
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4945–4957
August 11-16, 2024 ©2024 Association for Computational Linguistics

RelayAttention for Efficient Large Language Model Serving
with Long System Prompts

Lei Zhu1 Xinjiang Wang2 Wayne Zhang2 Rynson Lau1†
1 City University of Hong Kong 2 SenseTime Research

lzhu68-c@my.cityu.edu.hk, {wangxinjiang,wayne.zhang}@sensetime.com, Rynson.Lau@cityu.edu.hk

Code: https://github.com/rayleizhu/vllm-ra

Abstract

A practical large language model (LLM) ser-
vice may involve a long system prompt, which
specifies the instructions, examples, and knowl-
edge documents of the task and is reused across
requests. However, the long system prompt
causes throughput/latency bottlenecks as the
cost of generating the next token grows w.r.t.
the sequence length. This paper aims to im-
prove the efficiency of LLM services that in-
volve long system prompts. Our key obser-
vation is that handling these system prompts
requires heavily redundant memory accesses
in existing causal attention computation algo-
rithms. Specifically, for batched requests, the
cached hidden states (i.e., key-value pairs) of
system prompts are transferred from off-chip
DRAM to on-chip SRAM multiple times, each
corresponding to an individual request. To elim-
inate such a redundancy, we propose RelayAt-
tention, an attention algorithm that allows read-
ing these hidden states from DRAM exactly
once for a batch of input tokens. RelayAtten-
tion is a free lunch: it maintains the generation
quality while requiring no model retraining, as
it is based on a mathematical reformulation of
causal attention. We have observed significant
performance improvements to a production-
level system, vLLM, through integration with
RelayAttention. The improvements are even
more profound with longer system prompts.

1 Introduction

After around one decade of rapid develop-
ment (Sutskever et al., 2014; Vaswani et al., 2017;
Radford et al., 2018; OpenAI, 2023b), we have ex-
perienced a revolution of large language models
(LLMs) over the past year. LLMs like GPT-4 (Ope-
nAI, 2023b) and Gemini (Google, 2023b) are so
powerful that they can now serve as programming

† Corresponding author.

Cache
Op

18

Context
Attention

160 31

Kernel launch overhead, 10 Relay Fusion, 3

System
Attention

Figure 1: Llama-30B attention inference latency w.r.t.
system prompt length (A40 GPU, batch size 32). We set
the length of (request-specific) contexts, which include
user prompts and previously generated tokens, to 128.

copilots (Chen et al., 2021; GitHub, 2022), univer-
sal chatbots (Google, 2023a; OpenAI, 2022), com-
puter assistants (Microsoft, 2023a) and other roles
that penetrate our daily life. However, the high
inference cost of these large models has become a
substantial obstacle to serving more people (Kwon
et al., 2023). It is therefore important to improve
the hardware utilization so that LLMs can have a
higher throughput within a fixed hardware budget.

LLM services commonly use an application-
specific system prompt (OpenAI, 2023a) to specify
the task’s instructions. The system prompt is con-
catenated with the user prompt as the full input
to the LLM for response generation and is shared
by all requests to a service. The system prompt
becomes long if the service provider wants to pro-
vide detailed guidelines and examples for better
response quality or apply more restrictions/poli-
cies for ethical safety. As the sequence length that
LLMs can process grows (Anthropic, 2023; Chen
et al., 2023b; Bi et al., 2024), some emerging pro-
fessional applications, such as legal analysis (Cui

4945

https://github.com/rayleizhu/vllm-ra

RTX 4060 Ti (16GB) may be a good choice. It has 16 GB GDDR6 memory,
which supports running 7B LLMs locally in half-precision. It is now on sale at
only $399 ! You can get it [here](https://xxxxx/yyy).

Please suggest a GPU for deep learning research. My budget is $500.

<SYSTEM>
You are a helpful and respectful shopping assistant. For customer
inquires, provide suggestions faithfully according to the documents
provided here. When providing shopping suggestions, also attach
links to the suggested items.

Available items are listed below:
<DOC>
Item, status, price, link
[Item 1 specs]
[item 2 specs]
....
RTX 4060Ti (16GB), on sale, $399, https://xxxxx/yyy
....
</DOC>

Some conversation examples are given below:
<DOC>
[conversation example 1]
[conversation example 2]
...
</DOC>
</SYSTEM>

System
prompt

User
prompt

LLM
output

Figure 2: A system prompt may include instructions,
knowledge documents and few-shot examples. Here,
we use the shopping assistant as an example application.

et al., 2023; Nay et al., 2023), healthcare applica-
tions (Steinberg et al., 2021; Rasmy et al., 2021),
and the shopping assistant example shown in Fig. 2,
may include one or more knowledge documents to
provide domain-specific knowledge, resulting in
even longer system prompts. Although long sys-
tem prompts are beneficial to improving the genera-
tion quality or enabling new applications, they also
pose a challenge to the LLM service: the inference
throughput and latency of the service can be heav-
ily degraded, thus increasing the per-request cost.
This is inherently caused by the causal attention, in
which each new token is generated by “looking at”
all precedent ones.

In this paper, we propose a novel approach to
mitigate the efficiency problem of using long sys-
tem prompts in LLM services. Our key obser-
vation is that there are not only redundant mem-
ory footprint (Kwon et al., 2023) and computa-
tions (Gim et al., 2023) corresponding to the sys-
tem prompt, but also unnecessary memory accesses
during causal attention computation. Specifically,
while the system prompt is shared by all requests,
its hidden states (i.e., key-value pairs) are read
from DRAM multiple times by existing attention
algorithms such as PagedAttention (Kwon et al.,
2023) and FlashAttention (Dao et al., 2022; Dao,
2023), each for an individual request in the batch.
This severely slows down LLM inferences, which
are known to be memory-bound (Section 3.2). To
eliminate such redundant memory access, we pro-

pose RelayAttention, an exact algorithm to com-
pute causal attention based on a mathematical re-
formulation of it. The key idea of RelayAttention
is to group the matrix-vector multiplications corre-
sponding to the system prompt into matrix-matrix
multiplications, which allow loading the hidden
states of the system prompt from DRAM exactly
once for all request tokens in a batch (Section 3.3).
As a result, the attention inference latency grows
much slower than PagedAttention w.r.t. the length
of system prompt, as shown in Fig. 1. We provide
an in-depth analysis of the theoretic speedup of the
standalone attention based on the IO redundancy
reduction (Section 3.4). Our empirical results for
end-to-end serving further verify the efficiency: in-
tegrating RelayAttention into vLLM (Kwon et al.,
2023), an already highly optimized production-
level LLM serving system, we still observe up to
2.2× sustainable request rate and 2.0× throughput
with the Llama2-7B model for a chatbot workload.
Similar efficiency improvements are also observed
for several other popular LLMs and are consistent
on several data center GPUs. The efficiency gains
continue growing with longer system prompts.

Our key contributions can be summarized as:
• We have identified a LLM service bottleneck that

has not been studied by existing works: there
are highly redundant memory accesses caused
by long system prompts. We anticipate that our
analysis will inspire more works on deep archi-
tectures with IO-awareness (Dao et al., 2022; Gu
and Dao, 2023).

• We propose RelayAttention, a novel approach to
compute exact causal attention. It allows access-
ing cached hidden states of the system prompt ex-
actly once for a batch of request tokens. We con-
duct an in-depth analysis of the theoretic speedup
brought by RelayAttention.

• We empirically verify the end-to-end efficiency
improvement by integrating RelayAttention into
vLLM, a production level LLM serving system,
and observe non-trivial efficiency gains on sev-
eral popular LLMs with different GPUs.

2 Related Works

Our approach aims to improve the inference effi-
ciency of transformer-based LLMs (Section 2.1).
It is based on extending the widely used Key-Value
Cache mechanism (Section 2.2). We also briefly
review other techniques for accelerating LLM infer-
ence, which may complement ours (Section 2.3).

4946

2.1 Inference of Transformer-based LLMs

The inference of these transformer-based LLMs fol-
lows the iterative next-token-prediction paradigm.
Specifically, the next token is generated in each
time step by attending to all precedent tokens. The
generated token is then appended to the end of the
current sequence. The generation then continues
until a stopping criterion (e.g., the new token is
<eos>, which indicates the end of the sequence) is
met. A basic approach to implementing such a gen-
eration procedure is to perform full self-attention
with a casual mask over the entire up-to-present
sequence at each time step, just as we do while
training the model (Radford et al., 2018). This way,
a single generation step takes a quadratic complex-
ity w.r.t. the length of the up-to-present sequence.
Next, we will look at how this complexity can be
reduced to linear using the Key-Value Cache.

2.2 Key-Value Cache

Based on the observation that historical tokens are
not affected by the future ones during LLM de-
coding, Key-Value (KV) Cache avoids repetitive
computation of the hidden key-value pairs (KVs)
by caching them on the fly and then reusing the
cached KVs in every subsequent steps (Yu et al.,
2022; Pope et al., 2023). With KV Cache, in each
time step, only a single token (i.e., the latest gener-
ated one) is used as the query, and the next token
is produced by attending to the cached KVs. The
generation complexity thus reduces from quadratic
to linear w.r.t. the up-to-date sequence length.

Some recent research further accelerates LLM
inferences by pruning superfluous KV cache
data (Zhang et al., 2023) or compressing it (Liu
et al., 2023) to reduce key-value pairs to be cached.
However, these approaches introduce algebraic dis-
crepancies between model training and inference.
Hence, they may hurt the generation quality and/or
require extra finetuning efforts. In contrast, our
approach maintains generation quality and is plug-
and-play, as it is based on a mathematical refor-
mulation of causal attention. The acceleration
of our approach comes from reducing redundant
memory access of the KV cache. Therefore, it
is orthogonal and complementary to prefix shar-
ing in PagedAttention (Kwon et al., 2023), which
eliminates redundant memory footprint of system
prompts, and is unlike PromptCache (Gim et al.,
2023), which eliminates the redundant computation
of the reusable prefix KVs and thus only acceler-

ates the prompt phase (Section 3.2).

2.3 Other Optimizations for LLM Inference
Besides the KV Cache, several other techniques
optimize LLM inference in a post-training manner.
For example, network quantization techniques can
also be applied to LLMs as they are architecture-
agnostic, even though they may need some adapta-
tions to improve the generation stability and qual-
ity (Frantar et al., 2022; Xiao et al., 2023; Lin et al.,
2023). FlashAttention (Dao et al., 2022; Dao, 2023)
is another technique to optimize LLMs’ through-
puts on GPUs by avoiding redundant write/read of
attention probability matrix into/from DRAM. A
production-level LLM serving system may also in-
clude continuous batching (Yu et al., 2022), which
enables iteration-level scheduling of requests, and
speculative sampling (Chen et al., 2023a; Leviathan
et al., 2023), which uses a smaller model to gener-
ate a draft and then uses the large model to check
and correct it. Our approach can work together
with these components with no conflicts.

3 Methodology

In this section, we elaborate on the proposed ap-
proach. We begin with a brief preliminary of the
hardware utilization of operators in Section 3.1,
followed by an analysis of the bottleneck in LLM
serving in Section 3.2, which shows that the re-
dundant memory access slows down the inference
especially when the system prompt is long. We
then introduce RelayAttention, a novel algorithm
to compute exact causal attention that allows the
elimination of the redundancy in Section 3.3. Fi-
nally, we analyze the theoretical acceleration of
RelayAttention over existing approaches from the
perspective of IO-awareness (Section 3.4).

3.1 Preliminary: The Latency of Operators
To increase the utilization of arithmetic units, mod-
ern processors use pipelining to allow concurrent
memory access and computation. For a perfectly
parallelized operator, which maximizes the over-
lap of data transfer and computation, the runtime
latency is determined by the larger one between
total memory access time and total computation
time. Given a processor that takes tm for per-byte
access, and tc for a floating operation on average,
the ratio r of the total computation time over the
total memory access time for an operator is:

r =
tc ×#floating operations
tm ×#byte access

= I × tc
tm
, (1)

4947

...

: MatMul
: Query / Output : (Cached) Key / Value

: Attention weights

...
...

...

...

...
KV cache

Causal Attention

Feed Forward Network

KV cache

You<SYSTEM> ... <SYSTEM/> 4060

can

...Please $500 RTX

How ?... You

Ti

try

.

You<SYSTEM> ... <SYSTEM/>

: Data Transfer b/w RAMs

K

V
Q

Figure 3: A decoding step during the autoregressive generation phase. On the right side, we provide a closer view
of the attention computation with IO-awareness. Note that the floating operations are executed in the fast on-chip
SRAM, while the KVs are cached in the slow off-chip DRAM. As highlighted with the dashed boxes and red arrows,
(1) the computation mainly involves matrix-vector multiplications; and (2) while being shared by all requests, the
system KVs are transferred from DRAM to SRAM multiple times, each for one request.

where I is the arithmetic intensity of the operator:

I =
#floating operations

#byte access
. (2)

When I < tm
tc

, r is less than 1, the operator is
memory-bound. This means that the bottleneck of
the operator is memory access, and we can accel-
erate it only if we can reduce the memory access
time. The speed of modern GPUs far outpaces the
bandwidth of its memory (i.e., tc

tm
� 1), and thus

it typically requires a high arithmetic intensity to
achieve full utilization of the computing capability
(e.g., A100-SXM4 GPU requires at least 38.2).

For a half-precision (2 bytes/element) general
matrix multiplication (GEMM) of problem size
(m,n, k): C = ABT , where C ∈ Rm×n, A ∈
Rm×k, B ∈ Rn×k, the arithmetic intensity is:

Igemm =
2mnk

2(mk + nk +mn)
< min{m,n, k}.

(3)
When m,n, k are all large (e.g., > 128), the oper-
ation can saturate the utilization of the computing
capability due to high arithmetic intensity. This
is normally true for linear projection operations in
LLM inference, where m is the number of tokens
in a batch, k is the input hidden dimension, and n is
the output hidden dimension. However, as a special
case of GEMMs, the general matrix-vector product
(GEMV) operation, in which there is a vector in
A and B, is always memory-bound as Igemv < 1.
This is the case for casual attention computation
with cached KVs, as we will show in Section 3.2.

3.2 Bottleneck of LLM Services
Given a batch of user prompts, the LLM infer-
ence is usually divided into two phases: the prompt

phase, which computes the hidden states of the full
prompts (i.e., the concatenation of system prompt
and user prompts) and generates the first new to-
kens; and the autoregressive generation phase,
which generates all subsequent tokens sequentially,
one token for each request at a time step. In this
work, we focus our investigation on the autoregres-
sive generation phase as it contains the hot spot of
response generation1.

In Fig. 3, we demonstrate a time step during the
autoregressive generation phase, with the batch size
assumed to be 2. There are two key observations:
1. The computation of attention is memory-

bound. This is because the attention computa-
tion for a request mainly involves two GEMVs
(red dashed boxes in Fig. 3), with an arithmetic
intensity lower than 1. It thus requires memory
access reduction for acceleration.

2. There are redundant memory accesses in
the typical scenarios where a shared system
prompt is prepended to request-specific con-
texts. Specifically, the cached key-value pairs
of the shared system prompt (system KVs) are
read from off-chip DRAM multiple times, each
for a request in the batch (red arrows in Fig. 3).
Such redundancy becomes a substantial over-
head when the system prompt is long.
Section 3.3 proposes the core design of RelayAt-

tention for removing the redundant memory access.

3.3 LLM Serving with RelayAttention
The key idea of RelayAttention is to group multiple
matrix-vector multiplications between the batched
queries and the cached KVs into single matrix-

1Besides, the prompt phase can effectively saturate GPU
utilization as it involves large matrix multiplications.

4948

Step 1: System Attention

......

...

Context
KV cache

+

System
KV cache

...

Step 2: Context Attention Step 3: Relay Fusion

: MatMul

: Query / Output

: (Cached) Key / Value

: Attention weights

: Data Transfer b/w RAMs

Figure 4: The computation of RelayAttention. It is a mathematical reformulation of casual attention in Fig. 3, but
load the System KVs exactly once for a batch of requests (highlighted with red arrows).

matrix multiplications, as shown in Fig. 4, allow-
ing system KVs to be read from DRAM exactly
once per batch. Algorithm 1 summarizes the algo-
rithm in Pytorch-like pseudo code. It divides the
computation of a causal attention layer into three
steps: system attention step, context attention step,
and relay fusion step. In the system attention and
context attention steps, we compute two intermedi-
ate attention outputs as if the LLM is prompted by
the shared system prompt / request-specific context
only. In the relay fusion step, we compute the final
output as a convex combination of the two interme-
diate outputs. Next, we show that RelayAttention is
computing a mathematical reformulation of casual
attention.

Without loss of generality, we consider a single
sequence in the batch and a single attention head.
Formally, given an on-the-fly sequence R at gen-
eration step t, we divide it into three segments (in
order): (1) the system prompt of length s, (2) the
user prompt of length u, and (3) the response gen-
erated by the LLM of length t− 1. Let ki,vi ∈ Rd
denote the hidden key, value embedding of the to-
ken at position i ≤ l = s + u + t, and qt ∈ Rd
denotes the hidden query embedding in the current
step. The casual attention output ot is defined as:

ot = Attention(qt, {ki}li=1, {vi}li=1)

=
l∑

j=1

exp(qtkTj)

σ1→lt

vj ,
(4)

where σb→et =
∑e

j=b exp(qtkTj) is the sum-exp
between the start position b and end position e > b,
associated with qt. By splitting the summation
in Eq. (4) at position s, which is the end system

Algorithm 1 Pseudocode for RelayAttention.

INPUT:
q: query tensor for new inputs , (b, m, h, d)
k: key tensor for new inputs , (b, m, h, d)
v: value tensor for new inputs , (b, m, h, d)
kv_cache: context KVs , (N, 2, b, l-s, h, d)
sys_kv_cache: sys. KVs , (N, 2, 1, s, h, d)
layer_id: the index of current layer , int
l_cache: the length of cached key -value , int
OUTPUT:
o: the output of causal attention

note: (1) we modified the interface of multi -head
attention to return the log -sum -exp (lse);
(2) the order of context attention and system
attention doesn't matter because of no dependency

context attention , as if there is no system prompt
k.size (1) = 1 in autoregressive generation phase
k.size (1) > 1 in prompt phase
l_new = l_cache + k.size (1)
kv_cache[layer_id , 0, l_cache:l_new , ...] = k
kv_cache[layer_id , 1, l_cache:l_new , ...] = v
o, lse = multihead_attention(

q, k_cache[layer_id , 0, :l_new , ...],
v_cache[layer_id , 1, :l_new , ...],
casual_mask=True)

system attention
bsz , len , nhead , dim = q.size()
q1 = q.view(1, bsz*len , nhead , dim)
k_sys , v_sys = sys_kv_cache[layer_id]. unbind(dim =0)
o_sys , lse_sys = multihead_attention(

q1, k_sys , v_sys)
o_sys = o_sys.view(bsz , len , nhead , dim)
lse_sys = lse_sys.view(bsz , len , nhead , 1)
relay fusion
alpha_sys = 1 / (1 + exp(lse - lse_sys))
alpha_usr = 1 - alpha_sys
o = o * alpha_usr + o_sys * alpha_sys

prompt, we have:

ot =
s∑

j=1

exp(qtkTj)

σ1→lt

vj +
l∑

j=s+1

exp(qtkTj)

σ1→lt

vj .

(5)

Consider the first term on the right side of Eq. (5).
As it is close to the Attention(·, ·, ·) operation in
Eq. (4), with only a difference in the numerator, it
can be rewritten as a rescaled attention:

σ1→st

σ1→lt

s∑

j=1

exp(qtkTj)

σ1→st

vj . (6)

This rescaling trick (Milakov and Gimelshein,
2018; Rabe and Staats, 2021) can also be applied

4949

Run LLM inference
w/ PagedAttention

Allocate empty KV
cache blocks (for
request-specific

contexts)

Allocate and prefill
system KV cache

Allocate empty KV
cache blocks

Shift the pos. by ;
 run LLM inference
w/ RelayAttention

Offline Preparation Online Serving

 : number of layers
 : sys. prompt length
 : number of heads
 : head dimension

Figure 5: Key modifications (high-lighted in red in the
bottom) to integrate RelayAttention into an existing
LLM serving system (top).

to the second term on the right side of Eq. (5),
and thus ot is a convex combination of two scaled
attention terms:

ot =α
sys
t Attention(qt, {ki}si=1, {vi}si=1)+

αctxt Attention(qt, {ki}li=s+1, {vi}li=s+1),

(7)

where αsyst =
σ1→s
t

σ1→l
t

and αctxt =
σs+1→l
t

σ1→l
t

= 1 −
αsyst are the combination coefficients.
Discussion. Back to the view of a batch, the first
term in Eq. (7) for all concurrent requests, namely
system attention, can be grouped to use large ma-
trix multiplications. This essentially eliminates the
redundant access of system KVs as shown in Fig. 4.
In practice, as the sum of exponentials σb→et is
not numerically stable to compute directly, we use
the log-sum-exp trick to return log(σb→et) in atten-
tion computation, and the computation of αsyst is
reformulated accordingly in Algorithm 1. While
reformulating the casual attention, we did not as-
sume step t 6= 1. This means that RelayAttention
is also applicable to the prompt phase, where the
input of a request is not a single token generated in
the last step but contains multiple tokens from the
user prompt, as reflected in Algorithm 1.
Peripheral adaptations. There are two major
adaptations needed to make RelayAttention work
better within existing inference systems. First, in-
stead of using a single KV cache for both the sys-
tem prompt and the request-specific context, we use
a separate system KV cache to store system KVs
and fill it offline before model serving. This can be
viewed as a combination of prefix sharing in Page-
dAttention, which eliminates redundant memory
footprint of system KVs, and PromptCache (Gim
et al., 2023), which eliminates redundant compu-
tation in the prompt phase. Second, as the system

Figure 6: The theoretical and practical speedups for a
standalone Llama-30B casual attention with RelayAt-
tention. We plot the speedup w.r.t. the length of the
system prompt under two context lengths (128 and 256)
and four batch sizes (4, 8, 16, and 32), on an A40 GPU.

KVs are already computed offline, we add an off-
set of s (i.e., the length of the system prompt) in
the position of those request-specific context to-
kens to make sure of correct position embedding.
Fig. 5 summarizes the key modifications to inte-
grate RelayAttention into an existing LLM serv-
ing system (e.g., vLLM (Kwon et al., 2023) or
TensorRT-LLM (Nvidia, 2023)).

3.4 Theoretical Speedup
In this section, to derive the theoretical speedup of
RelayAttention by the memory access reduction,
we analyze the memory access during the attention
computation of an autoregressive generation step.

Without RelayAttention, given a batch of b re-
quest tokens, the number of elements n to transfer
between DRAM and SRAM is:

n = bd︸︷︷︸
queries

+ b(s+ c)d︸ ︷︷ ︸
cached KVs

+ bd︸︷︷︸
outputs

, (8)

where d is the embedding dimension, s is the length
of the shared system prompt, and c is the length

4950

of request-specific context. With RelayAttention
enabled, the number of elements to access n′ is:

n′ = (bd+ sd+ bd)︸ ︷︷ ︸
system attention

+(bd+ bcd+ bd)︸ ︷︷ ︸
context attention

+ 3bd︸︷︷︸
relay fusion

.

(9)
Therefore, the speedup p is:

p =
n

n′
=

s+ c+ 2

s/b+ c+ 7
. (10)

In Fig. 6, we plot the speedup brought by using
RelayAttention. The small gaps between the practi-
cal and corresponding theoretical curves verify our
analysis.

Though the speedup of standalone RelayAtten-
tion can be analyzed, it is still a question of how an
end-to-end LLM serving system can benefit from
RelayAttention. In Section 4, we provide an empir-
ical study to answer this question.

4 Experiments

In this section, we conduct experiments to answer
the question of how much our approach can help
an end-to-end LLM serving system. We provide
the experimental setup in Section 4.1. Our major
evaluation is conducted with consideration of two
scenarios: noninteractive batch processing (Sec-
tion 4.2) and interactive service (Section 4.3). We
use the Llama2-7B model (Touvron et al., 2023) for
evaluation unless stated otherwise. We demonstrate
the improvement for more models in Section 4.4.

4.1 Experimental Setup
Data. Two datasets are used in our eval-
uation: ShareGPTv3 (ShareGPT, 2023) and
MMLU (Hendrycks et al., 2021). SharedG-
PTv3 (ShareGPT, 2023) contains 53k real conver-
sions between users and ChatGPT (OpenAI, 2022).
MMLU is a benchmark for measuring massive mul-
titask language understanding in few-shot settings.
It consists of 57 tasks covering various subjects and
domains, such as mathematics, history, law, and
medicine. Each subject/task contains a series of
single-choice questions, and 5 extra questions with
answers (as few-shot examples). The statistics of
the benchmarking data are summarized in Table 1.

Hardware. Our experiments involve three GPUs:
A40, A100-PCIE-40GB, and A100-SXM4-80GB.
However, A40 is used unless stated otherwise. The
hardware specifications are listed in Table 2.

Three Approaches used for comparison:

Sys. prompt len. User prompt len. Generation len.

ShareGPTv3 64-2048 4-1024 4-2013
MMLU 379-2895 55-1219 32

Table 1: Data for benchmarking. Lengths are measured
in token.

Memory Mem. Band. FP16 Peak F. Price

A40 48 GB 696 GB/s 37.4 TFLOPs $0.40/hr
A100-PCIE-40GB 40 GB 1,555 GB/s 77.9 TFLOPs $0.90/hr
A100-SXM4-80GB 80 GB 2,039 GB/s 77.9 TFLOPs $1.84/hr

Table 2: The specifications of the GPUs used in our
experiments. Prices are from vast.ai.

• vLLM 2: a state-of-the-art open-source LLM
inference system designed for high throughput
LLM serving. We use the v0.2.6 release. Note
that the core component of vLLM, PagedAt-
tention (Kwon et al., 2023), allows storing the
shared system KVs exactly once by the prefix
sharing technique mentioned in their paper, but
this technique is not included in the vLLM v0.2.6
release. Considering the importance to save mem-
ory for a higher concurrency, we implement a
stronger baseline, vLLM-PS as specified below.

• vLLM-PS: the augmented version of vLLM im-
plemented by us. It integrates not only prefix
sharing but also PromptCache (Gim et al., 2023),
which precomputes the system KVs and reuses
them to mitigate the burden of the prompt phase.
Therefore, vLLM-PS eliminates both redundant
memory footprint and unnecessary computations
of system KVs.

• vLLM-RA (ours): the modfied vLLM with
our RelayAttention integrated. Compared with
vLLM-PS, this version further eliminates the re-
dundant memory accesses of system KVs, as dis-
cussed in Section 3.3.

Note that, vLLM and the two variants mentioned
above use dynamic batch size: requests are dynam-
ically batched with varied batch sizes in {1, 2, 4, 8,
16, 24, 32, 40, ..., 256} by a scheduler, depending
on the available memory and the number of pend-
ing requests in the queue. vLLM would schedule as
many requests as possible each time to maximize
the hardware utilization.

4.2 Noninteractive Batch Processing

For the non-interactive batch processing scenar-
ios where users just submit their jobs to the LLM
services and harvest the processing results later,
we consider the throughput (number of tokens per

2https://github.com/vllm-project/vllm

4951

https://vast.ai/
https://github.com/vllm-project/vllm

(c) A100-SXM4-80GB throughput

vLLM-RA (ours)vLLM-PSvLLM
Th

ro
ug

hp
ut

 (t
ok

 /
s)

(a) Nvidia A40 throughput (b) A100-PCIE-40GB througput

Figure 7: Throughput w.r.t. system prompt length during the noninteractive processing of ShareGPTv3 dataset.

Accuracy GPU vLLM vLLM-PS vLLM-RA

1-shot 37.6%
A100-80G 502 336(↓33%) 306(↓39%)
A40-48G 1012 675(↓33%) 621(↓39%)

3-shot 41.3%
A100-80G 851 378(↓55%) 311(↓63%)
A40-48G 1751 752(↓57%) 629(↓64%)

5-shot 43.2%
A100-80G 1308 432(↓67%) 316(↓76%)
A40-48G 2660 850(↓68%) 641(↓76%)

Table 3: MMLU few-shot acc. and processing time (s).

second) and processing time as the key metrics.
We plot the throughputs w.r.t. the length of sys-

tem prompt for processing ShareGPTv3 on the
three GPUs in Fig. 7. For vLLM, the throughputs
degrade heavily as the system prompt becomes
long for two reasons: (1) the system prompt occu-
pies too much memory, and thus heavily limits the
batch size/concurrency of decoding; (2) it takes too
much time to handle long system prompts during
causal attention computation. With prefixing shar-
ing, vLLM-PS solves the first problem and achieves
up to 108% improvement on the throughput. Our
vLLM-RL further solves the second problem and
increases the throughput from 1.06× to 4.36× of
vLLM. Table 3 shows results of the few-shot test
on MMLU. We can see that using a long system
prompt to include more examples is crucial for im-
proving accuracy. In the case of the 5-shot test, our
vLLM-RA provides a 76% reduction of processing
time on both A40 and A100-SXM4-80GB GPUs.

4.3 Interactive Serving

An important LLM application is chatbots (Ope-
nAI, 2022; Google, 2023a), in which interactive
LLM services are typically provided. Unlike the
noninteractive scenario, though we still expect a
high throughput for good hardware utilization, we
also care about the normalized latency (i.e., average
per-token latency), which is crucial for user expe-
rience. Following PagedAttention (Kwon et al.,
2023), we sample 1000 requests from the ShareG-

vLLM vLLM-PS vLLM-RA

system prompt length = 512

Llama2-13B 0.99 1.44 (↑45%) 1.71 (↑73%)
Llama-30B† 2.15 3.01(↑40%) 3.65(↑70%)
Phi-2 (2.7B) 5.03 6.29 (↑25%) 8.85(↑76%)
Mistral-7B 3.68 5.40 (↑47%) 5.90(↑60%)

system prompt length = 1024

Llama2-13B 0.66 1.23(↑86%) 1.69(↑156%)
Llama-30B† 1.52 2.55(↑68%) 3.64(↑139%)
Phi-2 (2.7B) 3.54 4.82(↑36%) 8.76(↑147%)
Mistral-7B 2.60 4.92(↑89%) 5.85(↑125%)

Table 4: Throughput (req/s) of different models during
the batch processing of the ShareGPTv3 dataset. †: the
30B model is hosted on two A100-SXM4-80GB GPUs.

PTv3 dataset to benchmark the efficiency. The
request arrival times are generated using Poisson
distribution with different request rates.

As shown in Fig. 8, as the request rate increases,
the throughput grows gradually until reaching a
maximum. In contrast, the latency remains low
at the beginning and then goes up steeply when
the highest throughput is achieved. Around the
latency of 0.5s/token, where the user experience
and hardware utilization is balanced, vLLM-RA
sustains higher request rates than both vLLM and
vLLM-PS with clear margins (up to ∼ 2.2× when
the system prompt length is 2048).

4.4 The Improvement for More Models

To verify the efficiency improvement for more
models, we choose several other popular LLMs
such as Llama2-13B, Llama-30B, Phi-2 (Microsoft,
2023b), and Mistral-7B (Jiang et al., 2023) to run
the noninteractive batch processing of ShareGPTv3.
As shown in Table 4, vLLM-RA also provides con-
sistent improvements for these LLMs.

4952

Th
ro

ug
hp

ut
(r

eq
 /

s)
N

or
m

al
iz

ed
 la

te
nc

y
(s

/to
ke

n)
vLLM-RA (ours)vLLM-PSvLLM

(a) System prompt length = 512 (b) System prompt length = 1024 (c) System prompt length = 2048

Figure 8: Benchmark interactive serving with requests sampled from the ShareGPTv3 dataset.

5 Conclusion

In this paper, we have identified a bottleneck of us-
ing long system prompts in LLM services: there are
highly redundant memory accesses corresponding
to those system KVs. We have proposed Relay-
Attention to compute exact causal attention while
removing the redundant memory accesses. An anal-
ysis of the theoretical speedup of RelayAttention
is provided. Extensive experiments over different
GPUs, models, and datasets empirically verify the
efficiency gains brought by RelayAttention.

Limitations

The limitations of RelayAttention can be reflected
by the theoretical speedup (Eq. (10)). First, it helps
batched inference (b > 1). The larger the batch
size, the more efficient RelayAttention is. When
there is only one request, which is the typical case
on device-side applications, RelayAttention does
not help. Therefore, RelayAttention is suitable for
cloud-serving scenarios. Second, when the request-
specific contexts (including user prompts and re-
sponses) are long (e.g., 2× longer than the shared
system prompt), the computation time is dominated
by the processing of them; thus the efficiency gain
will diminish. However, as the context length has a
long-tailed distribution in many applications (e.g.,
chatbots), where the majority of user prompts and
responses are short, the efficiency gain brought by
RelayAttention is still considerable.

Broader Impact Statement

It is revealed by RelayAttention that the inference
cost caused by a shared prefix can be amortized by
a batch of requests. As a result, the shared prefix is
much cheaper than request-specific contexts. This
can reduce the hosting cost of existing LLM appli-
cations. It may also encourage LLM customization
with longer system prompts or prefix-tuning (Li
and Liang, 2021) in practice.

References
Anthropic. 2023. https://www.anthropic.com/in

dex/100k-context-windows.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun
Gao, Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong
Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie
Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi
Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin,
Alex X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin
Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo,
Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Jun-
jie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong
Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song,
Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui
Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang,
Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin
Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei
Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang
You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei
Zhang, Lecong Zhang, Liyue Zhang, Mingchuan
Zhang, Minghua Zhang, Wentao Zhang, Yichao
Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou,
Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. 2024.

4953

https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows

Deepseek LLM: scaling open-source language mod-
els with longtermism. arXiv:2309.12307.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irv-
ing, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. 2023a. Accelerating large lan-
guage model decoding with speculative sampling.
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large language
models trained on code. arXiv:2107.03374.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023b. Lon-
glora: Efficient fine-tuning of long-context large lan-
guage models. arXiv:2309.12307.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and
Li Yuan. 2023. Chatlaw: Open-source legal large
language model with integrated external knowledge
bases. arXiv:2306.16092.

Tri Dao. 2023. Flashattention-2: Faster atten-
tion with better parallelism and work partitioning.
arXiv:2307.08691.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv:2210.17323.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda,
Anurag Khandelwal, and Lin Zhong. 2023. Prompt
cache: Modular attention reuse for low-latency infer-
ence. arXiv:2311.04934.

GitHub. 2022. Github copilot. https://github.com
/features/copilot.

Google. 2023a. https://bard.google.com.

Google. 2023b. Gemini - google deepmind. https:
//deepmind.google/technologies/gemini.

Albert Gu and Tri Dao. 2023. Mamba: Linear-
time sequence modeling with selective state spaces.
arXiv:2312.00752.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv:2310.06825.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. Awq: Activation-
aware weight quantization for llm compression and
acceleration. arXiv:2306.00978.

Yuhan Liu, Hanchen Li, Kuntai Du, Jiayi Yao, Yi-
hua Cheng, Yuyang Huang, Shan Lu, Michael
Maire, Henry Hoffmann, Ari Holtzman, et al. 2023.
Cachegen: Fast context loading for language model
applications. arXiv:2310.07240.

Microsoft. 2023a. https://www.microsoft.com/en
-us/windows/copilot-ai-features.

Microsoft. 2023b. https://www.microsoft.com/en
-us/research/blog/phi-2-the-surprising-p
ower-of-small-language-models/.

Maxim Milakov and Natalia Gimelshein. 2018.
Online normalizer calculation for softmax.
arXiv:1805.02867.

John J Nay, David Karamardian, Sarah B Lawsky, Went-
ing Tao, Meghana Bhat, Raghav Jain, Aaron Travis
Lee, Jonathan H Choi, and Jungo Kasai. 2023. Large
language models as tax attorneys: A case study in
legal capabilities emergence. arXiv:2306.07075.

Nvidia. 2023. https://github.com/NVIDIA/Tensor
RT-LLM.

OpenAI. 2021. https://openai.com/research/tr
iton.

OpenAI. 2022. https://openai.com/blog/chatgp
t.

OpenAI. 2023a. https://openai.com/blog/custom
-instructions-for-chatgpt.

OpenAI. 2023b. GPT-4 technical report. CoRR,
abs/2303.08774.

4954

https://github.com/features/copilot
https://github.com/features/copilot
https://bard.google.com
https://deepmind.google/technologies/gemini
https://deepmind.google/technologies/gemini
https://www.microsoft.com/en-us/windows/copilot-ai-features
https://www.microsoft.com/en-us/windows/copilot-ai-features
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://openai.com/research/triton
https://openai.com/research/triton
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt
https://doi.org/10.48550/ARXIV.2303.08774

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5.

Markus N Rabe and Charles Staats. 2021. Self-attention
does not need o(n2) memory. arXiv:2112.05682.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, and
Degui Zhi. 2021. Med-bert: pretrained contextual-
ized embeddings on large-scale structured electronic
health records for disease prediction. NPJ digital
medicine, 4(1):86.

ShareGPT. 2023. https://sharegpt.com/.

Ethan Steinberg, Ken Jung, Jason A Fries, Conor K
Corbin, Stephen R Pfohl, and Nigam H Shah. 2021.
Language models are an effective representation
learning technique for electronic health record data.
Journal of biomedical informatics, 113:103637.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for {Transformer-Based}
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521–538.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2023.
H _2 o: Heavy-hitter oracle for efficient generative in-
ference of large language models. arXiv:2306.14048.

4955

https://sharegpt.com/

A Implementation of RelayAttention

Reformulation of relay fusion. As mentioned
in Section 3.3, we use the log-sum-exp trick to
handle the numerical instability of the denominator
in Softmax operation. The combination coefficient
for the system attention term in Eq. (7), αsyst , is
reformulated accordingly as:

αsyst =
σ1→st

σ1→lt

=
σ1→st

σ1→st + σs+1→l
t

=
exp(β1→st)

exp(β1→st) + exp(βs+1→l
t)

=
1

1 + exp(βs+1→l
t − β1→st)

,

(11)

where

βb→et = log(σb→et) = log(
e∑

j=b

exp(qtkTj)) (12)

is the log-sum-exp.

Implementation details. RelayAttention can be
built up on existing efficient attention kernels with
minimal adaptations. For the system attention in-
volving the system prompt of non-growing static
length, we use off-the-shelf FlashAttention ker-
nels (Dao, 2023), which natively return the log-
sum-exp required for computation of combination
coefficients in Eq. (7). For the context attention that
needs to handle the growing request-specific con-
texts, we use PagedAttention (Kwon et al., 2023)
kernels for efficient memory management and mod-
ify these kernels to return log-sum-exp. We im-
plement a single fused kernel with OpenAI Tri-
ton (OpenAI, 2021) for the relay fusion step, which
involves multiple element-wise operations.

B More Information of The Datasets

The ShareGPTv3 dataset contains both user
prompts and LLM responses. The distributions of
the length are plotted on the top of Fig. 9. We use
synthesized system prompts during benchmarking
with this dataset.

For the MMLU dataset, we use the provided few-
shot examples as system prompts and the questions
as user prompts. The generation length is set to
32 and we extract the answer in A, B, C, D as
the first capital letter in the responses. The length
distributions of system prompts and user prompts
are shown in Fig. 9 bottom.

Figure 9: Distribution of the two datasets: ShareGPTv3
(top) and MMLU (bottom).

C Benchmark with Synthetic Workloads

In the section, we benchmark the efficiency with
synthetic workloads, where the user prompt length
and the generation length are both fixed for all
requests. Though this is far from real-world sce-
narios, it is useful to test the limit of an LLM serv-
ing system because such perfectly length-aligned
requests eliminate the burden of scheduling. We
adopt three combinations of user prompt length
and generation length, (64, 128), (128, 256), and
(256, 512) for benchmarking, and plot the trend
of throughput w.r.t. the system prompt lenth in
Fig. 10. Notably, in the most challenging case
where the request-specific contexts have a length
of 256 + 512 = 768, RelayAttention still provides
an up to 2.2× speedup when the system prompt
length is 2048.

D Extension to Multi-Application Hosting

RelayAttention assumes that incoming requests
share the same system prompt, which implies the
serving process provides only one application. Al-
though this is reasonable for applications (e.g.,
ChatGPT) with wide usage, deploying multiple
applications in a single serving process is more
economical in some scenarios. In such cases, it just
requires some engineering efforts to support: for

4956

vLLM-RA (ours)vLLM-PSvLLM

(a) user prompt len. 64, generation len. 128 (b) user prompt len. 128, generation len. 256 (c) user prompt len. 256, generation len. 512

Th
ro

ug
hp

ut
 (t

ok
 /

s)

Figure 10: Throughput w.r.t. system prompt length with synthetic workloads.

example, tagging each request with an application
ID and implementing a scheduler to batch requests
with the same application ID each time.

4957

