearman correlation.
Gold : Data obtained from Arabic Wikipedia, MT : Data

obtained through Machine Translation, OCR : Data obtained
through Optical Character Recognition, ASR : Data obtained
through Automatic Speech Recognition, TG : Data obtained
through Text Generation. Token Level Tasks were excluded
as they yielded scores of 0 F1 - more details can be found on
section 4.3
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