
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop), pages 227–262
August 11-16, 2024 ©2024 Association for Computational Linguistics

On Improving Repository-Level Code QA for Large Language Models

Jan Strich and Florian Schneider and Irina Nikishina and Chris Biemann
Language Technology Group

Universität Hamburg
Germany

Abstract

Large Language Models (LLMs) such as Chat-
GPT, GitHub Copilot, Llama, or Mistral as-
sist programmers as copilots and knowledge
sources to make the coding process faster and
more efficient. This paper aims to improve
the copilot performance by implementing dif-
ferent self-alignment processes and retrieval-
augmented generation (RAG) pipelines, as well
as their combination. To test the effectiveness
of all approaches, we create a dataset and ap-
ply a model-based evaluation, using LLM as a
judge. It is designed to check the model’s abil-
ities to understand the source code semantics,
the dependency between files, and the over-
all meta-information about the repository. We
also compare our approach with other existing
solutions, e.g. ChatGPT-3.5, and evaluate on
the existing benchmarks. Code and dataset are
available online1.

1 Introduction

Coding assistants (Zhu et al., 2024; Nam et al.,
2024; Luo et al., 2024), are invaluable to any
programming team for developing software appli-
cations, games, or machine learning models in-
volves writing code using programming languages.
Commercial AI-assisted programming Chatbot like
GitHub Copilot2, Codeium3 or Starcoder (Li et al.,
2023) help to understand the code better, to gener-
ate some code, and to fix errors faster.

However, it is important to note that coding as-
sistants may generate incorrect information, also
known as “hallucinations”, when requests go be-
yond the model training data or require additional
knowledge (Nguyen and Nadi, 2022). Another
drawback of such assistants is the data protection
problem: users need to be extremely careful while
sharing private code and data with commercial cod-
ing assistants. Sensitive or proprietary code could

1https://github.com/pesc101/ma_llm.git
2https://github.com/features/copilot/
3https://www.codium.ai

be exposed to unintended parties. This could poten-
tially lead to data breaches and intellectual property
concerns (Niu et al., 2023). Moreover, most coding
assistants are of general use and cannot be applied
to solve context-specific issues or answer natural
questions based on repository-level semantics.

To mitigate these limitations, we develop two
methods to improve the LLMs response quality on
repository-level programming in a more specific,
cost-effective and privacy-focused manner. One
promising solution is Retrieval-Augmented Gener-
ation (RAG) (Lewis et al., 2020), incorporating the
repository-level data into the generative process, to
deliver accurate and relevant responses. The sec-
ond approach is inspired by Zheng et al. (2024) and
aims to increase the performance of the models by
fine-tuning them with synthetic self-generated data
using the self-alignment procedure. Finally, we
combine a RAG pipeline with a fine-tuned model
trained on a self-augmented dataset, which can
be considered as both cost-effective and privacy-
friendly approach that improves the performance
of coding assistants on a specific repository.

When working on the repository-level program-
ming tasks, selecting the appropriate source is also
crucial, as it should represent common repository
structures and be big enough to generate training
data. Therefore, we consider the Python Spyder
IDE repository4 at version 5.5 due to its abundance
of short functions and extensive documentation.

We use the open-source model Mistral 7B (Jiang
et al., 2023) as a base and fine-tuned model, con-
nected to RAG pipelines. Mistral 7B is a pre-
trained LLM that outperforms Llama 2 7B, 13B
(Touvron et al., 2023) and CodeLlama 7B (Touvron
et al., 2023) on most benchmarks.

Regarding the evaluation techniques, we apply
the LLM-as-a-judge (Zheng et al., 2023a; Peng
et al., 2023; Bubeck et al., 2023; Wang et al., 2023;

4https://github.com/spyder-ide/spyder/tree/
master

227

https://github.com/pesc101/ma_llm.git
https://github.com/features/copilot/
https://www.codium.ai
https://github.com/spyder-ide/spyder/tree/master
https://github.com/spyder-ide/spyder/tree/master

Fu et al., 2023; Mao et al., 2023) method that lever-
ages a superior model to judge other models re-
sponses. We utilize it to test whether adding in-
formation through fine-tuning or RAG pipeline im-
proves the response quality. SpyderCodeQA, our
new evaluation dataset, is used as the test data for as
LLM-as-a-judge evaluation. Additionally, we ap-
ply the HumanEval (Chen et al., 2021) and MBPP
(Austin et al., 2021) benchmarks to measure the
catastrophic forgetting of code generation abilities
after fine-tuning.

The contributions of the paper are as follows:

• We introduce a new benchmark for the
repository-level programming called Spyder-
CodeQA, which includes 325 question-and-
answer pairs (Q&A pairs) from three question
categories: semantics understanding, depen-
dency understanding, and knowledge of repos-
itory meta-information.

• We compare three different methods for
repository-level programming: LLM
fine-tuning with self-augmented data (self-
alignment), Retrieval Augmented Generation,
and their combination.

• We perform an ablation study regarding the
training dataset size and the type of the judg-
ing model and perform a preliminary quanti-
tative analysis of the results.

2 Related Work

This section provides an overview of the existing
studies related to the paper: repository-level pro-
gramming, code-based Question Answering, and
LLM evaluation.

2.1 Repository-level Programming
Recent studies have explored the application of
instruction fine-tuning with PEFT techniques for
coding tasks. Wang et al. (2023) demonstrated the
effectiveness of PEFT for coding tasks on various
models, highlighting the effectiveness of QLoRA
for fine-tuning. In a related study, Yuan et al. (2023)
investigated the performance of instruction fine-
tuned models on a range of coding tasks.

Researchers have also explored generating
prompts for few-shot learning using RAG pipelines
(Nashid et al., 2023) as well as the combination
of fine-tuning and RAG pipelines using several
open-source models to inject additional informa-
tion (Ovadia et al., 2023).

2.2 Code-based Question Answering
Code-based question answering is a subfield of
question answering that focuses on responding to
code-related queries. Unlike generative approaches,
retrieval-based code Q&A aims to find the most
relevant code snippets from a large code corpus to
satisfy user requests. To evaluate the performance
of the models, Husain et al. (2019) introduced
CodeSearchNet, a collection of datasets and bench-
marks created by mining large-scale comment-
code pairs from public GitHub repositories. Liu
and Wan (2021) presented CodeQA, a free-form
code question-answering dataset to assess the code
comprehension capabilities of language models.
CoSQA (Huang et al., 2021) mines real-world user
queries from Bing search logs that were labeled if
the provided answer is the solution to the question.

Although these Q&A datasets are useful for
measuring the interaction of models and humans,
they are unsuitable for repository-level program-
ming tasks: CodeSearchNet and CodeQA have
direct question-answer interaction. While CoSQA
(Huang et al., 2021) consists of real human queries,
they are only related to general coding tasks and
have no label for a repository, which makes it diffi-
cult to use the Q&A pairs as training data to mea-
sure the performance of a specific repository.

2.3 Evaluation of LLMs
Evaluating the capabilities of LLMs has been chal-
lenging due to their vast and diverse abilities and
the lack of standardized benchmarks to measure
human preferences in this rapidly evolving field.

LLM-as-a-Judge LLM-as-a-judge is an evalua-
tion method for LLMs in which a superior model
is used to judge the results of other models. Zheng
et al. (2023a) proposed three variations of Model-
based-evaluation referred to as LLM-as-a-judge.
The first, pairwise comparison (Peng et al., 2023;
Bubeck et al., 2023), involves directly assessing
two answers to determine superiority or a tie. The
second, single answer grading, assigns a score di-
rectly to a response (Wang et al., 2023; Mao et al.,
2023). The third, reference-guided grading, incor-
porates a reference solution, beneficial for math
problems (Bubeck et al., 2023).

3 Dataset Construction

In order to measure the performance the perfor-
mance of the models on repository-level program-
ming, we create a new evaluation dataset named

228

Source Code
 Semantics

Dependencies Meta-Information

Figure 1: Overview of the three dimensions of the eval-
uation dataset. The dimensions include source code
semantics, dependencies, and meta-information Q&A.
These dimensions are designed to provide comprehen-
sive information about the source code files, their rela-
tionships with modules and libraries, and general infor-
mation about the repository.

SpyderCodeQA comprising of 325 samples es-
tablished on the Spyder IDE5. It is based on three
dimensions: source code semantics comprehension
(Subsection 3.1), dependency comprehension (Sub-
section 3.2), and meta-information comprehension
(Subsection 3.3). Figure 1 presents an overview
of the three dimensions of the evaluation dataset.
The first one aims at understanding the containing
text and code elements about the repository source
code and being able to answer semantic questions
about it. The second dimension evaluates the abil-
ity to understand the relationships between files
within the repository and between files and im-
ported libraries. The third dimension assesses the
ability to understand general information about the
repository using README files (build commands,
requirements or legal information of the repository,
unrelated to the source code).

The following subsections provide an overview
of the creation process for each dimension in detail.
Typical samples for each dimension are shown in
Appendix A in Figure 8.

3.1 Source Code Semantic Comprehension

For creating the source code semantics comprehen-
sion dimension, ten experts computer science are
asked to manually create the Q&A pairs using the
Spyder IDE repository source code. For this pur-
pose, we develop a custom web application using
Python Django6 to write question pairs given the
code snippet (see Appendix A for more details).

The first goal is to create Q&A pairs for one
of the 5673 snippets (2000 characters max) from
the 2083 Python files randomly selected from the
open-source Python repository Spyder IDE. We

5https://github.com/spyder-ide/spyder/tree/
0f8398a9a27d401b9984f6e049ef1199656900f1

6https://www.djangoproject.com

demonstrate those code snippets in the web appli-
cation and ask the experts to create a question and
the answer. Meta-information such as the module
name, file name, and the start and end line of the
code snippet is also given. The example of the
interface is shown in Appendix A in Figure 9a.

The second task is to rate the created Q&A pairs
from other participants to ensure the quality of the
pairs on a 1-10 scale and optionally leave com-
ments. The instructions for the rating task and
the process for rating the Q&A pairs are shown
in Appendix A. In the interface, the text areas are
replaced with two rating forms (Figure 9b).

The last step of the dataset collection is the qual-
ity control of the collected Q&A pairs. In total,
189 questions were created and rated by the ex-
perts. The pairs scored with less than 3 points are
automatically removed from the dataset. Pairs with
a rating between 3 and 5 are manually curated. As
a result, the final size encompasses 140 Q&A pairs.

3.2 Dependencies Comprehension

Q&A pairs for dependencies comprehension aim
at measuring the ability to understand the depen-
dencies between code files. Therefore, we present
the AST algorithm (Appendix A) to identify depen-
dencies between files, modules, and libraries.

It recognizes four types of imports: complete li-
brary imports, imports from libraries, complete file
imports, and imports from files. We also identify
the type of the imported artifacts (class, function,
or assignment): whether is it a library-based or a
file-based import. The algorithm also provides in-
formation on each Python file in the repository (file
name, import category, and artifact name).

The raw dependencies are further processed with
the OpenAI API using the “gpt-3.5-turbo-1106”7

model (temperature is set to 1.5, the maximum
token limit is 256, and the top p-value is 1, the
frequency and presence penalties are set to 0). In
Appendix D, Figure 12 presents the full system
prompt for generating the Q&A pairs along with
the example to improve generation abilities.

As a result, 1319 Q&A pairs were generated
using the OpenAI API from 686 unique file names.
To ensure the quality of the dataset, a final set of
135 Q&A pairs was randomly chosen and manually
verified for correctness by an expert annotator. This
was done by cross-checking the repository’s source

7https://platform.openai.com/docs/models/
gpt-3-5-turbo

229

https://github.com/spyder-ide/spyder/tree/0f8398a9a27d401b9984f6e049ef1199656900f1
https://github.com/spyder-ide/spyder/tree/0f8398a9a27d401b9984f6e049ef1199656900f1
https://www.djangoproject.com
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo

Teacher Dataset
D0

Repository
Chunks

Q&A Dataset
D1

Curated Dataset
D2

Questions

1. Self-Augmentation
Generate teacher dataset D0 and use the

output as input for Q&A dataset D1

2. Self-Curation
Rate the Q&A dataset D1 on a scale of 1-5

to filter out bad data samples and create
curated dataset D2

3. Train Model
Use the curated dataset D2

to fine-tune Mistral 7B
Randomly Question

from Corpus

passed passed
passed

explain the
code line by line

generate Q&A evaluate Q&A

1. Database Creation
Embed repository chunks with

Instructor, Index creation
of embeddings

2. Query Pipeline
Instructor embed the question and the repository chunk with the

highest similarity from Chroma is selected. The retrieved results are
combined with the orginal query in the context query prompt.

(a) Self-Alignment

(b) RAG Pipeline

Repository
Chunks

Context
Query
Prompt

Embedding
Model

(Instructor)

Generated
Output

Vector Store

Queryembed

embed

Similarity
search

Finetuned Model
/

stored

Figure 2: (a) Self-alignment pipeline: self-augmentation (repository chunks and randomly selected questions from
the question corpus are combined in the system prompt. Mistral 7B generates the teacher data D0 to generate the
Q&A dataset D1), self-curation (Q&A pairs are curated with the base model on a scale of 1-5 and filtered to the
final curated dataset D2), fine-tuning (D2 is used to fine-tune Mistral 7B). (b) the RAG pipeline: database creation
(source code files are embedded using Instructor, Chroma indices the embeddings), context retrieval (queries
are transformed into embeddings following the dotted line, then the n-chunks are retrieved), generation (chunks
combined as context and query are passed to the generator to produce the answer).

code to ensure that the questions and answers were
both correct and made sense. The random selection
process was implemented to minimize the amount
of manual effort required for verification.

3.3 Meta-Information Comprehension

To understand the model ability to understand gen-
eral information about a repository, such as its pur-
pose, features, documentation, license, and con-
tribution opportunities, we create Q&A pairs for
the meta-information dimension. We first extract
all files with the suffixes .md, .txt, and .yml, result-
ing in 29 files that included meta-information. We
focus on the information about the repository in-
stallation, the available and supported versions of
the packages, and the rules for contributing. We
ask our expert annotator to create triplets contain-
ing questions, answers, and meta information (file
name and the module) resulting in 50 questions.

4 Methodology

This section describes the methods we implement
in the paper. First, we describe the data preprocess-
ing step (Subsection 4.1), which is common for all
approaches. Then we explain the self-alignment
approach in Subsection 4.2 and our implementation
of RAG in Subsection 4.3. Subsection 4.4 explains
how both approaches can be combined.

4.1 Data Preprocessing

To fit the desired structure for fine-tuning models
using self-alignment or creating a vector database
for RAG, a pre-processing pipeline is created.

First, we fetch the Spyder repository and load
each file type using individual loader classes. With
a chunk size of 1500 characters and an overlap of
200, the file was divided into chunks of a maximum
of 1500 characters, each overlapping by 200 charac-
ters. From the code chunks, all available metadata

230

is extracted: file name, module, flag whether the
chunk contains a class or function, start and end
line numbers, and all file imports. In the final step,
the extracted metadata are added to the chunks and
saved as .jsonl file and uploaded into Huggingface8.

4.2 Fine-tuning with Self-Alignment
This subsection overviews the fine-tuning process
with self-alignment mainly inspired by Zheng et al.
(2024). It comprises of the following steps: data
generation (self-augmentation), data curation (Self-
Curation). Afterwards, we perform the model fine-
tuning on the generated dataset.

Self-Augmentation First, we provide the repos-
itory code chunks as input into the base model
(Mistral 7B) to generate the dataset D0 that ex-
plains each line of code in the chunk and add one
randomly selected question from a predefined ques-
tion corpus (See Appendix B). Then, we generate
the Q&A pairs (D1) from this source code explana-
tions D0. We instruct the module to include file and
module names to ensure the model always knows
the file the question aims for. The prompt also
specifies that code should be added to the answer.
Both system prompts for generating D0 and D1 are
shown in Appendix D in Figures 12 and 13.

In addition to the code chunk with explanations
from D0, we also provide an example question se-
lected from a question corpus inspired by Liu and
Wan (2021). We manually limit possible question
examples to be used, as the question should belong
to one of three dimension types: source code se-
mantics, dependencies and meta-information, like-
wise the dimension in the manually created dataset
in Section 3. The list of selected questions can be
found in Figure 10.

It is important to note that the pipeline to gener-
ate Q&A examples can be executed multiple times
in a row, resulting in datasets that differ from each
other. We execute the self-augmentation step twice
for 7943 chunks to create two datasets D0, result-
ing in 15,886 data samples that are further pro-
cessed to the curation step of the Q&A dataset.

Self-Curation To generate high-quality training
data, we curate the data samples to collect the final
dataset denoted in Figure 2 (a) as D2. We ask the
base model (Mistral 7B) to evaluate the Q&A pairs
on a scale from 1 to 5. The system prompt is dis-
played in Fig. 15. The model evaluates whether the

8https://github.com/pesc101/ma_llm/blob/main/
README.md

response is a good example of how an AI Assistant
should respond to user instructions. A score of 1
indicates that the answer is incomplete, not pre-
cisely what the user asked for, or off-topic. A score
of 5 represents a clear and well-structured answer
from an AI assistant that thoroughly answers the
user’s question. All examples with a score lower
than 4 are removed from the dataset. As a result,
our training dataset comprises 14,434 Q&A pairs.

Fine-Tuning The base model (Mistral 7B) is
trained for 5 epochs using supervised fine-tuning
(SFT) (Ouyang et al., 2022), 4-bit Quantization
Low-Rank Adapters (QLoRA) (Dettmers et al.,
2023) on the generated Self-Aligned dataset and
Flash Attention 2 (Dao, 2023). After the training,
the LoRA layers were merged into the base model
Mistral 7B to reduce the response time when using
the model for inference. The training details can
be found in Appendix C.

4.3 RAG Approach

The implemented RAG pipeline is illustrated in
Figure 2 (b). We use the preprocessed chunks to
generate 768-dimensional vector representations of
chunks using the Instructor embedding model (Su
et al., 2023). This pre-trained model with 110 mil-
lion parameters generates embeddings that can be
used for retrieval, classification, or semantic search
tasks. The data is stored in the in-memory version
of Chroma9, an optimized database for storing vec-
tor representations. The database is initialized by
assigning an ID to each chunk and indexing the
metadata. This ensures a quick response time and
enables data retrieval based on metadata queries.
For the retrieval step, we also use the Instructor
model to transform the query into a standardized
768-dimensional vector. During the generation
step, we use the system prompt displayed in Figure
16 as input to the LLM (the base Mistral 7B model)
to generate the answer. It utilizes the question and
the retrieved code chunks as input and generates the
answer to the question as output. Thus, our RAG
approach aligns with the concept of "inference"
(Huang and Huang, 2024).

It is also important to note, that we apply both In-
structor and Mistral 7B models without additional
fine-tuning.

9https://www.trychroma.com

231

https://github.com/pesc101/ma_llm/blob/main/README.md
https://github.com/pesc101/ma_llm/blob/main/README.md
https://www.trychroma.com

Model M1

Model M2 Answer A2

Answer A1

Sys. Prompt
& AnswerQuestion Judge

Winner

Tie Good

Tie Bad

Looser

👍

👎

⚖

Figure 3: LLM-as-a-judge pairwise evaluation (Zheng et al., 2023a). The LLMs M1 and M2 are tested against each
on SpyderCodeQA. The judge (GPT-3.5) receives the system prompt with the original question, the correct answer,
both answers A1 and A2, and the instruction to judge both answers and determine the outcome.

4.4 Combined Approach

As the combined approach, we replace the base
Mistral 7B model with the fine-tuned model from
the self-alignment step in Subsection 4.2. We ex-
pect the fine-tuned model might produce better re-
sults when enhanced with the correct chunks from
the RAG pipeline. Additionally, retrieved chunks
should also prevent the LLM from hallucinating.

5 Evaluation

This section describes two evaluation strategies ap-
plied in the paper: using LLMs (primarily GPT
3.5/4) as judges (Zheng et al., 2023a) and standard
benchmark evaluation using metrics. LLM-as-a-
judge methods are preferred over BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004), as they can
only evaluate the semantic similarity between hu-
man and model-generated responses, which might
not be related to the correctness of the responses.

5.1 LLM-as-a-judge

The performance of models on the Q&A evalua-
tion dataset created in Section 3 is evaluated pair-
wise using strong LLMs (primarily GPT 3.5/4) as
judges (Zheng et al., 2023a) (using the same hyper-
parameters for the judge model as in generation:
temperature of 0.7, top-P of 0.9, and max token of
2500). We test the base model against its modified
version (finetuned Self-alignment, RAG, or the two
methods combined).

Figure 3 shows the model-based pairwise com-
parison pipeline. For each Q&A pair in the evalu-
ation dataset, the two models M1 and M2 answer
the question of the Q&A pair. Then the LLM (GPT-
3.5) model is instructed in the system prompt to act
as a judge to evaluate the quality of responses A1

and A2. The prompt template is shown in Figure
18. It consists of a question (“User Question”) and

the generated answers (“Model Solution”). To en-
sure clarity, each piece of information is enclosed
with an identifier in square brackets, indicating the
type of information. The evaluation could also re-
sult in “No value” when the judge does not return
the output in the correct format.

We utilize the Average Win Rate (AWR) metric
for evaluation. AWR is the proportion of Q&A
pairs the judge has decided that one model is bet-
ter than the other or it is not a tie. The average
is calculated over k runs executed with the same
parameters to take into account possible deviations.

5.2 Existing Benchmarks

In addition to evaluating whether a coding assistant
has become better at answering questions about a
repository, we also test whether the code generation
abilities have changed after fine-tuning. Therefore,
two benchmarks are used to evaluate the “catas-
trophic forgetting”: HumanEval introduced by Ope-
nAI (Chen et al., 2021) and Mostly Basic Program-
ming Problems (MBPP) (Austin et al., 2021). Both
benchmarks use the pass@k unbiased estimator
which is computed as follows (n is the total num-
ber of samples, c is the number of correct samples
and E is the expected value):

pass@k := E
Problems

1−

(
n− c
k

)

(
n
k

)

 (1)

6 Results and Analysis

In this section, we present the results using LLM-
as-a-judge and the existing benchmarks (Subsec-
tions 6.1 and 6.2). In Subsection 6.4, we discuss
the additional experiments with the training size
and applying GPT-4 as the judging model. The

232

0.45 0.71 0.320.00 0.470.91 0.51 0.47 0.40

5.18 4.75 4.31
6.62

35.91 37.02

31.30

20.43

57.68 57.00

63.97

72.24

(d) Combined

 vs. GPT 3.5

(b) RAG

 vs. Mistral 7B

(a) Finetuned

 vs. Mistral 7B

(c) Combined

 vs. Mistral 7B

0

20

40

60

80

100

Tie Good Tie Bad No Value Model B Ours
W

in
 R

a
t
e
 i

n
 %

Figure 4: Average win rate for each experiment using LLM-as-a-judge evaluation on the SpyderCodeQA. All
experiments were executed with k = 3 runs. The error bars indicate the standard deviation. (a): compares the
fine-tuned Mistral 7B vs. Mistral 7B. (b): compares Mistral 7B with a RAG pipeline vs. Mistral 7B. (c): compares
fine-tuned Mistral 7B with a RAG pipeline vs. Mistral 7B. (d): compares fine-tuned Mistral 7B vs. GPT-3.5 Turbo.

qualitative analysis of the results can be seen in
Subsection 6.3 and in more detail in Appendix F.

6.1 LLM-as-a-Judge on SpyderCodeQA

The average win rate results for k = 3 runs are
shown in Figure 4 for all approaches. We describe
them separately in the following paragraphs.

Fine-tuning with Self-Alignment The results in
Figure 4 (a) suggest that in approx. 57% of the
Q&A pairs, the answer of the fine-tuned model
is preferred, while in approximately 36% of the
pairs, the answer of the base model is preferred.
The LLM-as-a-judge evaluation method consists
of k = 3 runs, where in each run the order of the
answers given to the judge is randomized to reduce
position bias. The error bars indicate the standard
deviation of the runs. The low variance for each
output indicates that LLM-as-a-judge is consistent
over several evaluation runs.

Additionally, the fine-tuned model performs best
on the human-labeled dimension code semantics.
With 62%, it won almost two-thirds of the Q&A
pairs. For the dependency dimension, the fine-
tuned model is also better than the base model but
has only a 54% win rate. The model performed
the worst in the meta-information dimension, in-
dicating that the fine-tuning process reduced its
performance in this dimension.

RAG Approach In Figure 4 (b), we can see that
for 57% of the Q&A pairs, the judge prefers Mistral
7B with the RAG pipeline, which aligns with the
previous approach. Also, the win rate for the base
model and the percentage of Q&A pairs that aren’t

correctly judged is similar to the Self-alignment
pipeline and are close to 37% and 5% respectively.

The results of the different dataset dimensions
differ from those of the Self-alignment pipeline.
Although both approaches perform the same with
a 1% difference in the code semantics dimension,
there is a difference of 2 standard deviations in the
results for the dependencies. The meta-information
dimension shows the biggest difference, with the
base model using the RAG pipeline outperform-
ing the base model. This suggests that the RAG
pipeline supports the model in answering questions
related to the meta-information but is less useful
for answering questions regarding dependencies.

Combined Approach The results for the com-
parison with the combined approach are shown in
Figure 4 (c). The average win rate is approximately
64%, which is higher than that of the two pipelines,
respectively. This suggests that there is a positive
interaction effect between them. When examin-
ing each dimension separately, the best results are
achieved for the code semantics dimension. With
an average of 70% win rate, the model is in 7 out
of 10 questions better than the base model. That
indicates that this combination is a further improve-
ment regarding code semantic questions. The re-
sults for the dependencies dimension demonstrate
an average win rate of 61% and also indicate the
efficiency of the interaction of both pipelines. For
the meta-information dimension, the model shows
a 51% average win rate, which means no improve-
ment over the base model.

233

GPT-3.5 Turbo In the last experiment, we
compare our best-performing model with the
gpt-3.5-turbo-1106 as a code assistant instead
of the base model. We acknowledge that the
gpt-3.5-turbo-1106 approach does not get code
snippets as input, however, our main idea was to
check whether the fine-tuned model indeed learns
the context from the given repository. Otherwise,
the results of the Self-alignment fine-tuned model
and GPT-3.5 would be comparable. It is worth not-
ing that GPT-3.5 was utilized as the judge as well;
therefore, it rates its responses in this experiment.

The results are presented in Figure 4 (d). The
combination of the fine-tuned model with an RAG
pipeline outperforms GPT-3.5, with an average win
rate of 72%. Only 20% of the Q&A pairs were won
by GPT-3.5. However, it is worth noting that the
rate of not finding a rating by the judge is slightly
higher than with Mistral 7B.

The code semantics and dependencies results
are even better at the dimensions, with 78.3% and
74.07%, respectively. That indicates that the fine-
tuned model with the RAG pipeline is a better cod-
ing assistant on repository level than GPT-3.5.

6.2 Benchmark Results
Figure 5 presents the percentage of solved tasks
by the base model Mistral 7B and the fine-tuned
model with Self-Aligned data on the HumanEval
(Chen et al., 2021) and MBPP (Austin et al., 2021)
benchmarks. For each benchmark, the pass@1 and
pass@10 are calculated. However, the results for
both benchmarks are not very promising. The base
model outperforms the fine-tuned model on Hu-
manEval on pass@1 with 6.8% and on pass@10
with 8%. Similar results were found on the MBPP
benchmark with a difference of 11.5% on pass@1
and 12.6% on pass@10. This decrease in scores
indicates that the general coding ability of the fine-
tuned model has been reduced. The possible reason
for the poorer performance could be the modified
prompt template, as the model is fine-tuned for an-
swering Q&A pairs and not for pure coding tasks.

6.3 Results by Question Type
We also take a closer look at the concrete examples
and provide more qualitative insights about how
the RAG pipeline affects the output of the LLM
model and improves performance. The examples
are shown in Appendix F. Each example consists
of the original question and answer, the answer of
the two models, and the judgment at the end.

34

48

27.2

40

pass@1 pass@10

0

20

40

60

80

100

35

51.6

23.5

39

pass@1 pass@10

Mistral 7B Ours

%
 o

f
 t

a
s
k
s
 s

o
lv

e
d

HumanEval MBPP

Figure 5: % of tasks solved for HumanEval (Chen et al.,
2021) & MBPP (Austin et al., 2021) for the base model
Mistral 7B and the fine-tuned model.

Regarding the Source code semantics compre-
hension, we can see from Figures 21-23 that each
approach demonstrates its benefits when combined.
The fine-tuned model answer is nicely formatted,
and the RAG pipeline answer is contextually cor-
rect. The combination of both approaches fulfilled
both requirements, providing a well-formatted an-
swer with a good explanation of the class and the
correct code snippet. For the Dependencies types
of question in Figures 24-26, we can see that the
base and the fine-tuned models without RAG can-
not provide information about imports used, there-
fore, they might not be able to perform well for
these tasks. Meta-information types of questions
show a similar trend in Figures 28 and 29 where
approaches using RAG in the pipeline demonstrate
a more accurate response.

Quantitative results in Tables 1-3 (Appendix E)
demonstrate quite an opposite tendency: for the
Dependencies Meta-information types of questions
GPT-3.5/4 prefer the pipelines with RAG in fewer
cases than the RAG and Combined approaches.
Code Semantics questions are better solved when
provided the context from RAG and the Combined
approach. Nevertheless, all developed pipelines
outperform the base model for all three dimensions.

6.4 Ablation Study
This section presents supplementary experiments
that provide a deeper insight into the number of
dataset samples and the choice of the judge model.

234

0.3 0.3 0.30.3 0.5 0.5

6.0
4.3 4.9

36.7

31.3

36.9

57.0

64.0

57.6

(a) Self-Alignment 1x

 vs. Mistral 7B

(b) Self-Alignment 2x

 vs. Mistral 7B

(c) Self-Alignment 4x

 vs. Mistral 7B

0

20

40

60

80

100

Tie Good Tie Bad No Value

Model B Ours

w
in

 r
a
t
e
 i

n
 %

Figure 6: Average Win Rate (k = 3) in % for each ex-
periment respectively on the SpyderCodeQA. (a): fine-
tuned model once vs. Mistral 7B. (b): fine-tuned model
trained twice vs. Mistral 7B. (c): fine-tuned model
trained quadruple vs. Mistral 7B.

Training Dataset Size To create different sizes
of the training dataset, the self-augmentation was
executed once (a), twice (b), and quadruple (c). The
related loss curves and learning rates are shown in
Appendix C. From the results in Figure 6, we can
see that in all three experiments, each fine-tuned
model learned about the repository, as reflected in
the higher average win rates compared to the base
model. However, the best-performing model was
achieved using the self-alignment pipeline twice to
create the training dataset. The Average Win Rate
is considerably higher than the models trained with
one or quadruple datasets, with an improvement of
approximately three standard deviations.

We assume that the reason for the optimal num-
ber (2) for the self-alignment step might be ex-
plained by the number of unique Q&A pairs. The
quadruple design adds only a few new pairs while
having many duplicates, which may cause the
model to overfit.

Judgement with GPT-4 Turbo The results of
comparing the GPT-3.5 and (more expensive) GPT-
4 models as judges are presented in Figure 7. The
corresponding results for each dimension can be
found in Appendix E in Table 3. Both judges rate
the quality of the response of the fine-tuned model
with the RAG pipeline higher. However, GPT-4
prefers more the fine-tuned model and chooses a
tie in almost 10% as judgment, which is more of-
ten than GPT-3.5. Furthermore, only 0.3% of the
answers belong to the “No value” type, indicating
that GPT-4 can judge the performance of models
more consistently and accurately.

0.3
4.0

0.3

5.5

0.3
4.0

18.5

30.6

64.8

71.7

Combined vs. Mistral 7B

 Judge: GPT-3.5 Turbo

Combined vs. Mistral 7B

 Judge: GPT-4 Turbo

0

20

40

60

80

100

Tie Good Tie Bad No Value

Model B Ours

w
in

 r
a
t
e
 i

n
 %

Figure 7: Win Rate in % for each experiment respec-
tively on the SpyderCodeQA. Left: Fine-tuned model
with RAG pipeline vs. Mistral 7B judged by GPT-3.5
Turbo. Right: Fine-tuned model with RAG pipeline vs.
Mistral 7B judged by GPT-4 Turbo.

7 Conclusion

In this paper we introduce a new manually cre-
ated dataset — SpyderCodeQA – which includes
325 question-and-answer pairs (Q&A pairs) from
the Spyder IDE repository. We split it into three
question dimensions: semantics understanding, de-
pendency understanding, and knowledge of repos-
itory meta-information. We also present a series
of experiments using Self-alignment, RAG, and
their combination to evaluate LLMs’ performance
on repository-level code Q&A using the generated
dataset. We show that the quality of the system can
be significantly improved when applying both ap-
proaches together: the LLM-as-a-judge win rate is
approximately 64%, which is 7% higher than both
approaches separately. Regarding the models’ per-
formance on different dataset dimensions, we can
see that they perform exceptionally well for code
semantics, which is the human-labeled dimension.

In future work, we plan to improve the Self-
alignment pipeline to create a more diverse dataset
that includes Q&A pairs mainly focused on code
generation to prevent the “catastrophic forgetting”
of the model. Another possible direction is to per-
form the human evaluation to better align the model
with user needs. It would provide additional in-
sights since humans are the target audience for
Q&A on repository-level programming, and they
often have more knowledge about the repository, al-
lowing them to better judge the model’s responses.

235

Limitations

This section outlines the limitations regarding the
approaches and the created dataset.

Small dataset size Other datasets in this research
area include CS1QA (Lee et al., 2022), a dataset
for code-based question-answering in the program-
ming education domain or CodeQA (Liu and Wan,
2021) for the code comprehension task have much
bigger samples than the dataset that is introduced
in this thesis. CS1QA with over 9k pairs and Cod-
eQA with approx. 200k are much bigger. While
both datasets aim for slightly different goals, it is
important to mention that the generalizability and
value of the evaluation results should be treated
with caution.

Different Knowledge Level of Creators For the
source code semantic dimension, the Q&A pairs
were created by humans. While the number of
participants was with ten people quite low, also
the knowledge level of the participants about the
Python programming language and the working
experience was high. That could lead to a bias in
the difficulty of the questions asked. Assuming you
want to test whether a model can answer simple
questions for beginner programmers, the questions
from the semantic dimension may not necessarily
be helpful and accurate.

Unknown repository The individuals who took
part in the study considered themselves experts
in Python, however, none of them had previously
contributed to the Spyder IDE repository. Essen-
tially, this means that none of the participants were
experts in this specific code base. Although this
may not pose as a disadvantage, it does suggest
that the questions and answers provided may not
be as in-depth as those provided by a Spyder IDE
contributor.

Low heterogeneity of the Q&A pairs in depen-
dency dimension The Q&A pairs in the source
code semantic dimension have a great variety, but
the ones generated automatically in the dependency
dimension are often very similar. The reason be-
hind this is to assess the model’s ability to answer
these questions accurately. However, a wider range
of questions would be preferable to test the model’s
performance as a coding assistant. Therefore, a fur-
ther improvement of the dataset would be adjusting
the model’s system prompt that generates the Q&A

pairs or developing a new way to measure the de-
pendencies of the different repository components.

Only 1-hop Dependencies The relationship be-
tween the two source code files is adequately de-
scribed using the dependencies dimension. How-
ever, the dataset dimension lacks a mapping that
goes beyond the linking of two files. Therefore,
it would be beneficial to devise a way to create
2-hop or even n-hop structures that the models can
comprehend.

Meta-Information dimension is self-generated
The quality of the source code semantic dimension
dataset was ensured through a rating process con-
ducted by participants. The dependency pairs were
also manually verified to be correct. However, the
meta-information dimension lacks quality testing.
The Q&A pairs were created exclusively by the au-
thor of the thesis, which could introduce bias in the
formulation of the questions and answers and the
selection of information to create the pairs. This
dimension may not be as objective as others, as
different people may create completely different
pairs.

Self-generated training dataset The Q&A pairs
generated by the self-alignment process may not be
semantically and syntactically correct. Although
the model has been trained to match questions with
the corresponding answers, it is not guaranteed that
the generated code is functionally correctly repro-
duced and that the generated question is similar to
a user request. The model itself curates the Q&A
pairs, but the curation can only verify if the ques-
tion matches the answer and seems to be correct.
Therefore, the curation/verification process could
be further improved in this pipeline step.

Data is limited to one Python repository The
evaluation is limited to one Python repository that
has its unique structure. This is important to con-
sider as the model may behave differently when
applied to other repositories, which could result in
biased results. In addition, the evaluation results
only cover a limited set of questions that could arise
concerning repositories. Given the vast range of
programming languages, frameworks, and projects,
these results may not be applicable in all scenarios.

Choice of Model & Embeddings There exist
dozens of large pre-trained generative models and
embeddings that could be applied to the task. How-
ever, we report the results for the Self-Alignment

236

technique only with Mistral-7B and the basic RAG
approach with the Instructor embeddings. An al-
ternative base LLM or embeddings could further
improve the results.

Our goal was to compare RAG-based and fine-
tuning approaches on the repository-level Ques-
tion Answering task and not to make an exhaustive
search of all models, embeddings, and pipelines.
We leave these experiments as future work.

Using LLM-as-a-judge instead of human eval-
uation Regarding evaluating the model’s perfor-
mance, the LLM-as-a-judge approach also has its
limitations. Despite the elimination of the posi-
tion bias and the attempts to use GPT-4 as a judge,
the evaluation is not flawless. The superior model
judges the answers, but sometimes, the criteria
are chosen by the model itself and do not match
those of humans. Also, the correctness of the pro-
duced code is often not sufficiently verifiable for
the model, as it does not have access to the neces-
sary source code.

Chunking of the code file Despite its advantages,
the RAG pipeline has some limitations that must
be considered. One major limitation is that the
context provided to the LLM is always just a por-
tion of the file, which means that knowledge about
multiple files is not processed, and the connection
between the files and the code cannot be consid-
ered. To address this, the context would need to
be pre-processed better. One possible solution is
to have a hierarchical structure that provides con-
text at different levels and contains summarized
knowledge. For example, a description of what a
module is responsible for or how the general struc-
ture of the module could be added to each chunk
of each file in the module. That additional infor-
mation should further help the model gain a deeper
understanding of the repository.

Number of chunks retrieved For all experi-
ments, the number of chunks was set to N = 1, but
it could also be interesting to test whether the num-
ber of chunks could further improve the model’s
performance. Also, the size of the chunk and the
overlapping characters are possible variables for
optimizing the results.

Catastrophic Forgetting As mentioned in Sec.
5, the model’s performance decreased on both
MBPP (Austin et al., 2021) and HumanEval (Chen
et al., 2021) benchmarks following the fine-tuning

process. This shows that fine-tuning can change
models’ abilities to perform certain tasks. There-
fore, the conducted experiments do not clarify how
the model enhances its capacity to handle the con-
text, particularly source code, and grasp it deeper
after the fine-tuning process.

References
Jacob Austin, Augustus Odena, Maxwell I. Nye,

Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program Synthesis with
Large Language Models. CoRR, abs/2108.07732.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan,
Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg,
Harsha Nori, Hamid Palangi, Marco Túlio Ribeiro,
and Yi Zhang. 2023. Sparks of Artificial General
Intelligence: Early experiments with GPT-4. CoRR,
abs/2303.12712.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
Large Language Models Trained on Code. CoRR,
abs/2107.03374.

Tri Dao. 2023. FlashAttention-2: Faster Attention with
Better Parallelism and Work Partitioning. CoRR,
abs/2307.08691.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient Finetun-
ing of Quantized LLMs. CoRR, abs/2305.14314.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. GPTScore: Evaluate as you desire. CoRR,
abs/2302.04166.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. CoSQA: 20, 000+ Web Queries for Code
Search and Question Answering. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International

237

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.48550/ARXIV.2303.12712
https://doi.org/10.48550/ARXIV.2303.12712
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2305.14314
https://doi.org/10.48550/ARXIV.2305.14314
https://doi.org/10.48550/ARXIV.2302.04166
https://doi.org/10.18653/V1/2021.ACL-LONG.442
https://doi.org/10.18653/V1/2021.ACL-LONG.442

Joint Conference on Natural Language Processing,
pages 5690–5700, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021.

Yizheng Huang and Jimmy Huang. 2024. A survey
on retrieval-augmented text generation for large lan-
guage models. CoRR, abs/2404.10981.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
SearchNet Challenge: Evaluating the State of Seman-
tic Code Search. CoRR, abs/1909.09436.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Changyoon Lee, Yeon Seonwoo, and Alice Oh. 2022.
CS1QA: A Dataset for Assisting Code-based Ques-
tion Answering in an Introductory Programming
Course. CoRR, abs/2210.14494.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-Augmented Generation
for Knowledge-Intensive NLP Tasks. CoRR,
abs/2005.11401.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku-
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023. StarCoder: may the source be with
you! CoRR, abs/2305.06161.

Chin-Yew Lin. 2004. Looking for a Few Good Met-
rics: Automatic Summarization Evaluation - How
Many Samples Are Enough? In Proceedings of the
Fourth NTCIR Workshop on Research in Information
Access Technologies Information Retrieval, Question

Answering and Summarization, NTCIR-4, National
Center of Sciences, Tokyo, Japan, June 2-4, 2004.

Chenxiao Liu and Xiaojun Wan. 2021. CodeQA: A
Question Answering Dataset for Source Code Com-
prehension. In Findings of the Association for Com-
putational Linguistics: EMNLP, pages 2618–2632,
Virtual Event / Punta Cana, Dominican Republic,
16-20 November, 2021.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang,
Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong, Yankai
Lin, Yingli Zhang, Xiaoyin Che, Zhiyuan Liu, and
Maosong Sun. 2024. RepoAgent: An LLM-Powered
Open-Source Framework for Repository-level Code
Documentation Generation. CoRR, abs/2402.16667.

Rui Mao, Guanyi Chen, Xulang Zhang, Frank Guerin,
and Erik Cambria. 2023. GPTEval: A Survey
on Assessments of ChatGPT and GPT-4. CoRR,
abs/2308.12488.

Daye Nam, Andrew Macvean, Vincent J. Hellendoorn,
Bogdan Vasilescu, and Brad A. Myers. 2024. Using
an LLM to help with code understanding. In Proceed-
ings of the 46th IEEE/ACM International Conference
on Software Engineering, pages 97:1–97:13, ICSE
2024, Lisbon, Portugal, April 14-20, 2024.

Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023.
Retrieval-Based Prompt Selection for Code-Related
Few-Shot Learning. In 45th IEEE/ACM Interna-
tional Conference on Software Engineering, pages
2450–2462, ICSE 2023, Melbourne, Australia, May
14-20, 2023.

Nhan Nguyen and Sarah Nadi. 2022. An Empirical
Evaluation of GitHub Copilot’s Code Suggestions. In
19th IEEE/ACM International Conference on Mining
Software Repositories, MSR, pages 1–5, Pittsburgh,
PA, USA, May 23-24, 2022.

Liang Niu, Muhammad Shujaat Mirza, Zayd Maradni,
and Christina Pöpper. 2023. CodexLeaks: Privacy
Leaks from Code Generation Language Models in
GitHub Copilot. In 32nd USENIX Security Sympo-
sium, pages 2133–2150.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. CoRR, abs/2203.02155.

Oded Ovadia, Menachem Brief, Moshik Mishaeli,
and Oren Elisha. 2023. Fine-tuning or retrieval?
comparing knowledge injection in LLMs. CoRR,
abs/2312.05934.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting of the Association for

238

https://arxiv.org/abs/2404.10981
https://arxiv.org/abs/2404.10981
https://arxiv.org/abs/2404.10981
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2210.14494
https://doi.org/10.48550/ARXIV.2210.14494
https://doi.org/10.48550/ARXIV.2210.14494
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings4/OPEN/NTCIR4-OPEN-LinCY.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings4/OPEN/NTCIR4-OPEN-LinCY.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings4/OPEN/NTCIR4-OPEN-LinCY.pdf
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.223
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.223
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.223
https://doi.org/10.48550/ARXIV.2402.16667
https://doi.org/10.48550/ARXIV.2402.16667
https://doi.org/10.48550/ARXIV.2402.16667
https://doi.org/10.48550/ARXIV.2308.12488
https://doi.org/10.48550/ARXIV.2308.12488
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1109/ICSE48619.2023.00205
https://doi.org/10.1109/ICSE48619.2023.00205
https://doi.org/10.1145/3524842.3528470
https://doi.org/10.1145/3524842.3528470
https://www.usenix.org/conference/usenixsecurity23/presentation/niu
https://www.usenix.org/conference/usenixsecurity23/presentation/niu
https://www.usenix.org/conference/usenixsecurity23/presentation/niu
https://doi.org/10.48550/ARXIV.2203.02155
https://doi.org/10.48550/ARXIV.2203.02155
https://doi.org/10.48550/ARXIV.2312.05934
https://doi.org/10.48550/ARXIV.2312.05934
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Computational Linguistics, pages 311–318, July 6-
12, 2002, Philadelphia, PA, USA.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
GPT-4. CoRR, abs/2304.03277.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
Embedder, Any Task: Instruction-Finetuned Text
Embeddings. In Findings of the Association for
Computational Linguistics, 2023, pages 1102–1121,
Toronto, Canada, July 9-14, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models. CoRR, abs/2307.09288.

Jiaan Wang, Yunlong Liang, Fandong Meng, Haoxi-
ang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and Jie
Zhou. 2023. Is ChatGPT a good NLG evaluator? A
preliminary study. CoRR, abs/2303.04048.

Zhiqiang Yuan, Junwei Liu, Qiancheng Zi, Ming-
wei Liu, Xin Peng, and Yiling Lou. 2023. Eval-
uating Instruction-Tuned Large Language Models
on Code Comprehension and Generation. CoRR,
abs/2308.01240.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023a. Judging
LLM-as-a-Judge with MT-Bench and Chatbot Arena.
In Advances in Neural Information Processing Sys-
tems 36: Annual Conference on Neural Information
Processing Systems, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b.

Codegeex: A Pre-Trained Model for Code Genera-
tion with Multilingual Benchmarking on HumanEval-
X. In Proceedings of the 29th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
pages 5673–5684, KDD 2023, Long Beach, CA,
USA, August 6-10, 2023.

Tianyu Zheng, Shuyue Guo, Xingwei Qu, Jiawei Guo,
Weixu Zhang, Xinrun Du, Chenghua Lin, Wen-
hao Huang, Wenhu Chen, Jie Fu, and Ge Zhang.
2024. Kun: Answer polishment for Chinese self-
alignment with instruction back-translation. CoRR,
abs/2401.06477.

Tingwei Zhu, Zhong Li, Minxue Pan, Chaoxuan Shi,
Tian Zhang, Yu Pei, and Xuandong Li. 2024. Deep
is Better? An Empirical Comparison of Information
Retrieval and Deep Learning Approaches to Code
Summarization. ACM Trans. Softw. Eng. Methodol.,
33(3):67:1–67:37.

239

https://doi.org/10.48550/ARXIV.2304.03277
https://doi.org/10.48550/ARXIV.2304.03277
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2303.04048
https://doi.org/10.48550/ARXIV.2303.04048
https://doi.org/10.48550/ARXIV.2308.01240
https://doi.org/10.48550/ARXIV.2308.01240
https://doi.org/10.48550/ARXIV.2308.01240
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.48550/ARXIV.2401.06477
https://doi.org/10.48550/ARXIV.2401.06477
https://doi.org/10.1145/3631975
https://doi.org/10.1145/3631975
https://doi.org/10.1145/3631975
https://doi.org/10.1145/3631975

A SpyderCodeQA

Dataset Examples For each dataset dimension, three Q&A pairs from SpyderCodeQA are presented.

Code Semantics

Question: In file script.py in module app.tests, what is arr and what is it set to?
Answer: arr is a numpy array initialized with the list li, which is set to [1,2,3] before.

Question: Why is there a todo in this snippet and what has to be done so that it can be removed?
Answer: According to the TODO comment there is a section needed until all core plugins are migrated. Then it can be
removed.

Question: What is the task of test_generate_cookiecutter_project_defaults?
Answer: The task is to test the function generate_cookiecutter_project.The test case creates some temporary files. and
then calls generate_cookiecutter_project with the path to these temporary files. Finally, it is tested that value is in the
result and the status is true. This probably indicates that the cookiecutter project was successfully initiated.

Dependencies

Question: Which libraries are directly imported in the file "spyder/plugins/ipythonconsole/utils/manager.py"?
Answer: The directly imported libraries in the file "spyder/plugins/ipythonconsole/utils/manager.py" are: os, signal,
psutil, and asyncio.

Question: Is the module qtpyQtCore instantiated in the file edgeline.py?
Answer: No, there is no instantiation of the module qtpyQtCore in the file edgeline.py.

Question: What file is imported from the file ’decoration.py’ within the programming repository?
Answer: spyder/utils/palette.py

Meta-Information

Question: What version of Python is required to run Spyder?
Answer: Spyder requires Python 3.8 or higher as its core language.

Question: What are the main components of the Spyder IDE?
Answer: The software has five main components:
1. Editor: Multi-language editor with real-time code analysis tools, automatic code completion, and go-to-definition.
2. Interactive Console: IPython consoles with workspace, debugging support, and inline plot rendering.
3. Documentation Viewer: Real-time documentation rendering with Sphinx for classes and functions.
4. Variable Explorer: Inspect any variables, functions, or objects created during your session.
5. Development Tools: Static analyzer, interactive debugger, profiler, project support, file explorer, and full regex search.

Question: What is the first step to be taken after releasing a new version of Spyder?
Answer: The first step is to publish the release on the GitHub Releases page. This involves copying the contents of the
previous release description, updating relevant information and links to point to the new Spyder version and changelog
entry, and editing the previous release description to only have the changelog line.

Figure 8: For each dataset dimension three example Q&A pairs are presented.

Django Web App Interface An online study was conducted to create these pairs, and a custom web
application was developed using Python Django as a backend service and HTML, CSS, vanilla JavaScript,
and Bootstrap 5 for the user interface. The web app was hosted on a private home server during the
data collection. Fig. 9a shows the UI for creating Q&A, and Fig. 9b for rating the Q&A from other
participants.

Creation of Code Semantics Q&A Participants were given a random code snippet from the open-source
Python Spyder IDE code repository during the online study. These snippets were generated using the
LangChain package’s document loader and text splitter1. The 2083 Python files in the repository were
divided into 5673 text chunks to create these code snippets. The source code was chunked using Python
syntax and specific cutting points like \nclass, \ndef, and \n\tdef. Each chunk was not larger than
2000 characters. If the splitter within the chunk size found none of these cutting points, the splitter uses

1https://python.langchain.com/docs/modules/data_connection/document_transformers/

240

https://python.langchain.com/docs/modules/data_connection/document_transformers/

(a) Web App frontend for creating Q&A pairs. Two input fields
are on the left for entering questions and answers, and the Code
snippet is on the right. Users submit a Q&A with the green
button and mark it as Bad Code, e.g., the code snippet is not
understandable, with the yellow button.

(b) Web App frontend for rating Q&A pairs. Two slider inputs
are on the left for entering a rating from 0 (bad) to 10 (perfect),
and the Code snippet is on the right. Users submit a rating
using the green button. Understanding problems with rating
the Q&A pair resulted in submitting the red button.

Figure 9: Web App frontends for creating and rating Q&A pairs.

secondary cutting points such as \n\n, \n and " ". In addition to the source code, meta-information
about the code snippets were stored. That included the file’s name and module and the start and end lines
of the source code. The procedure for identifying the start and end line involved fetching the file path of
the code snippet and comparing its content with the original file’s content. It then located the starting line
of the snippet by matching its first line with the lines in the file and determined the end line based on the
snippet’s length. The function also accounted for edge cases where the snippet may not be found within
the file or consists of only one line. After creating chunks of source code and meta-information, the data
was stored in an SQLite database using Django object-relational mapping in Python.

The interface for the creation task is shown in Figure 9a. The left side of the interface contained two
text areas, one for entering the question and the other for entering the answer. On the right side, the code
snippets from the repository were displayed, along with meta-information such as the module name, file
name, and the start and end line of the code snippet.

Participants were given login credentials via messenger or email with a link to the web application.
Before executing the study, each user was asked to provide personal information. The required information
included their highest computer science degree (Bachelor’s, Master’s, PhD, etc.), the number of semesters
studied in total (rated on a scale of 1-10+), their self-rated coding skills (general and Python, rated on a
scale of 1-5), and their field of study. This information was only collected to filter out bad Q&A pairs
when participants had low coding or working experience.

Users could pause the study by logging out and resuming where they left off later, as the app automati-
cally saved their progress. The execution duration of the study lasted an average (median) of 1 hour and
22 minutes, with the fastest participant finishing in 38 minutes and the slowest in 8 hours and 18 minutes.
This large number is because the participants could interrupt the study to continue it later.

Creation of Dependencies Q&A The keywords import or from are used in Python to import an
artifact. The algorithm identified four types of imports: complete library imports, imports from libraries,
complete file imports, and imports from files. It is possible to identify the type of imported artifact for
the categories imported from the library and file. The algorithm provides information on each Python
file in the repository, including the file name, import category, and artifact name. The analysis involves a
DirectoryAnalyzer to evaluate directories and a FileAnalyzer class to analyze individual files.

The DirectoryAnalyzer class is designed to systematically analyze a given directory’s contents. Upon
invocation of the analysis procedure with a specified directory as input, the algorithm initializes an empty
list to store the results. Utilizing the walk() function from the os package in Python, the algorithm
traverses through the directory hierarchy from the top-down, iteratively examining each file encountered.

241

For files with a ".py" extension, the algorithm constructs the full file path and instantiates a FileAnalyzer
object to analyze the file further. The dependencies of the file are then retrieved through the analysis
method of the FileAnalyzer object, and these dependencies are appended to the list of results. Finally, the
algorithm returns the accumulated list of file dependencies, providing insights into the interdependencies
within the directory’s Python files.

The FileAnalyzer class extracts the dependencies from the Python files. Upon invocation of the analysis
procedure with a file object as input, the algorithm first reads the content of the file and initializes an empty
list to store samples. Subsequently, it iterates through the Python code’s AST representation, identifying
import statements. Depending on whether the import is of the form import module or from module
import ..., the process_node procedure is called to extract the relevant dependency information.
This information includes the imported library name, the category of import (either "file_import" or
"library_import"), and the file path of the imported module.

The process_node procedure, implemented within the same class, is responsible for processing
individual AST nodes corresponding to import statements. It discerns the library name and import category,
retrieves the file path of the imported module, and appends this information to the list of dependencies.
Furthermore, the get_artefact_type procedure, also part of the FileAnalyzer class, determines the type
of artefact defined in the Python file (e.g., function, class, variable) by traversing the AST and inspecting
its structure.

Additionally, the is_file_import() function aids in determining whether an import statement refers
to a file within the project directory or an external library. This function evaluates the module name and
checks if it corresponds to a file within the project directory structure. If the module name starts with a
dot (indicating a relative import), it constructs the full file path and checks its existence. Otherwise, it
searches for matching files within the project directory using a specified search pattern.

The analysis of the Spyder IDE repository revealed that it has 7907 dependencies. The data shows a
significant difference between the types of imports used. The project heavily relies on libraries, with 3305
instances sourcing the whole library and only 27 instances sourcing the whole files directly. This suggests
that the project prefers to use external resources instead of local file dependencies. Furthermore, the
dataset indicates that 686 files were used in the project, indicating that the project operates at a moderate
scale. When examining only the imports from files, the imports are mainly classes, with 1265 occurrences,
followed by functions, with 1048 instances, and assigns, with 569 instances. Additionally, the algorithm
failed to predict the correct artifact type in 140 instances where the artefact type was unknown. This
distribution highlights the predominant use of classes and functions.

Data Aggregation The raw dependencies were processed further using the OpenAI API using the
"gpt-3.5-turbo-1106" model. The temperature was set to 1.5 to ensure creativity in the creation process,
the maximum token limit was 256, and the top p-value was set to 1. The frequency and presence penalties
were set to 0. These parameters were carefully selected to create diverse, contextually relevant questions
and concise, coherent responses within specified token limits. To ensure that good Q&A pairs are built,
a system prompt must lead to the desired result. Fig. 12 presents the system prompt for generating the
Q&A pairs. Before generating the pairs, the assistant was instructed to create questions that could be
answered with a "no". This ensured that guessing the most common libraries would not be a viable
solution. Example questions were provided to help guide the model, such as asking which libraries were
used in a particular file or where a function belongs to a particular library.

1319 Q&A pairs were generated using the OpenAI API from 686 unique file names. Despite several
attempts to modify the prompt to yield only one question and answer, the API often returned several
questions and answers for a single request. To ensure the quality of the dataset, a final set of 135 Q&A
pairs was randomly chosen and manually verified for correctness. This was done by cross-checking the
repository’s source code to ensure that the questions and answers were correct and made sense. The
random selection process was implemented to minimize the manual effort required for verification.

242

B Question Corpus for Source Code Semantic

Code Semantics
What is the name of the function/ class?
Which parameter does the function/ class has?
Which return type does the function/ class has?
Is it a Function or Class or Method?
Give me the code for the function <<name>>?
What functionality does this code aim to achieve?
What are the expected outputs or outcomes of running this code?
What variables are used in this code, and how are they defined?
What data structures are utilized, and why were they chosen?
How does the code control the flow of execution?
Are there conditional statements or loops, and how do they operate?
How does the code handle errors or unexpected situations?
Are there mechanisms in place to catch exceptions or problematic scenarios?
How might you improve the efficiency or performance of this code?
Is this code scalable for larger datasets or more complex scenarios?
How easy would it be to maintain or extend this code in the future?
Is the code adequately documented with comments or docstrings?
Are there areas where additional documentation would be beneficial?
Does this code adhere to best practices and coding standards?
Are there any deviations from commonly accepted conventions?
How are variables initialized and assigned values in the code?
Are there any variable naming conventions followed in the code?
How are comments utilized within the code?
Are there any comments explaining specific lines or blocks of code?
What are the data types used for the variables, and how are they declared?

Dependencies
Does the code depend on external libraries or modules?
How are external dependencies managed or imported?
What external libraries or modules does the code snippet depend on?
How are the external dependencies imported within the code?
Are there any optional dependencies that are conditionally imported based on certain conditions?
How are version conflicts or compatibility issues managed with the dependencies?
Are there any considerations regarding licensing or usage restrictions for the external dependencies?

Meta-Information
Does this code rely on specific versions of external libraries or modules?
What is the filename and module name associated with the code snippet?
Does the file contain any classes or functions?
How many lines does the code snippet span from start to end?
Is there any additional metadata or information provided about the code snippet that could be relevant for understanding
its context?
How does the code snippet fit within the broader context of the module or project it belongs to?
Has the code snippet been tested, and if so, what testing methodologies were employed?

Figure 10: question corpus for source code semantic

243

C Training Conditions

The model has trained 5 epochs with batch size 32 on an NVIDIA RTX A6000 with 49GB VRAM. The
computing cluster consisted of 128 CPUs and 1TB of RAM. The model was trained using BF16 precision,
which reduces the model’s memory consumption and improves performance and gradient checkpointing
to reduce memory accumulation. Cross-entropy loss was used, while the Adam optimizer was used with
β1 = 0.9, β2 = 0.999, following the implementation by Zheng (Zheng et al., 2023b). The learning rate
was set using a cosine decay scheduler, starting with an initial learning rate of 1e − 4 and a warm-up
ratio of 0.03. During each training run, the loss consistently decreased, with a significant drop at the end
of each epoch. The learning rate also behaved as expected, with the warm-up ratio leading to an initial
increase in the learning rate, followed by a gradual decrease over the training duration.

For quantization: LoRA R and Alpha 64, following the approach of equalizing the number of R and
Alpha to reduce noise, as suggested in this blog post10. LoRA dropout was set to 0.1 and the weights were
calculated in 4-bit using normalized float-4 (NF4) for the calculation, as recommended by Dettmers et al.
(2023).

Flash Attention 2 (Dao, 2023) was used to speed up model training by a factor of 3 (Dao, 2023). For
the dataset with 14434 samples, the five-epoch training took four and a half hours. After the training, the
LoRA layers were merged into the base model Mistral 7B to reduce the response time when using the
model for inference.

0 1k 2k 3k 4k 5k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1x 2x 4x

Global Step

C
r
o
s
s
 e

n
t
r
o
p

y
 l

o
s
s

Loading [MathJax]/extensions/MathMenu.js

(a) During the training process of 5 epochs, the cross entropy loss development
value is demonstrated. Each line represents one training run. "1x" represents the
training using the self-alignment pipeline once, while "2x" represents the training
run twice and "4x" four times.

0 1k 2k 3k 4k 5k

0

0.5e−4

1e−4

1.5e−4

2e−4

1x 2x 4x

Global Step

L
e
a
r
n

in
g

 R
a
t
e

(b) During the training process of 5 epochs, the value of the learning rate develop-
ment is demonstrated. Each line represents one training run. "1x" represents the
training using the self-alignment pipeline once, while "2x" represents the training
run twice and "4x" four times.

Figure 11: Loss function and learning rate shown for each training run

10https://medium.com/@fartypantsham/what-rank-r-and-alpha-to-use-in-lora-in-llm-1b4f025fd133

244

https://medium.com/@fartypantsham/what-rank-r-and-alpha-to-use-in-lora-in-llm-1b4f025fd133

D Prompt Templates

You are an Assistant to create question answer pairs for a programming repository. You will receive a table with
information about all used imports and files of one file of a programming repository. Your task is create a short question
and answer pair about the table. Vary the question so that you are ask for only one specific row sometimes about the
whole table. Please either ask about imported libraries or imported files, orientate on the category column. Also write
questions where the answer is No or the questions ask for a library that does not exist. If you ask multiple question in one
prompt always provide the file name.
Example Question could be (FILL <<>> with data):
- Which libraries are used in the file <<FILE_NAME>>?
- What libraries are imported directly in the file <<FILE_NAME>>?
- Does the file <<FILE_NAME>> also uses the library <<LIBRARY_NAME>>?
- Is the <<MODULE>> part of the the file <<FILE_NAME>>?
- Are the files <<FILE_NAME>> and <<FILE_NAME_2>> highly coupled?
- What library does the function <<FUNCTION_NAME>> belong to in the file <<FILE_NAME>> within the
programming repository?
- Is the file <<FILE_NAME>> depending on the module <<MODULE>>?

Figure 12: system prompt for creating question-answer pairs

<<SYSTEM_PROMPT>>
You are a teacher for beginners in Python programming to explain Code.
First, explain from which file and module this code snippet is taken and which imports are needed. Then, explain the
code line by line.
Question: <<Teacher Question>>
Meta Data:
#file_name: <<FILE_NAME>>
#module: <<MODUL_NAME>>
#contains_class: <<BOOLEAN>>
#contains_class: <<BOOLEAN>>
#file_imports: <<IMPORTS_AS_LIST>>
#start_line: <<INTEGER>>
#end_line: <<INTEGER>>
<</SYSTEM_PROMPT>>
{{CODE_CHUNK}}

Figure 13: The following is a description of the prompt template utilized to generate the teacher data D0. The system prompt
begins with an introduction on how to behave, followed by a randomly selected question from the question corpus. Additionally,
the meta data for the related code chunk is included. Following the system prompt, the code chunk is added as input.

You are a model to generate a question-answer pair. You will receive an explanation of a code snippet. The provided
function is Python code and is part of the Spyder IDE repository. Predict a question a user would ask. Always include the
name of the file, the module in the question and the start and end line of the file. Always include in your answer code
from the explanation. Provide your question-answer pair in the format:
Question: <<Your Question>>
Answer: <<Your Answer>>

Figure 14: Prompt Template used to generate the Q&A Data D1

245

Below is an instruction from an user and a candidate answer. Evaluate whether or not the answer is a good example of
how AI Assistant should respond to the user’s instruction. Please assign a score using the following 5-point scale: 1: It
means the answer is incomplete, vague, off-topic, controversial, or not exactly what the user asked for. For example, some
content seems missing, numbered list does not start from the beginning, the opening sentence repeats user’s question. Or
the response is from another person’s perspective with their personal experience (e.g. taken from blog posts), or looks
like an answer from a forum. Or it contains promotional text, navigation text, or other irrelevant information.
2: It means the answer addresses most of the asks from the user. It does not directly address the user’s question. For
example, it only provides a high-level methodology instead of the exact solution to user’s question.
3: It means the answer is helpful but not written by an AI Assistant. It addresses all the basic asks from the user. It is
complete and self contained with the drawback that the response is not written from an AI assistant’s perspective, but
from other people’s perspective. The content looks like an excerpt from a blog post, web page, or web search results. For
example, it contains personal experience or opinion, mentions comments section, or share on social media, etc.
4: It means the answer is written from an AI assistant’s perspective with a clear focus of addressing the instruction. It
provide a complete, clear, and comprehensive response to user’s question or instruction without missing or irrelevant
information. It is well organized, self-contained, and written in a helpful tone. It has minor room for improvement, e.g.
more concise and focused.
5: It means it is a perfect answer from an AI Assistant. It has a clear focus on being a helpful AI Assistant, where the
response looks like intentionally written to address the user’s question or instruction without any irrelevant sentences.
The answer provides high quality content, demonstrating expert knowledge in the area, is very well written, logical,
easy-to-follow, engaging and insightful. Please first provide a brief reasoning you used to derive the rating score, and
then write ’Score: <rating>’ in the last line.
{Generated Q&A}

Figure 15: prompt template to generating the final training dataset D2. The generated Q&A, which is assessed, is dynamically
passed to the system prompt.

Answer the question using the provided context.
Context: <<Documents>>
Question: <<Question>>

Figure 16: prompt template to generate the response after retrieving the chunk from the vector database. <<Documents>> are
the retrieved documents. <<Question>> is the question by the user’s request.

246

<<SYSTEM_PROMPT>>
You are an AI programming assistant that is an expert in the Spyder IDE Git repository. Your task is to answer questions
about this repository as good as possible. Consider the following information about the repository. The repository is
open-source and hosted on GitHub. Anybody can contribute to the codebase.
Please only give truthful answers, and if you don’t know an answer, don’t hallucinate, but write that you don’t know it.
<< /SYSTEM_PROMPT>>
[User Question] <<USER_QUESTION>> [End of User Question]
[/INST]

Figure 17: Overview of the prompt template used to generate the responses for the LLM-as-a-judge evaluation. The model is
instructed to be a coding assistant for the Spyder IDE repository. The task is to answer questions about the repository. Also, the
model is reminded to always tell the truth and not hallucinate.

<<SYSTEM PROMPT>>
Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user
question and the model solution displayed below. You should choose the assistant that follows the user’s instructions and
answers the user’s question better and compare it to the model solution. Your evaluation should consider factors such as
the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by
comparing the two responses and provide a short explanation. Think step by step. Avoid any position biases and ensure
that the order in which the responses were presented does not influence your decision. Do not allow the length of the
responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After
providing your explanation you must output your final verdict by strictly following this format: [[A]] if assistant A is
better,
[[B]] if assistant B is better,
[[C]] for a tie, and
[[D]] if both assistants gave a wrong answer.
<</SYSTEM PROMPT>>
[User Question] <<USER_QUESTION>> [End of User Question]
[Model Solution] <<MODEL_SOLUTION>> [End of Model Solution]
[The Start of Assistant A’s Answer] <<ANSWER_A>> [The End of Assistant A’s Answer]
[The Start of Assistant B’s Answer] <<ANSWER_B>> [The End of Assistant A’s Answer]

Figure 18: Overview of the prompt template used to execute the model-based pairwise comparison evaluation. First, the system
prompt is shown. It gives the model the instruction to act as a judge to evaluate the quality of the responses provided by two AI
assistants. After providing instructions on how to evaluate, the model is instructed to give the output in the format: [[A]], [[B]],
[[C]] or [[D]] regarding the decision. To clarify the process, the user question, model solution, and answers from assistants A and
B are input into the model one after the other. Each piece of information is enclosed within square brackets and is accompanied
by an identifier that indicates the type of information it contains.

247

E Evaluation Results

Table 1: Average win rate in % for each dimension and experiment respectively on the SpyderChatQA. Each column
indicates one experiment, and each dimension’s average win rate is presented row-wise, followed by the standard
deviation. Experiment (a) compares the fine-tuned Mistral 7B against Mistral 7B. (b) compares Mistral 7B with a
RAG pipeline against Mistral 7B. (c) compares fine-tuned Mistral 7B with a RAG pipeline against Mistral 7B. (d)
compares fine-tuned Mistral 7B against GPT 3.5. Standard deviation is calculated from k = 3 runs. Cells in Bold
indicate the highest value per row for ours and the lowest for all other rows. The cells underlined indicate the best
value for all experiments with Mistral 7B as a base model.

(a) fine-tuned
vs. Mistral

(b) RAG
vs. Mistral

(c) Combined
vs. Mistral

(d) Combined
vs. GPT 3.5

Code Semantics (N = 140)

Ours 63.1% ± 3.2 62.38% ± 1.1 70.71% ± 3.5 78.33% ± 3.8
Base Model 27.86% ± 0.7 32.86% ± 0.7 25.24% ± 2.9 16.19% ± 2.8
No Value 7.38% ± 1.8 3.33% ± 1.1 3.81% ± 1.5 4.76% ± 1.5
Tie Bad 1.19% ± 0.4 0.71% ± 1.2 0.35% ± 0.5 0.71% ± 0.7
Tie Good 0.71% ± 1 0.71% ± 0.7 0% ± 0 0% ± 0

Dependencies (N = 135)

Ours 59.26% ± 2.56 54.07% ± 2.5 61.97% ± 1.9 74.07% ± 1.5
Base Model 35.56% ± 1.5 39.26% ± 1.9 33.1% ± 2.1 17.29% ± 1.1
No Value 4.2% ± 2.3 5.68% ± 0.8 4.2% ± 0.4 8.15% ± 1.3
Tie Bad 0.74% ± 1.3 0.49% ± 0.4 0.74% ± 1 0.25% ± 0.42
Tie Good 0.37% ± 0.5 0.49% ± 0.8 0.74% ± 0 0% ± 0

Meta-Information (N = 50)

Ours 38.67% ± 3.2 50.67% ± 1.1 51.33% ± 3 50.67% ± 5
Base Model 58.67% ± 6.1 42% ± 2 42.67% ± 2.3 40.67% ± 4.2
No Value 2% ± 2 6% ± 2 6% ± 2 7.33% ± 7.7
Tie Bad 0.67% ± 1.1 0% ± 0 0% ± 0 0% ± 0
Tie Good 0% ± 0 1.33% ± 1.1 0% ± 0 2% ± 2.8

248

Table 2: Average win rate in % for each dimension and experiment, respectively. Each column indicates one
experiment, and each dimension’s average win rate is presented row-wise, followed by the standard deviation.
Self-Alignment pipeline executed once (a), (b) twice and (c) quadruple against Mistral 7B. Standard deviation is
calculated from k = 3 runs. Cells in Bold indicate the highest value per row for ours and the lowest for all other
rows.

(a) Self-Align. 1x
vs. Mistral 7B

(b) Self-Align. 2x
vs. Mistral 7B

(c) Self-Align. 4x
vs. Mistral 7B

Code Semantics (N = 140)

Ours 63.81% ± 1.6 70.71% ± 3.6 66.19% ± 4.1
Base Model 29.05% ± 1.1 25.24% ± 2.3 28.09% ± 2.3
No Value 6.91% ± 2.5 3.81% ± 1.5 5% ± 1.9
Tie Bad 0% ± 0 0.35% ± 0.5 0.71% ± 0
Tie Good 0.71% ± 0 0% ± 0 0.35% ± 0.5

Dependencies (N = 135)

Ours 53.58% ± 1.8 61.97% ± 1.8 53.33% ± 2.6
Base Model 40.25% ± 0.8 33.09% ± 2.1 40.49% ± 5
No Value 5.68% ± 0.8 4.2% ± 0.4 6.17% ± 3.8
Tie Bad 0.74% ± 0 0.74% ± 1 0% ± 0
Tie Good 0% ± 0 0.74% ± 0 0% ± 0

Meta-Information (N = 50)

Ours 48% ± 2 51.33% ± 3.1 46.67% ± 2.3
Base Model 47.33% ± 3 42.67% ± 2.3 50.67% ± 5
No Value 4.67% ± 2.3 6% ± 2 1.33% ± 2.3
Tie Bad 0% ± 0 0% ± 0 1% ± 1.4
Tie Good 0% ± 0 0% ± 0 1% ± 1.4

249

Table 3: Average win rate in % for each dimension and experiment respectively. Each column indicates one
experiment, and each dimension’s average win rate is presented row-wise. Finetuned with RAG vs. Mistral 7b
judged by GPT-3.5 (a) and by GPT-4 (b). Cells in Bold indicate the highest value per row for ours and the lowest
for all other rows.

Combined vs. Mistral 7B
Judge: GPT-3.5

Combined vs. Mistral 7B
Judge: GPT-4

Code Semantics (N = 140)

Ours 70.71% 72.86%
Base Model 24.29% 15%
No Value 4.29% 0%
Tie Bad 0.71% 7.86%
Tie Good 0% 4.29%

Dependencies (N = 135)

Ours 63.7% 73.33%
Base Model 31.85% 17.04%
No Value 3.7% 0.74%
Tie Bad 0% 4.44%
Tie Good 0.74% 4.44%

Meta-Information (N = 50)

Ours 52% 64%
Base Model 44% 32%
No Value 4% 0%
Tie Bad 0% 2%
Tie Good 0% 2%

250

F Q&A Pairs from the LLM-as-a-Judge evaluation

We take a closer look at the concrete examples and provide more qualitative insights about how the RAG
pipeline affects the output of the LLM model and improves performance. The examples are shown in
Appendix F. Each example consists of the original question and answer, the answer of the two models,
and the judgment at the end.

Code Semantics For the Code Semantics dimension example, the self-alignment and RAG pipeline
evaluations are shown in Figures 19 and 20, respectively. The answers and judgments for both combined
are presented in Figure 21.

The question seeks an explanation of the class functionality. As anticipated, the base model (Mistral
7B) states its inability to provide a precise answer due to lack of access to the code, attempting to infer
the benefit from the name but remaining vague. Conversely, the fine-tuned model confidently explains
the class’s usage and returns a code snippet it considers correct. GPT-3.5 favors the fine-tuned model
in its judgment despite the model hallucination — the generated code is incorrect. The judge assumes
the presented code snippet is correct and is satisfied with the answer, as it directly addresses the user’s
question and includes the code.

The RAG pipeline evaluation in Figure 20 provides the base model with the correct code snippet which
results in a decent explanation. Therefore, GPT-3.5’s judgment again favors the modified variant (RAG)
and not the base model, recognizing that the answer correctly explains the code functionality.

When considering Figure 21, we can see that each approach demonstrates its benefits when combined.
The fine-tuned model answer is nicely formatted, the RAG pipeline answer is contextually correct. The
combination of both approaches fulfilled both requirements, providing a well-formatted answer with a
good explanation of the class and the correct code snippet. This example provides valuable insight into
the effect each approach has on the base model.

Dependencies This question presented in Figures 24, 25, and 26 is a typical example from the de-
pendencies dimension, asking for all imported libraries in a file. The correct answer lists all imports
used in the file. In evaluating the Fine-Tuned model (Figure 24), the base model correctly acknowledges
its limitations, stating that without access to the file source code, it cannot provide information about
the imports used. In contrast, the Fine-Tuned model provides a confident but entirely incorrect answer,
denying the presence of external library imports and listing non-existent internal imports from other
repository modules. Unfortunately, the judgment fails to recognize the Fine-Tuned model answer as
incorrect, instead describing it as accurate.

In contrast, the answer provided by the base model with the RAG pipeline (Figure 25) is more accurate.
The model manages to list all imports, including those from external libraries and internal repository
modules, when given the correct code snippet as context. Although the response format is not aligned, the
content is correct. The combined evaluation of both approaches (Fig. 26) generates an answer aligned to
the provided format, listing only the external libraries without internal imports.

Meta-Information The evaluation results for the Q&A pair from the meta-information dimension, are
presented in Figure 27 and Figure 28. This question is a typical example from this dimension, as it inquires
about the minimum size of the Spyder logo, a piece of information easily verifiable for correctness.

When evaluating the fine-tuned model, as shown in Figure 27, we can see that the base model lacks
access to the source code. The fine-tuned model attempts to guess the answer are also incorrect. The judge
recognizes the fine-tuned model answer as incorrect, and instead of penalizing both models, it favors the
base model response for its transparency in acknowledging the lack of information.

In contrast, the answers from the base model and fine-tuned model using the RAG pipeline, presented
in Figure 28, demonstrate a more accurate response. By feeding the correct context into the prompt, both
model answers align perfectly with the correct answer. The judgment also reflects a positive assessment
of the RAG pipeline variant. This example also illustrates the fine-tuned LLM tendency to hallucinate
without the context provided by the RAG pipeline, making it unable to answer the question about the
repository.

251

What does the "InstallerMissingDependencies"
class do?

Question:

Mistral 7B (A):

Fine-Tuned Model (B):

Judgement:

Correct Answer:
The "InstallerMissingDependencies" class holds a function "_msg" that takes in an
error message that is likely to contain a list of missing dependencies for the installation of
Spyder. The function then formats the error message and provides additional context to the
message before returning it.

I cannot definitively answer that question without access to the specific codebase in the Spyder IDE Git repository that contains the
"InstallerMissingDependencies" class. However, based on the name, it appears that this class may be related to handling missing
dependencies during the installation process in Spyder. If someone could provide the context or location of this class within the
codebase, I would be happy to try and provide a more accurate answer. If you don't have that information,
I'm afraid I cannot provide a definitive answer.

The "InstallerMissingDependencies" class is a custom exception class defined in the Spyder IDE project. It is used to raise an error when certain dependencies
are missing during the installation process. Here is the code snippet for this class::
class InstallerMissingDependencies(Exception):
 def __init__(self, missing_dependencies, installer_type):
 super().__init__("Missing dependencies: {0}".format(missing_dependencies))
 self.missing_dependencies = missing_dependencies
 self.installer_type = installer_type

 def display_missing_dependencies(self):
 print("Missing dependencies:")
 for dependency in self.missing_dependencies:
 print("* {0}".format(dependency))

Assistant A provides a thoughtful response by stating that they cannot definitively answer the question without access to the specific codebase, but they
make an educated guess based on the name of the class. They also express willingness to provide a more accurate answer if more context is provided.
On the other hand, Assistant B gives a direct and detailed answer by explaining that the "InstallerMissingDependencies" class is a custom exception class in
the Spyder IDE project, and provides a code snippet to illustrate its usage. Assistant B's response directly addresses the user's question with a clear and specific
explanation.
Based on the user's question and the responses provided, Assistant B's answer is better as it directly addresses the user's question with a specific explanation
and provides a code snippet to illustrate the usage of the "InstallerMissingDependencies" class.
Therefore, the final verdict is: "[[B]]" Assistant B is better.

Figure 19: Q&A Pair 135 from the SpyderCodeQA answered by Mistral 7B and fine-tuned model.

252

What does the "InstallerMissingDependencies"
class do?

Question:

Mistral 7B (A):

Mistral 7B + RAG (B):

Judgement:

Correct Answer:
The "InstallerMissingDependencies" class holds a function "_msg" that takes in an
error message that is likely to contain a list of missing dependencies for the installation of
Spyder. The function then formats the error message and provides additional context to the
message before returning it.

I cannot definitively answer that question without access to the specific codebase in
the Spyder IDE Git repository that contains the "InstallerMissingDependencies" class.
However, based on the name, it appears that this class may be related to handling
missing dependencies during the installation process in Spyder. If someone could
provide the context or location of this class within the codebase, I would be happy
to try and provide a more accurate answer. If you don't have that information,
I'm afraid I cannot provide a definitive answer..

The "InstallerMissingDependencies" class is a subclass of "SpyderInstallerError" and
is used to raise an error when some dependencies are missing during the installation
process of Spyder. The error message includes the missing dependencies and their
required versions, and it exits the Spyder installation with a status code of 1.

Assistant A provides a cautious response, stating that they cannot definitively answer the question without access to the specific codebase in the Spyder IDE
Git repository that contains the "InstallerMissingDependencies" class. They also express willingness to provide a more accurate answer if provided with
the necessary context or location of the class within the codebase. Assistant B, on the other hand, gives a specific and detailed answer, explaining that the
"InstallerMissingDependencies" class is a subclass of "SpyderInstallerError" and is used to raise an error when some dependencies are missing during the
installation process of Spyder. The response also includes information about the error message and the action it takes.
In comparison, Assistant B directly addresses the user's question by providing a detailed and specific explanation of the "InstallerMissingDependencies" class,
its purpose, and its behavior. Assistant A, while cautious, does not provide as much specific information about the class.

Therefore, Assistant B provides a better answer to the user's question.
Therefore, the final verdict is: "[[B]]" Assistant B is better.

import os
import glob
import textwrap
import logging

from spyder.config.base import get_conf_path

def running_installer_test():
 """Return True if currently running installer test"""
 return bool(int(os.environ.get('INSTALLER_TEST', '0')))
...
...
...
class InstallerMissingDependencies(SpyderInstallerError):
 """Error for missing dependencies"""
 def _msg(self, msg):
 msg = msg.replace('
', '\n')
 msg = 'Missing dependencies' + textwrap.
 indent(msg, ' ')

 return msg

Context from RAG:

Figure 20: Q&A Pair 135 from the SpyderCodeQA answered by Mistral 7B and Mistral 7B with RAG pipeline.

253

What does the "InstallerMissingDependencies"
class do?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
The "InstallerMissingDependencies" class holds a function "_msg" that takes in an
error message that is likely to contain a list of missing dependencies for the installation of
Spyder. The function then formats the error message and provides additional context to the
message before returning it.

I cannot definitively answer that question without access to the specific codebase in
the Spyder IDE Git repository that contains the "InstallerMissingDependencies" class.
However, based on the name, it appearsthat this class may be related to handling
missing dependencies during the installation process in Spyder. If someone could
provide the context or location of this class within the codebase, I would be
happy to try and provide a more accurate answer.
If you don't have that information, I'm afraid I cannot provide a definitive answer.

The "InstallerMissingDependencies" class is an error class that inherits from "SpyderInstallerError".
It is used to represent errors related to missing dependencies. The class defines a constructor that takes
a message as an argument and writes the error message to the console. The error message is formatted
with a newline charactr instead of a '
' tag for better display. Here's the code snippet:
class InstallerMissingDependencies(SpyderInstallerError):
 """Error for missing dependencies"""

 def _msg(self, msg):
 msg = msg.replace('
', '\n')
 msg = 'Missing dependencies' + textwrap.indent(msg, ' ')

 return msg

Assistant A's response is cautious and lacks specific details about the "InstallerMissingDependencies" class.
It mentions the potential relation to handling missing dependencies during installation in Spyder but fails to provide concrete information about the
class's functionality. The assistant also mentions its inability to access the specific codebase, which, while honest, does not help answer the user's question
effectively.
Assistant B, on the other hand, provides a detailed and specific answer about the "InstallerMissingDependencies" class.
It includes information about the class being an error class, its inheritance from "SpyderInstallerError," and its purpose to represent
errors related to missing dependencies. Furthermore, Assistant B offers a code snippet that shows how the class formats an error message, which aligns well
with the model solution's description of the class handling error messages about missing dependencies. This response is not only relevant and accurate but
also provides depth by including a code example. Comparing both responses to the model solution, Assistant B's response is more aligned with the model
solution in terms of accuracy, relevance, and depth. Assistant A's response, while cautious, does not provide the necessary details to be helpful or accurate
in the context of the user's question. Final Verdict: [[B]]

import os
import glob
import textwrap
import logging

from spyder.config.base import get_conf_path

def running_installer_test():
 """Return True if currently running installer test"""
 return bool(int(os.environ.get('INSTALLER_TEST', '0')))
...
...
...
class InstallerMissingDependencies(SpyderInstallerError):
 """Error for missing dependencies"""
 def _msg(self, msg):
 msg = msg.replace('
', '\n')
 msg = 'Missing dependencies' + textwrap.
 indent(msg, ' ')

 return msg

Context from RAG:

Figure 21: Q&A Pair 135 from the SpyderCodeQA answered by Mistral 7B and fine-tuned model with RAG
pipeline.

254

The test_cython_client function is part of the
test_ipythonconsole.py file.
What is the main purpose of the test function?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
The main purpose of the test function is to test wherever the Cython console
is working correctly.

The main purpose of the test_cython_client function, as it is part of the
test_ipythonconsole.py file in the Spyder Git repository, is to test the functionality
of the Cython client in the IPython console within Spyder. Cython is a compiled
extension language for Python, and the test ensures that Spyder's
IPython console correctly interacts with Cython code.

The main purpose of the test function test_cython_client is to test the functionality of the
Cython console within the IPython console in the Spyder IDE. It ensures that there are no
errors when executing Cython code and that the console namespace can be reset correctly.

Here is the code snippet for reference:

def test_cython_client(ipyconsole, qtbot):
 """Test that the Cython console is working correctly."""
 # Wait until the window is fully up
 shell = ipyconsole.get_current_shellwidget()
...
...

Assistant A provides a detailed explanation of the purpose of the test_cython_client function, including its specific location in the Spyder Git repository,
the functionality it tests, and its relevance to the Cython client in the IPython console within Spyder. The assistant also includes a code snippet for reference.
Assistant B also provides a clear explanation of the purpose of the test_cython_client function, focusing on testing the functionality of the Cython console
within the IPython console in the Spyder IDE, including specific tasks performed in the test function. The assistant also includes a code snippet for reference.
Both assistants accurately describe the main purpose of the test function and provide relevant details.
However, Assistant A's response offers slightly more depth and context by mentioning the role of Cython as a compiled extension language for Python and
explaining how the test ensures that Spyder's IPython console correctly interacts with Cython code. Additionally, Assistant A refers to the specific location
of the function in the Spyder Git repository, providing additional context for the user. Furthermore, the code snippet included by Assistant A complements the
explanation and offers a visual reference for the user. Therefore, Assistant A's response is better as it provides a more comprehensive and detailed explanation
of the purpose of the test_cython_client function, including its specific location in the Spyder Git repository, the functionality it tests, and its relevance to the
Cython client in the IPython console within Spyder. Additionally, the code snippet enhances the user's understanding of the test function. [[A]]

def test_cython_client(ipyconsole, qtbot):
 ##Test that the Cython console is working correctly.
 # Wait until the window is fully up
 shell = ipyconsole.get_current_shellwidget()

 # This is here to generate further errors
 with qtbot.waitSignal(shell.executed,
 timeout=SHELL_TIMEOUT):
 shell.execute("%%cython\n"
 "cdef int ctest(int x, int y):\n"
 " return x + y")

 # Assert there are no errors in the console
 control = ipyconsole.get_widget().get_focus_widget()
 assert 'Error' not in control.toPlainText()

 # Reset the console namespace
 shell.reset_namespace()
 qtbot.wait(1000)

 # See that cython is still enabled after reset
 with qtbot.waitSignal(shell.executed,
 timeout=SHELL_TIMEOUT):
 shell.execute("%%cython\n"
 "cdef int ctest(int x, int y):\n"
 " return x + y")

 # Assert there are no errors after restting the console
 control = ipyconsole.get_widget().get_focus_widget()
 assert 'Error' not in control.toPlainText()

Context from RAG:

Figure 22: Q&A Pair 2 from the SpyderCodeQA answered by Mistral 7B and fine-tuned model with RAG pipeline.

255

The test_cython_client function is part of the
test_ipythonconsole.py file.
What is the main purpose of the test function?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
The main purpose of the test function is to test wherever the Cython console
is working correctly.

The main purpose of the test_cython_client function, as it is part of the
test_ipythonconsole.py file in the Spyder Git repository, is to test the functionality
of the Cython client in the IPython console within Spyder. Cython is a compiled
extension language for Python, and the test ensures that Spyder's
IPython console correctly interacts with Cython code.

The main purpose of the test function test_cython_client is to test the functionality of the
Cython console within the IPython console in the Spyder IDE. It ensures that there are no
errors when executing Cython code and that the console namespace can be reset correctly.

Here is the code snippet for reference:

def test_cython_client(ipyconsole, qtbot):
 """Test that the Cython console is working correctly."""
 # Wait until the window is fully up
 shell = ipyconsole.get_current_shellwidget()
...
...

Relevance and Accuracy: Both assistants correctly identify the main purpose of the test_cython_client function. They mention that it is designed to test the
functionality of the Cython console within the IPython console in Spyder, ensuring the correct interaction and error-free execution of Cython code. Assistant B
goes further by providing a detailed code snippet from the function, illustrating exactly how the function tests the Cython console, including error checks and
namespace resetting. This addition is highly relevant and enhances understanding of the function’s operation.
Depth and Detail: Assistant A provides a general explanation, which aligns well with the user’s question and is quite informative. Assistant B, in addition to the
explanation, includes a code snippet which adds significant depth to the answer. The snippet not only supports the explanation but also gives practical insight
into the workings of the function, such as how errors are checked and the namespace is reset. Helpfulness: Assistant A’s response is helpful for someone looking
for a concise answer. Assistant B’s response is particularly helpful for someone seeking a deeper understanding or verification of the function’s behavior through
actual code. Creativity: Assistant B displays a creative approach by incorporating a specific code snippet, which is not only informative but also engaging for
users familiar with Python and interested in the specifics of function implementation. In summary, while Assistant A provides a correct and succinct answer,
Assistant B enhances the response with a detailed code snippet that aligns perfectly with the explanation, providing clarity and a deeper insight into the
function's operation. This makes Assistant B's answer more comprehensive and informative. Final Verdict: [[B]]

def test_cython_client(ipyconsole, qtbot):
 ##Test that the Cython console is working correctly.
 # Wait until the window is fully up
 shell = ipyconsole.get_current_shellwidget()

 # This is here to generate further errors
 with qtbot.waitSignal(shell.executed,
 timeout=SHELL_TIMEOUT):
 shell.execute("%%cython\n"
 "cdef int ctest(int x, int y):\n"
 " return x + y")

 # Assert there are no errors in the console
 control = ipyconsole.get_widget().get_focus_widget()
 assert 'Error' not in control.toPlainText()

 # Reset the console namespace
 shell.reset_namespace()
 qtbot.wait(1000)

 # See that cython is still enabled after reset
 with qtbot.waitSignal(shell.executed,
 timeout=SHELL_TIMEOUT):
 shell.execute("%%cython\n"
 "cdef int ctest(int x, int y):\n"
 " return x + y")

 # Assert there are no errors after restting the console
 control = ipyconsole.get_widget().get_focus_widget()
 assert 'Error' not in control.toPlainText()

Context from RAG:

Figure 23: Q&A Pair 2 from the SpyderCodeQA answered by Mistral 7B and fine-tuned model with RAG pipeline.
Judged by GPT-4.

256

Question:

Mistral 7B (A):

Fine-Tuned Model (B):

Judgement:

Correct Answer:

To answer your question, I would need to have access to the specific test_introspection.py file in the Spyder IDE Git repository.
Without that, I cannot definitively say which library imports are used in that file. However, I can tell you that based on the file name,
it may be related to code introspection or testing, so libraries such as pytest, unittest, ipython, or inspect might be used. It's always
best to check the file itself or the repository's documentation for the most accurate information.

The file test_introspection.py in the Spyder IDE Git repository does not import any external libraries. It only imports modules and
functions from other parts of the Spyder project. Here is the list of imports at the beginning of the file:

from spyder.plugins.editor.widgets.codeeditor import CodeEditor
from spyder.plugins.completion.api import CompletionRequestTypes
from spyder.plugins.completion.providers.languageserver.providers.utils import path_as_uri
from spyder.utils.conda import get_list_conda_envs

These imports are necessary to use the required functionalities within the test file.

Assistant A provides a comprehensive and thoughtful response. The assistant acknowledges the inability to definitively state the
library import without access to the specific file but provides a list of potential libraries based on the file name and suggests checking
the file itself or the repository's documentation for accurate information. On the other hand, Assistant B accurately states that the
file test_introspection.py in the Spyder IDE Git repository does not import any external libraries, and it provides a list of specific
modules and functions imported at the beginning of the file.
While both responses are helpful, Assistant B directly addresses the specific file and its imports, providing accurate information about
the modules and functions imported. Assistant A's response is informative and suggests potential libraries based on the file name but
does not directly address the specific imports in the file. Therefore, based on the user's question and the specific information provided,
Assistant B's response is better as it directly addresses the file's imports, providing accurate and relevant information.
Therefore, the final verdict is: [[B]]

What library import is Used in the file
test_introspection.py?

The libraries used in the file test_introspection.py are os, os.path, random,
textwrap, sys, flaky, pytest, pytestqt, Qt, and QTextCursor.

Figure 24: Q&A Pair 211 from the SpyderCodeQA answered by Mistral 7B and fine-tuned model.

257

Question:

Mistral 7B (A):

Mistral 7B + RAG (B):

Judgement:

Correct Answer:

To answer your question, I would need to have access to the specific
test_introspection.py file in the Spyder IDE Git repository. Without that, I cannot
definitively say which library imports are used in that file. However, I can tell you that
based on the file name, it may be related to code introspection or testing, so libraries
such as pytest, unittest, ipython, or inspect might be used. It's always best to check
the file itself or the repository's documentation for the most accurate information.

The file "test_introspection.py" imports the following libraries:
import os; import os.path as osp; import random; import textwrap;
import sys; from flaky import flaky; import pytest; import pytestqt;
from qtpy.QtCore import Qt; from qtpy.QtGui import QTextCursor;
from spyder.config.base import running_in_ci
from spyder.config.manager import CONF
from spyder.config.utils import is_anaconda
These imports are used throughout the file for various purposes, including file
system manipulation, testing, and interacting with Spyder's configuration and plugins.

Assistant A's response provides a thoughtful and detailed answer to the user's question. It acknowledges the limitation of not having
access to the specific file and provides potential libraries that might be used based on the file name. It also advises checking the file
itself or the repository's documentation for accurate information.
Assistant B's response lists the specific library imports used in the file "test_introspection.py" and briefly explains their purposes.
Upon comparing the two responses, Assistant B's response directly addresses the user's question by providing the specific library
imports used in the file "test_introspection.py," along with a brief explanation of their purposes. It is more helpful and relevant to
the user's question compared to Assistant A's response, which provides potential libraries without directly addressing the specific
imports used in the file. Therefore, Assistant B's response is better.
Therefore, the final verdict is: [[B]]

Standard library imports
import os
import os.path as osp
import random
import textwrap
import sys

Third party imports
from flaky import flaky
import pytest
import pytestqt
from qtpy.QtCore import Qt
from qtpy.QtGui import QTextCursor

Local imports
from spyder.config.base import running_in_ci
from spyder.config.manager import CONF
from spyder.config.utils import is_anaconda
from spyder.plugins.completion.api import (
 CompletionRequestTypes,
CompletionItemKind)
from spyder.plugins.completion.providers.
languageserver.providers.utils import (
 path_as_uri)
from spyder.utils.conda import
get_list_conda_envs
Location of this file
LOCATION = osp.realpath(osp.join(os.getcwd(),
osp.dirname(__file__)))
Code for: def set_executable_config_helper
(completion_plugin, executable=None):
...
(Implementation Code)

Context from RAG:

What library import is Used in the file
test_introspection.py?

The libraries used in the file test_introspection.py are os, os.path, random,
textwrap, sys, flaky, pytest, pytestqt, Qt, and QTextCursor.

Figure 25: Q&A Pair 211 from the SpyderCodeQA answered by Mistral 7B and Mistral 7B with RAG pipeline.

258

What library import is Used in the file
ttest_introspection.py?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
The libraries used in the file test_introspection.py are os, os.path, random,
textwrap, sys, flaky, pytest, pytestqt, Qt, and QTextCursor.

To answer your question, I would need to have access to the specific
test_introspection.py file in the Spyder IDE Git repository. Without that, I cannot
definitively say which library imports are used in that file. However, I can tell you that
based on the file name, it may be related to code introspection or testing, so libraries
such as pytest, unittest, ipython, or inspect might be used. It's always best to check
the file itself or the repository's documentation for the most accurate information.

The file test_introspection.py imports the following libraries:
standard library -
os, os.path, random, textwrap, sys;
third party -
flaky, pytest, pytestqt, qtpy.QtCore, qtpy.QtGui.

Assistant A's answer provides a thoughtful explanation of the potential libraries that could be used in the file test_introspection.py,
given its name. The assistant suggests looking for the specific file or its documentation for accurate information. Assistant B's answer
directly lists the libraries imported in the file test_introspection.py, providing a clear and concise response to the user's question.

Upon evaluation, Assistant B's response directly addresses the user's question by providing the specific library imports used in the file
test_introspection.py, aligning with the user's request for the library import. Assistant A's response, while informative, does not
directly answer the user's question about the library import used in the file.
Therefore, based on the user's question and request, Assistant B provides a better response by directly answering the user's inquiry.
Therefore, the final verdict is: [[B]]

Context from RAG:
Standard library imports
import os
import os.path as osp
import random
import textwrap
import sys

Third party imports
from flaky import flaky
import pytest
import pytestqt
from qtpy.QtCore import Qt
from qtpy.QtGui import QTextCursor

Local imports
from spyder.config.base import running_in_ci
from spyder.config.manager import CONF
from spyder.config.utils import is_anaconda
from spyder.plugins.completion.api import (
 CompletionRequestTypes,
CompletionItemKind)
from spyder.plugins.completion.providers.
languageserver.providers.utils import (
 path_as_uri)
from spyder.utils.conda import
get_list_conda_envs
Location of this file
LOCATION = osp.realpath(osp.join(os.getcwd(),
osp.dirname(__file__)))
Code for: def set_executable_config_helper
(completion_plugin, executable=None):
...
(Implementation Code)

Figure 26: Q&A Pair 211 from the SpyderCodeQA answered by Mistral 7B and fine-tuned model with RAG
pipeline.

259

What is the minimum size for the primary
Spyder logo and the logomark?

Question:

Mistral 7B (A):

Fine-Tuned Model (B):

Judgement:

Correct Answer:
The minimum size for the primary Spyder logo is 75 px wide, and for the
logomark, it is 14 px wide.

I cannot directly provide you with the minimum size for the Spyder IDE logo and logomark as I don't have access to the specific
design files or brand guidelines of the Spyder project. However, you can refer to the official Spyder IDE GitHub repository or
contact the project maintainers for any specifications related to logo usage. You can find the Spyder IDE repository on GitHub at
https://github.com/spyder-ide/spyder. If you need help with using Git or contributing to the repository, feel free to ask.

The minimum size for the primary Spyder logo is 1500px in width, and the logomark has a minimum size of 500px in width.
Here's the relevant code snippet from the "readme.md" file:

Logos
The minimum size for the primary Spyder logo is 1500px in width.
The logomark has a minimum size of 500px in width.
Please find the logo files in the `spyder-logo` directory.

Assistant A provided a helpful response by acknowledging that it cannot directly provide the specific size for the Spyder IDE logo and logomark but directed
the user to the official Spyder IDE GitHub repository or project maintainers for the information. Assistant A also offered further assistance with using Git or
contributing to the repository if needed. This response is relevant, accurate, and helpful in guiding the user to the right source for the information.

Assistant B, on the other hand, provided incorrect information regarding the minimum size for the primary Spyder logo and logomark.
The sizes mentioned (1500px and 500px) are not consistent with the model solution provided by the user. Furthermore, the code snippet mentioned is not
from the official source and does not align with the correct sizes.
Therefore, Assistant A's response is better as it directs the user to the correct source for the information and offers further assistance if needed.

Therefore, the final verdict is: [[A]]

Figure 27: Q&A Pair 313 from the SpyderCodeQA answered by Mistral 7B and fine-tuned model.

260

What is the minimum size for the primary
Spyder logo and the logomark?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
The minimum size for the primary Spyder logo is 75 px wide, and for the
logomark, it is 14 px wide.

I cannot directly provide you with the minimum size for the Spyder
IDE logo and logomark as I don't have access to the specific
design files or brand guidelines of the Spyder project. However,
you can refer to the official Spyder IDE GitHub repository or
contact the project maintainers for any specifications related to
logo usage. You can find the Spyder IDE repository on GitHub at
https://github.com/spyder-ide/spyder. If you need help with
using Git or contributing to the repository, feel free to ask.

The minimum size for the primary Spyder logo is 75 px wide,
and the minimum size for the logomark is 14 px wide.

Assistant A's response is cautious and lacks specific details about the "InstallerMissingDependencies" class.
It mentions the potential relation to handling missing dependencies during installation in Spyder but fails to provide concrete information about the
class's functionality. The assistant also mentions its inability to access the specific codebase, which, while honest, does not help answer the user's question
effectively.
Assistant B, on the other hand, provides a detailed and specific answer about the "InstallerMissingDependencies" class.
It includes information about the class being an error class, its inheritance from "SpyderInstallerError," and its purpose to represent
errors related to missing dependencies. Furthermore, Assistant B offers a code snippet that shows how the class formats an error message, which aligns well
with the model solution's description of the class handling error messages about missing dependencies. This response is not only relevant and accurate but
also provides depth by including a code example. Comparing both responses to the model solution, Assistant B's response is more aligned with the model
solution in terms of accuracy, relevance, and depth. Assistant A's response, while cautious, does not provide the necessary details to be helpful or accurate
in the context of the user's question. Final Verdict: [[B]]

<h1>Spyder Logo Guidelines</h1>
<p>These guidelines are meant to help keep the Spyder logo consistent and
recognizable
across all its uses. They also provide a common language for referring to
the logos and their components.</p>
<p>The primary logo is the horizontal option (logomark and text next to
each other). You may also use the logomark on its own (meaning the
logomark without text).
When in doubt, it’s preferable to use the primary logo that includes
text over the logomark alone. </p>
<p>If you have a case where you do not know what background the logo will
be on or it is a variable background (such as the application icon on a
desktop), it is best to use a logo option with the light grey background.
</p>
<h2>Color</h2>
<p>Colors used in the various logos are as follows:
- Full color options are a combination of red (<code>#8c0000</code> or
<code>rgb(140, 0, 0)</code>) and grey (<code>#303030</code> or
<code>rgb(48,48,48)</code>).
- Full color options with a background have the same red and grey as other
full color options and add a light grey (<code>#fafafa</code> or
<code>rgb(250, 250, 250)</code>) rectangle behind it.
- Light options are white (<code>#ffffff</code> or <code>rgb(255, 255,
255)</code>).
- Dark options are black (<code>#000000</code> or <code>rgb(0, 0, 0)
</code>).</p>
<p>Whenever possible, use the full color logos. One color logos
(light or dark) are to be used when full color will not have enough
contrast or cannot be produced.</p>
<h2>Minimum Size</h2>
<p>Please do not make the primary logo smaller than 75 px wide or the
logomark smaller than 14 px wide.</p>
<h2>Logo Integrity</h2>
<p>A few other notes to keep in mind when using the logo:
- Be sure to scale the logo proportionally.
- Maintain a good amount of space around the logo. Don’t let it overlap
with text, images, or other elements without giving it a single color
background.
</p>

Context from RAG:

Figure 28: Q&A Pair 313 from the SpyderCodeQA answered by Mistral 7B and Mistral 7B/ fine-tuned model with
RAG pipeline. The answers were identical.

261

How can Spyder Kernels be installed using
conda?

Question:

Mistral 7B (A):

Fine-Tuned Model + RAG (B):

Judgement:

Correct Answer:
Spyder Kernels can be installed using conda with the following command:
conda install spyder-kernels

To install Spyder kernels using Anaconda (conda), you can follow these steps: Open your terminal or command prompt and create
a new conda environment with the desired dependencies:
conda create -n myenv python=3.x; conda activate myenv
Replace myenv with the name of your environment and 3.x with the Python version you prefer.
Install IPython and Jupyter Notebook: conda install ipython jupyter
Install Spyder: conda install spyder
Add Spyder's executable to your PATH:
For Windows: setx PATH "%PATH%;C:\Users\<username>\Anaconda3\envs\myenv\Scripts"
Replace <username> with your Windows username and myenv with the name of your environment.
For macOS and Linux: echo 'export PATH="$PATH:/path/to/anaconda3/envs/myenv/bin"' >> ~/.bashrc
Replace /path/to/anaconda3 with the actual path to your Anaconda installation directory and myenv with the name of your
environment. Restart your terminal or command prompt to apply the PATH modification.
Now Spyder should be installed in your conda environment. To use it with specific Python interpreters, you can install additional
Spyder kernels using the conda install command with the appropriate packages. For example, to install a Spyder kernel for Python
3.9, use: conda install -c conda-forge spyder-kernels python=3.9 This will install the Spyder kernels.

To install Spyder Kernels using conda, you can run the following command: "conda install spyder-kernels"
Question: Which Markdown file in the Spyder-kernels repository contains information about installing Spyder Kernels using pip and
conda, as well as details about its dependencies and changelog? \n\n
Answer: The CHANGLOG.md file in the Spyder-kernels repository provides information about installing Spyder Kernels using pip
and conda, as well as details about its dependencies and changelog.
Question: In the CHANGLOG.md file of the Spyder-kernels repository, what is the code snippet that explains how to install
Spyder Kernels using pip and conda, and what are the required dependencies for this project? \n\n
Answer: The code snippet that explains how to install Spyder Kernels using pip and conda, and what are the required
dependencies for this project is not provided in the given context. However, the context mentions that this information can be
found in the CHANGLOG.md file. Here's the code snippet from the context:

<h2>Installation</h2> <p>To install this package, you can use either the <code>pip</code> or <code>conda</code>
package managers, as follows:</p> <p><code>conda install spyder-kernels</code></p> <p>Using pip:</p> <p>
<code>pip install spyder-kernels</code></p> <h2>Dependencies</h2> <p>This project depends on:</p> ... (more HTML)

Assistant A provides a comprehensive and detailed explanation on how to install Spyder Kernels using conda. It includes step-by-step
instructions, code snippets, and specific commands for both Windows, macOS, and Linux systems. The response also covers the
installation of additional Spyder kernels for specific Python interpreters. Overall, it addresses the user's question thoroughly and
provides a well-structured guide for installing Spyder Kernels using conda.
On the other hand, Assistant B's response does not directly address the user's question about installing Spyder Kernels using conda.
Instead, it provides information about the CHANGLOG.md file in the Spyder-kernels repository, which is not directly related to the
user's query. Therefore, Assistant A's response is more helpful, relevant, accurate, and detailed in addressing the user's question
compared to Assistant B's response.
[[A]]

Context from RAG:
<h1>Jupyter kernels for the Spyder console</h1>
...
<h2>Installation</h2>
<p>To install this package, you can use either the
<code>pip</code> or <code>conda</code> package
managers, as follows:</p>
<p>Using conda (the recommended way!):</p>
<p><code>conda install spyder-kernels</code></p>
<p>Using pip:</p>
<p><code>pip install spyder-kernels</code></p>
<h2>Dependencies</h2>
<p>This project depends on:</p>

...

<h2>Changelog</h2>
...
<h2>Sponsors</h2>
...

Figure 29: Q&A Pair 317 from the SpyderCodeQA answered by Mistral 7B and fine-tuned model with RAG
pipeline.

262

