
Proceedings of The Second Arabic Natural Language Processing Conference, pages 130–139
August 16, 2024 ©2024 Association for Computational Linguistics

Performance Analysis of Speech Encoders for Low-Resource SLU and ASR
in Tunisian Dialect

Salima Mdhaffar1, Haroun Elleuch1,2, Fethi Bougares2, Yannick Estève1

1LIA, Avignon University, France
2Elyadata, Paris, France

salima.mdhaffar@univ-avignon.fr

Abstract

Speech encoders pretrained through self-
supervised learning (SSL) have demonstrated
remarkable performance in various downstream
tasks, including Spoken Language Understanding
(SLU) and Automatic Speech Recognition (ASR).
For instance, fine-tuning SSL models for such
tasks has shown significant potential, leading to
improvements in the SOTA performance across
challenging datasets. In contrast to existing
research, this paper contributes by comparing the
effectiveness of SSL approaches in the context of
(i) the low-resource spoken Tunisian Arabic dialect
and (ii) its combination with a low-resource SLU
and ASR scenario, where only a few semantic an-
notations are available for fine-tuning. We conduct
experiments using many SSL speech encoders on
the TARIC-SLU dataset. We use speech encoders
that were pre-trained on either monolingual or
multilingual speech data. Some of them have also
been refined without in-domain nor Tunisian data
through multimodal supervised teacher-student
paradigm. This study yields numerous significant
findings that we are discussing in this paper.

1 Introduction

Self-supervised learning methods aim to train a rep-
resentational model, also called upstream model,
that benefits a collection of downstream tasks. SSL
models are trained by using information extracted
from the input data itself as the label to target.
Various techniques have been introduced in the
literature in order to learn powerful representa-
tions from the speech signal, including those based
on autoregressive predictive coding (Chung et al.,
2019), contrastive losses (Schneider et al., 2019;
Baevski et al., 2020) and masked prediction (Liu
et al., 2021; Chen et al., 2022; Hsu et al., 2021).
Other works explored the combination of con-
trastive learning and masked language modeling

(Chung et al., 2021). The learned SSL models like
wav2vec 2.0 (Baevski et al., 2020), wavLM (Chen
et al., 2022), data2vec (Baevski et al., 2022b),
data2vec 2.0 (Baevski et al., 2022a), ArTST (Toyin
et al., 2023), w2v-BERT (Chung et al., 2021) have
been proven effective for a wide range of tasks as
they considerably lighten the amount of annotated
speech data normally required for downstream
tasks, while exploiting very large amounts of un-
labeled data. Some models have been extended to
a cross-lingual setting through XLS-R-128 (Babu
et al., 2021), MMS (Pratap et al., 2023) and the
recently released w2v-BERT 2.0 model (Barrault
et al., 2023). Several efforts went further to en-
rich the frame-level speech representations with
textual semantic information. In 2022, Khurana
et al. (2022) proposed such a model called SAMU-
XLSR allowing the obtention of a better semantic
encoding in the speech representations of a pre-
trained SSL model. SAMU-XLSR approach fol-
lows a teacher-student supervised learning frame-
work that uses multilingual text/audio paired data
and the Language-agnostic BERT Sentence Em-
bedding (LaBSE) model (Feng et al., 2022). This
teacher-student approach is used to refine an SSL
pre-trained model dedicated to speech processing
to make it able to produce sentence-level embed-
dings from speech similar to the embbedings given
by the LaBSE model from the speech transcrip-
tions. They use the CommonVoice version 8 cor-
pora applied to 53 languages to refine the XLS-R-
128 model (Babu et al., 2021).

More Recently, a multilingual sentence embed-
ding space for 200 text and 37 speech languages
called SONAR (Duquenne et al., 2023) was intro-
duced by META AI. The authors adopted a two-
step training strategy: They first build a sentence
embedding space for the multilingual text before
extending this to the speech modality via a teacher-
student approach. Applied to many downstream
tasks, SSL speech encoders have shown their great
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potential by improving the state-of-the-art perfor-
mances on challenging benchmark datasets. How-
ever, understanding speech encoder capabilities re-
quires a benchmarking effort to compare and draw
insights across the techniques.

Indeed, there has been a considerable amount of
work and effort in order to benchmark such SSL
models. SUPERB (Yang et al., 2021) is a good
example of this effort. It provides a comprehen-
sive speech SSL benchmark including tasks such as
phoneme detection, ASR, slot filling, intent detec-
tion, keyword spotting, etc. The SUPERB bench-
mark has been extended to evaluate multilingual
speech systems in the ML-SUPERB benchmark
(Shi et al., 2023). XTREME-S (Conneau et al.,
2022) is another example that focuses only on SSL
models trained with multiple languages. Despite
the large number of high-quality benchmarks that
evaluate SSL models on various downstream tasks,
a limited number of studies have probed their ef-
fectiveness for downstream tasks in spoken Arabic
dialects.

In this paper, we propose to broaden the SSL
benchmarking effort to the Automatic Speech
Recognition (ASR) and Spoken Language Under-
standing (SLU) of spoken Arabic Dialects. The
contributions of this work are as follows:

1. We benchmark the effectiveness of various
state-of-the-art SSL speech encoders in the
very challenging context of a low-resource
spoken Arabic dialect (Tunisian dialect) with
a limited training data;

2. We compare the performances of mono vs.
multilingual/bilingual SSL models, and the
impact of a semantic encoding refinement
through a multimodal supervised teacher-
student approach;

3. We explore the use of recently released SSL
models (w2v-BERT 2.0 and SONAR) for both
ASR and SLU. To our knowledge, this is the
first work in the literature to evaluate w2v-
BERT 2.0 and SONAR for an SLU task;

4. We release our code and models1 for repro-
ducibility and to encourage future research on
ASR and SLU of Arabic dialects.

1https://github.com/speechbrain/speechbrain/
tree/develop/recipes/TARIC

2 Benchmarking protocol

In this section, we formulate the downstream tasks
and describe the Tunisian dialect dataset together
with the speech encoders used in our study.

2.1 Downstream tasks
In this work, we address two tasks: Automatic
Speech Recognition and Spoken Language
Understanding of the Tunisian Arabic spoken
dialect.

(a) ASR: Automatic Speech Recognition has the
ultimate goal of providing the correct tran-
scription given spoken utterance. It is used
to assess the ability of SSL models to extract
content information from audio inputs. The
ASR task will be evaluated in terms of Word
Error Rate (WER).

(b) SLU: Spoken language understanding refers
to natural language processing tasks that aim
to extract semantic information from speech
(Tur and De Mori, 2011). Different tasks
can be addressed as SLU tasks, such as
named entity recognition from speech, dia-
log state tracking, intent recognition, slot fill-
ing, etc. . . In the context of a conventional dia-
logue system, information is typically repre-
sented through a semantic frame structure. For
each utterance, constructing the semantic rep-
resentation primarily involves (i) classifying
the user’s utterance in terms of ‘speech acts’
(SA) (Searle, 1969) or ‘intents’ and (ii) slot
filling (Wang et al., 2005). We consider these
two SLU tasks following the available annota-
tions: (1) Speech Act classification classifies
speech utterances into predefined classes to
determine the intent of the speaker; (2) Slot
filling is a natural language processing and
information extraction technique that entails
the identification and extraction of specific
pieces of information or attributes, referred
to as ‘slots’, from unstructured text or spoken
language. These slots are typically associated
with predefined categories or entities. The
SLU speech act recognition will be evaluated
in terms of Speech Act Error Rate (SAER),
which is a standard classification error rate.
The SLU slot filling task will be evaluated
in terms of Concept Error Rate (COER) and
Concept/Value Error Rate (CVER). COER is
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computed similarly to WER by taking into
account only the semantic labels in the refer-
ence and hypothesis annotations. The CVER
computation is identical, but the occurrences
of concept/value pairs are taken into account
instead of the concept alone. CVER implies
that if any character within the word’s support
prediction or the concept tag prediction differs
from the reference, the entire prediction for
that concept is considered as an error. For the
calculation of these metrics, we have drawn
on the detailed description in Laperrière et al.
(2022).

2.2 Dataset

The ASR dataset TARIC (Masmoudi et al., 2014)
has been used for this work along with its recent
SLU enrichment, TARIC-SLU (Mdhaffar et al.,
2024). The acquisition of the TARIC dataset was
carried out in train stations in Tunisia. The dataset
is made of human-human recordings with their
manual transcriptions and semantic annotations.
It is composed of more than 2,000 dialogues from
109 different speakers. The dataset2 is split into
three parts (train, dev and test) as described in Table
1.

Table 1: TARIC-SLU data set split into Train, Dev and
Test

Train Dev Test
#Utterance 15752 771 1249
#Dialog 1713 103 173
Duration 7.5 hrs 29 min 53 min

TARIC-SLU was annotated using 62 semantic
concept tags such as city name arrival, departure
time, ticket price, etc. and 3 speech acts (directives-
answer, directives-query and politeness). The ex-
ample below shows the original sentence (a) to-
gether with its English translation (b) and the cor-
responding semantic annotation (c).

As for the annotation tags, the first word of each
sentence represents the speech act tag (Directives-
query in this example). ‘<city-name-departure ’
is an opening tag starting the support word se-
quence ‘Sfax’ and expressing that this word se-
quence is associated with the city-name-departure
semantic concept. The character ‘>’ represents the
closing tag, and it is used to close all concept tags.

2https://demo-lia.univ-avignon.fr/
taric-dataset/

The same schema is used for the other semantic
concepts. For speech act tags, there is no closing
tag, since each sentence has a single speech act.

(a) ��̄A 	®� 	áÓ �HAK
A¾�K 	Pð 	P ú

	æJ
¢«



@ ù
 ëCËAK.	­�	� ð �éJ
 	JÒ�JË @ ©Ó �	�ñ�JË

(b) Please give me two tickets from Sfax to Tunis
at eight thirty

(c) Directives-query please
<command-task give me >
<number-of-tickets two > <object tickets >

from <city-name-departure Sfax >
to <city-name-arrival Tunis > at

<departure-time eight thirty >

2.3 SSL speech encoders

For our study, we used different types of speech
encoders. We considered monolingual SSL speech
encoders (French: wav2vec 2.0 LeBenchmark-7K;
English: wav2vec 2.0 LV60, HuBERT, wavLM,
data2vec 2.0 and SONAR-ENG) as well as cross-
lingual SSL speech encoders (wav2vec 2.0 VP-
100K, XLS-R-128, MMS, MMS-1B, w2v-BERT
2.0 and SAMU-XLSR) and two bilingual speech
encoders (SONAR-ARB and SONAR-FRA). As
explained in the introduction, SAMU-XLSR is a
modified version of XLS-R-128 and SONAR mod-
els are a modified version of w2v-BERT 3. We put
the URLs for all these models in the Appendix A.

SAMU-XLSR is based on the pre-trained mul-
tilingual XLS-R-128. SAMU-XLSR will process
audio and text paired data. The XLS-R-128 model
used in this approach was designed to generate
speech representations for short 20 milliseconds
speech frames. To make use of this model, SAMU-
XLSR performs pooling and projection to create
a single sentence-level representation. In paral-
lel, LaBSE (Feng et al., 2022) sentence-level tex-
tual representations are simply extracted. Both
representations being on the same semantic space,
SAMU- XLSR’s is then being pulled towards
LaBSE’s with the help of a cosine similarity loss
function. This means the parameters of all SAMU-
XLSR’s components are optimized to predict the
textual representations generated by the frozen

3Notice that w2v-BERT and w2v-BERT 2.0 are two differ-
ent models. Both of them are trained using the same architec-
ture, but w2v-BERT is an English model and w2v-BERT 2.0 is
a multilingual model. w2v-BERT has not been released to the
research community, so we cannot evaluate its performance.
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Table 2: Architecture details of benchmarked SSL encoders. * SAMU-XLSR is a modified version of XLS-R-128,
♣ all SONAR speech encoders models are a modified version of w2v-BERT, ⋆ represents the size of the paired
dataset used in the refinement step.

Speech encoder #Param #Lang Hours Network architecture
LeBenchmark-7K (Evain et al., 2021) 317M 1 7K 7CNN-24Trans-Enc
English lv60 (Baevski et al., 2020) 317M 1 960 7CNN-24Trans-Enc
HuBERT (Hsu et al., 2021) 316M 1 60K 7CNN-24Trans-Enc
wavLM (Chen et al., 2022) 316M 1 94K 7CNN-24Trans-Enc
data2vec 2.0 (Baevski et al., 2022a) 314M 1 960 7CNN-24Trans-Enc
VP-100K (Wang et al., 2021) 317M 23 100K 7CNN-24Trans-Enc
XLS-R-128 (Babu et al., 2021) 317M 128 436K 7CNN-24Trans-Enc
MMS(Pratap et al., 2023) 317M 1024 23K 7CNN-24Trans-Enc
MMS-1B (Pratap et al., 2023) 1B 1024 23K 7CNN-48Trans-Enc
w2v-BERT 2.0 (Barrault et al., 2023) 600M 143 4.5M 2CNN-24Conformer
SAMU-XLSR (Khurana et al., 2022) ∗ 317M 128 436K+12.7K⋆ 7CNN-24Trans-Enc
SONAR-ARB (Duquenne et al., 2023) ♣ 600M 2 60K+822⋆ 2CNN-24Conformer
SONAR-ENG (Duquenne et al., 2023) ♣ 600M 1 60K+N/A⋆ 2CNN-24Conformer
SONAR-FRA (Duquenne et al., 2023) ♣ 600M 2 60K+2K⋆ 2CNN-24Conformer

Table 3: Architecture details of Whisper models

Model Network architecture #Params
Whisper-small (Radford et al., 2023) 2-conv 12 Enc-Dec 244 M
Whisper-medium (Radford et al., 2023) 2-conv 24-Enc-Dec 769 M

LaBSE model. Figure 1 illustrates the training
process of SAMU-XLSR.

Figure 1: SAMU-XLSR Training and specialization

SONAR is a new multilingual and -modal text
embedding space trained in encoder-decoder archi-
tecture for 200 languages, which substantially out-
performs existing approaches like LASER3 (Hef-
fernan et al., 2022) or LaBSE in multilingual sim-
ilarity search. Authors apply a teacher-student
approach to extend this embedding space to the
speech modality and currently cover 36 languages.

Mining is performed in data from publicly avail-
able repositories of web data (tens of billions of
sentences) and speech (4 million hours). In total,
to train the model, they align more than 443,000
hours of speech with texts and create about 29,000
hours of speech-to-speech alignments. Figure 2
illustrates the training process of SONAR.

Figure 2: Sonar architecture

Overall, we experimented with 14 different
speech encoders. Table 2 shows all the details of
SSL speech encoder models.
In addition to the aforementioned SSL models, we
also evaluated using the recently released Whis-
per models from OpenAI (Radford et al., 2023).
Unlike self-supervised speech models, Whisper is
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a multilingual ASR model trained using a large
amount of labelled audio transcription data (680k
hours). Using Whisper was motivated by the recent
achievements reported by Wang et al. (2023). The
detailed properties of Whisper models used in this
study are presented in Table 3.

3 Experiments and Results

3.1 Training details

For comparison purposes, we set the same param-
eters for all the models using the different speech
encoders.

3.1.1 ASR
In addition to the speech encoder model, we in-
corporate an extra layer with 1024 neurons and
LeakyReLU as the activation function, followed by
a fully-connected layer and a final 40-dimensional
softmax layer, each dimension corresponding to
a character. The weights of these two additional
layers were randomly initialized, while the weights
of the speech encoder part for SSL models of the
neural architecture were initialized using the pre-
trained weights. The fine-tuning is done with the
TARIC training set using a character-level CTC
loss function. We optimize the loss with an Adam
optimizer of learning rate = 0.0001 for both speech
encoder, and Adadelta with learning rate = 1.0 for
the linear layer.

3.1.2 SLU
We formulate the end-to-end SLU task as a charac-
ter level prediction where slots are delimited by tag-
specific special characters, as in Yadav et al. (2020);
Ghannay et al. (2018); Mdhaffar et al. (2022). We
also added the speech act token to the reference
annotation as the first token of each sequence of
words. This way, the end-to-end model learns to
both classify the utterances in terms of speech act,
and recognize slot/value pairs present in the speech
segment. As input, the neural network receives
a WAV audio file (PCM, 16 bits, 16kHz, signed
integer), and the output is a transcription enriched
with semantic labels and speech acts tags. After
processing through the softmax layer (which has
the size of 1064), the outputs are generated by a
simple greedy decoder. We optimize the loss with
an Adam optimizer of learning rate = 0.0001 for

440 characters that cover the alphabet of the TARIC dataset,
62 characters for slots, one character for closing slots and three
characters for speech acts

both speech encoder, and Adadelta with learning
rate = 1.0 for the linear layer.

3.1.3 Training details for ASR and SLU
We employed a batch size of 4 samples, distributed
across 4 NVIDIA V100 32GB GPU cards. For
MMS-1B, we used 4 NVIDIA A100 80GB GPU
cards. We utilized two optimizers: Adadelta for
updating the additional layers weights and Adam
for fine-tuning the self-supervised learning (SSL)
model. The initial learning rate for Adadelta was
1.0, while for Adam it was set to 0.0001. Our
models were implemented using the SpeechBrain
toolkit (Ravanelli et al., 2021). The speech en-
coders are obtained through the fairseq (Ott et al.,
2019) framework for SAMU-XLSR 5, SONAR and
data2vec 2.0 and through HuggingFace for the re-
maining of models. More details about our models
and the configuration files will be publicly available
as a part of the Speechbrain toolkit.

3.2 Results

In this section, we report, analyze and discuss the
performance of our models across various dimen-
sions. All the results, including both ASR and SLU
evaluations, are presented in Table 4. ASR mod-
els are evaluated with WER and SLU models are
evaluated using WER (after removing the semantic
tags and the speech act tag from the system output),
COER, SAER and CVER. The first part of the ta-
ble shows results by using SSL models, and the
second part shows results by using Whisper mod-
els. The first part is divided into three sub-parts
according to the type of SSL models: (i) the first
sub-part, colored blue for monolingual models, (ii)
the second sub-part, colored pink for cross-lingual
models, and (iii) the third sub-part, colored yellow
for the cross-lingual model after a teacher-student
multi-modal semantic training. The second part of
this table is dedicated to the results obtained when
using Whisper small and medium models.

Overall, except for the SLU SAER score on the
dev set, the best ASR and SLU results are obtained
when our models are trained using w2v-BERT 2.0
model. Below, an analysis of the obtained results
according to the type of the used SSL models.

Monolingual models: When we compare the
performances of models trained using monolingual
SSL (blue section of the results table), we observe
that WavLM is by far the best-performing model

5SAMU-XLSR is not yet publicly available; it has been
kindly shared by the authors of Khurana et al. (2022)
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Table 4: Comparison of speech encoders performance across ASR and SLU tasks. Results are reported in WER for
ASR and SLU system transcripts. SLU results are reported using COER and CVER for slot filling detection and in
terms of SAER for speech act classification. Bold numbers are the best results in all the table. Underlined numbers
represent the best results for each colored block (mono-lingual models, cross-lingual models without teacher-student
multi-modal training, cross-lingual models with teacher-student multi-modal training, whisper models). FR-7K
refers to LeBenchmark-7K, Whisper-S refers to Whisper-Small, Whisper-M refers to Whisper-Medium

Speech encoder COER (SLU) WER (SLU) CVER (SLU) SAER (SLU) WER (ASR)
Dev Test Dev Test Dev Test Dev Test Dev Test

FR-7K 37.78 33.16 36.04 28.61 57.57 49.57 23.87 21.14 34.80 29.69
English lv60 36.77 32.69 37.39 30.49 57.7 50.04 26.07 21.94 35.04 30.2
HuBERT 39.84 33.76 39.41 31.74 61.16 52.80 25.94 21.86 34.25 28.75
WavLM 35.85 32.25 34.22 27.23 55.95 50.92 24.9 21.14 32.28 26.7
Data2vec 2.0 34.50 31.8 39.41 31.71 58.94 51.15 25.16 22.9 38.58 32.1
VP-100K 35.77 31.56 35.46 27.56 56.37 48.90 24.64 22.9 32.71 26.68
XLS-R-128 35.62 31.24 34.65 26.7 56.24 48.73 24.64 20.9 33.82 28.06
MMS 36.73 31.77 43.97 37.98 62.07 56.47 24.9 24.66 35.91 29.46
MMS-1B 43.82 36.13 44.36 38.46 66.91 58.03 28.4 23.83 41.97 34.76
w2v-BERT 2.0 32.29 29.13 26.08 20.84 49.55 46.22 25.6 20.9 25.11 21.47
SAMU-XLSR 32.73 30.11 31.10 23.95 51.93 48.06 24.12 22.5 28.56 24.66
SONAR-ENG 36.58 33.59 38.34 31.58 57.15 52.33 36.71 26.10 39.77 33.67
SONAR-FRA 36.88 33.8 38.29 30.38 58.83 53.43 34.46 27.79 39.16 32.71
SONAR-ARB 35.93 31.62 35.6 28.17 55.98 49.77 32.68 23.38 35.24 29.05
Whisper-S 39.52 34.81 39.79 32.85 64.83 56.57 32.99 29.56 38.5 32.1
Whisper-M 39.1 33.96 33.37 29.56 59.13 54.02 25.94 21.86 32.5 29.05

for the ASR task with 32.28% and 26.7% WER
for dev and test sets respectively. This is confirmed
as well when evaluating WER of the SLU model
output (column WER (SLU) in table 4). Regard-
ing the SLU task, while we did not observe any
emerged trend, we observed a better performance
of data2vec 2.0 in terms of COER evaluation.

Cross-lingual models without teacher-student
multi-modal semantic training: Results indicate
that w2v-BERT 2.0 yields the best performance in
both ASR and SLU tasks (expect for the SAER).

All cross-lingual models: When it comes to
cross-lingual models, with (colored in pink) or
without teacher-student multi-modal semantic train-
ing (colored in yellow), setting apart the w2v-
BERT 2.0 model, SAMU-XLSR clearly outper-
forms VP-100k and MMS based models.

Mono-lingual vs. cross-lingual models: If we
compare performances between monolingual and
cross-lingual SSL models, cross-lingual models
achieve better results for the SLU task. Indeed,
data2vec 2.0 shows competitive COER scores
while its WER is higher compared to other models.
This leads to the conclusion that while data2vec
2.0 demonstrates the ability to identify semantic

concepts, it falls short in providing accurate tran-
scriptions.

Cross-lingual models with teacher-student re-
finement: As stated earlier, the SLU performances
of VP-100K, XLSR-128, and MMS exhibit a con-
sistent trend, with XLSR-128 showing the highest
performance among them. Combining this multilin-
gual SSL (XLS-R-128) and teacher-student multi-
modality training in one model (SAMU-XLSR)
provides better results for both ASR and SLU.
Shifting the focus to SONAR models, as expected,
SONAR-ARB demonstrates superior performance
compared to both SONAR-ENG and SONAR-FRA
for both ASR and SLU tasks. SONAR models are
based on the English version of w2v-BERT. Unfor-
tunately, the w2v-BERT model used to initialize
the speech encoders of SONAR is not available to
assess its contribution.

Whisper models: Results show that Whisper-
medium outperform results obtained using
Whisper-small.

Whisper models vs. all SSL models: If we
compare performances between Whisper models
(second part of the table) and all SSL models (first
part of the table), almost SSL models achieve better
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results for the slot filling SLU task. To transcribe
audio files, WER obtained by the ASR or the SLU
show competitive results. For example, ASR re-
sults for the dev set (32.5%) obtained by Whisper
medium outperform almost all SSL models except
for w2v-BERT 2.0, SAMU-XLSR and wavLM.
This leads to the conclusion that while Whisper
models demonstrates the ability to transcribe audio
files, it falls short in providing accurate semantic
extraction compared to the use of SSL speech en-
coders.

4 Discussion

We carried out some error analyses to quantify
some SLU systems performance across different
conditions. We focus on 6 SSL models: LeBench-
mark, XLS-R-128, data2vec 2.0, SAMU-XLSR,
w2v-BERT 2.0 and SONAR-ARB.

4.1 Acoustic complexity

First, we used the WER of the transcripts produced
by the model giving the best ASR system (w2v-
BERT 2.0) to quantify the general complexity of
the utterance. We defined three groups of segments
with low (WER <= 20), medium (20 < WER <=
50) and high (WER > 50) complexity. Figure 3
shows that, as expected, the SLU performances are
overall better for spoken utterances belonging to
the low complexity group. The x-axis represents
different levels of WER, and the y-axis represents
COER. However, when we compare the COER of
the SLU systems by group, we observe that w2v-
BERT performs better for segments with low WER.
For segments with medium WER, we observe that
all the systems have a comparable behavior ex-
cept for LeBenchmark: the system shows a higher
COER. For utterances hard to transcribe, SAMU-
XLSR is the best one followed by w2v-BERT 2.0.

Figure 3: SLU performance (COER) across different
general complexity levels in test utterances.

4.2 Semantic complexity

In the semantic complexity analysis, we used the
number of semantic tags per utterance in the refer-
ence as a proxy of the semantic complexity. Figure
4 shows the results obtained by the evaluated mod-
els. The x-axis represents the number of semantic
tags in test utterances, and the y-axis represents
COER. Across the board, utterances with two to
six concepts seem to be the easiest. While data2vec
2.0 and SONAR-ARB perform worse when there
are fewer semantic concepts to extract. They per-
form best when there are more than six.

Figure 4: SLU performance (COER) across different
numbers of semantic tags in test utterances.

5 Conclusion

Our study investigates the usage of various SSL
speech encoders for a Spoken Language Under-
standing task in challenging circumstances charac-
terized by a scarcity of both SLU and ASR train-
ing data and the low-resource characteristics of
the targeted Tunisian Arabic dialect. Our find-
ings emphasize the efficacy of SSL pre-trained
speech encoders in such conditions, with notable
success observed when employing the w2v-BERT
2.0 model, with 600 millions parameters trained on
4.5M hours of speech from 143 languages. Addi-
tionally, we highlight the noteworthy performance
of data2vec 2.0, pre-trained on English monolin-
gual data, particularly excelling in handling seman-
tically complex utterances. These outcomes collec-
tively provide valuable information for advancing
SLU methodologies, especially in resource-limited
linguistic contexts. Last, SAMU-XLSR provides
very competitive results thanks to semantic enrich-
ment made by the teacher student approach and in
future work we plan to train a SAMU-w2vBERT
2.0 model to take benefit of the joint SAMU and
w2v-BERT 2.0 capabilities.
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A Appendix: URLs of all models used in
this study

For reproducibility of all results obtained in this
paper, we put in the table 5 the url for each model.

138

https://doi.org/10.1017/CBO9781139173438
https://doi.org/10.1017/CBO9781139173438


Table 5: URLs of all models used in this study

Speech encoder URL
LeBenchmark-7K https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large
English lv60 https://huggingface.co/facebook/wav2vec2-large-lv60
HuBERT https://huggingface.co/facebook/hubert-large-ll60k
WavLM https://huggingface.co/microsoft/wavlm-large
Data2vec 2.0 https://github.com/facebookresearch/fairseq/tree/main/examples/data2vec
VP-100K https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli

XLS-R-128 https://huggingface.co/facebook/wav2vec2-xls-r-300m
MMS https://huggingface.co/facebook/mms-300m
MMS-1B https://huggingface.co/facebook/mms-1b
w2v-BERT 2.0 https://huggingface.co/facebook/w2v-bert-2.0
SAMU-XLSR SAMU-XLSR is not yet publicly available; it has been shared by Khurana et al. (2022)

SONAR-ENG https://github.com/facebookresearch/SONAR
SONAR-FRA https://github.com/facebookresearch/SONAR
SONAR-ARB https://github.com/facebookresearch/SONAR
Whisper-small https://huggingface.co/openai/whisper-small
Whisper-medium https://huggingface.co/openai/whisper-medium
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