
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6570–6587
August 11-16, 2024 ©2024 Association for Computational Linguistics

SIP: Injecting a Structural Inductive Bias
into a Seq2Seq Model by Simulation

Matthias Lindemann and Alexander Koller and Ivan Titov ,

ILCC, University of Edinburgh, LST, Saarland University, ILLC, University of Amsterdam
m.m.lindemann@sms.ed.ac.uk, koller@coli.uni-saarland.de, ititov@inf.ed.ac.uk

Abstract
Strong inductive biases enable learning from
little data and help generalization outside of the
training distribution. Popular neural architec-
tures such as Transformers lack strong struc-
tural inductive biases for seq2seq NLP tasks
on their own. Consequently, they struggle with
systematic generalization beyond the training
distribution, e.g. with extrapolating to longer
inputs, even when pre-trained on large amounts
of text. We show how a structural inductive
bias can be efficiently injected into a seq2seq
model by pre-training it to simulate structural
transformations on synthetic data. Specifically,
we inject an inductive bias towards Finite State
Transducers (FSTs) into a Transformer by pre-
training it to simulate FSTs given their descrip-
tions. Our experiments show that our method
imparts the desired inductive bias, resulting in
improved systematic generalization and better
few-shot learning for FST-like tasks. Our anal-
ysis shows that fine-tuned models accurately
capture the state dynamics of the unseen under-
lying FSTs, suggesting that the simulation pro-
cess is internalized by the fine-tuned model.1

1 Introduction

Inductive biases, i.e. the preferences and the ab-
stract knowledge a model brings to the task, enable
a model to learn from small amounts of data and
generalize systematically outside of the training
distribution. While seq2seq models perform very
well on in-distribution data, they usually lack struc-
tural inductive biases and consequently struggle
with systematic generalization. Previous work has
shown that this includes generalization to unseen
combinations of known sub-strings (Lake and Ba-
roni, 2018; Keysers et al., 2020), extrapolation to
longer inputs (Hupkes et al., 2020) and deeper re-
cursion (Kim and Linzen, 2020).

Integrating structural inductive biases into
seq2seq models is challenging. One popular ap-

1We release our code at https://github.com/namednil/sip

a:b

d:d

a:c a d a a

b d c c

a:b

d:d

a:c a d a a

b d c c

a d a a

b d c c

q0

a:b

q1d:d

a:c

FSTs Tunable Embeddings

Pre-train Fine-tune

Grapheme-to-phoneme conversion

 ⵉ ⵍ ⵙ

i l ə s

Text editing

...

Transformer Transformer
Encoder
Decoder

Transformer

Encoder
Decoder

Figure 1: Left: Pre-training a Transformer to simulate
automatically generated FSTs. Right: fine-tuning the
Transformer and the prefix where the FST used to be
on a downstream task by using only input/output pairs.
Tunable parameters are represented in orange.

proach is to develop specialized architectures (Wu
and Cotterell, 2019; Zheng and Lapata, 2021; Kim,
2021; Lindemann et al., 2023), which makes it diffi-
cult to precisely control and adjust the nature of the
inductive bias to changing demands as the archi-
tecture would need to be modified and models re-
trained. Recently, some works instead have tried to
inject inductive biases into seq2seq models by pre-
training on a well-chosen synthetic task (Krishna
et al., 2021; Wu et al., 2021, 2022) or meta-learning
on a distribution of synthetic tasks (McCoy et al.,
2020; McCoy and Griffiths, 2023) using MAML
(Finn et al., 2017). Here, the inductive bias can
be controlled by the choice of the synthetic task.
However, meta-learning with MAML scales poorly
because it requires expensive second-order deriva-
tives and standard pre-training can be less effective
(McCoy and Griffiths, 2023).

In this work, we present a computationally in-
expensive way of injecting a structural inductive
bias into a Transformer. We focus specifically on
introducing an inductive bias that is helpful for
tasks that traditionally have been approached with
Finite State Transducers (FSTs). We choose FSTs

6570

https://github.com/namednil/sip

because they are formally well understood, are easy
to generate automatically, and are one of the sim-
plest computational devices that are useful in NLP
applications. While we focus on FSTs, the method-
ology is fairly general and our approach also pro-
vides a starting point for incorporating more gen-
eral structural biases, provided by more expressive
formalisms such as Pushdown Transducers.

Our approach (SIP, for Simulation-Induced
Prior) is simple (see Fig. 1): given a representation
of an FST and an input string, a Transformer is
pre-trained to predict what the output of the FST is
on the given input. We assume that FSTs are not
specified for fine-tuning on downstream tasks, so
we replace the FST with tunable embeddings and
fine-tune the model solely on input/output pairs.
Since we fine-tune all parameters, the model can
deviate from FST-like behavior if needed.

Contributions. We show that a model pre-
trained with SIP has an inductive bias that improves
systematic generalization and few-shot learning
for ‘FST-like’ downstream tasks. SIP not only
improves systematic generalization on FST tasks
similar to those seen during pre-training but also
on ones that are structurally more complex. The
same pre-trained model also transfers well to nat-
ural data and achieves strong results on few-shot
learning of text editing (e.g. Jane Doe → J. Doe)
and grapheme-to-phoneme conversion.

Our probing experiments give insights into how
the inductive bias is injected: SIP not only leads to
the imitation of the input/output behaviour of FSTs,
but encourages dynamics to emerge that simulate
crucial aspects of FSTs in the hidden representa-
tions. Fine-tuning can leverage these dynamics,
providing the inductive bias, and learn representa-
tions that resemble those of ground truth FSTs.

2 Related Work

Systematic generalization. Systematic generaliza-
tion refers to the ability of a model to generalize
(or extrapolate) beyond its training distribution in a
systematic way that aligns with how humans gen-
eralize. Systematic generalization is difficult for
standard seq2seq models in contexts such as se-
mantic parsing (Finegan-Dollak et al., 2018) and
machine translation (Li et al., 2021), in particular
to unseen combinations of phrases, longer inputs
as well as deeper recursion (Keysers et al., 2020;
Kim and Linzen, 2020).

A range of approaches have been developed to
tackle this, with many works focusing on special-

ized architectures (Guo et al., 2020; Kim, 2021;
Lindemann et al., 2023). Furrer et al. (2020) find
that the specialized architectures they consider do
not transfer well to tasks beyond the context in
which they were designed. This highlights the im-
portance of being able to adjust inductive biases
more easily than re-designing the architecture of
a model. Large-scale pre-training has also been
shown to help with systematic generalization (Fur-
rer et al., 2020). However, challenges remain even
for LLMs such as GPT-3 and PALM (Qiu et al.,
2022; Dziri et al., 2023). The methodology we
present in this work can be used to create additional
material for LLM pre-training. Here we focus on
smaller models and leave this to future work.

Pre-training with synthetic tasks. Pre-training
a model on a synthetic task to introduce specific
inductive biases has been explored by several re-
cent works. Krishna et al. (2021) identify useful
‘skills’ for news summarization and develop a pre-
training task accordingly. LIME (Wu et al., 2021)
targets mathematical reasoning and is pre-trained
on string manipulation that resembles formal rea-
soning. Papadimitriou and Jurafsky (2023) con-
sider pre-training with several synthetic languages
to investigate which helps most for language mod-
elling. In contrast to these works, our approach tar-
gets simulating a computational device and main-
tains a closer relation to the pre-training setting
because of the tunable prefix.

A challenge for using individually hand-crafted
tasks is to cover a sufficient space of phenomena
that are relevant to downstream tasks. Instead of
training on a single task only, McCoy et al. (2020);
McCoy and Griffiths (2023) meta-learn on a dis-
tribution of tasks using MAML (Finn et al., 2017).
Our approach also uses a distribution of tasks but it
scales better than MAML-based methods because
MAML requires computing and storing second-
order derivatives. For example, the Transformer
we train has a magnitude more parameters than the
LSTM of McCoy and Griffiths (2023) and is pre-
trained on a smaller GPU (A100 vs RTX 2080 TI).
In addition, as the complexity of each individual
task grows, MAML requires more examples per
task. We circumvent this by using a compact and
unambiguous description of each task instead.

Simulating execution. The idea of using a neu-
ral network to predict the outcome of the execution
of a computational device or code has come up
in several contexts over the last few years. Early
work by Zaremba and Sutskever (2014) investi-

6571

gates it as a challenging benchmark for LSTM-
based seq2seq models. Recent works have explored
simulating (aspects of) code execution for various
down-stream applications, such as program synthe-
sis (Austin et al., 2021), or debugging and code
analysis (Bieber et al., 2022) as well as reverse en-
gineering (Pei et al., 2021). Finally, Finlayson et al.
(2022) train a Transformer to interpret regular ex-
pressions: given a regular expression and a string,
the task is to decide if the string is in the regular
language. There are three crucial differences be-
tween their work and ours: (i) they investigate the
empirical capabilities of Transformers while we in-
troduce structural inductive biases for downstream
tasks, (ii) they consider binary outputs whereas we
consider sequential outputs, and (iii) we perform
probing experiments showing strong evidence for
FST simulation in the hidden representations.

Emergent World Representations. Our analy-
sis provides evidence that our model trained with
SIP internally simulates transitions between FST
states even though it was not explicitly supervised
to do so. Similar observations have been made
for Language Models trained to play Othello (Li
et al., 2023) and chess (Karvonen, 2024), where
the model was found to acquire a representation of
the board state simply from being trained to predict
the next move.

3 Finite State Transducers

We briefly review Finite State Transducers (FSTs)
which we use in our experiments. FSTs are closely
related to Finite State Automata (FSAs). While an
FSA describes a set of strings, an FST describes a
relation between strings, i.e. a set of pairs (x, y),
where x is an input y is an output.

FSTs can be visualized as labelled directed
graphs (see Fig. 2), where the nodes are called
states and the edges are called transitions. Con-
sider the path q0

0 : 1−−→ q1
0 : 1−−→ q1

1 : 1−−→ q2 in
Fig. 2b. This path is called an accepting path be-
cause it starts in an initial state (indicated by an
arrow ‘from nowhere’ pointing to the state), and it
ends in a final state (indicated by double circles).
An accepting path shows what an input can be
mapped to. In this case, the path shows that the
FST transduces the input 001 into the output 111.
We can read off which input an accepting path asso-
ciates an output to by concatenating all the strings
along the path occurring before ‘:’. The output can
be determined by concatenating the strings after ‘:’.
Hence, each transition

σ : ρ−−→ can be thought of as

q0

0:ε

q11:1
2:2

0:0
1:1
2:2

(a) A deterministic FST.

q0

q10:1

q3

0:2

0:1,1:1

q2
1:1

0:2,1:1

q42:2

(b) A non-deterministic but func-
tional FST.

Figure 2: Examples of functional FSTs. The FST in (a)
deletes leading zeros. The FST in (b) replaces any 0 by
a 1 if the last input symbol is a 1. Conversely, if the last
symbol is a 2, any 0 is replaced by a 2. The output can
only be determined after the last input symbol.

‘replacing’ σ by ρ. Inserting and deleting can be
achieved by means of the empty string, written as
ϵ. For example, Fig. 2a ‘replaces’ leading zeros by
an empty string, effectively deleting them.

In general, an input can be paired with arbitrarily
many different outputs. We call an FST f func-
tional if every input x is paired with at most one
output y, and use the notation f(x) to refer to y.
All FSTs we consider here are functional.

In this work, we investigate generalization across
different sub-classes of FSTs, namely from the less
expressive deterministic FSTs to non-deterministic
FSTs. An FST is called deterministic if (i) it has
a unique initial state, (ii) for all states q and input
symbols σ there is at most one transition q

σ : ρ−−→ q′

and (iii) σ ̸= ϵ. Intuitively, this means that in any
state, for an input symbol σ there is at most one
possible next state and one possible output, and
hence for any input string there is at most one path
that is compatible with it. Because of this, we can
always infer a prefix of the output by looking only
at a prefix of the input string and ignoring the rest.
For example, consider the input prefix 001. In the
deterministic FST in Fig. 2a, we know that the
output has to start with 1 because there is only one
path that is compatible with 001. In contrast, in the
non-deterministic FST in Fig. 2b, three paths are
compatible with 001 that have different outputs. In
that case, we can only determine the output once
we look at the last symbol of the input. In short,
non-deterministic FSTs can take context to the right
into account but deterministic FSTs cannot.

4 Simulation-Induced Prior

Our approach largely follows the pre-training and
fine-tuning paradigm. We first pre-train on syn-
thetic FST tasks by giving the model a represen-
tation of an FST as a prefix and an input string
(see Fig. 1). The training objective is to predict the

6572

output of the FST on the input string. Our research
hypothesis is that training a model to predict the be-
haviour of an FST incentivizes the model to acquire
reusable dynamics that internally simulate FSTs.
When fine-tuning the model using a tunable prefix
instead of an encoding of an FST, these dynamics
should be easy to leverage and provide a structural
inductive bias for FST-like tasks.

4.1 Pre-training

During pre-training, the model is given a represen-
tation of an FST and a string in its domain and has
to predict the output of that FST on the given input
string. The input to the Transformer is a sequence
of vectors from Rd, which consist of a prefix that
represents the FST f and a suffix comprised of the
embeddings of the input string (see Fig. 1):

h1,h2, . . . ,hk︸ ︷︷ ︸
FST encoding

,x1,x2 . . . ,xn︸ ︷︷ ︸
Input to FST

Each hi encodes a transition p
σ : ρ−−→ q as a vector:

hi =W [EMBState(p); EMBState(q);

EMBSymbol(σ); EMBSymbol(ρ); EMBFinal(e)]

where [;] represents vector concatenation, e indi-
cates if q is a final state, and W is linear layer that
ensures that h ∈ Rd. All embeddings are simple
look-up tables based on the id of the state or sym-
bol. The initial state of the FST is always assigned
the id 0, and positional embeddings are used as
usual. The model is trained to maximize the log
probability of the output y = f(x) of the FST f .

4.2 Fine-tuning

After pre-training, we can apply our model to a
downstream task and fine-tune it. We assume we
do not have access to an FST for the downstream
task, and therefore we replace the FST encoding
with a sequence of tunable embeddings. That is,
the input to the model is a sequence of vectors:

h′
1,h

′
2, . . . ,h

′
k︸ ︷︷ ︸

Tunable embeddings

,x1,x2 . . . ,xn︸ ︷︷ ︸
Input

where x1,x2 . . . ,xn are the embeddings of the in-
put tokens, h′

i ∈ Rd are the tunable embeddings
and k is a hyperparameter. The embeddings h′

i are
initialized to the average of the encoding of mul-
tiple FSTs from the pre-training phase. The most
straightforward way to fine-tune is to only mod-
ify h′ because we are looking for an FST-like task
representation. This is similar to prompt tuning
(Lester et al., 2021). However, this does not work

well on tasks outside the pre-training distribution.
Hence, we fine-tune the entire model, including the
prefix, and use a higher learning rate for the prefix
than for the rest of the model (see Appendix E).

4.3 Constructing Pre-Training Data

To create our pre-training data, we sample 40,000
deterministic FSTs. For every FST, we sample 5
input/output pairs with input lengths up to 35. In
total, this leads to 200,000 pairs for training along
with their FSTs. To describe the sampling proce-
dure in more detail, we use an overall vocabulary
V consisting of the printable ASCII tokens and the
Unicode block for IPA symbols (used for transcrib-
ing speech). Seq2seq tasks in the wild usually do
not use the whole space of this vocabulary, so for
each task T we first uniformly sample the vocabu-
lary size |VT | between 5 and 25 and then uniformly
select a subset VT ⊆ V . Then, we uniformly sam-
ple the number of states |QT | between 2 and 4, and
the number of final states between 1 and |QT |. For
every state q and every symbol σ ∈ VT we intro-
duce at most one outgoing transition to a state q′,
chosen uniformly at random. This ensures that the
FST is deterministic. We then sample the output
for the transition: either a symbol ρ ∈ VT or ϵ.
Finally, we minimize the number of states of the
FST using OpenFST (Allauzen et al., 2007), and
exclude those without cycles, as they express finite
relations. See Appendix A.1 for details.

In practical applications of FSTs, in particular
for text editing, one often wants to keep certain
parts of the input unchanged. This can be achieved
with a set of transitions of the form q

σ :σ−−→ q′ for
all σ ∈ VT . Since it is very unlikely to sample
such a set of transitions, we use a special symbol
that acts as a shorthand for this, which we also use
when encoding the FST for pre-training.

5 Evaluating SIP’s Inductive Bias

To understand the effects of our pre-training proce-
dure on the inductive bias of the model and on the
downstream performance, we first explore system-
atic generalization on synthetic FST tasks. This al-
lows us to precisely control the similarity between
the pre-training and the downstream task.

5.1 Evaluation Methodology

To evaluate the degree to which a model has an
inductive bias towards FSTs, we now describe two
methods for generating training and test data that

6573

reward a model for showing important aspects of
FST-like systematic generalization.

Iteration generalization. Cycles are a charac-
teristic feature of FSTs, and iteration generaliza-
tion tests if a model learns that cycles can be tra-
versed more often than seen during training. More
specifically, given an FST, we generate training
data which requires visiting any state only a few
times (iteration count up to 3). In the test data,
the model has to generalize to visiting states more
often (iteration count at least 4). This notion is
related to length generalization (Lake and Baroni,
2018) but tailored specifically to FSTs.

Unseen combinations of transitions (UC).
When an FST processes a string, the set of pos-
sible next transitions only depends on the current
FST state; it does not matter how the current state
was reached. Hence, a model with an inductive
bias towards FSTs should also not be overly sensi-
tive to how a state is reached, and correctly handle
situations where a specific combination of transi-
tions was unobserved during training. For example,
consider the FST in Fig. 2a, which deletes lead-
ing zeros from a number. Suppose that a model is
trained on examples such as 0012, 2201, 1012 but
no training example contains the combination of
leading zeros followed by a 2, which corresponds to
using the combination of the transitions q0 0 : ϵ−−→ q0

and q0
2 : 2−−→ q1. If the model has an inductive bias

towards FSTs, it should generalize to this unseen
combination and correctly handle inputs such as
0021. To generate appropriate training and test data
for this, we sample a pair of adjacent transitions
(such as q0

0 : ϵ−−→ q0 and q0
2 : 2−−→ q1 in Fig. 2a)

and ensure that no training example uses both tran-
sitions within the same string. In contrast, in the
test data, all examples require using the combina-
tion of the transitions. To make the generalization
setup more challenging, we ensure this for multiple
pairs of transitions at the same time. We refer to
Appendix A.3 for details on the construction.

UC is related to the method of Keysers et al.
(2020) who also withhold combinations of seen
elements to assess systematic generalization.

5.2 Setup and Baselines
To make a fair comparison, all models we experi-
ment with in the main paper share the same archi-
tecture and are initialized from the same checkpoint
before any additional pre-training, namely ByT5-
small (Xue et al., 2022). ByT5 has 300 million
parameters and was pre-trained on the multilingual

C4 corpus. It uses raw bytes as tokens, which en-
ables full Unicode support and is a natural unit
to consider for FST-like tasks such as text editing
and grapheme-to-phoneme conversion. We report
additional results with a T5-Base model in Ap-
pendix B.3, where we observe similar trends.

SIP-d4. This is a model using the method we
propose in this work. We pre-train on the data gen-
erated in Section 4.3 (deterministic FSTs, with up
to 4 states) for 20 epochs. This model achieves an
average sequence-level accuracy of 98% on predict-
ing the output of an unseen FST from the training
distribution. For fine-tuning, we use a prefix of
length 50 for all experiments in this paper. As an
ablation, we also fine-tune the model without the
prefix of tunable embeddings (-prefix).

Naive pre-training. We use the same pre-
training data as for SIP-d4 but omit the description
of the FST and only train on input/output pairs.

Task embeddings (TE). TE is a simplified ver-
sion of SIP. Instead of using an encoding of an
FST in the prefix, this baseline uses 50 randomly
initialized embeddings specific to each FST. The
embeddings are learned from examples jointly with
the rest of the model. Several works have used a
single embedding to encode a domain/task in multi-
task learning (Tsvetkov et al., 2016; Stymne et al.,
2018; Zhang et al., 2022). Using a shorter tunable
prefix resulted in considerably worse performance
in our setup. TE is fine-tuned analogously to SIP,
i.e. with a prefix of tunable embeddings.

Set. Wu et al. (2022) investigate the effective-
ness of 18 simple synthetic pre-training tasks and
found Set to perform best on average. The task
is to deduplicate characters such that every type
occurs only once, e.g. the input dabacd becomes
dabc. This task can be represented by a determin-
istic FST, albeit a very large one with 2n states for
a vocabulary of size n.

5.3 Systematic Generalization within the
Pre-training Distribution

First, we want to establish to what degree the pre-
training has conferred any inductive bias on the
distribution it was pre-trained on.

Setup. For each generalization setup, we gen-
erate 5 unseen FSTs with 4 states each using the
same procedure as for the pre-training. We fix the
vocabulary size to its maximum value (25) in the
pre-training data and only use printable ASCII char-
acters in order to reduce variance across tasks. To
evaluate UC, we withhold the combination of up to

6574

Iteration UC
Acc↑ ED↓ Acc↑ ED↓

ByT5 37.8 5.87 47.4/57.5 1.49/0.93
Naive 42.6 4.41 44.9/43.2 1.52/1.35
Set 44.4 4.58 43.6/42.0 1.47/1.31
TE 61.3 2.49 57.3/63.1 1.13/0.74

SIP-d4 94.8 0.12 73.1/93.3 0.61/0.13
-prefix 84.9 0.62 61.1/76.3 0.99/0.50

Table 1: Evaluating systematic generalization on FST
tasks with 4 states. We report averages over 5 tasks.
ED is edit distance. Due to an outlier task on UC, we
additionally report the median after ‘/’.

20 pairs of transitions and generate 5000 training
examples with lengths 3 to 15 and corresponding
test data as described in Section 5.1. For iteration
generalization, we generate training examples with
a maximum iteration count of 3 and test on longer
examples of length up to 30 with an iteration count
of at least 4. Since the out-of-distribution perfor-
mance of two checkpoints of the same model can
vary significantly, we report averages on the test
set of the last 10 epochs.

Results. The results can be found in Table 1. On
average, SIP-d4 achieves close to perfect accuracy
(with one outlier on UC, skewing the mean). TE
also shows a clear improvement over the other base-
lines but SIP-d4 outperforms TE by a large margin.
This suggests that SIP-d4 and TE, to a lesser extent,
indeed have acquired a stronger inductive bias for
FSTs than the other methods. Using SIP-d4 with-
out the tunable prefix leads to a substantial drop in
accuracy, highlighting its importance. We analyze
the representations learned by SIP-d4 in the tunable
prefix in Appendix D.1.

5.4 More Complex FSTs

Does the inductive bias introduced by SIP extend
beyond the pre-training distribution to more com-
plex FST tasks? To investigate this, we use the
same sampling methodology but generate FSTs
with more states. SIP-d4 was pre-trained on FSTs
with up to 4 states, and we evaluate on FST tasks
with 5, 7 and 10 states.

We show in Fig. 3 how the individual models
deviate from the accuracy of ByT5 as a function
of the number of states in the test FST. SIP al-
ways performs best by a clear margin regardless of
the number of states in the FSTs. As we increase
the number of states and move away from the pre-
training distribution, SIP improves less over the

Iteration UC
Acc↑ ED↓ Acc↑ ED↓

ByT5 83.4 0.52 83.1 0.40
Naive 83.1 0.49 84.2 0.37
Set 82.3 0.52 83.7 0.37
TE 84.2 0.49 82.7 0.42

SIP-d4 87.8 0.32 90.0 0.24
SIP-d4+ 88.2 0.30 90.5 0.22
SIP-nd7 89.5 0.27 91.2 0.18

Table 2: Evaluation on non-deterministic FSTs. We
report averages over 5 tasks.

baselines. We see a similar pattern for TE but with
considerably smaller improvements over ByT5.

5.5 Non-Deterministic FSTs

As shown in the previous section, SIP still works
well for more complex FST tasks than seen during
pre-training. However, this evaluation focused on
the favourable case where both pre-training and
evaluation involve the same class of FSTs, namely
deterministic FSTs. Deterministic FSTs can only
take left context into account (see Section 3), which
is a restrictive assumption. Here, we evaluate if the
inductive bias conferred by SIP carries over to non-
deterministic functional FSTs, i.e. those that can
also take context to the right into account.

We automatically generate 5 non-deterministic
FSTs with 21 states (see Appendix A.2 for details)
and report averages in Table 2. Despite the struc-
tural mismatch between pre-training and the down-
stream tasks, SIP-d4 shows clear improvements
over the baselines. Interestingly, TE does not con-
sistently outperform the other baselines, despite its
stronger results on deterministic FSTs.

Our pre-training procedure does not hinge on us-
ing deterministic FSTs. This raises the question if
we can achieve even better performance by adjust-
ing the inductive bias. To investigate this, we fur-
ther pre-train SIP-d4 on 40,000 non-deterministic
FSTs with up to 7 states, which we call SIP-nd7.
To control for the additional training data of SIP-
nd7, we also further pre-train SIP-d4 with the same
number of deterministic FSTs with the same char-
acteristics as in Section 4.3 (SIP-d4+). The results
in Table 2 show better performance of SIP-nd7,
which supports the hypothesis that the inductive
bias can be adjusted. SIP-d4+ shows a smaller
improvement over SIP-d4. Based on 5 additional
FSTs per setup to gain more statistical power, we
found that the difference between SIP-nd7 and SIP-

6575

4 5 6 7 8 9 10
Test FST states

0

10

20

30

40

50

Di
ffe

re
nc

e
in

 A
cc

 to
 B

yT
5

Iteration Generalization

4 5 6 7 8 9 10
Test FST states

5

0

5

10

15

20

25
Unseen Combinations

model
SIP-d4
TE
Set
Naive
ByT5

Figure 3: Evaluation on deterministic FST tasks with more states than seen in pre-training. We show the deviation
in percentage points from ByT5.

d4+ is statistically significant (p ≈ 0.017, n = 20,
paired approx. permutation test).

6 Transfer to Natural Data

In this section, we investigate to what degree the
inductive bias from pre-training on synthetic data
transfers to tasks with natural data that have been
traditionally approached with finite state methods.

6.1 Low-resource Grapheme-to-Phoneme
Conversion

Grapheme-to-phoneme conversion is the task of
converting a word as a sequence of symbols (for
example, letters in the Latin alphabet) into a de-
scription of how this word is pronounced as let-
ters in the IPA alphabet. For example, a possible
pronunciation of ‘explanation’ is [­Ekspl@"neIS@n].
Grapheme-to-phoneme conversion can be part of
text-to-speech pipelines and FSTs for this purpose
usually are two or three magnitudes larger than the
FSTs we constructed for pre-training. Because of
this, it enables us to test how far beyond the pre-
training distribution SIP remains helpful. We focus
on learning from small amounts of data, for which
a structural inductive bias towards FSTs should be
particularly helpful. We evaluate on 7 low-resource
languages from different language families that use
their own scripts (Balinese, Coptic, Gothic, Lao,
Sylheti, Telugu and Central Atlas Tamazight). We
obtained the data from Wikipron (Lee et al., 2020).

As a soft upper bound, we compare with Charsiu
(Zhu et al., 2022) which is a ByT5-small model
that has been further pre-trained on 7.2 million ex-
amples of grapheme-to-phoneme conversion across
100 languages. Although Charsiu was not exposed
to the scripts of the languages we chose, it may
have seen related languages whose scripts are en-
coded similarly in Unicode.

ban cop got lao syl tel tzm Avg

Charsiu 68.3 7.8 67.0 35.1 47.6 73.3 18.6 45.4
ByT5 50.2 1.0 30.7 1.9 9.8 6.9 2.7 14.8
Set 53.9 2.2 58.2 5.8 28.2 27.7 6.4 26.1
TE 54.7 1.9 37.0 5.1 30.0 16.2 7.4 21.8
SIP-d4 59.2 6.6 56.5 8.2 39.8 33.1 11.0 30.6
-prefix 55.1 3.2 63.9 7.8 28.0 28.9 7.0 27.7

Table 3: Grapheme-to-phoneme conversion with 100
training examples. We show averages of 5 selections of
training examples.

We report accuracies in Table 3, and phoneme-
error-rates in Appendix B.2; trends are identi-
cal. The original ByT5-small model performs
worst on average despite being a strong model for
grapheme-to-phoneme conversion in general (Xue
et al., 2022). On average across the languages, SIP-
d4 outperforms the other methods that pre-train
on synthetic data as well as ByT5. The difference
between SIP-d4 and Set is statistically significant
(p ≈ 4 × 10−4, paired approx. permutation test).
Fine-tuning SIP-d4 without the tunable prefix leads
to a drop in performance, except for Gothic. Char-
siu performs very well on Telugu, potentially be-
cause of its large overlap in lexicon with Sanskrit
(Staal, 1963), which is part of its training data.

6.2 Few-shot text editing

Learning simple text editing tasks (Jane Doe →
J. Doe) from a handful of examples with a Trans-
former requires a strong structural inductive bias
to overcome competing explanations of the data
and hence provides a good benchmark for our ap-
proach. While current LLMs may seem like the
ideal choice for such tasks, they are prone to hallu-
cinations, e.g. ignoring the input and resorting to
frequent entities (see Appendix C for an example).

Text editing has been studied in the context of

6576

rev-name sur-initial FST Overall
Acc↑ ED↓ Acc↑ ED↓ Acc↑ ED↓ Acc↑ ED↓

ByT5 11.8 6.81 47.2 1.76 47.6 1.42 45.7 1.72
Charsiu 43.8 1.73 52.8 0.87 62.4 0.74 60.9 0.80
Set 79.0 1.34 41.5 3.37 68.2 0.71 67.4 0.89
TE 80.3 1.08 88.2 0.41 95.7 0.11 94.5 0.17
SIP-d4 92.4 0.34 97.2 0.10 91.6 0.13 91.9 0.14
-prefix 97.8 0.10 72.6 0.51 89.0 0.27 91.4 0.18

Table 4: Averages of accuracy and edit distance across
5-shot text editing tasks based on 8 draws of training
examples. We report results grouped by tasks that can-
not be solved by a compact FST (rev-name, sur-initial),
tasks that can be solved by FSTs, and overall averages.

program synthesis and we evaluate on 19 such
tasks from the SyGuS competition 2017 (Alur et al.,
2017). Instead of predicting a program, our model
directly operates on input/output examples. We
note that 17 of these tasks can be solved by compact
FSTs, whereas two cannot. These two tasks are rev-
name (Jane Doe → Doe Jane) and sur-initial (John
Doe → Doe, J.), which require tracking informa-
tion about the first name in the states.

We report results for 5-shot experiments in Ta-
ble 4. SIP-d4 and TE excel at this, reaching well
above 90% accuracy on average whereas the other
methods perform worse by a large margin. Charsiu
does not perform clearly better than baselines such
as Set – even though it obtains excellent results on
grapheme-to-phoneme conversion. Interestingly,
TE performs better than SIP-d4 on the tasks that
can be solved with FSTs, potentially because the
initialization of the prefix for TE follows the same
distribution as during pre-training, which is not
the case for SIP. However, SIP considerably out-
performs TE on the two tasks that cannot be com-
pactly represented by FSTs, suggesting that some
of the dynamics acquired during pre-training can
sometimes be leveraged in other contexts as well.
Fine-tuning SIP-d4 without the tunable prefix leads
only to a very small drop in accuracy on average.

7 Analysis: SIP leads to FST simulation

We motivated our approach by the hypothesis that
SIP’s pre-training encourages the model to simulate
FSTs internally, and that this provides the structural
inductive bias. In this section, we present evidence
that (i) SIP models indeed approximately simulate
FSTs in the hidden states, and (ii) that the dynamics
responsible for simulation are re-used after fined-
tuning all parameters on input/output pairs only.

For a model to simulate FSTs in its hidden rep-

Probe

a:b

d:d

a:c a d a aa:b

d:d

a:c a d a a a d a <s>
q0

a:b

q1d:d

a:c

FSTs

Encoder

q0 q0 q1 q1

 a d a <s>

Probe

 a d a <s>

Encoder

 b c b <s>
Tuned Embeddings

Freeze
q0 q0 q1 q1

Fine-tune

Figure 4: Left: we train a linear probe on the encoder
representations of a SIP pre-trained model to predict
for each input token xi which state the encoded FST is
in before processing xi. The end-of-sequence token is
represented as <s>. Right: we freeze the trained probe,
fine-tune the SIP model on input/output pairs and extract
state sequences from it with the probe.

resentations, it must be able to track the FST state
when processing a string, and it should be possi-
ble to extract the FST state with a probe. To test
this, we mirror the pre-training setup and provide
SIP-d4 with an FST and an input string (Fig. 4,
left). For each token, we extract the top-layer acti-
vations of the encoder, and learn a linear probe with
a softmax layer to predict the ID of the state that
the given FST is in before processing that token.
Since state IDs are largely arbitrary, the probe has
to learn to relate the hidden representations to the
FST presented in the input.

The probe achieves 99.3% token-level accuracy
on a test set with unseen FSTs, and a whole-
sequence accuracy of 93.9%. We also evaluate a
trivial heuristic that returns a random state that has
an appropriate outgoing transition for each token
in the input. This heuristic achieves a token-level
accuracy of 68.9%, and a whole-sequence accu-
racy of only 17.8%. A probe trained on ByT5
representations, i.e. before SIP pre-training, per-
forms even worse at 42.9% token-level accuracy
and whole-sequence accuracy of only 7.1% (see
Appendix D.2). Hence, the model has learned
a non-trivial way to simulate transitions between
states of the FST encoded in the prefix. This is
remarkable because the pre-training procedure for
SIP-d4 does not provide supervision for how to
process strings.

While this shows that SIP leads to the simu-
lation of state transitions after pre-training, does
the model leverage the simulation ability on down-
stream tasks? Recall that we fine-tune all parame-
ters of the model (Section 4.2), so the model could

6577

0 1 2 3
Predicted state

0
1

2
3

Go
ld

 st
at

e

99.6 0.0 0.0 0.4

0.0 99.8 0.1 0.0

0.1 1.0 91.5 7.5

1.6 14.8 0.9 82.7

Training data

0 1 2 3
Predicted state

0
1

2
3

Go
ld

 st
at

e

98.9 0.1 0.1 0.9

0.6 99.1 0.2 0.1

0.4 4.0 92.4 3.2

4.3 16.9 1.1 77.7

Test data

Figure 5: Row-normalized confusion matrices on the
training and test data between ground truth and the state
predicted by the frozen probe applied to fine-tuned mod-
els. We average across the 5 iteration generalization
tasks (Section 5.3).

employ a very different strategy to fit the data. To
investigate this, we set the trained probe aside and
freeze it (Fig. 4, right). We then fine-tune SIP-d4
on the iteration generalization tasks with 4 states
in the gold FST (cf. Table 1). Finally, we apply
the frozen probe to the fine-tuned model to see if
the state sequences we extract are similar to those
of the ground truth FST. Fine-tuning SIP-d4 could
induce the same FST as the ground truth but use
a different numbering of the states. To account
for this, for each of the five tasks, we find the iso-
morphism between the predicted state IDs and the
ground truth that gives the best match on average.

The results are presented in Fig. 5 as confusion
matrices between predicted and gold states. The
probe extracts state sequences that resemble the
state sequences of the gold FST (up to isomor-
phism), both on the training data and the out-of-
distribution test data. We also find that deviation
from the ground truth state sequence correlates with
errors by the fine-tuned model: if the probe extracts
correct state sequences, the model achieves an accu-
racy of 98.6% on the iteration generalization tasks,
whereas it drops to 89.8% when the probe extracts
state sequences that deviate. The difference is sta-
tistically significant (approximate permutation test,
p ≈ 5 × 10−5). Overall, this shows that the fine-
tuned model reuses the dynamics for state tracking
and learns representations similar to the ground
truth FST.

8 Conclusion

We present SIP, a simple, efficient and adjustable
method for introducing a structural inductive bias
into a seq2seq model. We focus on an inductive
bias towards FSTs, one of the simplest computa-
tional devices that is useful for NLP applications.
We achieve this by pre-training a Transformer to

simulate automatically generated FSTs, i.e. to pre-
dict the output of an FST given an input string and a
description of the FST. Our experiments show that
our method imparts the desired inductive bias, re-
sulting in improved systematic generalization and
better few-shot learning for FST-like tasks. In ad-
dition, we show with probing experiments that a
model trained with SIP simulates transitions be-
tween FST states in its hidden representations, and
that the dynamics behind this are leveraged during
fine-tuning. In future work, we plan to extend this
methodology to more expressive formalisms such
as Pushdown Transducers which can be used for a
wider range of downstream NLP tasks.

Limitations

Our investigation focuses on FSTs with a relatively
small number of states. However, the results in
Section 5.4 and in the experiments on grapheme-to-
phoneme conversion show that even pre-training
with FSTs with a small number of states has pos-
itive impacts for tasks that require larger or more
complex FSTs.

The probing experiments show that the model
simulates transitions between states similarly to an
FST, but we did not perform a mechanistic inter-
pretation of how exactly this is implemented in the
weights. One potential mechanism behind the sim-
ulation behaviour is the construction of Liu et al.
(2022) who show that Transformer decoders can
simulate transitions between states of deterministic
finite automata for strings of length up to n using
O(log(n)) layers.

Acquiring a specific inductive bias by means of
learning to simulate a computational device is a
general idea that could be applicable beyond FSTs
but might be unsuitable in cases where (i) it is
difficult to formulate a reasonable computational
device to simulate (such as document classification
and sentiment analysis beyond keyword spotting),
or (ii) the computational device would be very hard
or infeasible to simulate (e.g. Turing machines).

Our experiments focus on moderately sized mod-
els (300M parameters) with an encoder-decoder ar-
chitecture, and we did not investigate large decoder-
only models. Our methodology can also be applied
to decoder-only models, and we do not foresee any
reasons why it could be less effective in that setup.

Finally, we only consider the standard Trans-
former architecture and we leave it to future work
to explore the impact of SIP on variants of the
Transformer architecture designed for handling

6578

long character sequences (Yu et al., 2023) or in the
context of state-space models (Wang et al., 2024).

Acknowledgements

We thank Verna Dankers, Victor Prokhorov, and
Christine Schäfer for discussions and comments.
ML is supported by the UKRI Centre for Doctoral
Training in Natural Language Processing, funded
by the UKRI (grant EP/S022481/1), the University
of Edinburgh, School of Informatics and School of
Philosophy, Psychology & Language Sciences, and
a grant from Huawei Technologies. IT is supported
by the Dutch National Science Foundation (NWO
Vici VI.C.212.053).

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-

jciech Skut, and Mehryar Mohri. 2007. Openfst: A
general and efficient weighted finite-state transducer
library: (extended abstract of an invited talk). In
Implementation and Application of Automata: 12th
International Conference, CIAA 2007, Prague, Czech
Republic, July 16-18, 2007, Revised Selected Papers
12, pages 11–23. Springer.

Rajeev Alur, Dana Fisman, Rishabh Singh, and Ar-
mando Solar-Lezama. 2017. Sygus-comp 2017: Re-
sults and analysis. arXiv preprint arXiv:1711.11438.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

David Bieber, Rishab Goel, Dan Zheng, Hugo
Larochelle, and Daniel Tarlow. 2022. Static predic-
tion of runtime errors by learning to execute pro-
grams with external resource descriptions. In Deep
Learning for Code Workshop.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chandra
Bhagavatula, Ronan Le Bras, Jena D Hwang, et al.
2023. Faith and fate: Limits of transformers on com-
positionality. arXiv preprint arXiv:2305.18654.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360, Melbourne, Australia. Association
for Computational Linguistics.

Matthew Finlayson, Kyle Richardson, Ashish Sabhar-
wal, and Peter Clark. 2022. What makes instruc-
tion learning hard? an investigation and a new chal-
lenge in a synthetic environment. In Proceedings

of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 414–426, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126–1135. PMLR.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970.

Yinuo Guo, Zeqi Lin, Jian-Guang Lou, and Dongmei
Zhang. 2020. Hierarchical poset decoding for com-
positional generalization in language. Advances in
Neural Information Processing Systems, 33:6913–
6924.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: how do
neural networks generalise? Journal of Artificial
Intelligence Research, 67:757–795.

Adam Karvonen. 2024. Emergent world models and
latent variable estimation in chess-playing language
models.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Conference
on Learning Representations.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Yoon Kim. 2021. Sequence-to-sequence learning with
latent neural grammars. In Advances in Neural Infor-
mation Processing Systems, volume 34, pages 26302–
26317. Curran Associates, Inc.

Kundan Krishna, Jeffrey Bigham, and Zachary C. Lip-
ton. 2021. Does pretraining for summarization re-
quire knowledge transfer? In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 3178–3189, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational Conference on Machine Learning, pages
2873–2882. PMLR.

6579

https://openreview.net/forum?id=SIcz2sObJ-5
https://openreview.net/forum?id=SIcz2sObJ-5
https://openreview.net/forum?id=SIcz2sObJ-5
https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2305.18654
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://aclanthology.org/2022.emnlp-main.27
https://aclanthology.org/2022.emnlp-main.27
https://aclanthology.org/2022.emnlp-main.27
https://www.jair.org/index.php/jair/article/view/11674
https://www.jair.org/index.php/jair/article/view/11674
http://arxiv.org/abs/2403.15498
http://arxiv.org/abs/2403.15498
http://arxiv.org/abs/2403.15498
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://proceedings.neurips.cc/paper/2021/file/dd17e652cd2a08fdb8bf7f68e2ad3814-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/dd17e652cd2a08fdb8bf7f68e2ad3814-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-emnlp.273
https://doi.org/10.18653/v1/2021.findings-emnlp.273
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf

Jackson L. Lee, Lucas F.E. Ashby, M. Elizabeth Garza,
Yeonju Lee-Sikka, Sean Miller, Alan Wong, Arya D.
McCarthy, and Kyle Gorman. 2020. Massively mul-
tilingual pronunciation modeling with WikiPron. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 4223–4228, Marseille,
France. European Language Resources Association.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda
Viégas, Hanspeter Pfister, and Martin Wattenberg.
2023. Emergent world representations: Exploring
a sequence model trained on a synthetic task. In
The Eleventh International Conference on Learning
Representations.

Yafu Li, Yongjing Yin, Yulong Chen, and Yue Zhang.
2021. On compositional generalization of neural ma-
chine translation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4767–4780, Online. Association for
Computational Linguistics.

Matthias Lindemann, Alexander Koller, and Ivan Titov.
2023. Compositional generalization without trees
using multiset tagging and latent permutations. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14488–14506, Toronto, Canada.
Association for Computational Linguistics.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Kr-
ishnamurthy, and Cyril Zhang. 2022. Transform-
ers learn shortcuts to automata. arXiv preprint
arXiv:2210.10749.

R Thomas McCoy, Erin Grant, Paul Smolensky,
Thomas L Griffiths, and Tal Linzen. 2020. Univer-
sal linguistic inductive biases via meta-learning. In
Proceedings of the 42nd Annual Conference of the
Cognitive Science Society.

R Thomas McCoy and Thomas L Griffiths. 2023. Mod-
eling rapid language learning by distilling bayesian
priors into artificial neural networks. arXiv preprint
arXiv:2305.14701.

Stoyan Mihov and Klaus U. Schulz. 2019. Finite-State
Techniques: Automata, Transducers and Bimachines.
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press.

Isabel Papadimitriou and Dan Jurafsky. 2023. Inject-
ing structural hints: Using language models to study
inductive biases in language learning. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 8402–8413, Singapore. Associ-
ation for Computational Linguistics.

Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian
Chen, Songchen Yao, David Williams-King, Vikas
Ummadisetty, Junfeng Yang, Baishakhi Ray, and
Suman Jana. 2021. Stateformer: Fine-grained type
recovery from binaries using generative state model-
ing. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE 2021, page 690–702, New York, NY,
USA. Association for Computing Machinery.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi,
Jonathan Herzig, Emily Pitler, Fei Sha, and Kristina
Toutanova. 2022. Evaluating the impact of model
scale for compositional generalization in semantic
parsing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9157–9179, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Marcel-Paul Schützenberger. 1961. A remark on finite
transducers. Information and Control, 4:185–196.

Richard Sinkhorn. 1964. A relationship between arbi-
trary positive matrices and doubly stochastic matrices.
The Annals of Mathematical Statistics, 35(2):876–
879.

J. F. Staal. 1963. Sanskrit and sanskritization. The
Journal of Asian Studies, 22(3):261–275.

Sara Stymne, Miryam de Lhoneux, Aaron Smith, and
Joakim Nivre. 2018. Parser training with heteroge-
neous treebanks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 619–625,
Melbourne, Australia. Association for Computational
Linguistics.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David Mortensen,
Alan W Black, Lori Levin, and Chris Dyer. 2016.
Polyglot neural language models: A case study in
cross-lingual phonetic representation learning. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1357–1366, San Diego, California. Associa-
tion for Computational Linguistics.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan
Yan, and Alexander M Rush. 2024. Mambabyte:
Token-free selective state space model. arXiv
preprint arXiv:2401.13660.

Shijie Wu and Ryan Cotterell. 2019. Exact hard mono-
tonic attention for character-level transduction. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1530–
1537, Florence, Italy. Association for Computational
Linguistics.

6580

https://aclanthology.org/2020.lrec-1.521
https://aclanthology.org/2020.lrec-1.521
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=DeG07_TcZvT
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2023.acl-long.810
https://doi.org/10.18653/v1/2023.acl-long.810
https://arxiv.org/abs/2006.16324
https://arxiv.org/abs/2006.16324
https://arxiv.org/abs/2305.14701
https://arxiv.org/abs/2305.14701
https://arxiv.org/abs/2305.14701
https://doi.org/10.1017/9781108756945
https://doi.org/10.1017/9781108756945
https://doi.org/10.18653/v1/2023.findings-emnlp.563
https://doi.org/10.18653/v1/2023.findings-emnlp.563
https://doi.org/10.18653/v1/2023.findings-emnlp.563
https://doi.org/10.1145/3468264.3468607
https://doi.org/10.1145/3468264.3468607
https://doi.org/10.1145/3468264.3468607
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2022.emnlp-main.624
http://www.jstor.org/stable/2238545
http://www.jstor.org/stable/2238545
http://www.jstor.org/stable/2050186
https://doi.org/10.18653/v1/P18-2098
https://doi.org/10.18653/v1/P18-2098
https://doi.org/10.18653/v1/N16-1161
https://doi.org/10.18653/v1/N16-1161
https://doi.org/10.18653/v1/P19-1148
https://doi.org/10.18653/v1/P19-1148

Yuhuai Wu, Felix Li, and Percy S Liang. 2022. In-
sights into pre-training via simpler synthetic tasks.
Advances in Neural Information Processing Systems,
35:21844–21857.

Yuhuai Wu, Markus N Rabe, Wenda Li, Jimmy Ba,
Roger B Grosse, and Christian Szegedy. 2021. Lime:
Learning inductive bias for primitives of mathemat-
ical reasoning. In International Conference on Ma-
chine Learning, pages 11251–11262. PMLR.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

Lili Yu, D’aniel Simig, Colin Flaherty, Armen
Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
2023. Megabyte: Predicting million-byte se-
quences with multiscale transformers. arXiv preprint
arXiv:2305.07185.

Wojciech Zaremba and Ilya Sutskever. 2014. Learning
to execute. arXiv preprint arXiv:1410.4615.

Zhuosheng Zhang, Shuohang Wang, Yichong Xu,
Yuwei Fang, Wenhao Yu, Yang Liu, Hai Zhao, Chen-
guang Zhu, and Michael Zeng. 2022. Task com-
pass: Scaling multi-task pre-training with task prefix.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 5671–5685, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Hao Zheng and Mirella Lapata. 2021. Compositional
generalization via semantic tagging. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 1022–1032, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jian Zhu, Cong Zhang, and David Jurgens. 2022.
ByT5 model for massively multilingual grapheme-
to-phoneme conversion. In Proc. Interspeech 2022,
pages 446–450.

A Generation of Synthetic Data and
Splits

A.1 Generating deterministic FSTs

Before describing our procedure for sampling de-
terministic FSTs, we briefly establish notation.
An FST is a tuple ⟨Q,Σ,Γ, I, F,∆⟩, where Q
is a finite set of states, Σ is the input alphabet,
Γ is the output alphabet, I ⊆ Q is a set of ini-
tial states, F ⊆ Q is a set of final states and
∆ ⊆ Q × (Σ ∪ {ϵ}) × (Γ ∪ {ϵ}) × Q are the
transitions. We assume Σ = Γ and call it V for
vocabulary.

q0

q1
a:b

q3

a:c

a:b

q2b:b

a:c

q4c:c

Figure 6: A functional but non-deterministic FST.

l0 l1 l1 l1 l1
 a a a b
r1 r1 r1 r1 r0

 b b b b

(a) (b) (c) (d)

r0

r1
b

r2

c

a

al0 l1a

a,b,c

Figure 7: (a) - (c) shows a bimachine that is equivalent
to Fig. 6. (a) Left automaton Al, (b) Right automaton
Ar, (c) output function ψ. (d) shows an example run
of the bimachine on the input aaab which is mapped to
bbbb.

For technical reasons, we exclude the three char-
acters [,] and \ from the vocabulary as they are in-
terpreted as special characters by OpenFST, which
we use for constructing and representing FSTs.

In addition to the shorthand for identity tran-
sitions (id), we also have shorthands for con-
verting upper case to lower case and vice-versa
(lower-to-upper, upper-to-lower). We de-
scribe our procedure to generate a determinis-
tic FST with pseudocode in Algorithm 1. It re-
ceives as argument n (the number of states in the
FST), f (number of final states), V (the vocabu-
lary of this FST), and probabilities P-ID, P-DROP,
P-SHORTHAND. These probabilities control the
likelihood of using a shorthand, not drawing an
outgoing edge (P-DROP) with a given symbol, and
creating a single identity transition (P-ID). We use
CHOICE to denote a uniform random choice from a
finite set.

We use P-ID = 0.2, P-DROP =
0.4, P-SHORTHAND = 0.15 in our experiments.

A.2 Generating Non-deterministic Functional
FSTs

It is not straightforward to directly generate non-
deterministic FSTs that are guaranteed to express
a function. However, we can directly generate a
bimachine, which then can be converted into an
FST.

6581

https://papers.nips.cc/paper_files/paper/2022/hash/89379d5fc6eb34ff98488202fb52b9d0-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/89379d5fc6eb34ff98488202fb52b9d0-Abstract-Conference.html
https://arxiv.org/abs/2305.07185
https://arxiv.org/abs/2305.07185
https://doi.org/10.18653/v1/2022.findings-emnlp.416
https://doi.org/10.18653/v1/2022.findings-emnlp.416
https://doi.org/10.18653/v1/2021.findings-emnlp.88
https://doi.org/10.18653/v1/2021.findings-emnlp.88
https://doi.org/10.21437/Interspeech.2022-538
https://doi.org/10.21437/Interspeech.2022-538

Algorithm 1 Generate a random deterministic FST
function GEN-DET-FST(n, f, V, P-ID, P-DROP,
P-SHORTHAND)
Q = {0, . . . n− 1}
∆ = ∅
I = {0}
for q ∈ Q do
q′ = CHOICE(Q)
with prob P-SHORTHAND

s = CHOICE([id,
lower-to-upper, upper-to-lower])

∆ := ∆ ∪ {q s : s−−→ q′)}
else

for σ ∈ V do
with prob P-DROP

no-op ▷ No outgoing edge with σ at q
else with prob P-ID

∆ := ∆ ∪ {q σ :σ−−→ q′}
else
∆ := ∆ ∪ {q σ : CHOICE(V ∪{ϵ})−−−−−−−−−−−→ q′}

end with prob
end for

end with prob
end for
Eliminate states from Q through which no ac-

cepting path can go
Choose random subset F of Q with |F | =

min(f, |Q|)
return minimized FST with states Q, transi-

tions ∆, initial states I and final states F
end function

Bimachines (Schützenberger, 1961) represent
the functions expressible by FSTs, i.e. for every
functional FST there is a bimachine that represents
it (and vice-versa). A bimachine consists of
two deterministic finite state automata (called
left and right) and an output function. Let AL

be the left FSA with states QL and transition
function δL : QL × Σ → QL), and let AR

bet the right FS with states QR and transition
function δR : QR × Σ → QR. The output
function is ψ : Ql × Σ × Qr → Γ∗. All states
of AL and AR are final states. Given an input
string x = σ1σ2σ3 . . . σn, a bimachine runs
AL from left to right over x, keeping track of
the states ql0, q

l
1, q

l
2, . . . q

l
n. It also runs AR over

the string x but this time from right to left,
again keeping track of the states qr0, q

r
1, q

r
2, . . . q

r
n

that are visited. Then, the state sequence
of the right automaton is reversed and ψ is

Algorithm 2 Generate output function for bima-
chine

function GEN-OUTPUT-ψ(nL, nR, V, P-ID =
0.2)

for qL ∈ 0, . . . , nL − 1 do
for qR ∈ 0, . . . , nR − 1 do

for σ ∈ V do
with prob P-ID

ψ(qL, σ, qR) := σ
else
ψ(qL, σ, qR) := CHOICE(V ∪ {ϵ})

end with prob
end for

end for
end for
return ψ

end function

applied ‘elementwise’ as illustrated in Fig. 7.
More formally, the output of the bimachine is
ψ(ql0, σ1, q

r
n−1)ψ(q

l
1, σ1, q

r
n−2) . . . ψ(q

l
n−1, σ1, q

r
0).

Bimachines can be compiled into FSTs with
a simple product construction. For a bimachine
⟨AL, AR, ψ⟩, one can construct an equivalent FST
as follows:

⟨QL ×QR,Σ,Γ, {sL} ×QR, QL × {sR},∆⟩
where sL and sR are initial states of AL and AR,
and ∆ contains all transitions

∆ = {⟨qL, qR⟩ σ : ρ−−→ ⟨q′L, q′R⟩ | δL(qL, σ) = q′L,

δR(q′R, σ) = qR,

ρ = ψ(qL, σ, q′R)}
We refer to Mihov and Schulz (2019) for details
and further information about bimachines.

To sample bimachines, we re-use Algorithm 1
with P-SHORTHAND = 0, and ignore the outputs of
the transitions, treating them as FSAs. We sample
the output function according to Algorithm 2. For
the test data creation (Table 2), we use 5 states
in the left FSA and 4 states in the right FSA, and
set P-DROP = 0.4. For creating the training data
for SIP-nd7, we use 2 or 3 states in either left or
right automaton and set P-DROP = 0.6 to keep the
length of the prefix low to save GPU memory.

A.3 Unseen Combinations of Transitions

We now describe the construction by which we
create training and test data for the evaluation of
Unseen Combinations of transitions. We first de-
scribe how we construct an FST for the training and

6582

0:ε

1:1
2:2

0:0, 1:1, 2:2

ε:ε

ε:ε

1:1
2:2

0:0, 1:1, 2:2

0:0, 1:1, 2:2

1:1

0:ε

Figure 8: Constructing training data for evaluating un-
seen combinations of transitions. Based on the given
FST f , we construct an FST ftrain that withholds the
combination of the two red transitions.

test data, respectively, given a choice of transitions
whose combination we want to withhold. Then, we
briefly describe how those transitions are chosen.

Given an FST f (illustration in Fig. 8, left) and
transitions ta and tb (highlighted in red) whose
combination we want to withhold, we construct a
new FST ftrain as follows: We create two copies
fa, fb of the original FST f . In fa, we remove the
transition tb; in fb, we remove the transition ta.
Then ftrain = fa ∪ fb, which can be constructed
by introducing a new initial state with ϵ-transitions
into the respective initial states of fa and fb (right
side of Fig. 8). This ensures that any accepting
path goes through fa or fb but cannot alternate
between the two. Hence, ta or tb can be used – but
not both in the same string. Note that ftrain still
describes a partial function (rather than a relation)
because any accepting path in fa and any accepting
path in fb is also an accepting path in f . As a
result, whenever fa and fb are both defined, they
agree on the result fa(x) = fb(x) = f(x). We
test exclusively for how a model handles unseen
combinations of transitions by generating examples
from f for which ftrain is not defined.

To make the generalization setup more challeng-
ing, these steps can be applied to multiple pairs of
adjacent transitions at the same time, i.e. to with-
hold ⟨t1a, t1b⟩, . . . , ⟨tka, tkb ⟩: We create the copy fa
and remove the transitions t1b , . . . , t

k
b from fa and

analogously remove t1a, . . . , t
k
a from fb.

Now, we briefly describe how we select which
pairs of transitions we want to withhold. We only
select adjacent transitions, i.e. transitions where
one can be used immediately after the other, ex-
cluding self-loops. In addition, some transitions
cannot be deleted without cutting off a vital initial
or final state, which can lead to ftrain being unde-
fined for any string (and hence no training data).
We ensure this never happens by never withhold-

Num. states Split Min Max Mean

4 train 2 11 4.66
4 test 4 30 18.97
5 train 2 14 5.39
5 test 4 30 19.53
7 train 2 20 6.12
7 test 4 30 20.13

10 train 2 25 7.31
10 test 4 30 20.62
21 train 2 30 11.80
21 test 5 30 23.07

Table 5: Distribution of input lengths of the train/test
data we generate for the iteration generalization exper-
iments in Section 5. The tasks with 21 states are the
non-deterministic FSTs from Section 5.5.

ing the first transition into each state based on a
depth-first traversal of the FST.

A.4 Additional dataset information

For all experiments with synthetic data (generated
by FSTs), we generate 5000 training examples and
1000 test examples. To reduce variance across
tasks, we fix the vocabulary size to its maximum
value (25) in the pre-training data and choose the
vocabulary only from the printable ASCII charac-
ters.

Length distribution. The input strings in the
pre-training data we generate for SIP-d4 have a
minimum length of 1, an average length of 15.57
and a maximum length of 35. We report the length
distributions for the iteration generalization experi-
ments in Section 5 in Table 5.

SyGuS. We took the data from the SyGuS
competition github https://github.com/
SyGuS-Org/benchmarks/tree/master/comp/
2017/PBE_Strings_Track, and extracted the
‘constraints’. For each text editing tasks,
there are usually three files, e.g. firstname,
firstname-long, firstname-long-repeat.
We only consider data from the *-long variant
because the non-marked variant (e.g. firstname)
is a subset of the *-long variant, and we exclude
*-long-repeat as it contains repeated data points.
We also exclude some text editing tasks that
have insufficient amounts of data for reliable
evaluation (bikes) and some tasks where the
input is not a single string but a pair of strings if
concatenating the strings results in particularly
long inputs (univ), or if the concatenation of the

6583

https://github.com/SyGuS-Org/benchmarks/tree/master/comp/2017/PBE_Strings_Track
https://github.com/SyGuS-Org/benchmarks/tree/master/comp/2017/PBE_Strings_Track
https://github.com/SyGuS-Org/benchmarks/tree/master/comp/2017/PBE_Strings_Track

string pair makes the task trivial (name-combine,
which would correspond to an identity operation).
For a few-shot experiment, we sample 5 training
examples and evaluate on the rest.

We note that the original intention in the design
of the benchmark data was for program synthesis
rather than few-shot learning. The data contains
names, and separately it contains phone numbers
(but not combined). However, we believe both to
be synthetically generated.

Grapheme-to-phoneme. We obtain data from
Lee et al. (2020), and conduct experiments mainly
on the broad transcription, except for Telugu and
Tamazight, where we use the narrow transcrip-
tion. For each experiment, we randomly sam-
ple 100 training examples, and use the rest as
test data. The data is available under a per-
missible license: https://en.wiktionary.org/
wiki/Wiktionary:Copyrights

B Additional Results

B.1 Additional Results with More States

In Fig. 3, we show accuracy relative to the accuracy
of ByT5. Here, we show the absolute accuracies
and edit distances in Table 6.

B.2 Full results for grapheme-to-phoneme
conversion

Table 7 shows the full results of our grapheme-
to-phoneme conversion experiments, including
phoneme error rate (PER).

B.3 Additional results with T5-Base

We run a subset of the experiments starting off
from a pre-trained T5-Base (Raffel et al., 2020)
instead of ByT5. This model is about one-third
smaller than ByT5 (around 200 million instead of
300 million parameters). T5-Base uses a different
vocabulary than ByT5, so we resize the output layer
to the vocabulary size of ByT5 and re-initialize it.
For the input embeddings, we re-purpose the first
n embeddings in the T5-Base embedding matrix
to represent the token ids according to the ByT5
tokenizer. While this is suitable as a starting point
for further pre-training, we found that directly fine-
tuning T5-Base with these modifications on down-
stream tasks led to very poor results and do not
include them here. Instead, we train T5-Set (analo-
gous to Set) for a fair point of comparison.

We report a subset of the results from the main
paper in for T5-Base in Tables 8 to 10.

We also tried to pre-train a ByT5-style model
from scratch (i.e. from random initialization).
However, we could not find a setting of hyperpa-
rameters that would make the model converge well.
We hypothesize that the model already needs to be
in a reasonable space to make learning feasible.

B.4 Generalization to longer strings

In the main paper, we report results on iteration
generalization where a model is trained on strings
such that each state has been visited at most 3 times,
and is tested on strings where at least one state is
visited at least 4 times. Here, we explore a more
extreme version, where there is a large gap between
the maximum length seen during training and the
minimum length seen during testing. As another
point of comparison, we further pre-train SIP-d4
on 40,000 FSTs with strings of length up to 110
(SIP-d4-long).

We report results in Table 11. ByT5 struggles
with this generalization setup across the board.
SIP-d4 performs remarkably well on lengths 40-
70 which are beyond the lengths seen during its
pre-training. However, performance drops starkly
when testing on inputs of length 90 to 110. We
hypothesize that this is because the relevant po-
sitional embeddings were not pre-trained by SIP.
In contrast, SIP-d4-long performs well on inputs
of length 90 to 110, as it has seen strings of such
length during pre-training.

C Hallucination Example

We briefly show an example where an LLM ignores
a part of the input and resorts to outputting a high-
frequency entity. Consider the following in-context
examples for a simple text editing task:

Input Output
Howard Phillips Lovecraft H.P. Lovecraft
John Ronald Reuel Tolkien J.R.R. Tolkien
Thomas Stearns Eliot T.S. Eliot

At the time of submission, the current version of
ChatGPT frequently outputs “J.K. Rowling” for
the name “John Edward Rowling”, hallucinating
the K.

D Additional Analysis

D.1 Analysis of fine-tuned prefixes

To gain some understanding of how the prefix of
tunable embeddings is used by the model and what
it contains, we consider the setup of fine-tuning

6584

https://en.wiktionary.org/wiki/Wiktionary:Copyrights
https://en.wiktionary.org/wiki/Wiktionary:Copyrights

Num States 4 5 7 10
Gen. Type Model Acc↑ ED↓ Acc↑ ED↓ Acc↑ ED↓ Acc↑ ED↓
Iteration ByT5 37.8 5.87 58.7 3.21 48.2 3.71 45.7 3.87

Naive 42.6 4.41 60.5 2.20 47.7 3.16 43.6 3.65
Set 44.4 4.58 62.2 2.41 48.0 3.49 45.3 3.71
TE 61.3 2.49 78.9 0.86 55.7 2.29 50.7 2.95
SIP-d4 94.8 0.12 89.6 0.27 64.3 1.34 56.9 2.39

UC ByT5 47.4 1.49 62.6 1.05 61.9 1.29 54.1 1.70
Naive 44.9 1.52 61.6 1.08 59.3 1.30 51.8 1.68
Set 43.6 1.47 60.6 1.09 60.8 1.31 51.1 1.71
TE 57.3 1.13 65.9 0.98 65.7 1.17 55.3 1.60
SIP-d4 73.1 0.61 74.3 0.69 73.2 0.85 58.0 1.44

Table 6: Evaluation on deterministic FSTs with more states, showing absolute accuracies and edit distances,
corresponding to Fig. 3 and ??.

ban cop got lao syl tel tzm Avg
Acc PER Acc PER Acc PER Acc PER Acc PER Acc PER Acc PER Acc↑ PER↓

Charsiu 68.3 .110 7.8 .579 67.0 .067 35.1 .238 47.6 .196 73.3 .070 18.6 .403 45.4 .238
ByT5 50.2 .233 1.0 .847 30.7 .269 1.9 .760 9.8 .598 6.9 .597 2.7 .851 14.8 .594
Set 53.9 .216 2.2 .742 58.2 .094 5.8 .595 28.2 .353 27.7 .293 6.4 .658 26.1 .421
TE 54.7 .183 1.9 .756 37.0 .174 5.1 .573 30.0 .309 16.2 .377 7.4 .644 21.8 .431
SIP-d4 59.2 .152 6.6 .563 56.5 .096 8.2 .498 39.8 .252 33.1 .228 11.0 .544 30.6 .333

-prefix 55.1 .168 3.2 .681 63.9 .072 7.8 .508 28.0 .333 28.9 .252 7.0 .593 27.7 .372

Table 7: Grapheme-to-phoneme conversion with 100 training examples. We show averages of 5 selections of
training examples. PER is Phoneme Error Rate: edit distance / length of gold output (lower is better).

only the prefix and keeping the rest of the model un-
changed. That is, all the task-specific information
has to be captured in these embeddings. Specifi-
cally, we fine-tune on the 5 FSTs from Section 5.3
for iteration generalization for 20 epochs with a
learning rate of 0.5.

We explore two questions:

1. Is the model robust towards different permu-
tations of the fine-tuned prefixes? Intuitively,
these permutations correspond to changing
the order in which transitions are listed, so
ideally the model should not be sensitive to
that order.

2. Does the fine-tuned prefix represent the task-
specific information in a similar way to how
FSTs were encoded during pre-training?

To address the first question, we randomly permute
the tuned prefixes and compute accuracy on the
iteration generalization data before and after per-
muting the tuned prefixes. We use 20 permutations
per learned prefix and average results across the 5

FSTs. Overall, we find that this results only in a
small drop in accuracy: the median drop in accu-
racy is only around 1.3 percentage points, and the
arithmetic mean of the drop is around 7.1 percent-
age points. Most permutations do not have a big
impact on how the prefix is interpreted but a few
permutations do have a stronger negative impact,
skewing the arithmetic mean.

To address the second question, we test if the
learned prefix for a task t resembles an encoding
of an FST that solves t. For each of the 5 FSTs, we
generate 10,000 distractors, i.e. FSTs that have the
same number of states and use the same vocabulary
as the FST solving t. We define the similarity of
two prefixes p, q as follows:

sim(p, q) = max
π

1

n

∑

i

pTi qπ(i)

||pi||2 · ||qπ(i)||2
where π is a permutation, and pi is the i-th vector
in prefix p, and prefixes p and q both have length n.
That is, we define the similarity between p and q
as the highest possible average cosine similarities
between positions in p and q that one can achieve

6585

Iteration UC
Acc↑ ED↓ Acc↑ ED↓

T5-Set 26.6 6.26 55.1/54.6 1.18/1.02
T5-SIP-d4 94.5 0.11 75.4/99.5 0.54/0.01

Table 8: Evaluating systematic generalization on FST tasks
with 4 states (cf. Table 1). Due to an outlier task on UC,
we additionally report the median after ‘/’.

Iteration UC
Acc↑ ED↓ Acc↑ ED↓

T5-Set 77.9 0.73 81.7 0.53
T5-SIP-d4 83.3 0.56 86.1 0.37

Table 9: Evaluation with T5-Base on non-
deterministic FSTs (cf. Table 2)

ban cop got lao syl tel tzm Avg
Acc PER Acc PER Acc PER Acc PER Acc PER Acc PER Acc PER Acc↑ PER↓

T5-Set 47.9 .231 1.2 .783 6.7 .458 3.6 .643 6.6 .611 4.9 .612 2.7 .797 10.5 .591
T5-SIP-d4 59.1 .154 4.7 .640 69.6 .059 5.9 .566 22.1 .447 35.4 .191 12.5 .509 29.9 .367

Table 10: Grapheme-to-phoneme conversion with 100 training examples based on T5-Base. In contrast to the
experiments in the main paper, we found that T5-SIP-d4 did not perform well on completely unseen scripts, so
we mapped all Unicode code points to arbitrary ASCII characters. This maintains the structure of the task and is
completely reversible. T5-Set is evaluated in the same way.

0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500
Similarity of learned prefix to ground truth FST

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

M
ax

im
um

 si
m

ila
rit

y
to

 a
 d

ist
ra

ct
or

 F
ST

(0.466, 0.388)

(0.421, 0.364)
(0.389, 0.344)

(0.487, 0.412)

(0.357, 0.342)

Figure 9: Each dot represents a fine-tuned prefix when
the rest of the model remains frozen during fine-tuning.
The x-coordinates represent the similarity to a ground
truth gold prefix, and the y-coordinates represent the
maximum similarity to any of the 5× 10000 distractor
FSTs. All dots are below the diagonal, hence all learned
prefixes are most similar to an encoding of the ground
truth FST.

by assigning a position in p to exactly one position
in q and vice-versa.2 Taking the maximum over all
permutations is justified by our results to the first
question above, which showed that the model is
largely invariant to different permutations of the

2Computing the similarity sim(p, q) is relatively expen-
sive because it involves solving the assignment problem
(e.g. with the Hungarian algorithm). Instead of solving the
assignment problem exactly, we approximate it with the
Sinkhorn algorithm (Sinkhorn, 1964). We then take the output
of the algorithm (a matrix of ‘soft’ assignments) and for each
position in p, we greedily select a matching position in q.

tuned prefix.
For every task t, we compute the similarity be-

tween the prefix p learned by fine-tuning on in-
put/output pairs and the union of encodings of the
distractors and encodings of the gold standard FST
for task t. Where necessary, we truncate encodings
of FSTs to have the same length as the learned pre-
fix. We present the results in Fig. 9 showing that
all learned prefixes are most similar to an encoding
of the ground truth FST.

D.2 Probing non-SIP models
All probes are trained for one epoch on activations
produced by passing 8,000 FSTs with 5 inputs each
(i.e. 40,000 instances) through the model.

For the baseline probe, we take the trained SIP-
d4 model (including matrix W and embeddings
from 4.1) and re-initialize the Transformer to ByT5-
small. The probe achieves only a token-level accu-
racy of 42.9% and whole-sequence accuracy of
8.1%. We see very similar results for a probe
trained on a randomly initialized Transformer in
this setup: a token-level accuracy of 42.5% and a
whole-sequence accuracy of 7.1%.

E Additional model details &
Hyperparameters & Hardware

SIP. For completeness, we now describe the or-
der in which we arrange the transitions. While
the ordering of the transitions does not matter for
expressing FSTs, the Transformer uses positional
encodings which might have impacts on the pre-

6586

Test length Model pre-train length Acc↑ ED↓
40 to 70 ByT5 1024 29.3 15.60

SIP-d4 35 69.4 2.61

90 to 110 ByT5 1024 1.4 55.37
SIP-d4 35 3.4 34.50
SIP-d4-long 110 81.5 1.09

Table 11: Average generalization ability across 5 FSTs with 4 states. Models were trained on inputs of length up to
15, and tested on much longer inputs.

training (though see Appendix D.1). We assem-
ble the overall prefix by stacking the individual
vectors h0, . . . , hn of the transitions p0

σ0 : ρ0−−−−→
q0, . . . , pn

σn : ρn−−−−→ qn. We group the transitions
by their originating state (i.e. pi) and go over the
states by their id, starting with 0, the initial state.

During pre-training, we might encounter FSTs
with different numbers of transitions within the
same batch. To handle this, we use padding en-
codings by reserving a special padding state and
padding symbol in the embedding matrices of states
and symbols. To initialize the prefix for fine-tuning,
we use the average of 32 FST encodings (chosen at
random) from pretraining.

For pre-training, we use embeddings of dimen-
sionality 64 for states, embeddings of dimension-
ality 256 for symbols, and of dimensionality 16 to
indicate final/non-final states.

Task embeddings. To enable faster adaption
of the task embeddings than the rest of the model
to fit a particular task, we use a higher learning
rate for the task embeddings (1.0) than for the rest
of the model (5 · 10−4) during pre-training. We
also use a higher learning rate for the prefix during
fine-tuning, analogously to SIP.

Because we have to store 40,000 task embed-
dings (one for each generated FST), TE requires a
lot of memory. To reduce memory consumption,
the task embeddings have a dimensionality of 180
and are up-projected to fit into the Transformer,
analogously to W in Section 4.1. Nevertheless,
the memory consumption of the embeddings is
substantial and we store them on a separate GPU.
Analogously to SIP-d4, we pre-train for 20 epochs.

Naive. We pre-train for a single epoch only
as we found this achieved better results on down-
stream tasks than training for 20 epochs.

Set. We sample 200,000 examples according
to the procedure described by Wu et al. (2022) to
match our pre-training dataset size. Again, we
found it more helpful for downstream task perfor-

mance to train for a single epoch rather than 20
epochs.

Fine-tuning Hyperparameters. Like pre-
training, we finetune with the Adam optimizer. The
main hyperparameters involved for both SIP and
TE are the learning rates for the main model, and
(separately) the learning rate of the tunable prefix.
We chose these manually. Generally, we found
that using a learning rate of 1.0 was a good choice
for the prefix. Lester et al. (2021) report a sim-
ilarly high learning rate to be useful for prompt
tuning. For the rest of the model, we found 3 ·10−4

and 5 · 10−4 to work well for SIP-d4 and TE, re-
spectively. For few-shot experiments, we use a
somewhat smaller learning rate for TE for the main
model (3 · 10−4). We noticed that T5-SIP-d4 (see
Appendix B.3) was more sensitive to the learning
rate choice in general than SIP-d4.

Hardware/Computational Budget. We ran
our experiments on NVIDIA GeForce RTX 2080
Ti GPUs (11264MiB RAM) with driver version
535.54.03 and cuda version 12.2.

Pre-training SIP-d4 took around 30 hours for 20
epochs. One training run on synthetic data (in-
cluding evaluation) takes around one hour, and
one training run for low-resource grapheme-to-
phoneme conversion takes between 5 and 10 min-
utes.

6587

