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Abstract

Simultaneous Machine Translation (SiMT) gen-
erates translation while reading source tokens,
essentially producing the target prefix based
on the source prefix. To achieve good perfor-
mance, it leverages the relationship between
source and target prefixes to exact a policy to
guide the generation of translations. Although
existing SiMT methods primarily focus on the
Encoder-Decoder architecture, we explore the
potential of Decoder-only architecture, owing
to its superior performance in various tasks and
its inherent compatibility with SiMT. However,
directly applying the Decoder-only architecture
to SiMT poses challenges in terms of training
and inference. To alleviate the above problems,
we propose the first Decoder-only SiMT model,
named Decoder-only Streaming Transformer
(DST). Specifically, DST separately encodes
the positions of the source and target prefixes,
ensuring that the position of the target prefix re-
mains unaffected by the expansion of the source
prefix. Furthermore, we propose a Streaming
Self-Attention (SSA) mechanism tailored for
the Decoder-only architecture. It is capable
of obtaining translation policy by assessing
the sufficiency of input source information and
integrating with the soft-attention mechanism
to generate translations. Experiments demon-
strate that our approach achieves state-of-the-
art performance on three translation tasks1.

1 Introduction

Simultaneous Machine Translation (SiMT) (Gu
et al., 2017; Ma et al., 2019) is designed for gener-
ating translations in real-time scenarios such as on-
line conferences and real-time subtitles. It predicts
the target tokens (i.e., target prefix) based on the
already read source tokens (i.e., source prefix), aim-
ing to achieve good tradeoffs between latency and
translation quality. During training, SiMT models

* Corresponding author: Yang Feng.
1Code is at https://github.com/ictnlp/DST

(a) Encoder-Decoder Architecture.

(b) Decoder-only Architecture.

Figure 1: Comparison of Encoder-Decoder architecture
and Decoder-only architecture.

need to learn the correspondence between source
and target prefixes, crucial for extracting policies
that ensure superior performance during inference
(Zhang and Feng, 2022c).

Existing research on SiMT primarily focuses on
the Encoder-Decoder architecture and is catego-
rized into fixed and adaptive policies. For fixed
policy (Dalvi et al., 2018; Ma et al., 2019; Elbayad
et al., 2020), the model utilizes heuristic rules to de-
termine the source prefix used for generating trans-
lations, which ignores the correspondence between
the source and target prefixes. This may lead to re-
dundant or missing source information during trans-
lation, resulting in inferior performance (Zhang
and Feng, 2022a). For adaptive policy (Ma et al.,
2020b), the model dynamically decides whether to
read or output tokens based on the relationship be-
tween the source and target prefixes. This dynamic
adjustment of policy in response to the translation
status allows for improved tradeoffs (Zhao et al.,
2023). However, there is a lack of exploration in
SiMT regarding the Decoder-only architecture.

With the rise of language models, the Decoder-
only architecture has exhibited superior perfor-
mance across diverse tasks (Touvron et al., 2023;
Team et al., 2024). As illustrated in Figure 1,
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the Decoder-only architecture, compared to the
Encoder-Decoder architecture with an equivalent
number of parameters, can support more layers,
thereby offering parameter efficiency and better
scalability (Liu et al., 2023). Importantly, SiMT
relies on unidirectional encoding (Elbayad et al.,
2020), and the Decoder-only architecture seam-
lessly accommodates this requirement. Therefore,
we explore the capability of Decoder-only architec-
ture in SiMT.

However, directly applying the Decoder-only ar-
chitecture to the SiMT task poses challenges in
both training and inference. During inference, with
the arrival of each source token, there is a posi-
tion increase of the generated target prefix, neces-
sitating the model to re-encode the target prefix.
This exacerbates the inference cost, particularly
at low latency (Wang et al., 2024). During train-
ing, the model learns to predict the corresponding
target prefix based on a given source prefix. Conse-
quently, it is necessary to construct corresponding
target prefixes for all possible source prefixes in a
sentence pair. This limitation hinders the model
from learning the translation policy and leads to an
increase in training costs compared to the Encoder-
Decoder architecture.

To overcome the above limitations, we propose
the first SiMT model based on Decoder-only ar-
chitecture, named the Decoder-only Streaming
Transformer (DST). To alleviate the issue of re-
encoding, DST encodes the positional information
of the source prefix and the target prefix separately.
This ensures that the expansion of the source prefix
does not impact the position of the generated target
prefix, thereby reducing the inference costs. To as-
sess the contribution of partial source information
to generating target tokens, DST uses the proposed
Streaming Self-Attention (SSA) in replace of the
conventional masked self-attention in the Decoder
layer to decrease training costs and derive a trans-
lation policy.

During training, SSA can consider all possible
source prefixes for the target prefixes in a sentence
pair. Specifically, SSA predicts attention allocation
for different source prefixes and combines it with
the soft-attention mechanism to obtain expected at-
tention for all source tokens and tokens in the target
prefix. This expected attention is then utilized to
derive the context vector. By leveraging SSA, the
model learns the importance of all source prefixes
in translating the target prefix, thereby reducing
training costs. During inference, SSA accumulates

the allocated attention from all prefixes of the in-
put source tokens, enabling an assessment of the
sufficiency of input source information for generat-
ing translation. The model utilizes this assessment
to determine whether to read or generate tokens,
thereby acquiring the translation policy. Experi-
ments demonstrate that DST achieves state-of-the-
art performance on three tasks.

2 Background

Simultaneous Machine Translation The SiMT
model (Ma et al., 2019) dynamically reads the
source sentence x = (x1, ..., xJ) with length J and
generates translation y = (y1, ..., yI) with length I
based on a policy. To articulate the policy, we intro-
duce gi, representing the number of source tokens
involved in translating yi. Thus, the translation pol-
icy from x to y can be denoted as g = (g1, ..., gI).
During training, the SiMT model undergoes opti-
mization by minimizing the cross-entropy loss:

Lsimt = −
I∑

i=1

log p(y⋆i | x≤gi ,y<i), (1)

where y⋆i represents the ground-truth token.

Masked Self-Attention Masked self-attention
allows each position in the decoder to attend to
all positions in the decoder up to and including
that position (Vaswani et al., 2017), ensuring the
auto-regressive generation. Given the target hidden
states s = (s1, ..., sI), the context vector is com-
puted as follows:

ei,k = siW
Q(skW

K)⊺/
√
d, (2)

αi,k =




exp(ei,k)/

i∑
l=1

exp(ei,l) if k ≤ i

0 otherwise
,

(3)

ci =
i∑

k=1

αi,k(skW
V ), (4)

where WQ, WK and W V are projection parame-
ters, and d denotes the dimension of inputs.

3 Method

In this section, we introduce the Decoder-only
Streaming Transformer (DST). DST adopts the
Decoder-only architecture and employs the pro-
posed Streaming Self-Attention (SSA) in place of
masked self-attention at each layer. During infer-
ence, SSA accumulates the attention assigned to
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Figure 2: The architecture of DST. It shows the moment
when DST generates y2 after reading two source tokens.

the input source tokens to assess the sufficiency of
source information and obtain the translation pol-
icy accordingly. During training, DST leverages
our proposed constraints to ensure the learning of
the SSA mechanism. The details of DST are intro-
duced as follows.

3.1 Model Architecture

We present the model architecture of DST in Fig-
ure 2. DST takes the concatenation of the source
and target prefixes as input, encoding the positional
information of both the source and target prefixes
separately. In this way, the expansion of the source
prefix does not affect the position of the generated
target prefix, preventing the re-encoding of the gen-
erated target prefix. In each layer, DST replaces
the masked self-attention module (Vaswani et al.,
2017) in the conventional Decoder-only architec-
ture with our proposed Streaming Self-Attention
(SSA) module. During inference, the SSA mod-
ule will determine the policy and integrate with
the soft-attention mechanism to derive the context
vector and predict the next token.

3.2 Streaming Self-Attention

In order to address the SiMT task, DST incorpo-
rates Streaming Self-Attention (SSA) in place of
masked self-attention. By concatenating the source
sentence and the target sentence as input, SSA
adopts masked self-attention within the source sen-
tence (Vaswani et al., 2017). For each target token,
SSA initially allocates its attention probability to
all possible source prefixes and subsequently com-
bines the allocated attention with the soft-attention

mechanism to compute the expected attention prob-
ability for source tokens and preceding target to-
kens. The context vectors of target tokens are com-
puted by utilizing the expected attention. We then
provide a detailed explanation of the SSA mecha-
nism as applied to target tokens during training.

Given the source sentence x and the target sen-
tence y, the hidden state sequence input to SSA is
denoted as h = (hs1, ..., h

s
J , h

t
1, ..., h

t
I), where hsj de-

notes the source hidden state and hti represents the
target hidden state. To articulate the allocated at-
tention to the source prefixes, we define pi,j , which
signifies the allocated attention of the target token
yi to the source prefix x≤j . The calculation of pi,j
is computed by utilizing the relationship between
the source and target prefixes:

pi,j = sigmoid(
h
t
iU

Q(h
s
jU

K)√
d

), (5)

where UQ and UK are learnable parameters, and
d denotes the dimension of hidden state. h

t
i and

h
s
j represents the mean pooling of hidden states

corresponding to the target prefix y≤i and source
prefix x≤j , respectively. Subsequently, we utilize
pi,j to obtain the expected attention of each target
token towards both source tokens and preceding
target tokens.

Taking into account all possible source prefixes
when translating the target token yi, the expected
attention of target token yi to the source token xj
is calculated as:

αs
i,j =

J∑

m=j

pi,m exp(esi,j)∑m
l=1 exp (e

s
i,l)

, (6)

where esi,j denotes the scaled dot-product of hti and
hsj , as illustrated in Eq.(2). The first summation
considers all possible source prefixes that include
xj , and the term inside summation reflects the at-
tention probability associated with pi,m and soft-
attention. Correspondingly, the expected attention
of yi to the target token yk(k ∈ [1, i]) is:

αt
i,k = (1−

J∑

j=1

pi,j)
exp(eti,k)∑i
l=1 exp(e

t
i,l)

, (7)

where
∑J

j=1 pi,j represents the total attention to
the source tokens and eti,k is the scaled dot-product
of hti and htk. Therefore, we can get the context
vector of yi by considering both source tokens and
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previous target tokens:

cti =
J∑

j=1

αs
i,j(h

s
jW

V ) +
i∑

k=1

αt
i,k(h

t
kW

V ), (8)

where W V denotes the projection parameters.
The above is the operational mechanism of SSA

during training. During inference, SSA utilizes the
input source tokens and the previously generated
target tokens to generate the context vector.

3.3 Inference

After introducing SSA, DST employs it to derive a
policy, which instructs the model to generate trans-
lation. The SiMT policy generally assesses the
adequacy of the source information to determine
whether to proceed with generating the translation
or to read additional source tokens (Zhang and
Feng, 2023b). In DST, SSA initially allocates at-
tention to different source prefixes using pi,j , subse-
quently integrating the allocated attention with the
soft-attention. Consequently,

∑m
j=1 pi,j signifies

the accumulated attention to the current available
source prefix x≤m and quantifies the sufficiency
of source information. By setting an appropriate
threshold δinfer, DST deems the source informa-
tion sufficient under the condition:

m∑

j=1

pi,j > δinfer, (9)

where m is the number of input source tokens. At
this point, DST is capable of generating the transla-
tion based on the existing source tokens. Otherwise,
the model should continue reading the source to-
kens until the aforementioned condition is met or
the entire sentence is input to our model. It is note-
worthy that DST will generate the translation only
when most layers meet the conditions.

3.4 Training Method

To facilitate the learning of SSA mechanism, we
introduce the training method. The essence lies in
the learning of pi,j . Although we may not directly
provide an optimization objective for pi,j , we can
leverage the characteristics of SiMT tasks (Zhang
et al., 2022) and the properties of pi,j to induce
its learning. Therefore, in addition to the cross-
entropy loss Lsimt, we propose three additional
constraints and a curriculum learning strategy to
aid in the training of DST.

Summation Constraint Based on the inherent
property of pi,j , we introduce the summation con-
straint. As described in the section 3.2, pi,j rep-
resents the attention probability allocated to the
source prefix x≤j and

∑J
j=1 pi,j reflects the total at-

tention on all source tokens. Therefore, it should be
equivalent to the sum of attention to source tokens
in masked self-attention (Vaswani et al., 2017):

Lsum =

I∑

i=1

∥
J∑

j=1

pi,j − βi∥2, (10)

where βi denotes the attention to the source tokens
in masked soft-attention. It is computed as:

βi =

∑J
j=1 exp(e

s
i,j)∑J

j=1 exp(e
s
i,j) +

∑i
k=1 exp(e

t
i,k)

, (11)

where esi,j is the scaled dot-product of target to-
ken yi and source token xj , and eti,k represents the
scaled dot-product between the target token yi and
its preceding target token yk.

Latency Constraint In addition to the summa-
tion constraint, we introduce a latency constraint
for DST. Without the latency constraint, SSA tends
to allocate excessive attention to longer source pre-
fixes during training (Ma et al., 2020b). This ten-
dency encourages the model to read more source
tokens during inference, resulting in high latency.
According to Zhang and Feng (2022b), the align-
ment favoring low latency tends to concentrate near
the diagonal between source and target sentences.
Expressing the attention allocation for source pre-
fixes in sentence pair (x, y) as p = (pi,j)I×J , the
latency constraint aims to encourage SSA to allo-
cate more attention to source prefixes closer to the
diagonal. To make it, we introduce the cost matrix
C = (Ci,j)I×J , where Ci,j is computed as:

Ci,j =
1

max(I, J)
max(|j− i× J

I
| − ϵ, 0), (12)

where |j − i × J
I | quantifies the degree of devia-

tion from the diagonal between the target token yi
and the source prefix x≤j . Therefore, Ci,j supports
attention distributions that are close to the diago-
nal. The hyperparameter ϵ controls the tolerance
level for the deviation. We then obtain the latency
constraint as:

Llat =
I∑

i=1

J∑

j=1

pi,jCi,j . (13)

Further explanation about latency constraint is pro-
vided in the Appendix A.
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Consistency Constraint During training, DST
utilizes summation and latency constraints to en-
sure the learning of pi,j in each layer. However,
there are variations among different layers (Yang
et al., 2020), and our policy is obtained by integrat-
ing decisions from different layers. Without con-
straints on the decisions between different layers,
the presence of outlier layers may result in exces-
sively high latency for the learned policy. There-
fore, we propose a consistency constraint to ensure
consistency across decisions at different layers. De-
noting the pi,j in the n-th layer as p

(n)
i,j , and the

consistency constraint is calculated as follows:

Lcon =

I∑

i=1

J∑

j=1

N∑

n=1

1

N
∥p(n)i,j − pi,j∥2, (14)

where N is the number of layers and pi,j is com-
puted as follows:

pi,j =
1

N

N∑

n=1

p
(n)
i,j . (15)

Therefore, we can get the overall training objec-
tive of DST:

L = Lsimt + Lsum + Llat + Lcon. (16)

Curriculum Learning Strategy If we train DST
based on the training objective L directly, the
model learns to generate translation using the entire
source sentence. However, DST generates trans-
lations based on source prefixes during inference,
leading to a discrepancy between training and in-
ference (Zhang and Feng, 2022d). To mitigate this
problem, we train DST to generate translations
based on the source prefix by masking out subse-
quent source tokens during training. Specifically,
by setting the threshold δtrain, DST masks out the
source tokens after the shortest prefix x≤m that
satisfies the condition

∑m
j=1 pi,j > δtrain. Addi-

tionally, we introduce curriculum learning (Bengio
et al., 2009), which gradually transitions the avail-
able source information from the entire sentence
to the prefix consistent with the inference. During
training, we implement this strategy by adjusting
δtrain as:

δtrain = δinfer + (1− δinfer)× exp (−update

T
),

(17)
where T is a hyperparameter and update repre-
sents the number of updates. During this process,
DST gradually adapts to the scenario of generating
translations based on prefixes (Guo et al., 2024).

4 Experiments

4.1 Datasets
We evaluate our method on three translation tasks.

IWSLT152 English→Vietnamese (En→Vi)
(Cettolo et al., 2015) Consistent with Ma et al.
(2020b), we replace the tokens occurring less than 5
with ⟨unk⟩. We use TED tst2012 and TED tst2013
as the development set and the test set, respectively.

WMT163 English→Romanian (En→Ro) We
use newsdev-2016 as validation set and newstest-
2016 as test set. The source and target languages
employ a shared vocabulary. Other settings are
consistent with Gu et al. (2018).

WMT154 German→English (De→En) We use
newstest2013 as validation set and newstest2015 as
test set. Following Ma et al. (2020b), we apply BPE
(Sennrich et al., 2016) with 32K subword units and
use a shared vocabulary between source and target.

4.2 System Settings
Our experiments involve the following methods.
Apart from our approach, other methods all employ
Encoder-Decoder architecture.

Full-sentence represents the full-sentence trans-
lation of Encoder-Decoder architecture.

Wait-k (Ma et al., 2019) reads k tokens and then
alternates between writing and reading a token.

MoE Wait-k (Zhang and Feng, 2021) treats each
head as a Wait-k expert and integrates the outputs
of all experts to generate translation.

MMA (Ma et al., 2020b) makes each head deter-
mine the policy by predicting a Bernoulli variable
and generates translation by integrating the results
of multiple heads.

PED (Guo et al., 2022) implements the adap-
tive policy by integrating post-evaluation into the
translation policy.

HMT (Zhang and Feng, 2023a) utilizes the Hid-
den Markov Model to model the policy as hid-
den events and translation as observed events, and
achieves the current state-of-the-art performance.

DST denotes our method described in Section 3.
All systems are adapted from Fairseq Library

(Ott et al., 2019). Regarding the compared methods,
we apply Transformer-Small (6 layers, 4 heads)
for En→Vi task and Transform-Base (6 layers, 8
heads) for En→Ro and De→En tasks. For our ap-
proach, we set the number N of layers in DST to 16

2https://nlp.stanford.edu/projects/nmt/
3www.statmt.org/wmt16/
4www.statmt.org/wmt15/
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Figure 3: Comparison of our approach with other SiMT methods on En→Vi, En→Ro and De→En tasks.

Method δinfer AL BLEU

DST 0.3 4.72 30.55
w/o Llat 0.3 7.95 31.78
w/o Lcon 0.3 26.5 24.05
w/o CL Strategy 0.8 22.48 29.69

Table 1: Ablation study on the training method of DST.
‘w/o Llat’ removes the latency constraint. ‘w/o Lcon’
removes the consistency constraint. ‘w/o CL Strategy’
removes curriculum learning strategy. The experiments
are conducted on the De→En task.

and utilize the top 8 layers to determine the transla-
tion policy. For the latency constraint, we empiri-
cally choose ϵ as 1. Other detailed system settings
are shown in Appendix B. We obtain the SiMT
models under different latency by adjusting δinfer.
To accelerate the convergence and achieve better
performance, our approach is fine-tuned from con-
ventional Decoder-only architecture with masked
self-attention mechanism (Vaswani et al., 2017).
We use greedy search during inference and evalu-
ate all methods with latency measured by Average
Lagging (AL) (Ma et al., 2019) and quality esti-
mated by BLEU (Papineni et al., 2002).

4.3 Main Results

The performance comparison of our approach with
other SiMT methods is illustrated in Figure 3,
demonstrating that our approach achieves state-of-
the-art performance on three tasks.

Compared to the Wait-k and MoE Wait-k meth-
ods, our method brings significant improvement.
Both Wait-k and MoE Wait-k employ fixed policy
and rely on heuristic rules to determine the source
prefixes for translation (Ma et al., 2019; Zhang and
Feng, 2021). This usually leads to the omission
or redundancy of source information during trans-

lation (Zhang and Feng, 2022c), resulting in de-
graded performance. In contrast, our method adap-
tively determines the translation policy by leverag-
ing the correspondence between the source and tar-
get prefixes. This adaptability allows our method
to achieve superior tradeoffs. Additionally, our
method outperforms PED, MMA, and HMT, which
belong to the adaptive policy. Previous adaptive
methods are based on the Encoder-Decoder archi-
tecture, determining the policy based on extracted
features from the source and target prefixes (Ma
et al., 2023; Zhang and Feng, 2023a). Our method
relies on the Decoder-only architecture and utilizes
the accumulated attention to existing source tokens
to assess the sufficiency of translation, resulting
in more effective policies. Besides, our method
surpasses the performance of Full-sentence trans-
lation based on the Encoder-Decoder architecture
with lower latency. This can be attributed to the
advantages of the decoder-only architecture.

5 Analysis

To deepen the understanding of our method, we
conduct multiple analyses. The experiments are all
performed on the De→En translations task.

5.1 Ablation Study

In order to understand the settings, we conduct ab-
lation studies on the training methods, curriculum
learning strategy, and the number of layers.

Table 1 presents ablation experiments on the
training method, where each setting contributes to
the performance of DST. The latency constraint
aids the model in acquiring the low-latency policy
(Zhang and Feng, 2022b), and the curriculum learn-
ing strategy enables the model to adapt to generat-
ing translations based on prefixes (Guo et al., 2024).
The consistency constraint effectively addresses the
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T δinfer AL BLEU

20000 0.3 2.81 25.68
30000 0.3 4.72 30.55
40000 0.3 4.05 29.26

Table 2: The performance when DST employs different
hyperparameters of curriculum learning strategy. The
experiments are performed on the De→En dataset.

N δinfer AL BLEU

12 0.3 4.23 28.99
14 0.3 4.49 29.14
16 0.3 4.72 30.55

Table 3: The performance of our method with different
number of layers. The results are based on De→En task.

problems of outlier layers, which ensures consis-
tency across decisions made at different layers (Ma
et al., 2020b).

We further explore the impact of hyperparam-
eters in the curriculum learning strategy in Table
2. A smaller T indicates a quicker transition of
the training environment to the scenario of SiMT.
We find that transitioning to the scenario of SiMT
at an appropriate pace can achieve better tradeoffs
between latency and translation quality.

Additionally, we investigate the relationship be-
tween the number of layers in DST and its perfor-
mance in Table 3. This suggests that the perfor-
mance of DST shows incremental improvement
as the number of layers increases, highlighting a
certain level of scalability.

5.2 Hallucination in Translation
To assess the quality of translations generated by
different SiMT methods, we evaluate the halluci-
nation in translations. In SiMT, when the model is
trained to predict target tokens based on missing es-
sential source information, it is prone to producing
hallucinations during inference (Guo et al., 2023a).
Therefore, the proportion of hallucinations con-
tained in the generated translations also serves as a
reflection of the quality of the learned policy during
training.

To quantify the hallucinations, we introduce the
hallucination rate (HR) (Chen et al., 2021a), which
measures the percentage of tokens generated that
are not related to the source sentence. We then
provide its detailed definition. Given the source
sentence x, we define the corresponding translation

2 3 4 5 6 7 8 9 10
Average Lagging (AL)

5.75

6.00

6.25

6.50

6.75

7.00

7.25

7.50

H
R

[%
]

Wait-k
HMT
DST

Figure 4: The comparison of hallucination in transla-
tions generated by different SiMT models. The results
are based on the De→En dataset.

as ŷ. Subsequently, we can get the alignment set
h, which is a set of source-target index pairs (j, i)
where jth source token xj aligns to the ith target
token ŷi.

The token ŷi in ŷ is seen as hallucination
(H(i,h)=1) if it can not be aligned to any source
token:

H(i,h)=1[{(j, i) ∈ h} = ∅]. (18)

Therefore, the hallucination rate can be defined as:

HR(x, ŷ,h)=
1

|ŷ|

|ŷ|∑

i=1

H(i,h). (19)

As illustrated in Figure 4, our model demon-
strates a lower likelihood of generating hallucina-
tions at all latency, indicating increased reliability
in generated translations. Compared to the Wait-k
approach, our method allows for flexible utiliza-
tion of essential source information by adjusting
its policy and obtains a lower hallucination rate.
Moreover, DST considers a more extensive range
of translation policies than HMT during training
(Zhang and Feng, 2023a). This provides possibil-
ities for DST to acquire more effective policies,
thereby achieving better tradeoffs between latency
and translation quality.

5.3 Model Efficiency

In addition to evaluating the hallucinations in trans-
lation, we also investigate the model efficiency of
different SiMT methods. As shown in Table 4,
our method obtains superior performance with rel-
atively high efficiency.
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Method #Params (↓) Inference Speed-up (↑) Training Speed-up (↑) AL BLEU

Wait-k 80M 1.907 3.982 3.85 26.86
HMT 80M 1.000 1.000 4.74 30.29
DST 67M 1.391 2.029 4.72 30.55

Table 4: The comparison of model efficiency for different SiMT models. ‘#Params’ represents the number of trained
parameters. ‘Inference Speed-up’ indicates the speed-up ratio of inference compared to the HMT model. ‘Training
Speed-up’ represents the speed-up ratio of training in comparison to the HMT model. The bolded data indicates the
SiMT models that perform the best in the evaluation metrics. The experiments are conducted on the De→En task.

Method CAAL SacreBLEU

Wait-k
1235.72 25.83
1704.95 27.30

DST
1672.48 27.53
1702.00 28.17

Table 5: Comparison of different methods on MuST-C
English→German task. This latency metric CAAL is
measured in millisecond.

Compared to the SiMT models based on the
Encoder-Decoder architecture, our model, utiliz-
ing a Decoder-only architecture, achieves superior
performance with a relatively smaller number of
parameters. Combining the results from Table 3, it
reflects the parameter efficiency and scalability of
the Decoder-only architecture (Fu et al., 2023).

Besides, we evaluate the training and inference
efficiency of different SiMT models. All related
experiments are conducted on NVIDIA GeForce
RTX 3090. In terms of training speed, our ap-
proach is lower than Wait-k policy but higher than
the adaptive policy HMT. Compared to Wait-k pol-
icy, our method involves more computations about
attention, therefore requiring more training costs.
Furthermore, HMT significantly increases the train-
ing complexity by expanding the target sentences
several times during training. During inference,
while our method is slightly slower than Wait-k,
the inference speed of our method can still reach
78 tokens per second, which can fully meet the
application requirements.

In addition to comparing the training and in-
ference efficiency of SiMT methods in Table 4,
we also consider model inference time and de-
lay caused by waiting for source information con-
currently. To evaluate the performance of the
SiMT models in scenarios that closely resemble
real-world conditions, we compute Computation-
Aware Average Lagging (CAAL) (Ma et al.,

Method δinfer AL BLEU

Expected-Allocation 0.3 4.72 30.55
Max-Allocation 0.3 13.73 13.79

Table 6: The performance of the SiMT model when
using different strategies to allocate attention to the
source prefixes in the Streaming Self-Attention (SSA)
mechanism. ‘Expected-Allocation’ represents that SSA
allocates attention to all possible source prefixes. ‘Max-
Allocation’ signifies the allocation of source attention
probability to the most probable source prefix.

2020a) for different methods utilizing MuST-C
English→German dataset (Di Gangi et al., 2019).
Unlike Ma et al. (2020a), our approach does not
take direct speech input but rather uses the text
corresponding to the speech. Therefore, we use
whisper-large-v35 to align the text with the
speech, considering both the length of the corre-
sponding speech sequence and the actual machine
inference time when calculating CAAL. Our set-
tings use the Transformer-Small architecture and
evaluate the performance of SiMT methods using
CAAL and SacreBLEU (Post, 2018). The results
are shown in Table 5. Although the inference speed
of our method is slightly slower than the Wait-k pol-
icy in Table 4, it still achieves better performance
in more realistic scenarios.

Therefore, our Decoder-only method can achieve
state-of-the-art performance with higher parame-
ter utilization, and relatively faster inference and
training speed.

5.4 Analysis of Streaming Self-Attention
After evaluating the overall performance of our
method, we delve into assessing the effectiveness
of the proposed Streaming Self-Attention (SSA)
mechanism. SSA initially allocates attention prob-
ability to all possible source prefixes and sub-

5https://huggingface.co/openai/
whisper-large-v3
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sequently combines the allocated attention with
the soft-attention to determine the expected atten-
tion for source tokens, referred to as Expected-
Allocation. To demonstrate the effectiveness of
SSA, we also explore a Max-Allocation strategy,
where the attention probability is allocated solely
to the most probable source prefix.

As illustrated in Table 6, the Expected-
Allocation method yields better latency-quality
tradeoffs. The Expected-Allocation method inte-
grates the translation policy with translation capa-
bility. It aids the model in learning the correlation
between source and target prefixes, resulting in
enhanced translation policies and overall perfor-
mance. This underscores the importance of atten-
tion probability allocation in SSA.

6 Related Work

Simultaneous machine translation (SiMT) begins
generating translation before reading the entire
source sentence. To ensure the quality of generated
translations and meet the latency requirements, it
is necessary to determine the suitable source pre-
fixes for translation. The process of determining
the source prefixes for target tokens is referred to
as the policy (Zhang et al., 2024). Depending on
whether the model decides the policy utilizing the
correspondence between source and target prefixes,
SiMT methods can be broadly categorized into
fixed policy and adaptive policy.

For fixed policy, the SiMT model reads or gen-
erates tokens according to the heuristic rules. Ma
et al. (2019) proposes Wait-k policy, which reads k
source tokens first, and then writes and reads one to-
ken alternately. Elbayad et al. (2020) introduces the
unidirectional encoder, where the preceding source
tokens cannot attend to subsequent words. Zhang
and Feng (2021) proposes MoE Wait-k, which as-
signs a Wait-k policy to each head and combines
the results from multiple heads to generate trans-
lations. There are some methods that enhance the
SiMT capability by modifying the reference (Chen
et al., 2021b; Guo et al., 2023b). However, the
fixed policy requires the SiMT model to generate
tokens even when source information is insufficient,
leading to a decline in performance of SiMT.

Unlike fixed policy, adaptive policy can dynam-
ically decide whether to read or generate tokens
based on the correspondence between source pre-
fix and target prefix. Zheng et al. (2020) imple-
ments the adaptive policy through a composition

of several fixed policies. Miao et al. (2021) pro-
poses a generative framework, which uses a re-
parameterized Poisson prior to regularise the policy.
Zhang and Feng (2022b) models the contribution
of each source token to the target tokens through
optimal transport and determines the policy by ac-
cumulating the contributions of input source to-
kens. Zhang and Feng (2023a) utilizes the Hidden
Markov Model to model the translation policy as
the hidden events and the translation as the ob-
served events. Ma et al. (2023, 2024) first proposes
to conduct SiMT with non-autoregressive architec-
ture and achieves good results. However, previous
SiMT methods all employ the Encoder-Decoder
architecture.

With the rise of language models, the Decoder-
only architecture has demonstrated superior perfor-
mance across various tasks (Touvron et al., 2023;
Team et al., 2024; Jiang et al., 2024). The Decoder-
only architecture has the advantages of good scala-
bility and parameter efficiency. More importantly,
its unidirectional encoding nature aligns greatly
with streaming input. Therefore, we explore the ap-
plication of the Decoder-only architecture in SiMT
and propose the first Decoder-only SiMT model.

7 Conclusion

In this paper, we propose the first Decoder-only
SiMT model, which leverages the characteristics
of the Decoder-only architecture to implement the
adaptive policy. Experiments show that our method
achieves state-of-the-art performance and exhibits
excellent scalability and model efficiency.

Limitations

Regarding the system settings, we investigate the
impact of the number of layers and training meth-
ods on the performance of our DST method due
to resource constraints. We think that further ex-
ploration of system settings could potentially yield
even better results. We leave the exploration for
future work.
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A Explanation of Latency Constraint

In the Streaming Self-Attention (SSA) mechanism,
the model obtains the attention probability allo-
cated to the source prefixes by predicting pi,j . Sub-
sequently, the model accumulates pi,j to determine
the total attention on the input source tokens. The
model utilizes

∑m
j=1 pi,j to assess the sufficiency

of the source information, thereby acquiring the
translation policy. The model generates target to-
kens when it deems the source information suffi-
cient. To ensure that the model generates trans-
lations tightly after reading the necessary source
information, we introduce the latency constraint
that encourages the model to utilize as few source
tokens as possible to generate translations.

According to Zhang and Feng (2022b), the align-
ments conducive to latency tend to concentrate near
the diagonal between source and target sentences.
Therefore, we introduce Llat to encourage SSA
to pay more attention to the source prefixes near
the diagonal. The intuitive illustration of the cost
matrix C = (Ci,j)I×J and the attention allocation
matrix p = (pi,j)I×J is shown in Figure 5.

B System Settings

The system settings on three translation tasks are
shown in Table 7.

8862

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2402.10552
http://arxiv.org/abs/2402.10552
http://arxiv.org/abs/2402.10552
https://doi.org/10.18653/v1/2020.findings-emnlp.432
https://doi.org/10.18653/v1/2020.findings-emnlp.432
https://arxiv.org/abs/2406.03049
https://arxiv.org/abs/2406.03049
https://arxiv.org/abs/2406.03049
https://doi.org/10.18653/v1/2021.emnlp-main.581
https://doi.org/10.18653/v1/2021.emnlp-main.581
https://doi.org/10.18653/v1/2021.emnlp-main.581
https://doi.org/10.18653/v1/2022.findings-acl.238
https://doi.org/10.18653/v1/2022.findings-acl.238
https://aclanthology.org/2022.emnlp-main.65
https://aclanthology.org/2022.emnlp-main.65
https://doi.org/10.18653/v1/2022.acl-long.176
https://doi.org/10.18653/v1/2022.acl-long.176
https://doi.org/10.18653/v1/2022.acl-long.176
https://doi.org/10.18653/v1/2022.acl-long.467
https://doi.org/10.18653/v1/2022.acl-long.467
https://doi.org/10.18653/v1/2022.acl-long.467
https://openreview.net/forum?id=9y0HFvaAYD6
https://openreview.net/forum?id=9y0HFvaAYD6
https://proceedings.neurips.cc/paper_files/paper/2023/file/8df705957a5262de3cb37ba9f1fb96f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8df705957a5262de3cb37ba9f1fb96f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8df705957a5262de3cb37ba9f1fb96f3-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.findings-emnlp.166
https://doi.org/10.18653/v1/2022.findings-emnlp.166
https://doi.org/10.18653/v1/2023.emnlp-main.293
https://doi.org/10.18653/v1/2023.emnlp-main.293
https://doi.org/10.18653/v1/2023.emnlp-main.293
https://doi.org/10.18653/v1/2020.acl-main.254
https://doi.org/10.18653/v1/2020.acl-main.254


0.00 0.00 0.40

0.00 0.00 0.00 0.20

0.20 0.00 0.00 0.00

0.40 0.20 0.00 0.00

0.60 0.40 0.20 0.00

0.60

0.40

0.20

0.00

0.00

1 2 3 4 5

1

2

3

4

5

Source

Ta
rg
et

0.20

(a) Cost Matrix

Source

Ta
rg
et

(b) Attention Allocation Matrix

Figure 5: The illustration of cost matrix and attention allocation matrix. In this diagram, I and J are both set to 5,
and ϵ is set to 1.

Our method is based on fine-tuning full-sentence
translation model. During the full-sentence train-
ing stage, our model adopts the traditional de-
coder layer (Vaswani et al., 2017) and is trained
with cross-entropy loss. Once we obtain a well-
performing translation model, we then add policy-
specific parameters and train the model according
to our proposed strategy in Section 3.4.

For more detailed implementation issues, please
refer to our code.

C Detailed Results

In addition to the performance comparison in Fig-
ure 3, we also present the numerical results for our
method. Table 8, 9, and 10 respectively describe
the performance of DST on IWSLT15 En→Vi,
WMT16 En→Ro, and WMT15 De→En transla-
tion tasks. Each task is evaluated using latency
measured by AL (Ma et al., 2019) and translation
quality measured by BLEU (Papineni et al., 2002).
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Table 7: Hyperparameters of DST.

Hyperparameters IWSLT15 En→Vi WMT16 En→Ro WMT15 De→En

Decoder

decoder_layers 16 16 16
decoder_embed_dim 512 512 512

decoder_ffn_embed_dim 1024 2048 2048
decoder_attention_heads 4 8 8

Loss
ϵ 1 1 1
T 2k 4k 30k

Training

dropout 0.1 0.3 0.3
optimizer adam adam adam
adam_β (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)

clip_norm 0 0 0
lr 5e-4 5e-4 5e-4

lr_scheduler inverse_sqrt inverse_sqrt inverse_sqrt
warmup_updates 4000 4000 4000
warmup_init_lr 1e-7 1e-7 1e-7
weight_decay 0.0 0.0 0.0

label_smoothing 0.1 0.1 0.1
max_tokens 16000 8192×4 8192×4

δinfer AL BLEU

0.30 3.89 28.56
0.40 5.32 29.28
0.45 6.37 29.20
0.50 7.70 29.28
0.60 9.75 29.40

Table 8: Numerical results on IWSLT15 En→Vi.

δinfer AL BLEU

0.25 0.60 21.01
0.30 3.60 29.80
0.40 4.09 30.73
0.50 5.77 31.63
0.55 7.01 32.62
0.65 9.52 33.08

Table 9: Numerical results on WMT16 En→Ro.

δinfer AL BLEU

0.20 3.22 28.57
0.30 4.72 30.55
0.40 5.49 30.89
0.50 7.09 31.85
0.60 9.40 32.22

Table 10: Numerical results on WMT15 De→En.
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