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Abstract 

Automatic pronunciation assessment (APA) 
manages to quantify a second language (L2) 
learner's pronunciation proficiency in a 
target language by providing fine-grained 
feedback with multiple pronunciation 
aspect scores at various linguistic levels. 
Most existing efforts on APA typically 
parallelize the modeling process, namely 
predicting multiple aspect scores across 
various linguistic levels simultaneously. 
This inevitably makes both the hierarchy of 
linguistic units and the relatedness among 
the pronunciation aspects sidelined. 
Recognizing such a limitation, we in this 
paper first introduce HierTFR1, a hierarchal 
APA method that jointly models the 
intrinsic structures of an utterance while 
considering the relatedness among the 
pronunciation aspects. We also propose a 
correlation-aware regularizer to strengthen 
the connection between the estimated 
scores and the human annotations. 
Furthermore, novel pre-training strategies 
tailored for different linguistic levels are 
put forward so as to facilitate better model 
initialization. An extensive set of empirical 
experiments conducted on the 
speechocean762 benchmark dataset 
suggest the feasibility and effectiveness of 
our approach in relation to several 
competitive baselines. 

1 Introduction 

With the rising trend of globalization, more and 
more people are willing or being demanded to learn 
foreign languages. This surging need calls for 
developing computer-assisted pronunciation 
training (CAPT) systems, as they can offer tailored 
and informative feedback for L2 (second-language) 

 
* Corresponding author. 

learners to practice pronunciation skills in a stress-
free and self-directed learning manner (Eskenazi  
2009; Evanini and Wang, 2013; Evanini et al., 2017; 
Rogerson-Revell, 2021). As a crucial ingredient of 
CAPT, automatic pronunciation assessment (APA) 
aims to evaluate the extent of L2 learners’ oral 
proficiency and then provide fine-grained feedback 
on specific pronunciation aspects in response to a 
target language (Bannò et al., 2022; Chen and Li, 
2016; Kheir et al., 2023). A de-facto standard for 
APA systems is typically instantiated with a 
“reading-aloud” scenario, where an L2 learner is 
presented with a text prompt and instructed to 
pronounce it correctly. To offer in-depth feedback 
on learners’ pronunciation quality, recent efforts 
have drawn attention to the notion of multi-aspect 
and multi-granular pronunciation assessments, 
which normally devises a unified scoring model to 

1 https://github.com/bicheng1225/HierTFR 
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Figure 1: A running example curated from the 
speechocean762 dataset (Zhang et al., 2021) 
illustrates the evaluation flow of an APA system 
in the reading-aloud scenario, which offers an L2 
learner in-depth pronunciation feedback. 
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jointly evaluate pronunciation proficiency at 
various linguistic levels (i.e., phone-, word-, and 
utterance-levels) with diverse aspects (e.g., 
accuracy, fluency, and completeness), as the 
running example depicted in Figure 1. Methods 
along this line of research usually follow a parallel 
modeling paradigm, wherein the Transformer 
network and its variants serve as the backbone 
architecture to take as input a sequence of phone-
level pronunciation features and in turn predict 
multiple aspect scores across various linguistic 
levels simultaneously via a multi-task learning 
regime (Chao et al., 2022; Do et al., 2023a; Gong 
et al., 2022). 

Albeit models stemming from the parallel 
modeling paradigm have demonstrated promising 
results on a few APA tasks, they still suffer from at 
least two weaknesses. First, the language hierarchy 
of an utterance is nearly sidelined, which, for 
example, assumes that all phones within a word are 
of equal importance and might insufficiently 
capture the word-level structural traits. Second, 
most of these methods largely overlook the 
relatedness among the pronunciation aspects. As an 
illustration, we visualize the correlation matrix in 
Figure 2, which shows the Pearson Correlation 
Coefficients (PCCs) between any pair of expert 
annotated aspect scores on the training set. We can 
observe that except for the aspects of utterance-
completeness and word-stress, the rest 
pronunciation aspects exhibit strong correlations 
not only within the same linguistic level but also 
across different linguistic levels2. Building on these 
observations, we in this paper present a novel 
language hierarchy-aware APA model, dubbed 
HierTFR, which leverages a hierarchical 
Transformer-based architecture to jointly model 
the intrinsic multi-level linguistic structures of an 
utterance while considering relatedness among 
aspects within and across different linguistic levels. 
To explicitly capture the relatedness within and 
across different linguistic levels, an aspect attention 
mechanism and a selective fusion module are 
introduced. The proposed model is further 
optimized with an effective correlation-aware 
regularizer, which encourages the correlations of 
predicted aspect scores to match those of their 
counterparts provided by human annotations. 
Furthermore, distinct pre-training strategies 
tailored for three linguistic levels are put forward, 

 
2 Both the aspects of utterance completeness and word stress 
suffer from label imbalance problems, with more than 90% 

so as to boost model initialization and hence reduce 
the reliance on large amounts of supervised training 
data. A comprehensive set of experimental results 
reveal that the proposed model achieves significant 
and consistent improvements over several strong 
baselines on the speechocean762 benchmark 
dataset (Zhang et al., 2021). 

In summary, the main contributions of our work 
are at least three-fold: (1) we introduce HierTFR, a 
hierarchical neural model for APA, which is 
designed to hierarchically represent an L2 learner’s 
input utterance and effectively capture relatedness 
within and across different linguistic levels; (2) we 
propose a correlation-aware regularizer for model 
training, which encourages prediction scores to 
consider the relatedness among disparate aspects; 
and (3) extensive sets of experiments carried out on 
a public APA dataset confirm the utility of our 
proposed pre-training strategies, which 
considerably boosts the effectiveness of 
assessments across various linguistic levels. 

2 Methodology  

2.1 Problem Formulation 

Given an input utterance U, consisting of a time 
sequence of audio signals X  uttered by an L2 
learner, and a reference text prompt T  with 𝑀 
words and 𝑁 phones, an APA model is trained to 
estimate the proficiency scores pertaining to 
multiple pronunciation aspects at various linguistic 
granularities. Let G = {𝑝,𝑤, 𝑢}  be a set of 
linguistic granularities, where 𝑝,𝑤, 𝑢 stands for the 
phone-, word-, and utterance-level linguistic units, 

of the assessments receiving the highest score (Do et al., 
2023a). 

Figure 2: A correlation matrix derived from the 
expert annotations of the training set. Each 
element in the matrix corresponds to the PCC 
score of a pair of measured aspects. 
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respectively. For each linguistic unit 𝑔 ∈ 𝐺 , the 
APA model learns to predict a set of aspect scores 
A! = {𝑎"

!, 𝑎#
!, … , 𝑎$!

! }, where 𝑁! is the number of 
pronunciation aspects of the linguistic unit 𝑔. 

2.2 Hierarchical Interactive Transformer 
Architecture 

The overall architecture of our proposed APA 
model is schematically depicted in Figure 3, which 
consists of three ingredients: phone-level modeling, 
word-level modeling, and utterance pooling 
modules. After obtaining the representations of 
various pronunciation aspects, fully-connected 
neural layers is functioned as the regressors to 
collectively generate the corresponding aspect 
score sequence for an input utterance. 
Phone-level Modeling. For an input utterance U, 
various pronunciation features are extracted to 
portray the L2 learner’s pronunciation quality, 
which includes the goodness of pronunciation 

 
3 Further details on pronunciation feature extractions can be 
found in Appendix A. 

(GOP)-based features E%&' , as well as prosodic 
features composed of duration E()*  and energy 
E+,!  statistics (Witt and Young, 2000; Hu et al., 
2015; Zhu et al., 2022; Shen et al., 2021) 3. All these 
features are then concatenated and subsequently 
projected to from a sequence of acoustic features 
X-. In the meantime, the phone-level text prompt 
is mapped into an embedding sequence E-  via a 
phone and position embedding layer and then 
point-wisely added to X-  for enriching the 
phonetic information of X- . The resulting 
representations H-. are prepend with five trainable 
“[CLS]” embeddings and in turn fed into a phone-
level transformer to obtain the contextualized 
representations H- (Vaswani et al., 2017): 

X! = W ∙ [E"#$; E%&'; E()*] + 𝐛, (1) 

H!+ = X! + E!, (2) 

H! = Transformer,-.6H!+7, (3) 

 

Figure 3: An architecture overview of the proposed model, which consists of a phone-level modeling 
component, a word-level modeling component, and an utterance pooling module. 
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where W and 𝐛 are learnable parameters. To assess 
a sequence of phone-level aspect scores, H- 
(excluding the first 5 embeddings) is forward 
propagated to the corresponding regressors. The 
excluded embeddings H":0

-  are expected to convey 
the holistic pronunciation information and are 
further fed into the subsequent selective fusion 
mechanism for use in utterance-level assessments. 

Word-level Modeling. For the word-level 
assessments, a word-level attention pooling is used 
to produce a word representation vector from its 
corresponding phones, which can be implemented 
as a multi-head attention layer followed by an 
average operation. The word-level input 
representations H1.  can be obtained by applying 
the word-level attention to the phone-level 
representations X-  and H-  individually, followed 
by a linear combination with the word-level textual 
embeddings E1 . Next, H1.  is prepend with five 
trainable “[CLS]” embeddings and fed into a 
transformer to calculate the contextualized 
representations H1 at word-level: 

X/ = Atten0123(X!),	 (4) 

H=/ = Atten0123(H!), (5) 

H/+ =	X/ +H=/ + E/ , (6) 

H/ = Transformer0123(H/+ ). (7) 
Note here that H1  (excluding the first 5 
embeddings) is utilized in the word-level 
assessments while the excluded embeddings H":01  
are fed into in subsequent selective fusion 
mechanism for use in the utterance-level 
assessments. 

After that, an aspect attention mechanism is 
introduced to capture the relatedness among 
disparate aspects (Do et al., 2023b; Ridley et al., 
2021). This mechanism consists of two sub-layers: 
a self-gating layer and a multi-head cross-attention 
layer. Specifically, for the 𝑗-th word-level aspect, 
the relation-aware representations H91*"  are first 
derived from H1 via a self-gating layer which aims 
to abstract away from redundant information while 
considering the information gathered from other 
aspects. In addition, a multi-head cross-attention 
(MHCA) process alongside a masking strategy is 
employed to calculate aspect representations H1" 
from a collection of all relation-aware aspect 
representations C*2 = ;H91*# , … , H91*$%< . The 
following equations illustrate the operations of 
aspect attention: 

H=/! = W4 ∙ H/ + 𝐛4 , (8) 

H=/'! = σ@W*! ∙ C
/ + 𝐛*!B⨂	H=

/! , (9) 

H/! = MHCA6H=/'! , C'57, (10) 

where H91" are aspect-specific representations, and 
C1 = [H91# , … , H91$%] includes all aspect-specific 
representations. In MHCA, H91*"  is linearly 
projected to act as the query matrix, while C*2 is 
linearly projected to form the key and value 
matrixes. Additionally, the masking strategy 
ensures that the output representation at a specific 
position is only influenced by the other aspects of 
the word unit. Lastly, the aspect representations 
H1"  are taken as input to the corresponding 
regressor to predict a score sequence for the 𝑗-th 
word-level pronunciation aspect. 
Utterance Pooling Module. For the utterance-
level assessments, utterance-level attention pooling 
is introduced to generate an utterance-level holistic 
representation from the corresponding input 
representations, which can be effectively 
implemented by attention pooling (Peng et al., 
2022). In more detail, the utterance-level 
representation 𝐡)  can be obtained by feeding the 
vector sequences X- , H- , and H1  into an 
utterance-level attention pooling module 
individually, followed by an aggregation operation:  

�̅�&" = Atten677(X!), (11) 

�̅�&# = Atten677(H!), (12) 
�̅�&$ = Atten677(H/), (13) 

𝐡& = W&6�̅�&" + �̅�&# + �̅�&$7 + 𝐛&, (14) 

where W), 𝐛) are trainable parameters.  

Next, a selective fusion mechanism is proposed 
to integrate contextualized representations across 
multiple linguistic levels for the utterance-level 
pronunciation assessments (Xu et al., 2021). 
Specifically, for the estimation of 𝑗-th utterance-
level aspect score, an aspect attention operation is 
first performed on 𝐡)  to a produce intermediate 
representation 𝐡@ )". Note also that the gate values 
for the phone (𝑔-

)"), word (𝑔1
)") and utterance (𝑔)

)") 
granularities are used to control the extent to which 
these contextualized representations can flow into 
the fused representation 𝐡)": 

𝑔!
&! = 𝜎 @𝐰!! ∙ J𝐡4

!; 𝐡4/; 𝐡K &!L + 𝑏!!B, (15) 

𝑔/
&! = 𝜎 @𝐰/! ∙ J𝐡4

!; 𝐡4/; 𝐡K &!L + 𝑏/!B, (16) 

𝑔&
&! = 𝜎 @𝐰&! ∙ J𝐡4

!; 𝐡4/; 𝐡K &!L + 𝑏&!B, (17) 
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𝐡&! = 𝑔!
&! ∙ 𝐡4

! + 𝑔/
&! ∙ 𝐡4/ + 𝑔&

&! ∙ 𝐡K &! , (18) 

where 𝐡3
- and 𝐡31 are 𝑗-th representation vectors of 

H- and H1; and 𝐰-", 𝐰1", 𝐰)", 𝑏-", 𝑏1", and 𝑏)" 
are trainable parameters. The fused representation 
𝐡)" is then passed to the corresponding regressor 
to assess the proficiency score for a given 
utterance-level aspect. 

2.3 Optimization  

Automatic Pronunciation Assessment Loss. 
The loss for multi-aspect and multi-granular 
pronunciation assessment, ℒ4'4, is calculated as a 
weighted sum of the mean square error (MSE) 
losses corresponding to different linguistic levels. 

ℒ!"! =
𝜆#
𝑁#
9ℒ#!"
$"

+
𝜆%
𝑁%

9ℒ%!#

$#

+
𝜆&
𝑁&

9ℒ&!$
$$

, (19) 

where ℒ-"& , ℒ1"% , and ℒ)"'  are phone-level, 
word-level, and utterance-level losses for disparate 
aspects, respectively. The parameters 𝜆-, 𝜆1 , and 
𝜆)  are adjustable parameters which control the 
influence of different granularities, and 𝑁- , 𝑁1 , 
and 𝑁) mark the numbers of aspects at the phone-, 
word-, and utterance-levels, respectively. 
Correlation-aware Regularization Loss. The 
correlation-aware regularization loss is defined as 
the difference between the correlation matrix of the 
predicted aspect scores ∑9  and the correlation 
matrix of the corresponding target labels ∑: 

ℒ89' = ℓ(∑=,∑), (20) 

where ℓ  is the regularization loss function, and 
each element in ∑9<3 (or ∑<3) is defined as a Pearson 
correlation coefficient between 𝑖 -th aspect score 
and 𝑗-th aspect score4. We adopt the MSE criterion 
for computing ℓ ; the overall loss thus can be 
expressed by: 

ℒ = ℒ:$: + 𝜆ℒ89' , (21) 

where 𝜆 ∈ [0, 1]  is a tunable parameter, which is 
experimentally set to 0.01 based on the development 
set. 

2.4 Pre-training Strategies 

It is without doubt that a proper initialization is 
vital for the estimation of a neural model, due 
mainly to the highly nonconvex nature of the 
training loss function (Tamborrino et al., 2020; 

 
4 To calculate PCC scores between aspects across different 
granularities, we duplicate the aspect scores of higher 

Lakhotia et al., 2021). At lower linguistic levels, we 
leverage the mask-predict objective 
(Ghazvininejad et al., 2019) in the pre-training 
stage. To this end, we first mask a portion of input 
text prompt at phone- and word-levels. The 
corresponding Transformers are then tasked on 
recovering the masked tokens conditioning on the 
unmasked prompt sequence and the associated 
pronunciation representations (i.e., H-. , and H1. ). 
For the utterance level, we base the proposed pre-
training strategy on predicting the relatively high or 
low accuracy scores for a pair of utterances. 
Namely, given any two utterances, the objective is 
to predict whether the former has a higher, lower, 
or the same accuracy score as the latter. Note here 
that, utterance pairs are randomly selected from a 
training batch, and this mechanism is employed to 
pretrain their utterance-level representations, 
denoted as 𝐡=)>#

) , and 𝐡=)>(
) . Next, we feed the 

concatenation of these vector representations 
𝐡=)>) = [𝐡=)>#

) ; 𝐡=)>(
) ] into a three-way classifier, 

using the cross-entropy loss as the training 
objective. 

3 Experimental Settings 

3.1 Evaluation Dataset and Metrics 

We conducted APA experiments on the 
speechocean762 dataset, which is a publicly 
available open-source dataset specifically designed 
for research on APA (Zhang et al., 2021). This 
dataset contains 5,000 English-speaking recordings 
spoken by 250 Mandarin L2 learners. The training 
and test sets are of equal size, and each of them has 
2,500 utterances, where pronunciation proficiency 
scores were evaluated at multiple linguistic 
granularities with various pronunciation aspects. 
Each score was independently assigned by five 
experienced experts using the same rubrics, and the 
final score was determined by selecting the median 
value from the five scores. The evaluation metrics 
include Pearson Correlation Coefficient (PCC) and 
Mean Square Error (MSE). PCC is the primary 
evaluation metric, quantifying the linear 
correlation between predicted and ground-truth 
scores. A higher PCC score reflects a stronger 
correlation between the predictions and human 
annotations. In the following experiments, we 
report the MSE value in order to evaluate the 

granularities to match the aspect scores at the lower 
granularities. 
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phoneme-level APA accuracy in comparison with 
prior arts. 

3.2 Implementation Details 

For the input feature extraction of the phone-level 
energy and the duration statistics, we follow the 
processing flow suggested by Zhu et al. (2022) and 
Shen et al. (2021), where a phone-level feature is 
constructed from time-aggregated frame-level 
features according to the forced alignment. Both 
the phone- and word-level Transformers for 
contextual representation modeling consist of 3 
processing blocks utilizing multi-head attention 
with 3 heads and 24 hidden units, respectively. In 
addition, for the word- and utterance-level 
attention pooling, we use a single-layer multi-head 
attention with 3 heads and 24 hidden units. The 
combination weights used in Eq. (19) for the APA 
loss ( 𝜆- , 𝜆1 , 𝜆))  are assigned as (1, 1, 1) , 
respectively. To ensure the reliability of our 
experimental results, we repeated 5 independent 
trials, each of which consisted of 100 epochs with 
different random seeds. The test set results are 
reported by averaging those achieved by the top 
100 best-performing models which are determined 
based on their PCC scores on the development set.  

3.3 Compared Methods 

We compare our proposed model (viz. HierTFR) 
with several families of top-of-the-line methods. 
Lin et al. (2021) and Kim et al. (2022) are single-
aspect assessment models. The former develops a 
bottom-up hierarchical scorer evaluating the 
accuracy scores at the utterance level. The latter 
leverages self-supervised features (Baevski et al., 
2020) to describe the learner’s pronunciation traits 

and then separately models the corresponding 
utterance-level aspects with recurrent neural 
models. In addition, LSTM, GOPT (Gong et al., 
2022; Ruy et al. 2023), and HiPAMA (Do et al., 
2023b) are multi-aspect and multi-granular 
pronunciation assessments. First, LSTM and 
GOPT follow a parallel modeling regime, both of 
which treat the phone-level input features as a 
flattened sequence and assess higher level 
pronunciation scores through stacking LSTM 
layers or Transformer blocks. Second, Ruy et al. 
(2023) introduces a unified model architecture that 
jointly optimizes phone recognition and APA tasks. 
Lastly, HiPAMA is a hierarchical APA model that 
more resembles our model than the other methods 
compared in this paper. Different from our method, 
HiPAMA extracts high-level pronunciation 
features from low-level features based on a simple 
average pooling mechanism. Furthermore, the 
aspect attention mechanism used in HiPAMA 
performs on the logistics, whereas our model 
operates on the intermediate representations. 

4 Experimental Results 

4.1 Main Results 

Table 1 reports the results on the speechocean762 
dataset, which is divided into three parts: the first 
part shows the results of single-aspect assessment 
models, the second part presents the results of 
multi-aspect and multi-granular pronunciation 
methods, and the third part reports the results of our 
model. We further provide a comparison with 
another hierarchical APA model (viz. HiPAMA) in 
the third part. 

Models 
Phone Score Word Score (PCC) Utterance Score (PCC) 

MSE↓ PCC↑ Accuracy↑ Stress↑ Total↑ Accuracy↑ Completeness↑ Fluency↑ Prosody↑ Total↑ 

Lin2021  - - - - - - - - - 0.720 
Kim2022 - - - - - - - 0.780 0.770 - 
Ruy2023  - - - - - 0.719 - 0.775 0.773 0.743 

LSTM  0.089 
±0.000 

0.591 
±0.003 

0.514 
±0.003 

0.294 
±0.012 

0.531 
±0.004 

0.720 
±0.002 

0.076 
±0.086 

0.745 
±0.002 

0.747 
±0.005 

0.741 
±0.002 

GOPT  0.085 
±0.001 

0.612 
±0.003 

0.533 
±0.004 

0.291 
±0.030 

0.549 
±0.002 

0.714 
±0.004 

0.155 
±0.039 

0.753 
±0.008 

0.760 
±0.006 

0.742 
±0.005 

HiPAMA  0.084 
±0.001 

0.616 
±0.004 

0.575 
±0.004 

0.320 
±0.021 

0.591 
±0.004 

0.730 
±0.002 

0.276 
±0.177 

0.749 
±0.001 

0.751 
±0.002 

0.754 
±0.002 

HierTFR 0.081 
±0.000 

0.644 
±0.000 

0.622 
±0.002 

0.325 
±0.022 

0.634 
±0.002 

0.735 
±0.008 

0.513 
±0.204 

0.801 
±0.004 

0.795 
±0.002 

0.764 
±0.002 

Table 1: The performance evaluations of our model and all compared methods on speechocean762 test set. 
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First, a general observation is that our approach, 
HierTFR, excels in all assessment tasks, especially 
at the linguistic levels of utterance and word. This 
performance gain confirms that our model works 
comparably better for capturing the relationships 
between linguistic units than the other competitive 
methods. In terms of the utterance-level total score, 
the single-aspect assessment method (viz. Lin2021) 
largely falls behind the other multi-aspect and 
multi-granular pronunciation assessment models, 
which we attribute to the fact that the single-aspect 
assessment method is unable to harness the 
dependency relationships between aspects through 
the multi-task learning paradigm. By leveraging 
self-supervised learning features, Kim2022 
achieves significant improvements over most APA 
methods in terms of the utterance-level 
assessments. Next, we scrutinize the performance 
of multi-aspect and multi-granular pronunciation 
assessment methods. Ruy2023 demonstrates 
significant advancements in the utterance-level 
fluency and prosody assessments due probably to 
the joint training of the APA model on the phone 

recognition task simultaneously. In comparison 
with the parallel modeling approaches (i.e., GOPT 
and LSTM), we can observe that HierTFR 
substantially improves the performance across all 
tasks, where its performance gains reveal the 
importance of capturing the hierarchical linguistic 
structures of an input utterance. Notably, compared 
to the HiPAMA, our model consistently achieves 
superior performance on a variety of pronunciation 
assessment tasks. This superiority stems from our 
tactfully designed selective fusion mechanism and 
the correlation-aware loss. The former allows our 
model to assess utterance-level aspect scores by 
leveraging information from diverse linguistic 
levels, while the latter explicitly models the 
relatedness among different aspects during the 
optimization. 

4.2 Qualitative Analysis 

Qualitative Visualization of Relatedness Among 
Aspects. In the second set of experiments, we 
examine the relatedness among disparate aspects at 
both word- and utterance-levels, where the 

 
Figure 4: Qualitative visualization of model parameters when predicting each aspect score. We show (a) the 
averaged attention values for word-level aspects, (b) the averaged attention weights for utterance-level aspects, 
and (c) the averaged gate values for three linguistic levels. 

 

Accuracy Stress Total

Accuracy Completeness Fluency Prosody Total

(a) Word-level Aspect Predictions 

(b) Utterance-level Aspect Predictions

Accuracy Completeness Fluency Prosody Total

(c) Gate Values in Selective Fusion Mechanism for Utterance-level Aspect Predictions 
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attention weights of the aspect attention 
mechanisms were determined based on the 
development set when assessing a specific aspect 
score. For the word-level assessments, the 
distributions of attention weights are in close 
accordance with the manual scoring rubrics of the 
speechocean762 dataset. In Figure 4(a), the total 
aspect serves as a comprehensive assessment and 
the corresponding weights are contributed from 
various pronunciation aspects. In contrast, the 
accuracy aspect measures the percentage of 
mispronounced phones within a word, leading to 
the attention weights being more concentrated on a 
word-level unit itself. Furthermore, the stress score 
also highly attends to the accuracy aspect, 
reflecting the strong relation between lexical stress 
and word-level pronunciation accuracy (Korzekwa 
et al., 2022). In regard to the relatedness within the 
utterance-level aspects, inspecting Figure 4(b) we 
find that the attention weights of the prosody and 
total aspects scatter across various pronunciation 
aspects, whereas the attention weights of the 
accuracy and completeness center primarily on the 
completeness aspect. One possible reason is that 
the prosody and total scores both measure high-
level oral skills, and when the human annotators 
judge the proficiency scores, they also take 
multiple pronunciation aspects into account 
simultaneously. Next, the completeness aspect 
measures the percentage of words with good 
pronunciation quality in an utterance. This 
implicitly reflects the intelligibility of a learner's 
pronunciation and is vital to the accuracy 
assessment. 
Qualitative Visualization of Interactions Across 
Linguistic Levels. In Figure 4(c), we report on the 
average gate values of utterances for three 
linguistic granularities by estimating the utterance-
level pronunciation aspect scores based on the 
development set. We can observe that the phone-
level representations bear high impacts on the 
utterance-level aspect assessments, in comparison 
to the other linguistic levels. Next, the word-level 

and utterance-level representations exhibit 
minimal impact on the completeness and total 
aspects, respectively. One possible reason is that 
the completeness aspect somehow reflects 
pronunciation intelligibility, and our model learns 
to distill the information from the phone- and 
utterance-level representations. On the other hand, 
the total aspect evaluates an overall speaking skill. 
Our model thus tends to capture the subtle 
information by distilling the fine-grained traits 
inherent in the phone- and word-levels.  

4.3 Ablation Study  

To gain insight into the effectiveness of each model 
component of HierTFR, we conduct an ablation 
study to investigate their impacts. These variations 
include excluding the correlation-aware regularizer 
(w/o CorrLoss), removing the proposed pre-
training strategies (w/o Pretrain), omitting the 
selective fusion mechanism (w/o SFusion), and 
eliminating the aspect attention mechanism at both 
word and utterance levels (w/o AspAtt). From 
Table 2, we can observe that the proposed 
correlation-aware regularization loss is beneficial 
for most pronunciation assessment tasks. Next, the 
proposed pre-training strategies are crucial to 
obtaining better performance as the model trained 
without them tends to perform relatively worse for 
all pronunciation assessment tasks. This highlights 
the efficacy of the pre-training strategies for 
hierarchical APA models, thereby alleviating the 
requirement for large amounts of supervised 
training data. Third, removing the selective fusion 
mechanism leads to degradations in the utterance-
level aspect assessments, while removing the 
aspect attention mechanism deteriorates the 
performance on word-level aspect assessments.  

5 Related Work 

Early studies on APA focused primarily on single-
aspect assessments, typically through individually 
constructing scoring modules to predict a holistic 

Models 
Phone 
Score  Word Score Utterance Score 

Accuracy Accuracy Stress Total Accuracy Completeness Fluency Prosody Total 
HierTFR 0.644 0.622 0.325 0.634 0.735 0.513 0.801 0.795 0.764 
w/o CorrLoss 0.639 0.605 0.348 0.620 0.728 0.520 0.796 0.789 0.758 
w/o Pretrain 0.621 0.545 0.318 0.559 0.716 0.215 0.770 0.772 0.739 
w/o SFusion 0.630 0.608 0.328 0.622 0.728 0.378 0.784 0.782 0.756 
w/o AspAtt 0.636 0.584 0.290 0.596 0.724 0.383 0.784 0.775 0.746 

Table 2: Ablation study on HierTFR, reporting PCC scores on three linguistic levels.   
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pronunciation proficiency score on a targeted 
linguistic level or some specific aspect with 
different sets of hand-crafted features, such as the 
phone-level posterior probability (Witt and Young, 
2000), word-level lexical stress (Ferrer et al., 2015), 
or various utterance-level pronunciation aspects 
(Coutinho et al., 2016). More recently, with the 
rapid progress of deep learning (Vaswani et al., 
2017; Raffel et al., 2020; Hsu et al., 2021), several 
neural scoring models have been successfully 
developed for multi-aspect and multi-granular 
pronunciation assessment. Gong et al. (2022) 
proposed a GOP feature-based Transformer 
(GOPT) architecture to model pronunciation 
aspects at multiple granularities with a multi-task 
learning scheme. Do et al. (2023b) employed a 
neural scorer with a hierarchical structure to mimic 
the language hierarchy of an utterance to deliver 
state-of-the-art performance for APA. 

6 Conclusion 

In this paper, we have put forward a novel 
hierarchical modeling method (dubbed HierTFR) 
for multi-aspect and multigranular APA. To 
explicitly capture the relatedness between 
pronunciation aspects, a correlation-aware 
regularizer loss has been devised. We have further 
developed model pre-training strategies for our 
HierTFR model. Extensive experimental results 
confirm the feasibility and effectiveness of the 
proposed method in relation to several top-of-the-
line methods. In future work, we plan to examine 
the proposed HierTFR model on open-response 
scenarios, where learners speak freely or respond 
to a given task or question (Wang et. al., 2018; Park 
and Choi, 2023). In addition, the issues of 
explainable pronunciation feedback are also left as 
a future extension. 

Limitations 
Limited Applicability. In this research, the 
proposed model focus on the “reading-aloud” 
pronunciation training scenario, where the 
assumption is that the L2 learner pronounces a 
predetermined text prompt correctly, which 
restricts the applicability of our models to other 
learning scenarios, such as freely speaking or open-
ended conversations. 
Lack of Accent Diversity. The used dataset merely 
contains Mandarin L2 learners, hindering the 
generalizability of the proposed model and could 

be untenable when assessing the L2 learners with 
diverse accents. 
The lack of Interpretability. The model of the 
proposed method simply trains to mimic expert’s 
annotations without resorting to manual 
assessment rubrics or other external knowledge, 
making it not straightforward to provide reasonable 
explanations for the assessment results. 

Ethics Statement 
We hereby acknowledge that all of the co-authors 
of this work compile with the provided ACL Code 
of Ethics and honor the code of conduct. Our 
experimental corpus, speechocean762, is widely 
used and publicly available. We think there are no 
potential risks for this work. 
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 A  Pronunciation Feature Extractions 
GOP Feature. To extract the GOP feature, we first 
align audio signals X with the text prompt T by using 
an ASR model 5  to obtain the timestamps for each 
phone in the canonical phone sequence. Next, frame-
level phonetic posterior probabilities are produced by 
the ASR model and then averaged over the time 
dimension based on the phone-level timestamps. The 
resulting phone-level posterior probabilities are 
converted into a GOP feature vector as a combination 
of log phone posterior (LPP) and log posterior ratio 
(LPR). Owing to the used ASR model containing 42 
phones, the GOP feature of a canonical phone 𝑝 can be 
represented as an 84-dimensional vector: 

[LPP(𝑝;), … , LPP(𝑝<=),	 
LPR(𝑝;|𝑝), … , LPR(𝑝<=|𝑝)] 

(22) 

LPP(𝑝>) = log𝑝(𝑝>|𝐨; t?, t@)	

=
1

𝑡@ − 𝑡? + 1
` log𝑝(𝑝>|oA)
A%

ABA&

, 
(23) 

LPR(𝑝>|𝑝) = log𝑝(𝑝>|𝐨; t?, t@)
− log𝑝(𝑝|𝐨; t?, t@), 

(24) 

where LPR is the log posterior ratio between phones 𝑝> 
and 𝑝; 𝑡?  and 𝑡@  are the start and end timestamps of 
phone 𝑝, and 𝑜A is the input acoustic observation of the 
time frame 𝑡. 
Energy Feature. The energy feature is a 7-
dimensional vector comprised of (viz., [mean, std, 
median, mad, sum, max, min]) over phone segments, 
where the root-mean-square energy (RMSE) is 
employed to compute energy value for each time frame, 
with 25-millisecond windows and a stride of 10 
milliseconds.  
Duration Feature. The duration feature is a 1-
dimensional vector indicating the length of each phone 
segment in seconds.  
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