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Abstract

Event relations are crucial for narrative under-
standing and reasoning. Governed by nuanced
logic, event relation extraction (ERE) is a chal-
lenging task that demands thorough semantic
understanding and rigorous logical reasoning.
In this paper, we conduct an in-depth investi-
gation to systematically explore the capability
of LLMs in understanding and applying event
relation logic. More in detail, we first inves-
tigate the deficiencies of LLMs in logical rea-
soning across different tasks. Our study reveals
that LLMs are not logically consistent reason-
ers, which results in their suboptimal perfor-
mance on tasks that need rigorous reasoning.
To address this, we explore three different ap-
proaches to endow LLMs with event relation
logic, and thus enable them to generate more co-
herent answers across various scenarios. Based
on our approach, we also contribute a synthe-
sized dataset (LLM-ERL) involving high-order
reasoning for evaluation and fine-tuning. Ex-
tensive quantitative and qualitative analyses on
different tasks also validate the effectiveness of
our approaches and provide insights for solv-
ing practical tasks with LLMs in future work.
Codes are available at https://github.
com/chenmeiqii/Teach-LLM-LR.

1 Introduction

Understanding the relationships between events is
fundamental to effective communication and rea-
soning, a challenge central to the field of Event
Relation Extraction (ERE). ERE tasks, which in-
volve identifying coreference, temporal, causal,
and subevent relationships, demand not only se-
mantic comprehension but also rigorous logical
reasoning. Despite recent advances in Large Lan-
guage Models (LLMs) such as ChatGPT (Ouyang
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Identify the relations between events FIRE and collapsed …

Text:
A large FIRE broke out at the Waitrose supermarket in Wellington’s High Street, 
half of the roof at the entrance of the store collapsed during the blaze. 

Coreference Relation: NO_COREFERENCE
Temporal Relation: SIMULTANEOUS
Causal Relation: CAUSE
Subevent Relation: NO_SUBEVENT.

User

LLM

This answer SIMULTANEOUS is logically inconsistent.
Logic:
• If event A causes event B, then event A must happen either before or overlap

with event B.
• If event A and B happens simultaneously, they won’t have a causal relation.

Analysis

Logical Inconsistency (LI) =
𝐍𝐮𝐦𝐛𝐞𝐫	𝐨𝐟	𝐂𝐨𝐧𝐟𝐥𝐢𝐜𝐭𝐬	(							)

𝐍𝐮𝐦𝐛𝐞𝐫	𝐨𝐟	𝐂𝐨𝐦𝐛𝐢𝐧𝐚𝐭𝐢𝐨𝐧𝐬	(					4					)
=
𝟏
𝟔

≈ 16.7%

: No Conflicts: Conflicts

Pairwise Conflicts Detection

🤖

Figure 1: An example of LLM in generating logically
inconsistent answers. We let an LLM (e.g., ChatGPT)
predict the relations between events “FIRE” and “col-
lapsed” from the given passage. We can find that LLM
predicts an incorrect answer (i.e., SIMULTANEOUS)
because it ignores some prior logic in this scenario.

et al., 2022) and Llama2 (Touvron et al., 2023),
these models struggle to fully grasp the complexi-
ties of event relation logic, often failing to apply it
accurately in ERE tasks.

As showcased in Figure 1, ChatGPT incorrectly
predicts the temporal and causal relations between
events “FIRE” and “collapsed” as “simultaneous”
and “cause”, respectively. According to the prior
logical constraints, we could readily claim the pre-
dictions are not fully correct even before reading
the context. Some works (Xu et al., 2023; Pan
et al., 2023; Lyu et al., 2023) attribute this gap
in logic adherence to LLMs’ inherent deficiencies
(e.g., hallucination, unfaithfulness). However, how
to disentangle and improve the capability of LLMs
in these tasks is still an open problem.

To deeply understand the deficiencies of LLMs
in logical reasoning and explore the corresponding
solutions, in this paper, we conduct an in-depth
investigation of LLMs in solving reasoning tasks
from multiple dimensions. Our experimental re-
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sults show that: 1) Even the cutting-edge LLMs
still generate large amounts of inconsistent answers,
e.g., over 60% of the answers from ChatGPT on the
MAVEN-ERE (Wang et al., 2022a) dataset are log-
ically inconsistent as shown in Figure 2; 2) Provid-
ing relevant logic to LLMs improves performance,
but injecting irrelevant logic introduces fluctuations
in results. Therefore, how to obtain the relevant
logic and inject its information into LLMs is a non-
trivial problem, deserving further exploration.

Based on these findings, we put forward a se-
ries of solutions to endow LLMs with event re-
lation logic and generate more coherent answers.
Here, we propose three different kinds of ap-
proaches according to the ways of logic acquisition:
1) Generative-based approach, which encourages
LLMs to generate rationale themselves, inspired
by CoT prompting (Wei et al., 2022b). In this
paradigm, we find that incorporating logical con-
straints into LLM instruction will bring substantial
improvements, but the uncertainty of the generated
rationales may also bring some biases, leading to
an incorrect subsequent answer; 2) Retrieval-based
approach, which collects constraints from realistic
data, then retrieves relevant contents and adds them
to the LLM instruction. This kind of approach
ensures the correctness of logic and significantly
improves performance, but requires some hand-
crafted engineering; 3) Finetuning-based approach,
which first constructs a high-order event relation
logical prediction dataset (LLM-ERL), then uses
it to fine-tune specialized LLMs. The finetuning
dataset consists of multi-hop event relation logical
prediction instances. This strategy encodes logic
in model parameters inherently, making them more
suitable for white-box LLMs. Therefore, how to
choose the most suitable strategy can be a trade-off
based on the practical scenario.

Furthermore, based on the above framework, we
also conduct extensive quantitative and qualitative
analyses to validate the effectiveness of the pro-
posed approaches and provide insights for future
work: 1) Directly using CoT to infer ERE tasks is
limited by the inherent issues of LLMs, but incorpo-
rating logical constraints in the reasoning process
can be beneficial; 2) Retrieval-based approaches
can significantly reduce inconsistencies in LLM
responses. Stronger models like GPT-4 can effec-
tively perform retrievals by themselves, whereas
weaker models require assistance in filtering rel-
evant information. Besides, directly conveying
constraints to LLMs is more effective than adding

post-processing operations based on the results;
3) When fine-tuned on LLM-ERL, LLMs such as
Llama2-13B (Touvron et al., 2023) can achieve bet-
ter performance, which validates the effectiveness
of our proposed approaches.

Overall, the contributions of our paper can be
summarized as follows:

• We provide an in-depth investigation of the log-
ical inconsistency issue of current LLMs, high-
lighting their challenges in understanding event
relation logic.

• We propose several solutions to endow LLMs
with event relation logic and generate more co-
herent answers. Based on our approach, we con-
struct a synthesized dataset (LLM-ERL) involv-
ing high-order reasoning to enhance LLMs.

• Experimental results on different tasks with quan-
titative and qualitative analyses further verify the
effectiveness of our approach in endowing LLMs
with event relation logic.

2 Event Relation Logic

2.1 Event Relations

In this subsection, we introduce four common types
of event relations that are crucial for narrative com-
prehension and reasoning. Coreference relations:
identify whether two event mentions refer to the
same occurrence. Temporal relations: establish
the chronological order of events. Causal rela-
tions: identify causality between events. Subevent
relations: identify whether one event is a subcom-
ponent of another. More descriptions of these event
relations can be found in Appendix A.

Based on these four relations, event relation ex-
traction (ERE) can be formulated as a multi-label
classification problem, assigning one label for each
relation type. Compared with other common tasks,
ERE tasks should take more considerations about
the logical constraints between event relations (e.g.,
as shown in Figure 1), and guarantee the predic-
tions should conform to these constraints to avoid
counterfactuals. Therefore, we need to rigorously
consider the logical constraints between each event
pair during prediction. To better measure the capa-
bility of LLMs on the ERE task, we formulate the
logical consistency metric.
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Figure 2: Performance of ChatGPT in the pilot study.

2.2 Logical Consistency Between Event
Relations

Logical consistency plays a crucial role in accu-
rate event relation prediction. In this paper, we
consider a comprehensive set including 11 logical
constraints applicable to all possible relations be-
tween two events, which are derived from realistic
data and are detailed in Appendix B. To quantify
LLMs’ adherence to these constraints, we intro-
duce a metric called Logical Inconsistency (LI).
This metric is calculated as the proportion of con-
flicts (i.e., the answers that conflict with the known
logical constraints) to the total possible relation
combinations (i.e., all combinations between any
two relation types).

To better illustrate the computation of LI, here
we introduce an example (as shown in Figure 1):
if an LLM outputs the relations between two
events as “NO_COREFERENCE, SIMULTANE-
OUS, CAUSE, NO_SUBEVENT”. Among these,
“SIMULTANEOUS” and “CAUSE” are identified
as conflicting with each other based on the logical
constraints we have defined, creating an inconsis-
tency. Considering there are four relation types to
assess for each event pair, the total number of re-
lation combinations is determined by the formula:
C2
4 = 6. Thus in this example, with one identified

conflict, LI is computed as 1/6 (or approximately
16.7%). Based on the logical constraints, an al-
gorithm can be designed to automatically detect
conflicts and calculate the value of LI. Intuitively,
the smaller the value of LI is, the more coherent
and reasonable answer that LLM can produce.

3 Unveiling LLMs in Logical Reasoning

Considering the rigorous logical reasoning required
by ERE tasks, in this section, we conduct a pilot
study to investigate how current LLMs exhibit rea-
soning tasks and how logic benefits LLMs.

3.1 Data Source
We conduct a manual evaluation on MAVEN-
ERE (Wang et al., 2022a) and ProofWriter (Tafjord
et al., 2021). MAVEN-ERE is a unified large-scale
dataset for the ERE task, which needs to identify
four types of relations. ProofWriter is a commonly
used dataset for deductive reasoning, where each
example is a pair of (problem, goal) and the label
is selected from {Proved, Disproved, Unknown}.
To employ our investigation, we randomly choose
100 samples (50 from MAVEN-ERE and 50 from
ProofWriter).

3.2 Experimental Setup
Our experiments are conducted in a zero-shot fash-
ion. Given a task input (X), we also write a prompt
(T ) describing the task, and let LLM generate out-
put (Y ) by answering the given query. We also
add “Let’s think step by step” before each answer
for prediction generation, which is a simple but
effective trick to improve zero-shot reasoning for
LLMs (Kojima et al., 2022). We adopt ChatGPT
as the backbone and manually check its generated
rationales under the following three settings:

• Vanilla LLM (i.e., ChatGPT) without any addi-
tional information;

• LLM (i.e., ChatGPT) plus the most relevant (i.e.,
ground truth) logic;

• LLM (i.e., ChatGPT) plus irrelevant logical con-
straints.

The latter two use a multi-turn conversational way
based on the initial prediction from LLMs, so as
to leverage LLM’s interaction ability. The process
of determining constraints for each way and the
corresponding prompt examples can be found in
Appendix J.1.

3.3 Analysis
As shown in Figure 2, we visualize the micro-F1
values and the proportion of logically inconsistent
answers generated by ChatGPT. We find that no
matter whether on MAVEN-ERE or ProofWriter,
Vanilla ChatGPT always achieves a bad result with
low micro-F1 performance and high inconsistency
values (e.g., 15% micro-F1 and 63% inconsistent
answers on MAVEN-ERE), which indicates the
deficiencies of LLM in solving complex reasoning
tasks. To investigate this issue in depth, we conduct
analyses from the following two aspects.
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Figure 3: Error analysis of ChatGPT in the pilot study
by human evaluation. CE and FE denote incorrectness
and unfaithfulness errors, respectively.

What is the Relation Between Logical Consis-
tency and Model Performance? From Figure 2,
we find that: 1) The model directly receives sig-
nificant improvements on both MAVEN-ERE and
ProofWriter when adding relevant logic; 2) When
adding some irrelevant logic, the results show some
fluctuations (exaltation in MAVEN-ERE and degen-
eration in ProofWriter). That means directly adding
logic without any constraints will bring some uncer-
tainty; 3) Typically, a higher logical inconsistency
corresponds to a poorer micro-F1. However, rec-
tifying logical inconsistency does not necessarily
lead to the same degree of increase in micro-F1.
Generally, an intuitive observation is that incorpo-
rating relevant logic into the LLM instruction will
be very helpful in solving reasoning tasks. There-
fore, the challenges are how to obtain these relevant
logic and how to utilize them for LLMs.

What Types of Errors Does LLM Usually Make?
To delve into a deep understanding of the failures
that vanilla LLM encounters in logical reasoning,
we also conduct a detailed error analysis. Here,
we divide the error types into two aspects: 1) In-
correctness to the Constraint (CE): whether the
rationale generated by LLM is wrong (CE1), in-
complete (CE2), or redundant (CE3) compared
with the true logical constraints. 2) Unfaithfulness
to the Reasoning Process (FE): where LLM does
not correctly use the constraints. We define two
types of errors upon FE, i.e., i) Wrong start, LLM
begins with an irrelevant fact or focuses on an im-
proper perspective for the correct answer (FE1). ii)
Wrong process, LLM starts from a proper point,
but makes mistakes during the reasoning process
(FE2). Annotators are asked to review 100 predic-
tions generated by ChatGPT and mark the error
types. Results in Figure 3 show that: 1) The quality
of constraints produced by the vanilla ChatGPT

is not high enough, which limits its subsequent
reasoning ability. 2) Incorporating relevant logi-
cal constraints could guarantee the correctness of
constraints and thus greatly improve the generation
quality of ChatGPT in faithfulness.

4 Teaching LLMs to Predict Event
Relation Logic

From the above analysis, the main reason for the
failure of LLMs stems from their lack of logical
reasoning abilities. In this section, we expect to ex-
plore how to augment LLMs with the capability to
comprehend and apply event relation logic. Specif-
ically, we first introduce the instruction-following
technique used in Section 4.1 and then propose
three different approaches to instruct LLMs to
generate answers with better logical consistency,
including generative-based, retrieval-based, and
finetuning-based approaches (Section 4.2 to 4.4).
We illustrate these three approaches in Figure 4.

4.1 In-Context Learning for LLMs

We deploy LLMs for event relation logical predic-
tion via in-context learning (ICL, (Brown et al.,
2020; Ouyang et al., 2022)). Given a task in-
put (X), we write a prompt (T ) describing the
task, then further provide several demonstrations
D = {Di}|D|

i=1, where Di = (Xi, Yi) are used
for few-shot learning. Then, the LLM gener-
ates the output (Y ) by completing the prompt
(Y =M(T,D,X)), whereM denotes the LLM.
In such a setting, the LLM can follow the structure
of the provided demonstrations to output answers
in the expected format for subsequent automatic
evaluation. Additionally, the whole process does
not require any gradient update, allowing LLMs to
generate predictions without massive training data.

4.2 Generative-based Approaches

Generative-based approaches involve letting LLMs
generate logic by using a form of few-shot ICL.
Here, we study three variants:

Vanilla ICL: which utilizes the common
prompts consisting of the task description, the
demonstration, and the input case.

Vanilla CoT: which first bootstraps rationales by
using chain-of-thought as intermediate reasoning
steps following the style of the given demonstration,
then output answers. Rationales here do not involve
the content of logical constraints.
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There is a piece of text with two events, and your task is to identify four types of relations between them …

Text:
A large FIRE broke out at the Waitrose supermarket in Wellington’s High Street, half of the roof at the entrance 
of the store collapsed during the blaze. 

User

(a) Generative-based (b) Retrieval-based (c) Finetuning-based

From the text, we could first get: “FIRE”
causes the store to  “collapsed’’.

Due to the logic constraint: if event A CAUSEs 
event B, then event A happens BEFORE or 
OVERLAP event B, and they won’t have 
coreference and subevent relations …

We can deduce that the answers are:

LLM - Thought

NO_COREFERENCE

OVERLAP

CAUSE

NO_SUBEVENT

+ Logical Constraints

There are some rules among the relations, you 
can select some of them to reason or check 
your answers:
(1) If two events are COREFERENCE, then they 

won’t have temporal, causal, and subevent 
…

(2) …

Logical Set

NO_COREFERENCE

SIMULTANEOUS

CAUSE

NO_SUBEVENT

Detect Conflicts Retrieval

Post-processing
or

SIMULTANEOUS 
↓

OVERLAP

LLM-ERL Dataset
Context: …
Reasoning:
Given that events A and C are COREFERENCE, if two 
events are COREFERENCE, then they won’t have …
Event Pairs:
< A > and < C >
< C > and < A >
Answers:
COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.
COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.

Specialized LLMs
(supervised) Fine-tuning

NO_COREFERENCE

OVERLAP

CAUSE

NO_SUBEVENT
Original Answers

Coreference Relation

Temporal Relation

Causal Relation

Subevent Relation

Output Answers Conflict-free Answers

Generate

Output Answers

Figure 4: Incorporate logical constraints into LLMs by using generative, retrieval, and finetuning-based approaches.
The dashed boxes indicate answers outputted by LLMs, and the underlined texts indicate the logical constraints.

CoT with self-generated logical constraints:
which teaches LLMs to generate and utilize logical
constraints based on CoT (shown in Figure 4 (a)).
Specifically, it first extracts the obvious relations/-
facts and generates relevant logical constraints ac-
cordingly. LLMs are then prompted to infer the re-
maining relations and facts using these constraints
along with the known information. An example
prompt is provided in Appendix J.2.

4.3 Retrieval-based Approaches

Although generative-based approaches enable mod-
els to automatically generate and utilize logic, the
generated rationales may be uncertain and inaccu-
rate. Therefore, we also provide retrieval-based ap-
proaches, which aim to obtain relevant logic from
our predefined logical set and add it to LLM in-
struction (shown in Figure 4 (b)). Specifically, we
take all the constraints defined in Section 2.2 as the
retrieval set, and our solutions include:

with all logical constraints: which directly adds
all the text of logical constraints in the set.

with retrieved logical constraints: which means
that we first detect logically inconsistent answers
based on the prediction of LLMs, and then retrieve
the corresponding information if we find any con-
flicts. Finally, we add the retrieved text to the LLM
instruction and let LLMs regenerate the answers.

Details can be found in Appendix B.1.

with post-processing: which first obtains the an-
swers of LLMs, then automatically generates some
logically consistent candidates according to the
known constraints, and randomly selects one of
them as the final answer. This approach ensures
that there are no logical conflicts (LI = 0%). De-
tails can be found in Appendix B.2.

4.4 Finetuning-based Approach

Although the retrieval-based approach guarantees
the correctness of logical constraints, it still needs
to interact with an external logical set constantly.
Therefore, we provide a finetuning-based approach
to embed the logical constraints into LLMs them-
selves. Specifically, we first construct a high-order
event relation logical prediction dataset LLM-ERL,
then fine-tune specialized models on it, and finally
use the fine-tuned models to conduct prediction.

To construct LLM-ERL, we initiate with a foun-
dational set of logical constraints for relations be-
tween two events that have been defined in Sec-
tion 2.2, and expand it to include additional con-
straints for high-order relations among three or
more events based on transitive dependency (Allen,
1983; Gerevini and Schubert, 1995), i.e., one
event may affect another through an intermediate
event. The full transitivity rules are detailed in
Appendix C (Table 6).
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Dataset Construction Once obtaining the con-
straint set, the process of dataset construction be-
comes inferring new relations within a sequence of
events based on any given relations. From there,
we combine an initial relation with any other given
relation to form a multi-hop query. This query aims
to predict the logical outcome of a complex event
interaction that spans multiple steps, leveraging the
established logical constraints as a guide. For in-
stance, if we have an initial relation “BEFORE(A,
B)”, and we combine this with another two re-
lations such as “SIMULTANEOUS(B, C)” and
“OVERLAP(C, D)”, we are faced with a 3-hop
query that seeks to deduce the relation between
event A and event D. Given the logical constraints,
such as the transitivity rule that combines “BE-
FORE” and “SIMULTANEOUS” relations to infer
new relations, we can deduce a logical outcome
“BEFORE(A, D)”. The corresponding pseudo-
code can be found in Appendix C.1.

The process of deducing the answer to these
multi-hop queries is automated by employing logic
programming (Lloyd, 2012; Frederiksen, 2008),
specifically using forward- and backward-chaining
methods in Prolog (Clocksin and Mellish, 2003).
This allows for the automatic inference of new re-
lations based on the established set of logical con-
straints and the known relations among events. The
outcome of this process can not only serve as the
benchmark for evaluating or enhancing the reason-
ing capabilities of LLMs, but also act as a versatile
platform for validating combinations of event rela-
tions across any number of hops.

Fine-tuning on LLM-ERL To fine-tune LLMs
on LLM-ERL, we use the generated 2 to 5-hop rea-
soning data. We do not adopt longer hop data here
considering the computation complexity and the
length limitation of LLMs. We translate the sym-
bolic representations of event relations into natural
language descriptions to formulate queries, align-
ing with the ERE task setup. This process resulted
in a total of 6,776 instances. The dataset statistics
are in Appendix D and an illustrative example of
such a prompt is depicted in Figure 4 (c). These
queries not only promote LLMs’ understanding of
the logical constraints governing event sequences
but also enhance their ability to apply these con-
straints in predicting the relations among events
that are not explicitly given. Finally, we could
conduct inference with the fine-tuned LLMs.

5 Experiments

5.1 Experimental Setup

Compared Models We choose several limited-
access LLMs (gpt-3.5-turbo, text-davinci-003,
and gpt-4), and open-source LLMs (Vicuna-13B
(v1.3) (Chiang et al., 2023) and Llama2-13B (Tou-
vron et al., 2023)) as the main experimental LLMs
for evaluation. We also provide two fine-tuning
RoBERTa-large (Liu et al., 2019) baselines (one-
shot and fully fine-tuned) for comparison, the fine-
tuning details can be found in Appendix F.

Dataset Construction Our main experi-
ments are evaluated on two ERE datasets,
MAVEN-ERE (Wang et al., 2020) and Causal-
TimeBank (Mirza et al., 2014). All experiments
are conducted in a one-shot fashion. Further details
can be found in Appendix E.

Fine-tuning Details For the finetuning-based ap-
proach, we adopt Vicuna-13B (v1.3) and Llama2-
13B as the base models and employ the LoRA (Hu
et al., 2022) technique. During fine-tuning, only
LoRA parameters are optimized. The fined-tuned
models are named Vicuna-FT and Llama2-FT, re-
spectively. Further details can be found in Ap-
pendix G.

Evaluation Metrics We adopt the averaged
micro-F1 score as the evaluation metric and also re-
port the logical inconsistency metric LI (defined in
Section 2.2) on ERE datasets. The reported value
is averaged by the results of three runs to reduce
random fluctuation.

5.2 Main Results

From Table 1, We could observe that:

Generative-based Approaches 1) Compared
with a smaller language model RoBERTa-large,
the generalization ability of vanilla LLMs under
the one-shot setting is remarkable, but there is still
a gap with the fully-finetuned baseline.

2) Directly using CoT to infer logic does not
help much for ERE tasks, a possible reason is that
the inherent issues of LLMs may cause them to fail
in generating precise rationales (i.e., a high ratio of
logical inconsistency).

3) When using generative-based approaches to
encourage LLMs to produce logical constraints in
the reasoning process, LLMs can significantly im-
prove their performance on ERE tasks (e.g., 7.3%
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Model MAVEN-ERE Causal-TimeBank

Micro-F1 (%) LI (%) ↓ Micro-F1 (%) LI (%) ↓
RoBERTa-Large (fully fine-tuned) 56.8 6.4 22.2 36.2
RoBERTa-Large (one-shot) 17.4 54.8 - -

Turbo

vanilla ICL 18.0 53.3 19.0 54.0
vanilla CoT 18.8 49.3 17.0 30.3
CoT w. logical constraints 25.3 37.9 27.0 12.8

w. all logical constraints 20.8 30.9 20.0 36.8
w. retrieved logical constraints 22.3 30.2 22.0 11.3
w. post-processing 14.0 0 15.0 0

Davinci

vanilla ICL 21.6 49.1 18.0 58.8
vanilla CoT 20.5 60.5 21.0 64.7
CoT w. logical constraints 24.8 5.5 23.0 39.2

w. all logical constraints 27.0 25.6 31.0 21.8
w. retrieved logical constraints 27.8 30.8 22.0 40.5
w. post-processing 14.8 0 19.0 0

GPT-4

vanilla ICL 29.3 50.7 22.5 30.5
vanilla CoT 30.3 36.7 23.0 35.0
CoT w. logical constraints 32.3 13.7 24.5 24.0

w. all logical constraints 37.3 8.3 26.0 20.0
w. retrieved logical constraints 33.5 28.8 24.0 13.5
w. post-processing 17.0 0 19.0 0

Vicuna

vanilla ICL 13.8 25.4 4.5 84.1
vanilla CoT 11.6 47.4 6.0 57.6
CoT w. logical constraints 14.9 21.7 8.0 33.1

w. all logical constraints 15.2 37.6 11.0 23.5
w. retrieved logical constraints 15.7 33.2 10.0 26.7
w. post-processing 9.8 0 9.0 0

Llama2

vanilla ICL 17.0 54.6 11.5 26.7
vanilla CoT 17.8 58.4 10.5 33.6
CoT w. logical constraints 21.5 18.9 13.0 18.1

w. all logical constraints 19.5 34.6 10.0 23.5
w. retrieved logical constraints 18.3 38.2 9.5 26.7
w. post-processing 12.0 0 9.5 0

Vicuna-FT

vanilla ICL 15.3 21.2 8.0 35.5
vanilla CoT 15.8 17.8 7.5 52.5
CoT w. logical constraints 18.0 6.0 8.5 2.0

w. all logical constraints 16.3 8.7 12.1 0
w. retrieved logical constraints 16.1 19.0 10.7 9.5
w. post-processing 11.0 0 8.0 0

Llama2-FT

vanilla ICL 19.0 45.8 12.0 22.7
vanilla CoT 22.1 42.9 11.5 3.0
CoT w. logical constraints 26.4 15.7 13.3 13.0

w. all logical constraints 20.2 28.7 12.0 23.0
w. retrieved logical constraints 18.7 34.2 11.0 19.4
w. post-processing 11.0 0 11.0 0

Table 1: Proprietary LLMs (gpt-3.5-turbo, text-davinci-003, and gpt-4), Vicuna-13B, Llama2-13B’s performance
on MAVEN-ERE and Causal-TimeBank. “PT” denotes after fine-tuning on LLM-ERL. For each dataset, the best
result of each LLM is in bold. RoBERTa-Large (one-shot) fails to output any correct answers on Causal-TimeBank.
The highlighted colors denote generative-based, retrieval-based, and finetuning-based approaches, respectively.

F1 performance gains from 18.0% to 25.3% of gpt-
3.5-turbo on MAVEN-ERE). We give a case study
for the generative-based approach in Appendix I.1,
which shows how LLMs perform when generating
logical constraints by themselves.

Retrieval-based Approaches 1) When using
retrieval-based approaches to obtain logic con-
straints and incorporate them into LLM instruc-
tion, the logical inconsistency of LLMs’ answers is
greatly reduced and the overall performance is fur-
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ther improved (e.g., 6.2% F1 performance gains
from 21.6% to 27.8%, and 18.3% LI decrease
from 49.1% to 30.8% of text-davinci-003 on the
MAVEN-ERE dataset).

2) Among all the limited-access models, we find
that only gpt-4 perform better under the “w. all
logical constraints” setting compared with the “w.
retrieved logical constraints” setting. We hypoth-
esize that this is due to the superior language un-
derstanding and retrieval capabilities of gpt-4, en-
abling it to identify some useful logical constraints
to derive the answers accurately. In contrast, earlier
models may struggle to filter out irrelevant infor-
mation and therefore still require our assistance in
retrieval to screen the necessary information.

3) Although the post-processing baseline guar-
antees the absence of logical conflicts (resulting
in LI of 0%), it may severely affect the quality of
the whole generation. On one hand, the semantics
of the post-processing answer may be far from the
ground truth due to the random selection. On the
other hand, the size of the candidate set for each
case will also affect the performance. It may also
need more operations at the post-processing stage,
which we leave as future work. We also conduct
ablation studies on the number of demonstration
samples and iterative retrievals in Section 5.3.

Finetuning-based Approach 1) Once fine-tuned
on LLM-ERL, the performance of Llama2-FT and
Vicuna-FT improves greatly compared with vanilla
Llama2 and Vicuna, especially on the baselines
without logical constraints.

2) The performance of Llama2-FT (i.e., 26.4%
F1 score on MAVEN-ERE) could even surpass that
of some greater LLMs (e.g., vanilla gpt-3.5-turbo,
25.3%), which further validates the importance of
teaching LLM with event relation logic in solving
ERE tasks. We also conduct a case study compar-
ing the output answers of Llama2 and Llama2-FT
in Appendix I.2.

5.3 Ablation Study
We conduct an ablation study using ChatGPT (gpt-
3.5-turbo) in this section.

Demonstrations Following previous experi-
ences (Brown et al., 2020), we also append demon-
strations into the prompt to investigate how log-
ical constraints will affect when combined with
different numbers of demonstrations. Here, we se-
lect different numbers of demonstration samples
K from {1, 5, 10, 20}. The experiments are tested

Figure 5: Ablation Study of ChatGPT for demonstra-
tions and iterative retrieval, where “logic cst” denotes
the event relation logical constraints.

on the “w. all logical constraints” settings, and we
choose the “vanilla ICL” baseline for comparison.
From Figure 5 (left), we can observe that: 1) When
the number of demonstrations increases from 1 to
5, there is an evident performance improvement,
but the subsequent improvements are limited when
continue to increase the number of demonstrations
(e.g., ≥ 10); 2) Adding logical constraints into
LLM instructions can provide stable improvements,
especially with more demonstrations; 3) The per-
formance of incorporating logical constraints with
a smaller number of demonstrations can even sur-
pass that of prompts with only a larger number of
demonstrations (e.g., the F1 performance of using
5 demonstrations on MAVEN-ERE w. logical con-
straints, 25.7%, surpasses that of 10 demonstrations
w/o. logical constraints, 24.5%). This indicates that
it is important to tell LLMs both “What” (demon-
strations) and “How” (logical constraints). Overall,
these studies further confirm the merits of using
event relation logic in solving ERE tasks.

Iterative Retrieval Considering the outstanding
ability of LLMs in interaction, we further explore
whether we can introduce logical constraints into
the multi-turn conversation (for the prompt de-
sign, please see Appendix J.3). Here, we adopt
a retrieval-based approach to incorporate retrieved
logical constraints iteratively and the results are
shown in Figure 5 (right). We find that the logical
inconsistency of answers will gradually decrease
with the increase of iterations, but the overall micro-
F1 score seems relatively stable. We guess the main
reason for this phenomenon is the overthinking of
LLMs, as although it can bring more reasoning
rationale, it possibly produces correct but more use-
less or abundant information when inferring multi-
ple iterations. Overall, instructing LLM with logic
is beneficial for conversation, but how to support
longer information is still challenging.
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6 Related Work

6.1 Large Language Models (LLMs)

We are fortunate to witness the surging develop-
ment of Large Language Models (LLMs (Brown
et al., 2020; Ouyang et al., 2022; Chowdhery et al.,
2022; Chung et al., 2022)), and a series of work
aiming to leverage the reasoning abilities of LLMs
such as chain-of-thought prompting (Wei et al.,
2022a; Kojima et al., 2022; Zhang et al., 2022),
self verification (Wang et al., 2022c; Jung et al.,
2022), self learning (Zelikman et al., 2022; Huang
et al., 2022), etc. However, recent studies show
LLMs still stumble in generating hallucination and
logic inconsistency (Golovneva et al., 2022; Jang
and Lukasiewicz, 2023; Bang et al., 2023; Liu et al.,
2023; Jiao et al., 2023). To solve such challenges,
our work explores teaching LLMs logical reason-
ing through various approaches.

6.2 Event Relation Extraction (ERE)

Events play crucial roles in comprehending narra-
tives, and understanding the complex relationships
between events is essential to understanding the
text (Sundheim, 1991). Thus ERE tasks are funda-
mental information extraction (IE) tasks and sup-
port various downstream applications (Chaturvedi
et al., 2017; Zhang et al., 2020). Extensive stud-
ies have been carried out on ERE tasks, including
different kinds of relations such as coreference re-
lations (Lu and Ng, 2021; Lu et al., 2022), tempo-
ral relations (Ning et al., 2018; Wang et al., 2020;
Han et al., 2019; Zhou et al., 2021), causal rela-
tions (Caselli and Vossen, 2017; Chen et al., 2022,
2023), and subevent relations (Aldawsari and Fin-
layson, 2019; Wang et al., 2021).

There also have been some recent explorations
on how to leverage the power of LLMs on event-
related information extraction tasks (Wang et al.,
2022b; Gao et al., 2023; Ma et al., 2023; Qiu
et al., 2023; Yuan et al., 2024). To the best of
our knowledge, however, our work is the first to 1)
design elaborate experiments to evaluate the perfor-
mance of LLMs on the ERE task, including coref-
erence, temporal, causal, and subevent relations,
2) delve into the high-order logical constraints be-
tween these event relations, and (3) analyze the
logical reasoning abilities of LLMs using ERE as
an intermediate task.

7 Conclusion

In this paper, we conduct a detailed investigation
on how to enhance LLMs with event relation logic.
Specifically, we first investigate the existing issues
of current LLMs in event relation logical prediction.
Then, we study multiple strategies to obtain and
utilize logic for LLMs, including generative-based,
retrieval-based, and finetuning-based approaches.
Based on our approaches, we also contribute a syn-
thesized dataset (LLM-ERL) involving multi-hop
reasoning for evaluation and fine-tuning. We show
that LLMs are not logically consistent reasoners,
but their performance could be improved if we ex-
plicitly teach them the logical constraints. Compre-
hensive quantitative and qualitative analyses have
been conducted to further provide insights.

Limitations

Although we have explored a series of approaches
in detail to enhance LLMs to generate more logi-
cally consistent answers and greatly improve their
performance, we find that there is still a certain
gap between this and the ideal situation (i.e., in-
corporating the most relevant logical constraints in
Section 3). In view of the LLMs’ potential to under-
stand logical constraints and make more rigorous
reasoning, we believe that further exploration of
how to make better use of logical constraints will
help us understand the reasoning ability of LLMs,
and we will take this as our future work.
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A Understanding Event Relations

There are four kinds of widely-used event relations:
coreference, temporal, causal, and subevent rela-
tions (O’Gorman et al., 2016; Wang et al., 2022a).

1. Coreference relations between events occur
when multiple event mentions in a text refer
to the same underlying event. We call these
event mentions cluster.

2. Temporal relations refer to the temporal order-
ing of events based on their occurrence in time.
In this paper, we consider seven different types
of temporal relations:

• NO_TEMPORAL: if there is no clear tem-
poral relation between event A and B.

• BEFORE: if event A happened completely
before event B.

• OVERLAP: if event A has an overlap with
event B.

• CONTAINS: if event A’s time contains
event B’s time.

• SIMULTANEOUS: if events A and B hap-
pen at the same time.

• ENDS-ON: if event A ends when event B
starts.

• BEGINS-ON: if event A and event B start
at the same time, but end at different times.

In Figure 6, we list all the types of temporal re-
lations and illustrate their distinctions on a uni-
fied timeline. Note that in our study, we adhere
to a unidirectional perspective where the start
time of event A precedes that of event B. Con-
sequently, our framework does not encompass
symmetrical relationships, such as the inverse
of “AFTER” being “BEFORE”. To illustrate, if
event A is considered “AFTER” event B, this
would correspond to event B being “BEFORE”
event A in our defined context.

3. Causal relations refer to that one event (the
cause) brings about or influences the occurrence
of another event (the effect). They can be clas-
sified into two different types: CAUSE rela-
tion where the tail event is inevitable given the
head event, and PRECONDITION where the
tail event would not have happened if the head
event had not happened.

4. Subevent relations refer to that one event (the
subevent) is a component or a smaller part of
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Figure 6: Interpretations of the temporal relation be-
tween two events A and B. Brackets represent time
intervals along the time axis.

another event (the main event). Identifying and
understanding subevent relations helps to re-
veal the underlying hierarchy and organizational
structure of events in a given text.

Event Relation Extraction Event Relation Ex-
traction (ERE) includes identifying coreference,
temporal, causal, and subevent relations between
every two events in the text. We formulate ERE
as a multi-label classification problem, determin-
ing one label (relation) for each of these four re-
lation types. For coreference relations, the labels
∈{NO_COREFERENCE, COREFERENCE}; for
temporal relations, the labels∈ {NO_TEMPORAL,
BEFORE, OVERLAP, CONTAINS, SIMULTANE-
OUS, ENDS-ON, BEGINS-ON}; for causal rela-
tions, the labels ∈ {NO_CAUSAL, PRECONDI-
TION, CAUSE}; for subevent relations, the labels
∈ {NO_SUBEVENT, SUBEVENT}.

B Logical Constraints Between Two
Events

In Table 2, we provide a comprehensive set of logi-
cal constraints for the relations between two events
to assess their logical consistency. We also manu-
ally design description text for each constraint to
let LLMs follow the prompt. As shown in Table 5,
COREFERENCE(A, B)→¬TEMPORAL(A, B),
¬CAUSAL(A, B), ¬SUBEVENT(A, B) indicates
that "if event A and event B have a coreference
relation, they will not have temporal, causal, and
subevent relations".

B.1 An Example of Detecting Conflicts and
Retrieving Relevant Constraints

As described above, for the ERE task, we metic-
ulously collect 11 logical constraints covering all
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If Relation(A, B) Then Relation (A, B) Then Relation (B, A)

COREFERENCE ¬TEMPORAL, ¬CAUSAL, ¬SUBEVENT COREFERENCE
¬TEMPORAL ¬CAUSAL, ¬SUBEVENT /
BEFORE ¬COREFERENCE, ¬SUBEVENT ¬TEMPORAL
OVERLAP ¬COREFERENCE, ¬SUBEVENT ¬TEMPORAL
CONTAINS ¬COREFERENCE, ¬CAUSAL ¬TEMPORAL
SIMULTANEOUS ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT SIMULTANEOUS
ENDS-ON ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT ¬TEMPORAL
BEGINS-ON ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT BEGINS-ON
CAUSE ¬COREFERENCE, BEFORE ∨ OVERLAP, ¬SUBEVENT ¬TEMPORAL
PRECONDITION ¬COREFERENCE, BEFORE ∨ OVERLAP, ¬SUBEVENT ¬TEMPORAL
SUBEVENT ¬COREFERENCE, CONTAINS ¬CAUSAL ¬TEMPORAL

Table 2: Logical Constraints of relations between two events, where ¬ denotes "NOT", ∨ denotes "OR".

relations between two events. These constraints
serve as our benchmark to identify inconsistencies
in the predictions made by LLMs.

Let us consider an illustrative exam-
ple. If LLM produces an answer such as
“NO_COREFERENCE, SIMULTANEOUS,
CAUSE, NO_SUBEVENT” (refer to Figure 1
and Figure 4), we could detect the inconsistency
between “SIMULTANEOUS” and “CAUSE”, as
shown in Table 2:

• A “SIMULTANEOUS” relation implies a
“NO_CAUSAL” (¬CAUSAL) relation.

• Conversely, a “CAUSE” relation suggests the
presence of either a “BEFORE” or an “OVER-
LAP” relation.

Given this, “SIMULTANEOUS” and “CAUSE” are
inherently contradictory, and they cannot coexist in
a consistent prediction. To rectify this, we retrieve
the associated textual description from Table 5.
Specifically, the statements “If event A CAUSEs
event B, then event A happens BEFORE or OVER-
LAP event B ...” and “If event A and event B
happen SIMULTANEOUSly, then they won’t have
coreference, causal, and subevent relations ...” are
integrated into the LLM’s instruction.

B.2 An Example of Post-processing

As shown in Figure 4, if LLMs predict the relations
between two events as “NO_COREFERENCE, SI-
MULTANEOUS, CAUSE, NO_SUBEVENT”, we
can detect that “SIMULTANEOUS” and “CAUSE”
conflict according to the logical constraints. In
order to eliminate conflicts, one relation can be
fixed first, and then the other relation can be ran-
domly decided by the candidates that do not con-
flict with the current relation. For example, when
the fixed temporal relation is “SIMULTANEOUS”,

the causal relations can only be “NO_CAUSAL”,
while when the fixed causal relation is “CAUSE”,
the temporal relation can be either “BEFORE”
or “OVERLAP”. We also add a negative op-
tion “NO_COREFERENCE, NO_TEMPORAL,
NO_CAUSAL, NO_SUBEVENT” to the candi-
date set because it is possible that neither relation
exits. Finally, we randomly select one option from:

• NO_COREFERENCE, SIMULTANEOUS,
NO_CAUSAL, NO_SUBEVENT

• NO_COREFERENCE, OVERLAP, CAUSE,
NO_SUBEVENT

• NO_COREFERENCE, BEFORE, CAUSE,
NO_SUBEVENT

• NO_COREFERENCE, NO_TEMPORAL,
NO_CAUSAL, NO_SUBEVENT

as the ultimate answer, thus ensuring that the results
must be logically consistent (i.e., LI = 0).

C Transitivity Rules Among Events

We provide a comprehensive set of 39 logical con-
straints for the transitivity rules among three events
in Table 6. We also manually design prompts for
each constraint, as shown in Table 7.

C.1 Pseudo Code of Logic Programming

Once obtaining 11 constraints between two events
and 39 constraints among three events, we apply
logic programming to automatically reason new
event relations by inputting the known constraints
and relations. The pseudo-code mentioned in the
main text is shown in Algorithm 1.
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D Statistics of the Fine-tuning Dataset

As shown in Table 3, we provide the statistics of
the fine-tuning dataset originating from LLM-ERL.

Hop # Count

2 39
3 179
4 945
5 5613

Table 3: Statistics of the fine-tuning dataset.

E Dataset Construction

MAVEN-ERE contains 4,480 documents,
103,193 events coreference chains, 1,216,217
temporal relations, 57,992 causal relations, and
15,841 subevent relations, which is larger than
existing datasets of all the ERE tasks by at least
an order of magnitude (Wang et al., 2022a).
MAVEN-ERE has released the train and valid set,
but does not release the ground-truth test set, so
we randomly split its train set into train/valid sets
with a ratio of 8:2, and then use its original valid
set as the new test set.

Causal-TimeBank contains 184 documents,
6,813 events, and 7,608 event pairs (Mirza and
Tonelli, 2014). Among them, 318 and 6,115 event
pairs are annotated with causal and temporal rela-
tions, respectively. Due to Causal-TimeBank does
not split train/valid/test sets, we randomly split it
to train/valid/test sets with a ratio of 6:1:3. We do
not evaluate coreference and subevent relations in
Causal-TimeBank since there are no annotations
for these two relation types.

For ERE tasks, We conduct sampling at the sen-
tence level. The samples of the two events that
do not have any relations will be excluded. Note
that Causal-TimeBank inherently contains fewer
event relations compared to MAVEN-ERE. After
processing and dividing the data split, its test set
comprises only 139 samples. Therefore, we ran-
domly sample 500 examples from the test set of
MAVEN-ERE and 100 examples from the test set
of Causal-TimeBank as our testbed.

ProofWriter is a commonly used dataset for de-
ductive reasoning (Tafjord et al., 2021). We use
the OWA subset of it, which is divided into five
parts, each part requiring 0, 1, 2, 3, and 5 hops of

reasoning, respectively. We evaluate the hardest
5-hop subset. To reduce the computation cost, we
randomly sample 200 examples in the test set and
ensure a balanced label distribution.

FOLIO is a challenging expert-written dataset
for logical reasoning (Tafjord et al., 2021), whose
questions require complex first-order logic reason-
ing to solve. We use its entire test set for evaluation,
consisting of 204 examples.

Algorithm 1 An Example of 3-hop Reasoning
Initialize the knowledge base with facts and rules

Knowledge Base:
Fact: BEFORE(A, B)
Fact: SIMULTANEOUS(B, C)
Fact: OVERLAP(C, D)
Rule: BEFORE ← BEFORE ∧ SIMUL-

TANEOUS
Rule: OVERLAP← SIMULTANEOUS ∧

OVERLAP
Rule: BEFORE←BEFORE∧OVERLAP

Initialize the logic engine with the query
Query: BEFORE(A, D)?

while obtain new facts do
for each rule r of the Knowledge Base do

if r’s premise is satisfied by the current
known facts then

Add r’s conclusion to the knowledge
base

end if
end for

end while

Query result: BEFORE(A, D) is satisfied with
BEFORE(A, C) and OVERLAP(B, D)

F Training Details of RoBERTa-large On
Two Tasks

Our experiments include two settings. (1) fully
fine-tuned: we fine-tune smaller language models
(SLMs) with complete and abundant samples. This
setting is for reference to see the performance limit
of SLMs. (2) one-shot: we sample only one exam-
ple for each label and construct a tiny training set.
This setting is for direct comparison with our exper-
iments on LLMs (similar training/demonstration
sample number).
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Model (%) ProofWriter FOLIO

Vicuna
vanilla ICL 37 / 38 40 / 43
vanilla CoT 40 / 42 38 / 40
CoT w. logic. 42 / 44 42 / 45

Llama2
vanilla ICL 29 / 33 42 / 45
vanilla CoT 31 / 37 44 / 46
CoT w. logic. 40 / 42 46 / 48

Table 4: Vicuna and Llama2’s performance on
ProofWriter and FOLIO before and after fine-tuning
on LLM-ERL (split by “/”).

We implement vanilla fine-tuning approaches on
two datasets and use RoBERTa-Large as backbones.
We run each experiment on a single NVIDIA V100
GPU. We adopt the AdamW (Loshchilov and Hut-
ter, 2019) optimizer with a linear scheduler and
0.1 warm-up steps. We set the weight-decay coeffi-
cient as 1e-5 and maximum gradient norms as 1.0.
We set the batch size as 16 with 20 or 50 epochs.
We set the maximum input length as 256 and the
learning rate as 2e-5.

G Implementation Details of
Finetuning-based Approach

We set the rank of LoRA modules to be 64. Our
model is optimized with a learning rate of 2e-4 and
a linear warm-up for the first 3% steps. We clip the
gradients of model parameters to a max norm of
0.3. All the LoRA parameters are fine-tuned on an
NVIDIA A100 GPU with 80GB memory.

H Generalization to Logical Reasoning

In this section, we verify whether LLMs enhanced
by LLM-ERL can be generalized to other tasks that
need logical reasoning. We translate the symbolic
representations of event relations into a form of de-
ductive reasoning (i.e., containing facts, rules, and
queries) to maintain consistency in task settings.
The prompt example can be found in Appendix J.4.

Dataset Construction We conduct experiments
on two datasets: ProofWriter (Tafjord et al., 2021)
and FOLIO (Han et al., 2022). Details of the
datasets can be found in Appendix E.

Results As shown in Table 4, we are surprised
to find that models fine-tuned on LLM-ERL (e.g.,
Llama2-FT) can also bring performance improve-
ment on other logical reasoning datasets, even
though LLM-ERL focuses on event relation logic.
This shows that the logical reasoning ability ac-
quired by LLMs in the fine-tuning process can be

Text: General Miaja and the political leaders who remained
< formed > the `` Junta de Defensa de Madrid ‘’ ( Committee for 
the Defence of Madrid ) to < organize > the republican defenders.

Event Pairs:
< formed > and < organise > 
< organise > and < formed > 

From the text, we could first get: 

Text: the scalp of Mrs. Halloway was < retrieved > and <
reattached >, she lived for several years more but eventually
became insane.

Event Pairs:
< retrieved > and < reattached >
< reattached > and < retrieved >

From the text, we could first get: 
< retrieved > happens BEFORE < reattached >, and < reattached > 
happens BEFORE < became >.
Due to the logical constraints: If event A happens BEFORE event 
B, then they won’t have coreference and subevent relations,
and event B has NO_TEMPORAL relation with event A.
We can deduce that the answers are:
NO_COREFERENCE, BEFORE, NO_CAUSAL, NO_SUBEVENT.
NO_COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.

< formed > happens before < organise >, < formed > is the
PRECONDITION of < organise >.
Due to the logical constraints: If event A happens BEFORE event B, and
event A is event B’s PRECONDITION, then event B causes event A.
Answers:
NO_COREFERENCE, BEFORE, PRECONDITION, NO_SUBEVENT.
NO_COREFERENCE, NO_TEMPORAL, CAUSE, NO_SUBEVENT.

There is a piece of text with events marked by < and > symbols … Instruction

Demonstration

Output

Input

Figure 7: A case study that ChatGPT generates inaccu-
rate logical constraints.

generalized to other domains. We intend to explore
this intriguing aspect in future work.

I Case Study

I.1 Case Study on Self-generated Logical
Constraints

In the main context, we have found that directly
using CoT to infer logic does not help much for
ERE tasks. One possible reason is that the in-
herent issues may lead to the failure of LLM in
the precise rationale generation. To further illus-
trate an intuitive impression, we conduct a case
study on MAVEN-ERE and find that the logical
constraints generated by LLMs themselves are of-
ten inaccurate in content. As shown in Figure 7,
ChatGPT could follow the logical constraint pro-
vided in the demonstration to a certain extent. How-
ever, it wrongly applies this to other relations —
knowing that event A is event B’s precondition,
it is wrong to think that event B will cause event
A. Actually, according to the logical constraints
in Table 2, the relations between (B, A) should
be “NO_COREFERENCE, NO_TEMPORAL,
NO_CAUSAL, NO_SUBEVENT”.

I.2 Case Study on Llama2 and Llama2-FT

In Figure 8, We conduct a case study of Llama2-
13B’s answers to the same input before and af-
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Text: The men ‘s ice hockey < tournament > at the 1924 Winter
Olympics in Chamonix , France , was the 2nd Olympic Championship, 
also serving as the 2nd World < Championships > .
Event Pairs:
< Championships > and < tournament >
< tournament > and < Championships >
Answers:

Text: The exhibition < went on > to show at the Art Institute of
Chicago and then to The Copley Society of Art in Boston , where , due 
to a lack of space , all the work by American artists was < removed > .
Event Pairs:
< went on > and < removed >
< removed > and < went on >
Answers:
NO_COREFERENCE, BEFORE, NO_CAUSAL, NO_SUBEVENT.
NO_COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT

NO_COREFERENCE, BEFORE, NO_CAUSAL, NO_SUBEVENT.
COREFERENCE, SIMULTANEOUS, NO_CAUSAL, SUBEVENT.

There is a piece of text with events marked by < and > symbols …
Instruction

Demonstration

Llama-2-13B

Input

COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.
COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.

Llama-2-13B-FT

Figure 8: Case study on Llama-2-13B before and after
fine-tuning (FT).

ter fine-tuning. From Figure 8 we can see that
Llama2-FT could output the correct answers af-
ter fine-tuning on LLM-ERL, which validates the
effectiveness of our fine-tuning approach.
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If Relation(A, B) Prompt Text

COREFERENCE
If event A and event B are COREFERENCE,

then they won’t have temporal, causal, and subevent relations,
and COREFERENCE relation is bidirectional.

NO_TEMPORAL
If event A and event B do not have a temporal relation,

then they won’t have causal and subevent relations.

BEFORE
If event A happens BEFORE event B,

then they won’t have coreference and subevent relations,
and event B has NO_TEMPORAL relation with event A.

OVERLAP
If event A happens OVERLAP with event B,

then they won’t have coreference and subevent relations,
and event B has NO_TEMPORAL relation with event A.

CONTAINS
If event A’s time CONTAINS event B’s time,

then they won’t have coreference and causal relations,
and event B has NO_TEMPORAL relation with event A.

SIMULTANEOUS
If event A and event B happen SIMULTANEOUSly,

then they won’t have coreference, causal, and subevent relations,
and SIMULTANEOUS relation is bidirectional.

ENDS-ON
If event A ENDS-ON event B,

then they won’t have coreference, causal and subevent relations,
and event B has NO_TEMPORAL relation with event A.

BEGINS-ON
If event A BEGINS-ON event B,

then they won’t have coreference, causal and subevent relations
and BEGINS-ON relation is bidirectional.

CAUSE

If event A CAUSEs event B,
then event A happens BEFORE or OVERLAP event B,
and they won’t have coreference and subevent relations,

and event B has NO_TEMPORAL relation with event A.

PRECONDITION

If event A is event B’s PRECONDITION,
then event A happens BEFORE or OVERLAP event B,
and they won’t have coreference and subevent relations,

and event B has NO_TEMPORAL relation with event A.

SUBEVENT

If event B is a SUBEVENT of event A,
then they won’t have coreference and causal relations,
and event A’s time should CONTAINS event B’s time,

and event B has NO_TEMPORAL relation with event A.

Table 5: Prompt text of relations between two events.
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If Relation(A, B) ∧ Relation(B, C) Then Relation (A, C)

COREFERENCE ∧ COREFERENCE COREFERENCE, ¬TEMPORAL, ¬CAUSAL, ¬SUBEVENT
COREFERENCE ∧ BEFORE BEFORE, ¬COREFERENCE, ¬SUBEVENT
COREFERENCE ∧ OVERLAP OVERLAP, ¬COREFERENCE, ¬SUBEVENT
COREFERENCE ∧ CONTAINS CONTAINS, ¬COREFERENCE, ¬CAUSAL
COREFERENCE ∧ SIMULTANEOUS SIMULTANEOUS, ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT
COREFERENCE ∧ ENDS-ON ENDS-ON, ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT
COREFERENCE ∧ BEGINS-ON BEGINS-ON, ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT
COREFERENCE ∧ CAUSE CAUSE, ¬COREFERENCE, BEFORE ∨ OVERLAP, ¬SUBEVENT
COREFERENCE ∧ PRECONDITION PRECONDITION, ¬COREFERENCE, BEFORE ∨ OVERLAP, ¬SUBEVENT
COREFERENCE ∧ SUBEVENT SUBEVENT, ¬COREFERENCE, CONTAINS ¬CAUSAL
BEFORE ∧ BEFORE BEFORE, ¬COREFERENCE, ¬SUBEVENT
BEFORE ∧ OVERLAP BEFORE, ¬COREFERENCE, ¬SUBEVENT
BEFORE ∧ CONTAINS BEFORE, ¬COREFERENCE, ¬SUBEVENT
BEFORE ∧ SIMULTANEOUS BEFORE, ¬COREFERENCE, ¬SUBEVENT
BEFORE ∧ ENDS-ON BEFORE, ¬COREFERENCE, ¬SUBEVENT
BEFORE ∧ BEGINS-ON BEFORE, ¬COREFERENCE, ¬SUBEVENT
OVERLAP ∧ BEFORE BEFORE, ¬COREFERENCE, ¬SUBEVENT
OVERLAP ∧ SIMULTANEOUS OVERLAP, ¬COREFERENCE, ¬SUBEVENT
CONTAINS ∧ CONTAINS CONTAINS, ¬COREFERENCE, ¬CAUSAL
CONTAINS ∧ SIMULTANEOUS CONTAINS, ¬COREFERENCE, ¬CAUSAL
SIMULTANEOUS ∧ BEFORE BEFORE, ¬COREFERENCE, ¬SUBEVENT
SIMULTANEOUS ∧ OVERLAP OVERLAP, ¬COREFERENCE, ¬SUBEVENT
SIMULTANEOUS ∧ CONTAINS CONTAINS, ¬COREFERENCE, ¬CAUSAL
SIMULTANEOUS ∧ SIMULTANEOUS SIMULTANEOUS, ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT
SIMULTANEOUS ∧ ENDS-ON ENDS-ON, ¬COREFERENCE, ¬SUBEVENT
SIMULTANEOUS ∧ BEGINS-ON BEGINS-ON, ¬COREFERENCE, ¬SUBEVENT
SIMULTANEOUS ∧ COREFERENCE SIMULTANEOUS, ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT
ENDS-ON ∧ CONTAINS BEFORE, ¬COREFERENCE, ¬SUBEVENT
ENDS-ON ∧ BEGINS-ON ENDS-ON, ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT
ENDS-ON ∧ SIMULTANEOUS ENDS-ON, ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT
BEGINS-ON ∧ SIMULTANEOUS BEGINS-ON, ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT
BEGINS-ON ∧ BEGINS-ON BEGINS-ON, ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT
BEGINS-ON ∧ COREFERENCE BEGINS-ON, ¬COREFERENCE, ¬CAUSAL, ¬SUBEVENT
CAUSE ∧ CAUSE CAUSE, ¬COREFERENCE, BEFORE ∨ OVERLAP, ¬SUBEVENT
CAUSE ∧ SUBEVENT CAUSE, ¬COREFERENCE, BEFORE ∨ OVERLAP, ¬SUBEVENT
PRECONDITION ∧ CAUSE CAUSE, ¬COREFERENCE, BEFORE ∨ OVERLAP, ¬SUBEVENT
PRECONDITION ∧ PRECONDITION PRECONDITION, ¬COREFERENCE, BEFORE ∨ OVERLAP, ¬SUBEVENT
PRECONDITION ∧ SUBEVENT PRECONDITION, ¬COREFERENCE, BEFORE ∨ OVERLAP, ¬SUBEVENT
SUBEVENT ∧ SUBEVENT SUBEVENT, ¬COREFERENCE, CONTAINS ¬CAUSAL

Table 6: Logical Constraints for the transitivity rules among three events, where ∧ denotes "AND", ¬ denotes
"NOT", ∨ denotes "OR".

9469



If Relation(A, B) ∧ Relation(B, C) Prompt Text

COREFERENCE ∧ COREFERENCE

If event A and event B are COREFERENCE,
then the relations between event B and event C

should be the same as that between event A and event C.

COREFERENCE ∧ BEFORE
COREFERENCE ∧ OVERLAP
COREFERENCE ∧ CONTAINS
COREFERENCE ∧ SIMULTANEOUS
COREFERENCE ∧ ENDS-ON
COREFERENCE ∧ BEGINS-ON
COREFERENCE ∧ CAUSE
COREFERENCE ∧ PRECONDITION
COREFERENCE ∧ SUBEVENT

BEFORE ∧ BEFORE

If event A happens BEFORE event B, and Relation(B, C),
then event A happens BEFORE event C.

BEFORE ∧ OVERLAP
BEFORE ∧ CONTAINS
BEFORE ∧ SIMULTANEOUS
BEFORE ∧ ENDS-ON
BEFORE ∧ BEGINS-ON

OVERLAP ∧ BEFORE
If event A happens OVERLAP with event B,

and event B happens BEFORE event C,
then event A happens BEFORE event C.

OVERLAP ∧ SIMULTANEOUS
If event A happens OVERLAP with event B,

and event B and event C happen SIMULTANEOUSly,
then event A happens BEFORE event C.

CONTAINS ∧ CONTAINS
If event A’s time CONTAINS event B’s time,

and event B’s time CONTAINS event C’s time,
then event A’s time CONTAINS event C’s time.

CONTAINS ∧ SIMULTANEOUS
If event A’s time CONTAINS event B’s time,

and event B and event C happen SIMULTANEOUSly,
then event A’s time CONTAINS event C’s time.

SIMULTANEOUS ∧ BEFORE

If events A and B happen SIMULTANEOUSly, and Relation(B, C),
then event A’s time CONTAINS event C’s time.

SIMULTANEOUS ∧ OVERLAP
SIMULTANEOUS ∧ CONTAINS
SIMULTANEOUS ∧ SIMULTANEOUS
SIMULTANEOUS ∧ ENDS-ON
SIMULTANEOUS ∧ BEGINS-ON

ENDS-ON ∧ CONTAINS
If event A ENDS-ON event B,

and event B’s time CONTAINS event C’s time,
then event A happens BEFORE event C.

ENDS-ON ∧ BEGINS-ON If event A ENDS-ON event B, and Relation(B, C),
then event A ENDS-ON event C.ENDS-ON ∧ SIMULTANEOUS

BEGINS-ON ∧ SIMULTANEOUS If event A BEGINS-ON event B, and Relation(B, C),
then event A BEGINS-ON event C.BEGINS-ON ∧ BEGINS-ON

CAUSE ∧ CAUSE
If event A CAUSEs event B,

and event B CAUSEs event C,
then event A CAUSEs event C.

CAUSE ∧ PRECONDITION
If event A CAUSEs event B,

and event B is event C’s PRECONDITION,
then event A is event C’s PRECONDITION.

CAUSE ∧ SUBEVENT
If event A CAUSEs event B,

and event C is a SUBEVENT of event B,
then event A CAUSEs event C.

PRECONDITION ∧ PRECONDITION
If event A is event B’s PRECONDITION,

and event B is event C’s PRECONDITION,
then event A is event C’s PRECONDITION.

PRECONDITION ∧ SUBEVENT
If event A is event B’s PRECONDITION,
and event C is a SUBEVENT of event B,

then event A is event C’s PRECONDITION.

SUBEVENT ∧ SUBEVENT
If event B is a SUBEVENT of event A,

and event C is a SUBEVENT of event B,
then event C is a SUBEVENT of event A.

Table 7: Prompt text of relations among three events.9470



J Prompt Examples

In this section, we provide examples of prompts
used for each task and approach.

J.1 Pilot Case Study

In the context of our paper, “relevant logical con-
straints” refer to the necessary knowledge or re-
quirements for processing the current sample. They
are accurately defined and closely related to the
case in question. On the other hand, “irrelevant log-
ical constraints” denote logic that, while possibly
correct in content, does not directly pertain to the
specific sample at hand. This distinction is crucial
to maintain the focus and relevance of our analysis.

Process of Determining Relevant Logic

• For MAVEN-ERE: we have presented the crit-
ical importance of ensuring the logical consis-
tency of answers generated by LLMs. There-
fore, we implement a rigorous manual check
of the LLM outputs. During this process, we
specifically identify and rectify any logical in-
consistencies. We guide LLM by incorporat-
ing the most relevant logical constraints from
Table 5 into the LLM’s instruction, thereby
facilitating the refinement and accuracy of its
responses.

• For ProofWriter: we have observed that the
context often contains some facts and rules
that are not directly pertinent to the current
question. Therefore, we start by analyzing
the question at hand and the initial answers
provided by the LLM. Based on this, we selec-
tively introduce rules and facts that are specif-
ically relevant to the current scenario. This
method allows us to provide the LLM with
focused guidance, enabling it to refine its an-
swers more effectively and accurately.

Process of Determining Irrelevant Logic

• For MAVEN-ERE: We randomly sample 1-2
constraints from the entire set removing those
relevant logical constraints and construct the
prompts based on each sample.

• For ProofWriter: We artificially select irrel-
evant logical constraints from each sample’s
content, thereby introducing a form of “noise”
or “distraction” to the LLM’s judgment pro-
cess.

Prompt Examples

• MAVEN-ERE w. relevant logic constraints
(Figure 9);

• MAVEN-ERE w. irrelevant logic constraints
(Figure 10);

• ProofWriter w. relevant logic constraints (Fig-
ure 11);

• ProofWriter w. irrelevant logic constraints
(Figure 12).
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MAVEN-ERE w. relevant logic constraints ( )
Task Description:
There is a piece of text with two events marked by < and > symbols, and your task is 
to identify four types of relations between them (··· more context here ··· )

Text: 
The 2013 Lahad Datu < standoff > ( also known as the Lahad Datu incursion ) was a 
military < conflict > that started on 11 February 2013 and fully ended on 24 March 
2013 .

Event Pairs: 
< standoff > and < conflict >
< conflict > and < standoff >

Answers: 

User

ChatGPT

Event Pair 1: < standoff > and < conflict >
(1) Coreference relation : COREFERENCE (2) Temporal relation: CONTAINS
(3) Causal relation: NO_CAUSAL (4) Subevent relation: NO_SUBEVENT

Event Pair 2: < conflict > and < standoff >
(1) Coreference relation: NO_COREFERENCE (2) Temporal relation: NO_TEMPORAL 
(3) Causal relation: NO_CAUSAL (4) Subevent relation: NO_SUBEVENT

Let’s think step by step. You have identified that < standoff > and < conflict > are 
coreferences. The coreference should be bidirectional. And if two events are 
COREFERENCE, they won’t have temporal relations. So please modify your Coreference
and Temporal answers.User

ChatGPT

Apologies for the confusion. Based on the revised information, here are the corrected 
answers:
Event Pair 1: < standoff > and < conflict >
(1) Coreference relation : COREFERENCE (2) Temporal relation: NO_TEMPORAL
(3) Causal relation: NO_CAUSAL (4) Subevent relation: NO_SUBEVENT

Event Pair 2: < conflict > and < standoff >
(1) Coreference relation: COREFERENCE (2) Temporal relation: NO_TEMPORAL 
(3) Causal relation: NO_CAUSAL (4) Subevent relation: NO_SUBEVENT

Figure 9: MAVEN-ERE w. relevant logic constraints
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MAVEN-ERE w. irrelevant logic constraints ( )
Task Description:
There is a piece of text with two events marked by < and > symbols, and your task is 
to identify four types of relations between them (··· more context here ··· )

Text: 
The 2013 Lahad Datu < standoff > ( also known as the Lahad Datu incursion ) was a 
military < conflict > that started on 11 February 2013 and fully ended on 24 March 
2013 .

Event Pairs: 
< standoff > and < conflict >
< conflict > and < standoff >

Answers: 

User

ChatGPT

Event Pair 1: < standoff > and < conflict >
(1) Coreference relation : COREFERENCE (2) Temporal relation: CONTAINS
(3) Causal relation: NO_CAUSAL (4) Subevent relation: NO_SUBEVENT

Event Pair 2: < conflict > and < standoff >
(1) Coreference relation: NO_COREFERENCE (2) Temporal relation: NO_TEMPORAL 
(3) Causal relation: NO_CAUSAL (4) Subevent relation: NO_SUBEVENT

Let’s think step by step. If < standoff > happens BEFORE < conflict >, then they 
won’t have coreference and subevent relations, and < conflict > will have NO_TEMPORAL 
relation with < standoff > .User

ChatGPT

Yes, you are correct. Based on the information, here are the answers:

Event Pair 1: < standoff > and < conflict >
(1) Coreference relation : NO_COREFERENCE (2) Temporal relation: BEFORE
(3) Causal relation: NO_CAUSAL (4) Subevent relation: NO_SUBEVENT

Event Pair 2: < conflict > and < standoff >
(1) Coreference relation: NO_COREFERENCE (2) Temporal relation: NO_TEMPORAL 
(3) Causal relation: NO_CAUSAL (4) Subevent relation: NO_SUBEVENT

Figure 10: MAVEN-ERE w. irrelevant logic constraints
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ProofWriter w. relevant logic constraints ( )
Task Description:
Given a problem statement as contexts, the task is to answer a logical reasoning 
question. 

Text: 
Bob is smart. Bob is young. Charlie is cold. Charlie is round. Charlie is white. 
Charlie is young. Gary is smart. Gary is white. Harry is rough. Harry is smart. Harry 
is white. All red people are round. Round, smart people are cold. If someone is cold 
and young then they are white. Red people are round. All round, young people are red. 
If someone is smart then they are rough. Rough, young people are red. If Bob is round 
then Bob is smart. If Charlie is white and Charlie is rough then Charlie is young.

Question: 
Based on the above information, is the following statement true, false, or unknown? 
Harry is not round.

User

ChatGPT

Based on the given information, the statement "Harry is not round" is true.
The information states that all red people are round, and Harry is described as 
white, smart, and rough, but not round. Therefore, Harry does not fit the criteria of 
being round, and the statement is true.

Let’s think step by step. From the text, we could first get relevant facts:
• Harry is smart.
• Harry is white.

And the relevant rule:
• All red people are round.
• Round, smart people are cold.
• All round, young people are red.

Given these statements, we can conclude the following:
Harry is smart and white, but there is no direct statement about his being red.

User

ChatGPT

Apologies for the confusion. You are correct, there is no direct statement in the 
given information that explicitly mentions whether Harry is round or not. Therefore, 
the statement "Harry is not round" is unknown based solely on the provided 
information.

Figure 11: ProofWriter w. relevant logic constraints
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ProofWriter w. irrelevant logic constraints ( )
Task Description:
Given a problem statement as contexts, the task is to answer a logical reasoning 
question. 

Text: 
Bob is smart. Bob is young. Charlie is cold. Charlie is round. Charlie is white. 
Charlie is young. Gary is smart. Gary is white. Harry is rough. Harry is smart. Harry 
is white. All red people are round. Round, smart people are cold. If someone is cold 
and young then they are white. Red people are round. All round, young people are red. 
If someone is smart then they are rough. Rough, young people are red. If Bob is round 
then Bob is smart. If Charlie is white and Charlie is rough then Charlie is young.

Question: 
Based on the above information, is the following statement true, false, or unknown? 
Harry is not round.

User

ChatGPT

Based on the given information, the statement "Harry is not round" is true.
The information states that all red people are round, and Harry is described as 
white, smart, and rough, but not round. Therefore, Harry does not fit the criteria of 
being round, and the statement is true.

Let’s think step by step. From the text, we could get some facts:
• Harry is smart.
• Harry is white. 

And some rules:
• If someone is cold and young then they are white. 
• If someone is smart then they are rough. 
• Rough, young people are red.

Given these statements, please output your answers.

User

ChatGPT

Apologies for the confusion. Based on the information, the statement “Harry is not 
round” is False.

Figure 12: ProofWriter w. irrelevant logic constraints
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J.2 Incoporating Logical Constraints
The highlighted parts represent the content generated by LLMs. We omit the demonstration here for clarity.

Vanilla ICL
Task Description:
There is a piece of text with two events marked by 
< and > symbols, and your task is to identify four
types of relations between them (··· more context 
here ··· )

Text:
Before her death , Todd posted a video on YouTube 
in which she used a series of flash cards to < 
tell > her experience of being blackmailed into 
exposing her breasts via webcam , and of being < 
bullied > and physically assaulted .

Event Pairs:
< tell > and < bullied >
< bullied > and < tell >

Answers: 
NO_COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.
NO_COREFERENCE, NO_TEMPORAL, PRECONDITION, NO_SUBEVENT.

Vanilla ICL plus CoT
Task Description:
There is a piece of text with two events marked by 
< and > symbols, and your task is to identify four
types of relations between them (··· more context 
here ··· )

Text:
Before her death , Todd posted a video on YouTube 
in which she used a series of flash cards to < 
tell > her experience of being blackmailed into 
exposing her breasts via webcam , and of being < 
bullied > and physically assaulted .

Event Pairs:
< tell > and < bullied >
< bullied > and < tell >

Reasoning:
< bullied > happens before < tell >, and being < 
bullied > leads her to < tell >.
Answers:
NO_COREFERENCE, BEFORE, NO_CAUSAL, NO_SUBEVENT.
NO_COREFERENCE, BEFORE, PRECONDITION, NO_SUBEVENT.

CoT w. self-generated logical constraints
Task Description:
There is a piece of text with two events marked by 
< and > symbols, and your task is to identify four
types of relations between them (··· more context 
here ··· )

Text:
Before her death , Todd posted a video on YouTube 
in which she used a series of flash cards to < 
tell > her experience of being blackmailed into 
exposing her breasts via webcam , and of being < 
bullied > and physically assaulted .

Event Pairs:
< tell > and < bullied >
< bullied > and < tell >

From the text, we could first get:
< bullied > happens before < tell >, and being < 
bullied > leads her to < tell >
Due to the logical constraint: If event 𝐴 is event 
𝐵’s PRECONDITION, then event A happens BEFORE or 
OVERLAP event B, and they won’t have coreference 
and subevent relations, and event B has 
NO_TEMPORAL relation with event A.
We can deduce that the answers are:
NO_COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.
NO_COREFERENCE, BEFORE, PRECONDITION, NO_SUBEVENT.

w. all logical constraints
Task Description:
There is a piece of text with two events marked by 
< and > symbols, and your task is to identify four
types of relations between them (··· more context 
here ··· )

Logical constraints:
There are some rules among the relations, you can 
select some of them to reason or check your 
answers:
(1) If two events are COREFERENCE, then they won’t 
have temporal, causal, and subevent relations, and 
COREFERENCE relation is bidirectional.
(··· more context here ··· )
(11) If event B is a SUBEVENT of event A,
then they won’t have coreference and causal 
relations, and event A’s time should CONTAINS 
event B’s time, and event B has NO_TEMPORAL 
relation with event A.

Text:
Before her death , Todd posted a video on YouTube 
in which she used a series of flash cards to < 
tell > her experience of being blackmailed into 
exposing her breasts via webcam , and of being < 
bullied > and physically assaulted .

Event Pairs:
< tell > and < bullied >
< bullied > and < tell >

Answers:
NO_COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.
NO_COREFERENCE, BEFORE, PRECONDITION, NO_SUBEVENT.

w. retrieved logical constraints
Task Description:
There is a piece of text with two events marked by 
< and > symbols, and your task is to identify four
types of relations between them (··· more context 
here ··· )

Logical constraints:
There are some rules among the relations, you can 
select some of them to reason or check your 
answers:
(1) If event A is event B’s PRECONDITION,
then event A happens BEFORE or OVERLAP event B, 
and they won’t have coreference and subevent 
relations, and event B has NO_TEMPORAL relation 
with event A. 
(2) If event A and event B do not have a temporal 
relation, then they won’t have causal and subevent 
relations.

Text:
Before her death , Todd posted a video on YouTube 
in which she used a series of flash cards to < 
tell > her experience of being blackmailed into 
exposing her breasts via webcam , and of being < 
bullied > and physically assaulted .

Event Pairs:
< tell > and < bullied >
< bullied > and < tell >

Answers: 
NO_COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.
NO_COREFERENCE, BEFORE, PRECONDITION, NO_SUBEVENT.
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J.3 Iterative Retrievals
In this section, we present a prompt example used in Section 5.3. As shown in Figure 13, with iterative
prompting, ChatGPT finally outputs the correct answers.

Task Description:
There is a piece of text with two events marked by < 
and > symbols, and your task is to identify four
types of relations between them (··· more context 
here ··· )

Text: 
This trade gradually < declined > during the early 
19th century as demand for furs in Europe < 
diminished > .

Event Pairs: 
< diminished > and < declined >
< declined > and < diminished >

Answers: 

User

ChatGPT

NO_COREFERENCE, NO_TEMPORAL, CAUSE, SUBEVENT.
NO_COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.

Your answers are logically inconsistent. 
There are some rules among the relations, you can 
select some of them to reason or check your answers:
(1) If event A CAUSEs event B, then event A happens 
BEFORE or OVERLAP event B, and they won’t have 
coreference and subevent relations ···
(2) If event A and event B do not have a temporal 
relation, then they won’t have causal and subevent 
relations ···
(3) If event B is a SUBEVENT of event A, then they 
won’t have coreference and causal relations, and 
event A’s time should CONTAINS event B’s time ···

User

ChatGPT

NO_COREFERENCE, CONTAINS, CAUSE, NO_SUBEVENT.
NO_COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.

Your answers are logically inconsistent. 
There are some rules among the relations, you can 
select some of them to reason or check your answers:
(1) If event A CAUSEs event B, then event A happens 
BEFORE or OVERLAP event B, and they won’t have 
coreference and subevent relations ···
(2) If event A’s time CONTAINS event B’s time, then 
they won’t have coreference and causal relations ···

User

ChatGPT

NO_COREFERENCE, BEFORE, CAUSE, NO_SUBEVENT.
NO_COREFERENCE, NO_TEMPORAL, NO_CAUSAL, NO_SUBEVENT.

Iteration 0

Iteration 1

Iteration 2

Figure 13: Multi-turn conversation with ChatGPT. We retrieve relevant logical constraints and provide them to
ChatGPT.
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J.4 Deductive Reasoning
The highlighted parts represent the content generated by LLMs. We omit the demonstration here for
clarity.

Vanilla ICL
Task Description:
Given a problem statement as contexts, the task is 
to answer a logical reasoning question. For each 
question, choose from the following options: A) 
True, B) False, or C) Unknown.

Context:
The cow likes the lion. The cow visits the tiger.
(··· more context here ··· )

Question: 
Based on the above information, is the following 
statement true, false, or unknown? The tiger is 
not young.

The correct option is:
C.

Vanilla ICL plus CoT
Task Description:
Given a problem statement as contexts, the task is 
to answer a logical reasoning question. For each 
question, choose from the following options: A) 
True, B) False, or C) Unknown.

Context:
The cow likes the lion. The cow visits the tiger. 
(··· more context here ··· )

Question: 
Based on the above information, is the following 
statement true, false, or unknown? The tiger is 
not young.

Reasoning: 
The tiger likes the cow. The tiger likes the 
squirrel. If something likes the squirrel and it 
likes the cow, then it visits the tiger. So the 
tiger visits the tiger. If something visits the 
tiger then it is nice. So the tiger is nice. If 
something is nice and it sees the tiger then it is 
young. So the tiger is young.
The correct option is: B.

CoT w. self-generated logical constraints
Task Description:
Given a problem statement as contexts, the task is 
to answer a logical reasoning question. For each 
question, choose from the following options: A) 
True, B) False, or C) Unknown.

Context:
The cow likes the lion. The cow visits the tiger. 
(··· more context here ··· )

Question: 
Based on the above information, is the following 
statement true, false, or unknown? The tiger is 
not young.

From the text, we could first get facts:
The tiger likes the cow. The tiger likes the 
squirrel.
Due to the mentioned rules: if something likes the 
squirrel and it likes the cow, then it visits the 
tiger.
We can deduce the facts: the tiger visits the 
tiger.
Due to the mentioned rules: if something visits 
the tiger then it is nice.
We can deduce the facts: the tiger is nice.
Due to the mentioned rules: if something is nice 
and it sees the tiger then it is young.
We can deduce the facts: the tiger is young.
Therefore, the correct option is: B.
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