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Abstract

Neural networks offer good approximation to
many tasks but consistently fail to reach per-
fect generalization, even when theoretical work
shows that such perfect solutions can be ex-
pressed by certain architectures. Using the
task of formal language learning, we focus
on one simple formal language and show that
the theoretically correct solution is in fact not
an optimum of commonly used objectives —
even with regularization techniques that accord-
ing to common wisdom should lead to simple
weights and good generalization (L1, L2) or
other meta-heuristics (early-stopping, dropout).
On the other hand, replacing standard targets
with the Minimum Description Length ob-
jective (MDL) results in the correct solution
being an optimum.

1 Introduction

Probing the capabilities of Artificial Neural Net-
works (ANNSs) in the domain of language learn-
ing has advanced in two complementary paths —
theoretical and empirical. Theoretical work tries
to delineate the kinds of languages and phenom-
ena that can be expressed by ANNs, and empirical
work involves training networks on such tasks and
inspecting their performance.

These paths have still not converged: while theo-
retical work continues to provide findings regarding
the expressivity of different architectures, empir-
ical work keeps arriving at suboptimal solutions
that fall short of the theoretically correct ones. For
example, for formal languages such as a™b" or
Dyck-1, among many others, we are not aware
of any network trained through gradient descent
that was shown to perform well on strings that
are orders of magnitudes longer than those seen
during training, while failures to report general-
ization beyond low lengths are pervasive (Joulin
and Mikolov, 2015, Weiss et al., 2018, Suzgun
et al., 2019, Bhattamishra et al., 2020, El-Naggar

et al., 2022, among others; see Lan et al., 2023
for an overview). This stands in contrast to sym-
bolic models, where the requirement for solution
correctness across lengths is trivially met.

Why this would be the case is often either left
unexplained or waved off as a shortcoming of the
optimization method (most often, gradient descent
using backpropagation). In this work we argue that
these failures are not due to training misfortunes
that could be overcome, for example, by using
a more exhaustive hyper-parameter search, more
training steps, or more training data. Rather, they
are due to inherent characteristics of the training
objectives currently used for such tasks.

Our main contributions are:

1. We present a manually built, optimal
Long Short-Term Memory network (LSTM;
Hochreiter and Schmidhuber, 1997) that ac-
cepts the formal language a™b", following a
general recipe given in Weiss et al. (2018). We
show that this network would not be found us-
ing standard training objectives, since it does
not lie at optimum points of these objectives —
even when using regularization terms which
according to common wisdom should result
in general solutions.

2. We show that by replacing these objectives
and regularization terms with an objective to
minimize the network’s Minimum Descrip-
tion Length (MDL, Rissanen, 1978), accom-
panied by an intuitive encoding scheme, the
optimal network becomes an optimum of the
objective.

The full experimental materials and source code
are available at https://github.com/@xnurl/
mdl-1stm.

2 Previous work

We rely mainly on three recent works, which we
extend in the following ways. First, the current
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Figure 1: Loss surfaces around the golden a™b™ LSTM from Section 4, for the regularization terms considered here:
L1, L2, and |H| - the hypothesis encoding length term of the MDL objective. |H | is jagged and non-differentiable
but results in the correct net being an optimum of the full loss function (Figure 4).

work is similar to EI-Naggar et al. (2023), who in-
spected the role of the objective function in formal
language learning. They showed that for a simple
recurrent neural network (RNN), which uses a sin-
gle ReLU layer, the optimal counting solution does
not align with optima of common loss functions
(cross-entropy and mean squared error). This was
done by providing necessary and sufficient condi-
tions for implementing counting in a ReLU-RNN.
We extend this work in the following ways. First,
we move to the more commonly used LSTM RNN.
Since this architecture is more complex, it is also
harder to find such sufficient and necessary con-
ditions for counting as done by El-Naggar et al.
(2023). This leaves our results mostly empirical,
compared to their analytical result. However, here
we go beyond that work by also providing an al-
ternative objective function (MDL), for which the
optimal network becomes an optimum.

Second, in order to locate such an optimum of
the objective, we build an optimal LSTM that ac-
cepts a specific formal language. For this we rely
on Weiss et al. (2018), who showed that an LSTM
can theoretically implement counting using specific
weight configurations, so that the state vector holds
a counter that can be incremented and decremented
based on the input. Here we implement their gen-
eral recipe to build an optimum LSTM that accepts
the language a™b™. We focus on one language for
simplicity, and the method can be easily extended
to more languages.

Third and closest to the current work, Lan et al.
(2022) applied the MDL principle to RNNs for
formal language learning. The resulting networks
were shown to be correct for any string for lan-
guages such as a"b", a™b™c" ™™, and Dyck-1.
Since this objective resulted in a non-differentiable
loss function, Lan et al. (2022) used neuroevolution

to search the hypothesis space, evolving free-form
RNN cells. Since our focus in this work is the ob-
jective, here we leave the search algorithm aside
and use a single fixed architecture for which a the-
oretical target is known to exist (LSTM). We then
inspect the effect of the objective function on po-
tential weight solutions.

More broadly, empirical work using RNNs for
artificial grammar learning have been carried out
at least since the introduction of Simple RNNs in
Elman (1990). Theoretical work regarding RNNs’
theoretical computational power go back at least to
Siegelmann and Sontag (1992), who showed that
RNNs are Turing-complete under certain permis-
sive assumptions (unbounded activation precision
and running time). The empirical success of ANNs
in the practical field of natural language processing
(NLP) has led to recent interest in the theoretical
power of RNNs under practical conditions, mainly
real-time processing and finite precision (Weiss
et al., 2018, Merrill et al., 2020). Other recent work
has applied similar methods to the transformer ar-
chitecture (see survey in Strobl et al., 2023).

In terms of empirical results, works since El-
man (1990) trained ANNs to recognize formal lan-
guages and most often tested for generalization
using unseen string lengths and depths (Gers and
Schmidhuber, 2001, Joulin and Mikolov, 2015,
among many others). Lan et al. (2023) provide
an overview of such works; they show that com-
mon to these works is a failure to generalize beyond
a certain tested length. Lan et al. (2023) also pro-
vide a standardized benchmark for formal language
learning, and find that RNNs trained to optimize
standard losses fail to generalize well from reason-
ably small amounts of data, while an RNN variant
trained to minimize MDL (Lan et al., 2022) is able
to generalize significantly better.
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Applying the MDL criterion to ANNSs also dates
back to at least the early 1990’s. (See Schmidhuber,
1997 for an overview of early attempts in this area,
and Lan et al., 2022 for a review of more recent
work.) Hinton and Van Camp (1993) minimized the
encoding length of the weights alongside the pre-
diction error, while leaving the architecture fixed.
Hochreiter and Schmidhuber (1994) provided an
algorithm that searches for networks that lie at ‘flat
minima’ — regions of parameter space where er-
ror remains relatively similar; this preference is
given an MDL justification. Zhang and Muhlen-
bein (1993) used a genetic algorithm to search for
network architectures that minimize an MDL score,
using a weight encoding similar to L2 regulariza-
tion. Schmidhuber (1997) presented an algorithm
for discovering networks that optimize a running-
time based complexity metric that is closely re-
lated to MDL (Levin complexity). More recently,
Louizos et al. (2017) used a Bayesian method with
an MDL justification for pruning and quantizing
network units and weights. Louizos et al. (2018)
used a differentiable approximation of the L0 norm
to encourage weight sparsity. As far as we can tell,
these methods are still prone to the risk of overfit-
ting through highly informative yet small-valued
weights, explained in Section 3.2 below.

3 General setup

We describe here the technical background leading
to the experiments in Section 4.

3.1 Minimum Description Length

Striking a balance between model complexity and
its fit to the data is important in order to avoid
both overfitting and underfitting. It is generally
assumed that minimizing model complexity is good
(Occam’s razor).

This general principle was formalized within
Kolmogorov Complexity (Solomonoff, 1964,
Chaitin, 1966, Kolmogorov, 1968), defined as the
length of the shortest program that generates spe-
cific data. Kolmogorov Complexity however is
non-computable, a result of the target representa-
tion being Turing-complete. The Minimum De-
scription Length principle (MDL; Rissanen, 1978)
makes it possible to escape the non-computability
by relaxing the requirement of a Turing-complete
representation and moving to a less powerful for-
malism (e.g., a context-free grammar).

Formally, consider a hypothesis space ‘H and

input data D. The MDL principle aims to find a
hypothesis H* that minimizes the sum:

H" = in |H D:H 1
arglr{nel%I lc + | | (h

where |H | is the length of H encoded using an
encoding scheme C' for encoding hypotheses in
‘H. Encoding length is usually measured in bits.
|D : H| is the encoding length of D given H.

Minimizing | H | alone would result in a degen-
erate, over-general model that does not fit the data
well. Conversely, minimizing |D : H| alone would
result in overfitting. Minimizing both terms to-
gether results in a reasonable compromise between
generalization and accuracy.

3.2 Encoding a network

In this work, hypotheses in H are taken to be LSTM
networks with one linear output layer, followed by
a softmax function. Here we describe an encoding
scheme for such networks which makes it possible
to measure their encoding length | H |.

We first note that a reasonable encoding scheme
for networks should follow an intuitive notion of
simplicity in order to penalize overfitting (i.e., lead
to larger encoding length). Equating scalar magni-
tude with simplicity is not enough, since it is still
possible to ‘smuggle’ large amounts of informa-
tion inside very small scalar values. One extreme
example is using a fractal encoding in the spirit
of Siegelmann and Sontag (1992) or Tabor (2000)
which encodes a stack inside a small rational num-
ber.!-2 However, less sophisticated overfitting is
also conceivable using highly specific weights, for
example if a model assigns specific probabilities
due to sampling artefacts in the training set. A
reasonable objective should make such memoriza-
tion worthwhile only if the data justify it, e.g., if it
contains many repetitions of the same pattern.

Regularization terms such as L1/L.2 are not good
enough then, since they would deem, for example,
a simple value such as 1 worse than a smaller yet
highly informative value (e.g., Y7 Z“Zf L <1, the
fractal encoding of a binary stack w, from Siegel-
mann and Sontag, 1992).

'These works use activation values, not weights, to store
such values. However, such a construction still illustrates the
difference between information content and scalar magnitude.

2Admittedly and as discussed also in Weiss et al. (2018),
standard gradient-based methods would most probably not
reach such highly specific weight configurations. This does
not mean however that such solutions do not exist in the search
space and that better search algorithms would not find them.
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For MDL, the encoding scheme C explained in
Section 3.1 needs to be chosen so that it fulfills the
simplicity requirement. We opt for the following
encoding scheme, used in Lan et al. (2022).

A weight w;; is represented as a rational fraction
--. The numerator and denominator are encoded
using the prefix-free encoding for integers from Li
and Vitanyi (2008):

E(n)= 11111...1111 0
— 0

Unary enc. of [logan]| Separator  Binary enc. of n

Both encodings are then concatenated, with an
extra bit for the sign. For example, the weight
w;ij = —i—% would be encoded as:

1 E(2) = 11010 E(5) = 1110101
~—
+ 2 5

wij

This encoding fulfills the requirement above: the
encoding of very specific or informative weights
would be considerably longer than that of intu-
itively simpler values such as 1.

In the current setup, the LSTM architectures vary
only by the size of the hidden vector and the values
of the weights. In order to reliably encode a specific
network one needs to encode only the weights of
the LSTM cell and output layer, and prepend the
size of the hidden vector. The encoding of a specific
network would then be:

11011 11...0110...0111...10
—— S N e e
E(hidden size) W5

Weight encoding

LSTM encoding

To calculate |H| for networks trained through
backpropagation with floating-point weights, in
sections below floats are converted to the closest
rational with denominator m < 1000.3

3.3 Language modeling

We use the formal language a”b™ as a test case
throughout this work, and probe different networks’
performance on recognizing it. Strings are drawn
from the following probabilistic context-free gram-
mar (PCFG):

aSh 1-—
S — { P )
€ p
We use the CPython implementation in

Fraction.limit_denominator() which
the closest rational with denominator < 1000.

approximates

10101...00110
—

with p = 0.3 for all tasks. We use a standard lan-
guage modeling setup in which the network is fed
one symbol at a time, and outputs a probability
distribution over the alphabet, predicting the next
symbol in the string. Following Gers and Schmid-
huber (2001), each string starts and ends with a
special symbol.

The training set is sampled by generating strings
from (2). The validation set consists of all consecu-
tive strings starting right after the last n in the train-
ing set. The validation loss is weighted per-sample
so that it follows the same power law distribution
induced by (2). The train-validation split in all ex-
periments is 95%-5%. In the following sections
the training size is 1,000, i.e., a 950-50 split. The
maximum 7 in this training set was 21, so the vali-
dation set contained all strings with 22 < n < 71.
The test set in all experiments consisted of all a”*b"
strings with 1 < n < 1,500.

The network is fed one symbol at a time, and at
each step outputs a probability distribution p over
the alphabet for predicting the next symbol in the
string. The baseline loss function we use is the
standard cross-entropy loss (CE):

CE(p,p) = — > _plci)log(p(ci)) (3
=0

where n is the length of a sequence, c; is the target
symbol at time step 4, p(c;) is the target probability
at time step ¢ for this symbol, and p(¢;) is the prob-
ability assigned by the network to this symbol at
this time step. In a language modeling setting the
target p(c;) is set to 1, resulting in:

CE(p,p) = — Y _ log(p(ci)) )
=0

This sum is then averaged over all time steps for
all sequences.

To measure accuracy on the task, we use deter-
ministic accuracy (Joulin and Mikolov, 2015, Lan
et al., 2023), defined as the ratio of correct answers
at parts of the string that are completely predictable
(a correct answer being the network assigning the
maximum probability to the correct next symbol).
For a™b" strings, this means measuring accuracy
at the phase that starts once the first ‘b’ appears,
including the end-of-sequence symbol. Measuring
accuracy at the end-of-sequence symbol turns the
task into a strict acceptance task and can distin-
guish a good network that correctly balances the
number of ¢’s and b’s, from a degenerate network
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that, e.g, gets a high deterministic accuracy score
simply by only predicting b’s.

3.4 Loss surface exploration

Our goal is to test which objectives could lead to
optimal solutions. Exhaustive search of the param-
eter space is infeasible. However, we can explore
only parts of the loss space and check if an objec-
tive function turns out to favor suboptimal solutions
over an optimal one. This would be an indicator
that this objective is not suitable for the task (and
would lead to reliance on meta-heuristics such as
early stopping). We do this by exploring the loss
surfaces around an optimal network that solves
the task perfectly and around a backpropagation-
trained network.

For a given network with parameters 6, and for
a loss function L, the network’s loss is L(#) (for
some input z, in the current case a one-hot vector
representing the current symbol, omitted here). For
the 2D visualization we use below, the area around
a specific network’s 6 can then be explored by using
two direction vectors ¢ and 7, and plotting:

fla,B) = L(6 + ad + Bn) &)

We use the exploration technique by Li et al.
(2018): ¢ and 7 are randomized from a Gaussian;
then, specific parts of each direction vector are nor-
malized so that they have the norm of the respective
parts in the original . For fully-connected layers
like the ones used in LSTMs, normalization is done
for each set of weights leading to a specific neu-
ron. This normalization technique preserves the
relative scale of different weight components of
a network, and was shown to better reflect prop-
erties like convexity when exploring a network’s
surrounding space. In all plots below we use 51
equally spaced values of o, 5 € [—1,1]. Explo-
ration using larger ranges did not affect the results
either visually or quantitatively.

3.5 Objectives

The objective functions for all tasks below share
the following structure:

L(#) = CE + AReg(),

Here, C'F is the training cross-entropy loss (4)
using the distribution p outputted by the network.
For the MDL objective in (1), CE serves as | D : H]|.
This can be justified in encoding-length terms since

(4) gives the expected length in bits for transmitting
the string using Shannon-Fano encoding.

In the second term, Reg is either Li(f) =
Dwnyeo |Wijls L2(0) = 32, cpwis?, or no reg-
ularization. For the MDL objective, Reg () is |H |
— the encoding length of a network encoded using
the method in Section 3.2. A is a coefficient used to
calibrate the level of regularization during training,
and is usually chosen empirically.

The common wisdom motivating the regulariza-
tion term in all cases is to prevent models from
overfitting. In the L1/L2 regularization framework,
this is done by preventing large weights. Using L1
also leads to a preference for zero-value weights,
thus potentially removing connections altogether;
this can be thought of as a differentiable way to per-
form architecture search. However, as suggested
in Section 3.2, neither term is a good proxy for the
|H| term, since small weights can in fact be very
informative (i.e., very complex).

Figure 1 plots the three regularization terms con-
sidered here, surrounding the optimal network pre-
sented in Section 4. It can be seen that while the
loss surfaces for L1/L2 are smooth, moving to
MDL would result in a highly irregular surface,
hostile to gradient methods.

4 Optimal vs. trained «"b" LSTM

Here we compare an optimal, manually-
constructed LSTM that recognizes the language
a™b" perfectly, with an LSTM trained through
backpropagation on the same task. We name the
optimal network ‘golden’ to avoid confusion with
general optimum points. The golden network is
optimal in the sense that it always outputs the
correct probabilities at each step of an a™b"™ string
drawn from (2), for any value of n. The optimal
probabilities are presented in Figure 2a.

The goal of the experiment is to test whether
a perfect solution can be found when using the
different objectives considered here. Exhausting
the entire parameter space is infeasible, even for
networks with the very small hidden size (3) used
here. However, if the golden network turns out
to not be an optimum of certain objectives, i.e., a
worse-performing network will be deemed better
by an objective, we can conclude that this objective
would not lead to this specific network.
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network and the best trained network for n = 73, the
first point of failure of the trained network. Going left
to right, each column represents the probability distribu-
tion outputted by the network at each time step.

Input phase

4.1 Golden a™b"™ network

The golden network is implemented based on a
general recipe given in Weiss et al. (2018), who
showed that an LSTM can theoretically implement
counting using specific configurations of the gate
weights, so that the state vector holds a counter
that can be incremented and decremented based
on the input. This makes it possible for LSTMs
to recognize a family of formal languages called
Counter Languages. Roughly, this family corre-
sponds to languages which can be recognized using
a counting mechanism in real-time (Merrill, 2020).
This includes a"b™. In an empirical experiment,
however, Weiss et al. (2018) trained LSTMs on rec-
ognizing the language and found that the networks
did not converge on the fully general counting so-
lution, rather it converged on a suboptimal solution
that failed to recognize a™b" strings starting at n
as low as 256.

We describe here in general terms the mechanics
of the golden network. The full construction is
given in Appendix B. The weights of the LSTM
cell are set so that the network keeps track of the
number of a’s compared to the number of b’s seen
at each time step. Figure 3a plots the values of the
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Figure 3: Memory values for the golden network and
the best trained network for n = 73, the first point of
failure of the trained network. Each line corresponds to
one component of ¢, the memory vector in the LSTM
cell, as the string is fed to the network.

memory vector of the LSTM during feeding of an
a™b" string, illustrating its counting mechanism.
On top of the LSTM cell we add a linear layer that
receives the hidden state as input, and outputs the
correct target probabilities through a final softmax.

The manual network reaches 100% test accuracy
on the test set which contains all a”b" strings with
1 < n < 1500, and in fact can be shown to be
correct for any n. Note that the network is optimal
with respect to its performance, and that other per-
fect networks with better MDL scores could exist
in the search space. We return to this point in the
Limitations section.

4.2 Backpropagation-trained «"b" LSTM

We compare the golden network with networks
trained on the same task using standard techniques.
We run a hyper-parameter grid search to train
LSTMs that have the same architecture as the man-
ual network: hidden size 3 and a single linear out-
put layer, followed by a softmax. The grid covers
the following hyper-parameters: training set size,
weight initialization method, regularization term,
dropout rate, and early stopping patience based
on validation loss, across five different random
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seeds. The grid yields 3,360 configurations. The
full hyper-parameter grid is given in Appendix A.
The overfitting prevention techniques explored
here belong to two groups: techniques where a reg-
ularization term is added directly to the loss func-
tion (L1, L2), and meta-heuristics external to the
objective (dropout, early-stopping based on valida-
tion loss), aimed at preventing the loss from getting
too low. While our focus here is the objective func-
tion, we still include dropout and early stopping in
order to compare the golden network with a net-
work trained in a practical setting with the best
chances to succeed. In Table 1 in the appendix we
provide the same comparison for the best network
that was trained without early stopping or dropout.
We select the best network out of all runs based
on validation loss. The best network reached 77.3%
deterministic test accuracy (on1 < n < 1,500) and
was trained with the following parameters: train-
ing size 1000 (950-50 train-validation split); no
regularization term; early stopping patience of 2
epochs; no dropout; normal weight initialization.

4.3 Network behavior

We start by comparing the behavior of the golden
and trained networks. The best trained network cor-
rectly accepts all strings with n < 72 (the largest
n in the training set was 21). We compare the net-
works using the first point of failure of the trained
network, n = 73. Figure 2 plots the output prob-
abilities assigned by the two networks throughout
the sequence, and Figure 3 plots their memory val-
ues (c in the LSTM cell).

We first examine the network outputs in Figure 2.
At first blush, the trained network seems success-
ful, following the language distribution induced by
(2) and visualized in Figure 2a almost perfectly.
However, the network is imperfect in two ways:
first, probabilities at the beginning of the string are
incorrect, most probably due to overfitting of more
frequent low-n values in the training set. Addi-
tionally and more crucially, the network’s count
seems to leak, with probability mass for the end-of-
sequence symbol assigned to the before-last time
step. This becomes a problem for n > 73, when
the network starts accepting illicit a”b" ! strings.

As for the inner workings of the network, visu-
alizing the network’s memory in Figure 3b shows
that the network has indeed developed some count-
ing mechanism in at least one component of the
memory vector (cg), which seems to be imperfect

as it does not correctly count up to 73, and goes
slightly below O towards the end of the string. (It
is unclear however how the network uses the other
two components, which could potentially comple-
ment this counter).

4.4 Loss exploration

Is the suboptimal performance of the trained net-
work above simply a misfortune of the current
setup? We explore the possibility that the culprit
might be the objective function. We do this by com-
paring the loss values of the golden network with
the trained network’s, using standard objectives
and the MDL objective.

Beyond measuring the loss value of the two net-
works considered here, we also explore their sur-
rounding loss landscape in order to check for al-
ternative local minima and inspect properties like
convexity and smoothness of the loss. This is done
using the technique described in Section 3.4.

Figures 4 and 5 plot the different loss surfaces
around the networks. On each plot we mark the
minimum point in the neighborhood, to check if it
aligns with the network under investigation. If it
does not, using that loss (either for fine-tuning the
network or training from scratch) would potentially
end up at that other minimum. For each relevant
point we use the parameter vector to build the cor-
responding LSTM and calculate its test accuracy.

We start by exploring the loss surface around
the golden network.* Figures 4a and 4b show that
if L1 or L2 regularization were used, the golden
network would not have been found — rather, using
these regularization terms would lead the search to
suboptimal networks that have better training loss
values, but also worse test accuracy.

For the MDL objective function, visualized in
Figure 4c, the minimum in the plotted area aligns
with the golden network, showing that at least in
this neighborhood, searching with MDL as an ob-
jective would lead to the correct solution. In Sec-
tion 6 below we discuss potential limitations to
these findings.

Figure 5 plots the different loss surfaces around
the best trained network. We plot in 3D for com-

*We omit plotting the standalone cross-entropy loss be-
cause it is trivial to show that minimizing this loss alone will
lead to overfitting (partially explaining the fact that the best
performing network ends up using early stopping). Table 1 in
the appendix demonstrates this using the next-best grid-search
network that was trained without a regularization term or early
stopping, whose cross-entropy loss goes below that of the
golden network’s.
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Figure 4: Training loss around the golden a™b™ LSTM, and test accuracy scores for the golden network and the
local minimum network. Optimizing using L1 or L2 (4a, 4b) would result in suboptimal networks, while MDL (4c)
results in alignment of the golden network with an optimum point of the loss.

- Minimum (1.63e+02, acc. 0.1%)
Trained (1.66e+02, acc. 77.3%)
Golden (2.51e+03, acc. 100.0%)

R

(a) CEtrain + L1

| Minimum (4.20e+02, acc. 70.4%)
Trained (4.28e+02, acc. 77.3%)
Golden (4.04e+05, acc. 100.0%)
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(b) CEtrain + L2

- Minimum (5.88e+03, acc. 78.0%)
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Figure 5: Training loss surfaces and the test accuracy of the best a™b™ LSTM found through a hyper-param grid
search, trained using backpropagation with the standard cross-enropy loss and early stopping based on validation
loss. When evaluated using L1 or L2 (5a, 5b) the network ranks better than the golden network but has worse test
performance. When evaluated using MDL (5c¢) the trained network does not minimize the loss as well as the golden
network, ending up in a smooth but suboptimal area of the loss space.

parison with the relevant value for the golden net-
work, which lies in a different area of the loss space.
Here, for all objectives, the winning network lies in
a smooth and convex area. When evaluated using
L1 and L2 regularization, the golden network ranks
worse by the relevant losses.

For the MDL objective the image is reversed:
the trained network ranks worse, while the MDL
score of the golden network remains unreachable
below (Figure 5¢). Since the two networks’ cross-
entropy terms are almost identical (see Table 1),
this inversion is mainly due to to the |H| term,
which suggests that the trained network uses over-
informative weights. Results for more A values for
all networks are given in Table 1.

5 Discussion

We presented a comparison between common
overfitting-prevention techniques, among them

some that equate simplicity with scalar magnitude,
and the MDL objective accompanied with an en-
coding scheme for weights which favors an intu-
itive notion of simplicity. Combined with a man-
ually built LSTM that optimally recognizes a"b",
we could measure the loss values of an optimal so-
lution and check if they align with optimum points
of the loss function. It was only when we used
MDL that the optimal network aligned with the
minimum of the loss. For the other loss functions,
networks lying at minimum points had far from op-
timal performance. Using meta-heuristics such as
early stopping mitigated overfitting to some extent,
but still did not lead to a fully general solution.
We interpret these findings as an indicator that
ANNSs’ failure to converge on provably existing,
optimal solutions is not accidental, but rather an
inherent and pathological property of the way that
current models are trained. This is in line with
a mounting list of generalization failures to learn
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formal languages, as well as more complicated
natural language tasks.

We focused here on RNNs, mainly because they
lend themselves easily to manual construction and
inspection. However, we see no a priori reason why
our results would not extend to other architectures
such as transformers or convolutional networks,
given the generality of the MDL principle, and the
fact that it has been shown to be beneficial across
various domains and learning tasks, including lin-
guistic phenomena (see Stolcke, 1994, Griinwald,
1996, de Marcken, 1996, and Rasin et al., 2021,
among others).

6 Limitations

In Section 4.4 we explored the loss surface around
the golden network using different objectives, and
found that using L1/L.2 regularization leads to sub-
optimal networks lying at optimum points, while
using the MDL objective leads to the golden net-
work lying at an optimum point. However, since the
loss exploration is not (and cannot be) exhaustive,
caution is needed when making generalizations
based on these results.

First, when using L1/L.2, it is still possible of
course that better optima lie somewhere else in
the loss spaces, and that the respective minimiz-
ing networks have perfect performance. Given the
discussion in Section 3.1 about scalar magnitude
vs. simplicity we find this possibility unlikely but
admittedly still possible.

Conversely, when using the MDL objective, here
it is conceivable that other networks would have
better MDL scores and suboptimal performance.
While this cannot be ruled out completely, we be-
lieve that using the MDL objective accompanied
by a reasonable encoding scheme like the one used
here makes over/under-fitting unlikely. This is ar-
guably not the case for L1/L2. (Another possi-
bility, that of a network with a better MDL score
but equivalent perfect performance, is more likely,
given that the golden network was manually de-
signed and can potentially be optimized further.)

Finally, a major practical limitation of the current
work relates to the non-differentiability of the MDL
objective. This is especially problematic for ANNSs,
given that current standard training methods rely
almost exclusively on gradient descent. One could
then consider L1/L.2 as a differentiable proxy for a
strict formalization of simplicity. However, the cur-
rent work sheds light on the shortcomings of these

compromises. This in turn could lead both to a
more informed use of such proxies, and potentially
to further research regarding better optimization
techniques for MDL.
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Golden net

Best trained net

Best trained, no early stopping

Loss A Loss Test acc. % Loss Test acc. % Loss Test acc. %
CE - 3.58e-01 100.00 3.58e-01 77.33 3.57e-01 64.97
0.1 2.50e+02 100.00 1.67e+01 77.21 1.85e+01 86.73
CE+L1 05 1.24e+03 96.23 8.17e+01 77.21 8.94e+01 96.24
1.0 2.48e+03 0.00 1.63e+02 0.13 1.78e+02 96.24
0.1 3.72e+04 99.87 4.23e+01 77.21 5.80e+01 90.34
CE+L2 0.5 1.86e+05 99.87 2.10e+02 70.38 2.85e+02 91.81
1.0 3.72e+05 99.87 4.20e+02 70.38 5.69e+02 91.81
MDL - 3.92¢+03 100.00 5.88e+03 77.98 5.87e+03 69.68

Table 1: Minimum training loss values and best test deterministic accuracy scores in the space surrounding the
following networks: the golden network, the best trained network which used early stopping, and the best trained
network that was trained without early stopping or regularization terms. Winning values across networks are
indicated for each row: best loss (blue) and best accuracy (red). Minimizing the loss and achieving perfect accuracy

coincide only for the MDL objective.

stop after no improvement for number of epochs:
none/2/10. Weight initialization: uniform/normal.

All simulations used the Adam optimizer
(Kingma and Ba, 2014) with learning rate 0.001,
B1 = 0.9, 52 = 0.999, and ran for 20,000 epochs
unless stopped by early stopping.

B Golden ¢"b" LSTM construction

This section spells out the construction of the opti-
mal a™b™ network from Section 4. The network is
designed to output the correct probability distribu-
tion for ab" strings induced by the PCFG in (2).
The target probabilities are plotted in Figure 2a.
The general idea is to implement a counting
mechanism in the LSTM cell and then to pass
this value through a linear layer and a softmax,
which outputs the target probabilities. A full Py-
Torch implementation of the network is given at
https://github.com/@xnurl/mdl-1stm.

B.1 Representations and constants

We use a standard LSTM cell represented by the
following functions:

it = o(Wixy + by + Whihi—1 + bpi) (6)
ft = o(Wipxy + big + Whphi—1 + bry) (7
gr = tanh(Wigay + big + Whghi—1 + brg) (8)
ot = d(Wios + bio + Whohi—1 + bio) ©)
c=[tOc-1+1Og (10)
hi = o4 ® tanh(c;) (11)

where o is the sigmoid activation and © is the
element-wise product.

In the following construction, all weights are set
to 0 unless mentioned otherwise.

The LSTM gates (sigmoids and tanh’s) need to
be saturated in order to prevent leakage and keep
the solution stable (Weiss et al., 2018). For this,
a large enough input needs to be used. We select
empirically:

LARGE =27 —1

which is the largest unsigned integer that fits in 7
bits (instead of, e.g., 27 in order to save bits when
using the encoding scheme from Section 3.2).

Network inputs and outputs are vectors of size 3,
with the following class positions: [#, a, b], where
# is the start/end-of-sequence symbol. Inputs are
one-hot encoded, so that:

zp = [y, 1y, 1) (12)
The notation [- - - |¢qnp is used as a shorthand for
tanh([---]). Column vectors are printed as row

vectors and omitting the transpose for readability.

B.2 Counting

The network’s memory vector c¢; is of size 3. We
describe the construction that leads to ¢; holding
the following target values at each time step:

Ct = [17 1a #CL - #b]

where #a and #b represent the number of a’s and
b’s seen so far. #a — #b thus counts the number

(13)
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of unmatched a’s and becomes 0 only when the a’s
and b’s are balanced. The two constant 1’s will be
used downstream.

We first set:

10 0
Wig=LARGE-[1 0 0
01 —1

Then, from definitions (8) and (12) and because
all other weights feeding g; are 0, we get:

gt = tanh(Wiga:t) = [ﬂ#, ﬂ#, ﬂa — ﬂb] (14)
i.e., the last component of g; holds +1 when seeing
‘a‘or —1 when seeing ‘b‘. 1’s are stored in the other
components when the start-of-sequence symbol
first appears.

Then, the input and forget gates are saturated
to make the addition between g; and c;—; stable.
Saturating the gates is done through their biases in
order to save on encoding length:

by = by = LARGE - [1,1,1]

We write off the saturated gates from definition
(10), and get the recurrent update of the memory
vector:

15)

It is then simple to apply the recurrence and get
the correct counting targets (13) for all time steps:
(14) gives go = [1, 1, 0] for the first time step and
gr>0 = [0,0, 1, — 1;] for all other steps.

Ct=C-1+ Gt

B.3 Hidden vector

The following construction leads to the hidden vec-
tor h; holding the following target values, repre-
senting the different phases of an a™b" string:

he = 1y, La, Lyga>4b)tanh (16)

We first construct o; as a mask vector to select
the relevant part from c; in (13) based on the current
phase of the string.

The mask o; is constructed by setting:

2
Wio = LARGE - | 0
0

o N O

0
0
2

bio = LARGE - [-1,—1, —1]

Since all other weights in definition (9) are 0, we
get:
Ot = O’(Wioxt + bio)

Following the indexing of x;, this results in a
one-hot mask based on the current input:

Ot = []]-#a ]]-a) :H-b]

(Wi, and b;, are used instead of setting W;, to the
identity because of the sigmoid in (9).)
Combined with (13) we get:

hi =01 © tanh(ct) = []]-#a 1, ]l#a>#b]tanh
(17)
This vector is (tanh-)one-hot in all cases except
when #, = #;, in which case it zeros-out.

B.4 Output layer

The hidden vector h; is then multiplied by a linear
layer W,,¢. We build the values of W,,,; backwards
based on the optimal target probabilities.

Each ab" string has four phases: the start-of-
sequence step, the ‘a’ phase, the b"*<" phase, and
the final-‘b’ phase. Each row in the following ma-
trix holds the optimal probabilities for the respec-
tive phase, based on PCFG (2):

p 1—p 0

_ |0 1-p p
Targets = 0 0 1 (18)

1 0 0

Since the output layer feeds a final softmax, we
build the logits backwards:

Wiog = In(Targets + ¢)

with € preventing taking the log of 0. Here we use
e= (24 —1)"L.

Since we have four states and only three com-
ponents in the hidden vector, we superimpose the
four states onto three. First, split W, into W,/
which contains the first three states, and a bias bg,,;
which contains the fourth:

Wour = I/Vloghg
bout = I/Vl0g4

Then subtract to get:

Wout” = (Wout’ - bout)T

The transpose is taken so that multiplying by the
one-hot h; copies columns.
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Finally, divide by tanh(1) because h; is tanh-
one-hot based on (17):

Wout = Woutw/tanh(l)

As seen in (17), h; is one-hot during all phases
except the last ‘b’, and thus copies the relevant
probability distribution from (18). Adding the bias
undoes the superimposition. h; is all-zero only
when #, = #3, in which case W, - h; is zero.
In this case the probabilities for the fourth state
(final-b), stored in by, are outputted.
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