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Abstract

The customization of large language models
(LLMs) for user-specified tasks gets important.
However, maintaining all the customized LLMs
on cloud servers incurs substantial memory and
computational overheads, and uploading user
data can also lead to privacy concerns. On-
device LLMs can offer a promising solution by
mitigating these issues. Yet, the performance
of on-device LLMs is inherently constrained
by the limitations of small-scaled models. To
overcome these restrictions, we first propose
Crayon, a novel approach for on-device LLM
customization. Crayon begins by constructing
a pool of diverse base adapters, and then we
instantly blend them into a customized adapter
without extra training. In addition, we develop a
device-server hybrid inference strategy, which
deftly allocates more demanding queries or
non-customized tasks to a larger, more capa-
ble LLM on a server. This ensures optimal
performance without sacrificing the benefits
of on-device customization. We carefully craft
a novel benchmark from multiple question-
answer datasets, and show the efficacy of our
method in the LLM customization.

1 Introduction

Large language model (LLM) has achieved un-
precedented success on diverse natural language
processing tasks such as machine translation, ques-
tion and answering, text summarization and styl-
ization, etc. Now then, it is expected for LLM-
powered artificial intelligence (AI) to understand
and satisfy each user’s unique needs such as recom-
mendation systems, personalized assistance, and
personalized search. To this end, a pivotal corner-
stone is customized LLM where the LLM is highly
advanced to a user-requested task. Indeed, several
∗ The authors contribute equally.
† indicates corresponding author.
‡Qualcomm AI Research is an initiative of Qualcomm Tech-
nologies, Inc.

web services related to LLM customization have
been emerged such as GPTs (OpenAI, 2023) and
PersonaAI (Character.AI, 2023; Meta, 2023).

However, due to the significant scale of LLM,
keeping all the customized LLMs in the servers
imposes a tremendous burden. Also, the privacy
issues is inevitably raised by uploading the user’s
data which entail user-requested task. Then, the
focus is shifting towards on-device LLM. However,
as the limited computing power of edge devices, it
is impractical to address models as large as those
on the servers. Therefore, for on-device LLM cus-
tomization, it is crucial to maintain the performance
on user-defined tasks, while constraining the model
sizes. The practical method for the on-device LLM
customization, however, has been less explored.

Recently, several works are developed to further
lead out the ability of LLMs, and they may be ex-
ploited to cover the performance limit of LLMs
on smaller size (device-level). Brown et al. (2020)
introduced few-shot learning where a few exam-
ple query-answer prompts are given together with
users’ queries. Chain-of-thought (COT) (Wei et al.,
2022) tried in-context learning by encouraging
LLM to generate evidences as well as final answers.
Also, for knowledge-intensive NLP tasks, retrieval
augmented generation (RAG) (Lewis et al., 2020)
made up query-relevant prompts by retrieving a
given database. These prompt-based approaches
have a intrinsic problem of increasing inference
cost as the prompts get long and complex, and
hence they are not suitable for edge devices.

Moreover, we can consider fine-tuning the on-
device LLM in order to internalize these prompt-
based knowledge for user-specific tasks to the
model. Freezing the pre-trained LLM, adapter-
based methods (Hu et al., 2021; Houlsby et al.,
2019; Wang et al., 2022) have tried to facilitate
LLM fine-tuning, and the low-rank-based adapter
LoRA (Hu et al., 2021) have been most in the lime-
light. Despite on-device-scale LLM armed with the
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Figure 1: Overall framework of the proposed method. For on-device LLM customization without on-device
training cost and privacy issue, we devise Crayon generating a suitable adapter instantly by utilizing an adapter pool
including preparation of an adapter pool and deploying a customized adapter. Further, we also develop device-server
hybrid inference to efficiently leverage a better generalized LLM in the server.

adapters, fine-tuning is time-consuming process
and also needs a certain-level of training dataset.
However, computing power of edge devices is lim-
ited and collecting enough user-specific data is also
impractical. Thus, we raise inquiry: How about sim-
ply customizing LLM without on-device training?

For this purpose, given a target customization
task, we propose Crayon customizing the on-
device LLM via a single customized adapter which
is blended on-the-fly from a set of base adapters,
called adapter pool. To cover a wide range of
user requests, the base adapters are learned to
contain different knowledge each other. As de-
picted in Fig. 1, our approach requires no additional
training cost in both of server and edge device
when blending the customized adapter. In addition,
we develop a device-server hybrid inference strat-
egy to effectively leverage the better-generalized
larger model of the server for handling unexpected
queries (out-of-scope for the customized model).
Our contributions are summarized as follows:

• We propose the first practical approach for
customization of on-device small-scale LLM.

• We develop Crayon where the base adapters
are learned satisfying their diversification
by instantly blending the base adapters, and
device-server hybrid inference to cover the
out-of-customized tasks.

• We present an on-device LLM customization
benchmark by tailoring the public question-
answer datasets, and analyze our method.

2 Problem Set-up

Defining & processing customized task. In the
context of few-shot learning (Brown et al., 2020),
an LLM is prompted by several query-answer pairs
to better understand testing queries. It has been
proven that these few-shot prompts are helpful
for increasing the generalization capability even in
smaller LLMs. However, prompting increases the
inference cost of LLMs as well, which is not pre-
ferred to on-device use case. Rather than prompting
the few-shot examples Dc, we define it as a target
task specified to the user. From them, we immedi-
ately generate an adapter customized for the target
task on the server, and deploy it to the on-device
LLM. Note that, considering the privacy issue and
communication cost with the server, Dc itself is
never transmitted to the sever in our method.
Baseline LLM. For autoregressive, causal lan-
guage model, most of popular LLMs such as
GPT (Brown et al., 2020), LLaMA (Touvron
et al., 2023a), Mistral (Jiang et al., 2023), and Fal-
con (Penedo et al., 2023) have adopted the decoder-
only transformer (Vaswani et al., 2017) architec-
ture. Hence, in our work, we select the smallest
LLaMA (LLaMA-7B) as the baseline on-device
LLM, which is reasonable size for edge devices1.
Adapter for customized LLM. To reduce train-
ing cost, parameter efficient fine-tuning (PEFT)
injects small trainable adapters, and only updates
them for LLM fine-tuning. As a widely-used PEFT
approach, LoRA (Hu et al., 2021) approximates
the gradient of pre-trained weights into low-rank

1https://github.com/Bip-Rep/sherpa
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matrices, and use them as the LLM adapters. As
such, we also employ LoRA as our LLM adapter.
Note that the learning LoRA does not take place
on edge devices in our method. Briefly explaining
our approach, we only train a set of N base LoRAs
{lθn}Nn=1 (i.e., LoRA pool) given a training set Dtr
on the server, and then they are combined and de-
ployed for instant LLM customization to the target
task (i.e., Dc) without additional training.
Device-server hybrid inference. Although an on-
device LLM is well-customized to a user-specified
task, there is inevitable performance gap between
the device-level and server-level LLMs. Especially,
the on-device LLM suffers from more performance
drop when the inputs are out of the target task.
Hence, we devise a device-server hybrid inference
strategy. When output of an on-device LLM is un-
confident, the output is replaced from the server’s
larger model. To reduce frequent use of the server
LLM, we develop a method to determine the relia-
bility of on-device LLM’s output inside the device.

3 Methodology

In this section, we introduce Crayon which con-
sists of LoRA pool construction (Sec. 3.2) and cus-
tomized LoRA generation (Sec. 3.3). Also, we de-
velop device-server consistent inference (Sec. 3.4).

3.1 Overall Framework of Crayon

As illustrated in Fig. 1, given Dtr that consists of
various tasks and a baseline LLM MΦ0 where
Φ0 is the initial weight before customization, we
jointly train N base LoRAs {lθn}Nn=1 to have dif-
ferent characteristics and knowledge, respectively,
in the server. Here, θn is the weight of lθn . We also
simultaneously learn the base LoRA indicator cn
which is allocated to lθn . After training, N base Lo-
RAs (i.e. LoRA pool) and the indicators are located
in the server and device, respectively.

Then, for a small-scaled customization dataset
Dc, we first obtain the relationship between a LoRA
pool and Dc by computing the similarities between
the indicators and Dc on the device. This similar-
ities are sent to the server, and then used to deter-
mine the weights of the base LoRAs in blending
the customized LoRA. This customized LoRA is
finally deployed to the user’s device to customize
the on-device baseline LLM to the target task. No-
tice that we only upload the similarities of Dc to
the indicators, but do not Dc itself. This is why our
customization is privacy-friendly.

Algorithm 1: Learning LoRA pool
Input: baseline LLM MΦ0 , base LoRAs {lθn}Nn=1,

training set Dtr
1 # Extract intermediate embeddings
2 Qtr = {qx|M1

Φ0
(x), x ∈ Dtr}

3 # Set the indicator of each base LoRA
4 {cn}Nn=1 = K-MEANS_Centroids(Qtr, N)
5 # Update the base LoRA weights
6 while not done do
7 Compute relationship {αn(qx)}Nn=1 (Eq. 2)
8 Compute the combined LoRA weight Θx (Eq. 3)
9 Update {θn}Nn=1 optimizing over Θx (Eq. 4)

10 end
Output: Weights of the base LoRAs θ1, . . . , θN

3.2 Crayon: LoRA Pool Construction
To address a variety of target customization tasks,
it is important to diversify the base LoRAs’ knowl-
edge and characteristics. To this end, we introduce
an indicator for each base LoRA. In specific, for
∀ x ∈ Dtr, we first obtain the intermediate embed-
dings (empirically, the query embeddings of the
first self-attention layer) as

qx = M1
Φ0
(x) (1)

Then, we apply unsupervised k-means clustering
(k = N ) with qx since the text corpora in Dtr have
no specific task label. To suppress noise and focus
on significant features, we reduce the dimensional
of the embeddings using PCA before the cluster-
ing (see Appendix C for more details). For brevity,
applying PCA is not explicitly notated.
N centroids cn’s resulting from k-means cluster-

ing are assigned to each base LoRA, dubbed base
LoRA indicators. In the aftermentioned section, the
base LoRAs are differently updated depending on
the similarity between each corresponding indica-
tor and embedding qx during training.
Learning base LoRAs. For a training input x in
Dtr, we extract its query feature qx as in the base
LoRA indicators. Then, we compute its relation-
ship with the base LoRA lθn by using the corre-
sponding indicator cn:

αn(qx) =
cos_sim(cn, qx) + 1

2
(2)

where cos_sim(·, ·) denotes the cosine similarity.
To obtain a LoRA lΘ specified to x, the N base

LoRAs are combined by

Θx = α1(qx)θ1+α2(qx)θ2+···+αN (qx)θN (3)

Following (Hu et al., 2021), we only train the
base LoRAs while freezing the baseline LLM. As
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Algorithm 2: Generate customized LoRA
Input: Base LoRAs {lθn}Nn=1, indicators {cn}Nn=1,

MΦ0 , a few customized data Dc
1 —————– On-device Processing —————–
2 # Get query embeddings from Dc

3 Qc = {qx,c|M1
Φ0

(x), x ∈ Dc}
4 # Get user embedding
5 qc =

1
|Qc|

∑|Qc|
k=1 qx,c, where qx,c ∈ Qc

6 # Compute relationship between qc and {lθn}Nn=1

7 αc
n = cos_sim(cn, qc), n = 1, . . . , N

8 ——————- Server Processing ——————-
9 # Generate customized LoRA

10 θ̂ = ΣN
i=1α

c
iAiBi (Eq. 6)

Output: customized LoRA lθ̂

such, we update the baseline LLM’s weights Φ0

into Φ0 +∆Φ(Θx) optimizing over Θx:

max
Θ

∑

(x,y)∈Dtr

|y|∑

t=1

log(pΦ0+∆Φ(Θx)(yt|x, y<t))

(4)
where y is the label for x. The entire process is
presented in algorithm 1.

3.3 Crayon: Generation of Customized LoRA
We explain step-by-step in algorithm 2. When a
user provides a few examples Dc describing the
customized task, we can generate the customized
LoRA instantly from the LoRA pool. To do so,
we first obtain an user embedding qc to represent
the customized task by averaging the query embed-
dings in Dc on the edge device:

qc =
1

|Dc|
∑

x∈Dc

M1
Φ0
(x) (5)

After then, following Eq. 2, we compute the com-
bination ratios {αc

i}Ni=1 based on the cosine similar-
ities of qc with the base LoRAs indicators {cn}Nn=1.
We upload {αc

i}Ni=1 to the server instead of Dc to
generate the customized LoRA, and thus Crayon
can protect the users’ privacy. On the server side,
since the base LoRA’s weight θi can be decom-
posed by two low-rank trainable weights Ai and
Bi, we instantly generate the customized LoRA lθ̂:

θ̂ = ΣN
i=1α

c
iAiBi (6)

At last, the customized LoRA generated from
the LoRA pool is deployed to the edge device, and
it customizes the on-device LLM. Accordingly, we
can effectively and efficiently customize the on-
device LLM without additional training in both
server and edge device.

The followings are multiple choice questions about high school mathematics.

Question

Answer 
candidates

How many numbers are in the list 25, 26, …, 100?
A. 75
B. 76
C. 22 
D. 23
Answer: B 

If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps?
A. 28
B. 21
C. 40
D. 30 
Answer:

Instruction

Examples 
of Q&A

few-shot prompt

our prompt

Figure 2: Example prompt input in our method. Dif-
ferent from few-shot prompt, this work does not utilize
instruction and examples of QA.

3.4 Device-Server Hybrid Inference
Although the on-device LLM is customized, it can-
not accommodate all kinds of input queries. For in-
stance, the user can raise queries outside the scope
of the customized task. Also, even for the queries
raised from the customized task, the customized on-
device LLM can suffer from its inherent limitation.
i.e. relatively small model size. To overcome these
difficulties, we intermittently turn to a larger LLM
(e.g., LLaMA-30B) which is placed on the server
due to high computational cost. This server LLM
is not customized, but can make better response
owing to its superb versatility.

Notice that when deciding if an input query x
is routed to the server, we cannot utilize the server
LLM MΦs . Instead, we pre-compute a set of pro-
totypes S = {s = MΦs(xc)|xc ∈ Dc} where the
server LLM’s characteristics is represented. We
consider that S is deployed from the server to the
edge device, together with lθ̂.

Then, supposing that the desirable output of the
on-device LLM may be close to S, we compare the
on-device LLM’s output ox with S. In specific, we
compute the routing score rx in the edge device:

rx =
1

|S|Σs∈Scos_sim(ox, s). (7)

Finally, we route x to the server LLM when
rx < rth, or hold the on-device output otherwise.
The routing threshold rth is empirically determined.

4 Experiment

As there is no established benchmark for on-device
LLM customization, we present a novel benchmark
for this field in Sec. 4.1. Then, we show comprehen-
sive evaluation and analyses in Sec. 4.2& Sec. 4.3.
Further details on experimental set-up and base-
lines in Appendix A.
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Method On-device LLM Size STEM Humanities Social Sciences Other Average

LLaMA 7B 27.8 33.2 30.9 33.0 31.0
LLaMA (few-shot)† 7B 30.5 34.0 38.3 38.1 35.1
LLaMA 13B 35.0 43.5 45.9 42.6 41.1
LLaMA (few-shot)† 13B 35.8 45.0 53.8 53.3 46.9

Single LoRA 7B + 14M 33.2 44.6 43.4 44.6 40.7
Single LoRA (few-shot) 7B + 14M 29.7 33.1 33.1 39.2 33.5
LoraHub‡ 7B + 14M 35.1 47.3 46.2 44.1 42.4

Crayon 7B + 14M 36.1 50.0 49.8 46.0 44.6
Crayon + Hybrid(20%) 7B + 14M 38.6 53.6 57.6 48.6 47.6

Table 1: Acc (%) for MMLU tasks. † indicates the reported performance from original paper (Touvron et al.,
2023a) that utilize few-shot learning by following (Hendrycks et al., 2020). ‡ mostly follows (Huang et al., 2023),
but we modify the base model (FLAN-T5 −→ LLaMA-7B) and upstream tasks (BBH −→ {SIQA, MCQA, OBQA}).
For more details, see Appendix B.

4.1 On-device Customization Benchmark

Datasets. QA (question-answering) datasets are
widely used in evaluation of LLM. Hence, to verify
the effectiveness of Crayon, we select three pub-
lic multiple choice QA datasets for training the
pool of base LoRAs; Social Interaction QA
(SIQA) (Sap et al., 2019) that focuses on the rea-
soning about people’s actions and their social im-
plications, MedMCQA (MCQA) (Pal et al., 2022) that
addresses real-world medical entrance exam ques-
tions, and Openbook QA (OBQA) (Mihaylov et al.,
2018) that contains open book exams for assessing
human understanding of a subject. For validating
task generalization, we utilize MMLU (Press et al.,
2022) that contains 57 subjects across STEM, the
humanities, the social sciences, and more.
Customized task configuration. In customization
datasets, it is expected to contain conversations
for different users, where each conversation com-
prising a series of user’s question and LLM’s re-
sponse. However, there are no publicly available
datasets. Despite several dialog datasets such as
shareGPT (Tey, 2022) and ChatAlpaca (Bian et al.,
2023), they lack user identities for the dialogue
and then it is difficult to measure the customization
results in these datasets. In contrast, the MMLU
dataset including individual question-answer data
provides annotated by the subject categories. We
therefore consider each subject as the interest spec-
ified to a user, i.e. a distinct customization task.
In specific, we assume 57 distinct users with their
own customization tasks. From this, we can quanti-
tatively evaluate customization results in terms of
accuracy (Acc). In this experiment, we set the size
of customized dataset |Dc| as 10 for every user.

4.2 Main Results

Crayon attains customization. We evaluate the
effectiveness of our method in comparison with
several baselines: LLaMA (Touvron et al., 2023a),
LoRA (Hu et al., 2021), and LoraHub (Huang
et al., 2023). For LLaMA, we compare the pro-
posed Crayon with the larger LLaMA-13B as well
as the LLaMA-7B. For fair comparison with our
approach, we report both zero and few-shot results.
In zero-shot, the input is prompted as in our unified
template Fig. 2. In few-shot, task-specific few-shot
prompt including Dc is used following (Touvron
et al., 2023a). In single LoRA, we train LoRA on
top of the LLaMA-7B with Dtr, and it is used uni-
versally all the customized tasks. Similar to our
method, LoraHub combines pre-trained LoRAs to
create a new one suitable for a new task. However,
there are several limitations that assume specific
upstream tasks with the corresponding datasets to
individually pre-train all the LoRAs, and also re-
quires a time-consuming searching process to de-
termine the combination ratios of the pre-trained
LoRAs (More details in Tab. 3).

As shown in Tab. 1, Crayon outperforms all
the compared methods with only on-device LLM.
Once the base LoRAs are established in the server,
our method enables superior customization (40.7%
vs 44.6%) compared to Single LoRA with r = 4
at an identical inference cost in the edge device.
Interestingly, Crayon surpasses LoraHub (Huang
et al., 2023) by 2.2% in average, although the base
LoRAs are combined instantly. It is intuitive that
the variety of base LoRAs is beneficial for the gen-
eralization ability of LoRA pool. Hence, the outper-
forming performance of the proposed Crayon indi-

3724



Customized Data (Dc)
STEM Humanities Social Science Others

Task Elementary Mathematics HS Physics Jurisprudence World Religion HS Geography Professional Psychology Anatomy Management

Elementary Mathematics 27.2 26.2 26.5 27.2 24.9 26.2 27.2 25.4
HS Physics 28.5 31.1 29.1 31.1 31.1 31.1 26.5 30.5
Jurisprudence 54.6 54.6 54.6 50.9 52.8 52.8 54.6 49.1
World Religion 69.0 70.2 70.2 70.2 69.0 67.8 69.0 69.0
HS Geography 58.1 56.1 57.1 59.1 60.1 55.6 59.1 59.1
Professional Psychology 40.8 41.2 41.5 40.5 38.2 41.8 41.7 36.6
Anatomy 46.7 49.6 49.6 47.4 44.4 43.7 49.6 42.2
Management 52.4 51.5 50.5 57.3 57.3 52.4 52.4 58.3

Table 2: Ablation study for importance of customization data. We randomly select two subjects in four categories
(i.e., STEM, humanities, social science, and others), and the customization performance (Acc) is consistently the
highest when the model is customized by using the corresponding dataset.

cates that our joint training of all the base LoRAs
at once produces their diversity, more effectively.
This experiment will be addressed in Sec. 4.3.
Device-server hybrid inference. To assess the ef-
ficacy of device-server hybrid inference, we em-
ploy LLaMA-30B as the server LLM, which yields
53.2% Acc on MMLU in average. Moreover, we
set the routing threshold rth to satisfy 20% routing
ratio, empirically. As shown in Tab. 1, with only
20% routing to sever model, the proposed hybrid
inference ‘Crayon + hybrid 20%’ obtains 47.6%
Acc, which is even better than fully using the large
13B model. Thus, our approach can boost the cus-
tomized on-device LLM by efficiently intervening
a more versatile server LLM.

4.3 Further Analyses

We extensively analyze the key components of the
proposed method.
Impact of customized data. To assess the efficacy
of customized data Dc, we randomly select two
different subjects (i.e., two customization datasets)
from each category in MMLU, and summarize the
results in Tab. 2. This demonstrates that customized
LoRAs, when generated from their corresponding
subjects, perform better on their matched subjects
than when they are created from unrelated sub-
jects. For instance, on the Management subject, the
LoRA generated from Management data can obtain
7.8% higher Acc than the LoRA generated from
Jurisprudence data. We can see a similar trend in
other subjects. Hence, in spite of a very small-scale
customization data Dc, it can contain significant
generalization cue for the target customization task.
Then, unlike the compared methods, our Crayon
can effectively leverage it for LLM customization.
Diversity in LoRA pool. Fig. 3 plots that density
distribution 2 of α for each task contained in the

2It represents the proportion of the data in each range.

(a) 0th LoRA
𝛼

𝛼
(c) 24th LoRA

𝛼

𝛼
(b) 11th LoRA

(d) 28th LoRA

SIQA MCQA OBQA

Figure 3: Distribution plot of α for each training task
on four base LoRAs. In a, c, and d, the 0th, 24th and
28th base LoRAs have different preference on the SIQA,
MCQA, and OBQA tasks, respectively. In b, the 11th
base LoRA is trained on all the three tasks evenly.

training dataset, which shows the focus of the base
LoRAs on the training tasks. From 32 base LoRAs,
we select the four ones. We can identify that the
trained base LoRAs have different weights for each
task. 0th base LoRA (Fig. 3a), 24th base LoRA
(Fig. 3c), and 28th base LoRA (Fig. 3d) more spe-
cialized to SIQA, MCQA, OBQA, respectively. Un-
like above three base LoRAs, 11th base LoRA is
likely to evenly trained with all the tasks as shown
in Fig. 3b. Note that we do not provide any infor-
mation to specify or define the task (e.g. task name)
during training. However, Crayon produces a di-
versity of base LoRAs, enabling the LoRA pool to
accommodate a wide range of customization tasks.
Device-server hybrid inference. In deep models,
the confidence level is usually estimated by the
maximum softmax score, and hence it can be a
straightforward choice as decision rule for the hy-
brid inference. Hence, as in Fig. 4, we compare
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(a) (b)

Figure 4: Device-server hybrid inference varying
routing ratio. Acc (%) on (a) customized tasks and
(b) mix of customized & out-of-customized tasks.

the proposed routing strategy with the maximum
softmax-based approach varying the routing ratio.
We can see the proposed approach beats the maxi-
mum softmax-based approach for all the three rout-
ing ratios in Fig. 4a. Hence, our method can ef-
fectively detect the failure cases of the customized
on-device LLM under a routing ratio. To consider a
more general setting, we also assess the capability
to address the input queries outside the customized
task. To this end, in Fig. 4b, the testing queries are
configured from a non-customized subject as well
as the customized one. In this setting, we can see
a similar trend. Hence, the our routing effectively
complements the customized on-device LLM, and
completes the practical use of on-device LLM.
Hyperparameter sensitivity. Fig. 5 examines
Crayon changing the size of the customization
dataset (|Dc|) and LoRA rank r. In Fig. 5a, when
the number of base LoRAs N is set as 32 (de-
fault setting), the proposed method is capable of
customization, irrespective of |Dc|. This trend is
mirrored when N is reduced to 16. Whereas, de-
spite the same |Dc|, the performance gap between
N = 16 and N = 32 is notable. Hence, the num-
ber of base LoRAs highly impact the quality of
customization. As the number of customized data
will differ from user to user and N is usually pre-
determined in practical use, our method can be
effectively applied in a real world scenario.

Further, we investigate the performance differ-
ence as varying rank of LoRA in Fig. 5b. When
r = 2, the performance gap is marginal. We infer
that the LoRA pool with too small rank might not
effectively represent different customization tasks.
Nevertheless, it is still slightly better than the a sin-
gle universal LoRA without any additional training
cost. However, once r ≥ 4, the performance gap be-
tween them highly increases. Thus, for customiza-

A
cc

 (%
)

𝑁 = 32

𝑁 = 16

Size of personal data

(a)

A
cc

 (%
)

LoRA rank (𝑟)

(b)

Figure 5: Acc (%) according to (a) the size of the
customized dataset and (b) LoRA rank.

Training base LoRAs Determining α
Task-wise Joint Learning-based Cos. sim. Acc (%) Time (s)

✓ ✓ 42.4 49.7
✓ ✓ 44.5 51.0
✓ ✓ 44.6 0.2

Table 3: Ablation analysis. Each component of Crayon
is changed to the matched one of LoraHub. (1st and 3rd
rows are LoraHub and complete Crayon, each.)

tion, the proposed task-wise base LoRA blending
is more beneficial than generalizing a single LoRA.

Component ablation study. In Crayon, customiza-
tion consists of two steps; i) constructing multiple
base LoRAs and ii) deploying customized LoRA
via blending the base LoRAs. First, we jointly
learn the base LoRAs with no task definitions from
the training datasets, which effectively diversifies
the base LoRAs. Second, we obtain the relation-
ship α via simply mapping to the LoRA indicators.
LoraHub combines multiple task-specific LoRAs
trained on different upstream tasks, and exhaus-
tively search their relationship with a few exam-
ples Dc. To validate the efficacy of those compo-
nents, we change each component to the matched
LoraHub’s one. As shown in Tab. 3, the first row
where all the components are ablated corresponds
to LoraHub. In the second row, we can infer that
our task-agnostic joint learning is more benefi-
cial to learn diverse base LoRAs, compared to the
LoraHub’s individual LoRA learning with task-
definition. Also, in the last row, rather than the
time-consuming searching of the relationship α,
the proposed simple LoRA indicator mapping is
more proper to the jointly learned base LoRAs,
since the base LoRAs are well-aligned with the
LoRA indicators during the training.
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5 Related Works

Task Generalization. In NLP, generalizing the lan-
guage models to a wide range of unseen task has
been important for its practical use. Addressing
models with relatively small sizes (under 0.5B),
several works have attempted to adapt them with
few-shot examples into unseen tasks. However,
CrossFit (Ye et al., 2021) has necessity of prompt-
ing the task names as hard prefixes. ReCross (Lin
et al., 2022) alleviated this constraint via exploit-
ing the retrieved training data, and yet requires an
additional cost to retrieve task-friendly data.

Including a way more parameters, LLMs such
as GPT (Brown et al., 2020), LLaMA (Touvron
et al., 2023a,b), and Gemini (Team) has shown im-
pressive results to a wide range of queries without
specifically trained in the task of queries. However,
their model sizes are too large for edge devices.
LLaMA and Gemini also released their smaller
versions under 10B training parameters which are
feasible in edge devices, but their task generaliza-
tion ability largely lags behind the larger models.
To leverage these smaller LLMs, Mistral-7B (Jiang
et al., 2023) applied sliding window attention and
rolling buffer cache. Nevertheless, it cannot cover
various tasks as much as the larger models. Re-
cently, LoraHub (Huang et al., 2023) pre-trains
LoRA adapters for multiple upstream tasks, and
generate task-specific LoRA by mixing the pre-
trained ones. However, it requires manipulating up-
stream tasks, and time-consuming process to deter-
mine mixing ratio of the pre-trained LoRAs. Con-
trarily, our method constructs the LoRA adapters
which has different knowledge and characteristic
each other, with no task ques.
Mixture of Experts (MOE). In MOE (Jacobs
et al., 1991; Masoudnia and Ebrahimpour, 2014;
Riquelme et al., 2021), each expert is controlled
by a unique gating network, activated based on
the distinct nature of the input data. Especially, in
language domain, the MoE network identifies and
engages the most suitable experts for every token.
MoLoRA (Zadouri et al., 2023) and SiRA (Zhu
et al., 2023) propose mixture of LoRA, and all the
LoRAs and partial LoRAs (i.e., top-K) are partic-
ipating in the gating for every token, respectively.
Moreover, very recently, Mixtral 8x7B (Jiang et al.,
2024) has been introduced and surpasses LLaMA-
2 70B across all evaluated benchmarks. It employs
eight specialized experts that focus on dense ma-
trices within fully connected layers. During the

processing of a token, a routing mechanism selects
two of these experts, and their resulting outputs are
then merged together. Since edge devices has lim-
ited storage to contain several LoRAs, token-wise
MoE methods are hard to be applicable in our setup.
Several MoE works such as Task-MoE (Kudugunta
et al., 2021) and Skill Selection (Ponti et al., 2023)
selects experts for every task, and can be adapted
to on-device customization. However, they still as-
sumed that the task id should be given with inputs
while both training and inference phases.
Speculative Decoding. To accelerate LLM de-
coding, speculative decoding (Chen et al., 2023;
Leviathan et al., 2023; Yang et al., 2023; Gupta
et al., 2024) exploits a small (draft) model to pre-
dict what the larger target model will produce us-
ing uncertainty metric (Fadeeva et al., 2023), and
then use the target model just to check if the pre-
diction is correct. Device-server hybrid inference
has a problem that the draft (i.e., on-device) model
cannot verify the prediction of its own for routing
decision without target (i.e., server) model. Even
though the draft model’s output is correct, it should
be verified after communication with the server. To
solve it, AutoMix (Madaan et al., 2023) utilized
meta-verifier to double-check the self-verification
results. To improve both accuracy and efficiency,
we develop advanced device-server hybrid infer-
ence where the on-device LLM’s reliability inside
the device. Further, owing to the robust customiza-
tion via Crayon, our customized on-device LLM do
not need frequent intervention of the server LLM.

6 Conclusions

We propose Crayon and device-server hybrid in-
ference for customizing on-device LLM for the
first time. In Crayon, we jointly train a pool of
base LoRAs, which has distinct knowledge and
characteristics each other. Using this base LoRA
pool, we can instantly blend the base LoRAs into
a customized LoRA for user-defined task, without
additional training or transferring user data to the
server. To encompass complex queries, we develop
the device-server hybrid system that measures the
reliability of the customized LLM to identify the
necessity of server LLM. We also present a new
benchmark for quantitative evaluation of on-device
LLM customization, incorporating commonly-used
QA datasets, and our method shows superior per-
formance. We hope that this benchmark can be a
valuable tool for future research in this field.
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7 Limitations

This work has demonstrated that through an adapter
pool elaborately learned from a variety of datasets,
it is possible to create customized adapters suitable
for unseen target QA tasks. Our methodology is
not limited to QA but is also anticipated to be ap-
plicable across more NLP domains that requires
sequential output tokens. Alongside this, we ex-
pect that increasing the number of adapters in the
adapter pool together with the utilization of more
large-scale datasets will lead to the creation of more
diversified customized adapters for a wider scope
of unseen tasks.

8 Potential Risks

As with any LLM, the customized on-device
LLM’s outputs might inadvertently perpetuate bi-
ases present in the training data, requiring care-
ful oversight and potential intervention to ensure
fairness and ethical use. Moreover, it is crucial to
consider the battery life of the edge device of de-
ploying additional computational resources, as the
use of edge devices for intricate LLM tasks could
result in increased energy consumption.
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-Supplementary Material-

Crayon: Customized On-Device LLM via
Instant Adapter Blending and Edge-Server Hybrid Inference

A Details on Experiments

A.1 Training setting

We implemented the proposed and baseline meth-
ods based on the Huggingface PEFT library (Man-
grulkar et al., 2022). We set the rank r and scaling
factor of a LoRA as 4, and the number of base
LoRAs as 32. For training, we use the AdamW op-
timizer with a learning rate 0.0001 which is cosine
annealed. We also set the batch size as 128 and
the maximum iteration as 800. For all the meth-
ods, we unified the prompt template as shown in
Fig. 2 where task cue is not prompted, which is
proper to practical use. All the proposed and base-
line methods are implemented with PyTorch 2.0.1
and executed on a single NVIDIA A5000 GPU.

A.2 Baselines

Since on-device LLM customization is understud-
ied, we carefully selected three baselines to validate
the efficacy of Crayon.

1. LLaMA (Touvron et al., 2023a,b) released
publicly available models, and also reported
the score on the MMLU dataset. However, the
reported scores are obtained using the few-
shot prompt as in the upper part of Fig. 2,
where both the subject name (i.e., the task
name) and examples of the subject are given.
This few-shot prompt is not applicable to our
on-device customization. For fairness, as well
as the score from the literature, we also dis-
close scores using zero-shot prompt of Fig. 2.

2. Single LoRA follows the training recipe in
the literature (Hu et al., 2021). Since the Sin-
gle LoRA is trained using the entire training
dataset Dtr, the same LoRA is used for all the
customized tasks. Additionally, for a fair com-
parison, we fine-tune the Single LoRA (named
as "Single LoRA (few-shot)"), which is orig-
inally trained on the training dataset, using
a few number of examples from customized
task Dc. We observed that this additional fine-
tuning yields severe performance drop, and it
can be attributed to the insufficient size of Dc
for customizing the LoRA to the specific task.

Base LoRA Number

|	𝛼
	−
	𝛼%
	|

w/ PCA w/o PCA

Figure 6: Difference of α and mean of α (i.e., ᾱ) from a
data point in training set for each base LoRA whether
when using PCA or not.

3. LoraHub (Huang et al., 2023) did not focus
on tailoring their work for on-device LLM
customization, but it can offer a proper base-
line for validating Crayon. It outlines how to
generate LoRAs specified to a new task by us-
ing a given few examples and LoRAs trained
for other upstream tasks. However, the down-
side is the lengthy process required to gener-
ate new LoRAs due to the reliance on few-
shot learning with the new task’s examples.
Moreover, due to necessities that all upstream
tasks should be clearly defined (i.e., a metic-
ulously refined dataset is needed), it cannot
be seamlessly integrated into on-device LLM
customization scenarios.

B Details of Tab. 1

Tab. 4 extends the results from Tab. 1 to show the
accuracy for each of the 57 subjects in the MMLU
dataset. This allows us to see which subjects fall un-
der each category (i.e., STEM, Humanities, Social
Science, and Other). Additionally, methodologies
with a higher average accuracy also tend to yield
higher accuracy across individual subjects.

C Effectiveness of PCA

Fig. 6 illustrates the deviation of the relationship α
corresponding to the base LoRAs for one example
in the training set, both with and without the use of
PCA. The deviation of α when using PCA is larger
100 times than when not using PCA, implying that
we can train the base LoRAs more diversely as
experts. In line with the one of the objectives of
our method, which is to train the base LoRAs with
different types of knowledge, we employ PCA to
our methodology when getting embeddings.
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LLaMA-7B LLaMA-13B Single LoRA
LoRA-Hub Crayon

Crayon
zero-shot few-shot zero-shot few-shot zero-shot few-shot + Hybrid(20%)

Abstract Algebra STEM 28.0 29.0 29.0 34.0 32.0 29.0 32.0 30.0 34.0
Anatomy Other 32.6 37.0 40.7 45.9 48.9 41.5 52.6 49.6 50.4
Astronomy STEM 39.5 33.6 44.7 46.1 46.7 42.1 44.7 43.4 50.0
Business Ethics Other 31.0 40.0 39.0 45.0 33.0 44.0 40.0 36.0 43.0
Clinical Knowledge Other 34.7 35.1 44.5 45.7 46.4 41.5 43.8 46.0 49.2
College Biology STEM 30.6 37.5 41.7 45.1 41.7 31.2 46.5 47.9 49.7
College Chemistry STEM 23.0 32.0 38.0 30.0 31.0 35.0 34.0 33.0 31.0
College Computer Science STEM 28.0 29.0 36.0 39.0 28.0 16.0 28.0 40.0 39.0
College Mathematics STEM 30.0 33.0 33.0 32.0 24.0 24.0 30.0 27.0 25.0
College Medicine Other 30.1 30.6 38.7 42.8 38.7 29.5 34.7 39.9 41.8
College Physics STEM 17.6 26.5 19.6 18.6 22.5 20.6 24.5 23.5 22.0
Computer Security STEM 33.0 45.0 56.0 65.0 45.0 39.0 49.0 47.0 55.0
Conceptual Physics STEM 29.4 36.6 37.4 41.3 38.3 36.6 35.3 34.0 35.1
Econometrics Social Science 21.1 23.7 30.7 27.2 22.8 29.8 31.6 21.1 23.2
Electrical Engineering STEM 21.4 26.9 33.8 40.7 35.9 30.3 37.2 42.8 46.2
Elementary Mathematics STEM 24.3 24.3 27.8 24.9 26.5 25.7 25.7 27.2 28.8
Formal Logic Humanities 30.2 27.0 36.5 33.3 29.4 30.2 29.4 27.0 30.2
Global Facts Other 30.0 29.0 30.0 35.0 31.0 33.0 30.0 32.0 32.0
High School Biology STEM 34.8 34.5 42.9 52.6 49.7 34.8 45.8 51.3 55.9
High School Chemistry STEM 29.6 28.1 31.0 28.6 34.0 30.5 37.4 41.9 44.6
High School Computer Science STEM 28.0 31.0 42.0 48.0 31.0 25.0 39.0 41.0 42.0
High School European History Humanities 33.3 44.2 45.5 61.8 47.9 25.5 52.7 59.4 63.6
High School Geography Social Science 31.3 34.3 53.0 54.6 56.6 33.8 51.5 60.1 66.2
High School Government And Politics Social Science 28.5 44.6 62.2 66.3 53.9 36.3 56.5 63.2 67.2
High School Macroeconomics Social Science 27.2 35.4 38.2 44.4 37.4 30.3 36.9 41.5 43.9
High School Mathematics STEM 28.9 24.8 27.0 23.7 21.5 25.9 28.9 24.1 23.9
High School Microeconomics Social Science 25.6 31.9 35.7 47.5 34.9 31.5 37.4 42.4 45.0
High School Physics STEM 24.5 26.5 30.5 28.5 27.2 23.8 28.5 31.1 31.8
High School Psychology Social Science 28.3 47.3 52.3 60.9 53.8 36.1 58.5 62.4 65.7
High School Statistics STEM 22.7 35.2 30.6 30.1 32.9 25.5 33.8 29.2 34.3
High School US History Humanities 32.8 39.7 45.1 58.3 46.6 28.4 54.9 54.4 60.3
High School World History Humanities 28.7 40.9 31.6 66.2 51.9 28.7 59.1 59.9 64.8
Human Aging Other 30.5 40.8 34.1 54.7 41.7 42.2 46.2 42.2 47.5
Human Sexuality Social Science 30.5 36.6 40.5 58.8 44.3 29.0 50.4 51.9 58.8
International Law Humanities 42.1 51.2 52.9 62.8 57.0 42.1 58.7 55.4 62.8
Jurisprudence Humanities 33.3 38.9 50.0 51.9 46.3 37.0 46.3 54.6 56.7
Logical Fallacies Humanities 29.4 39.3 49.1 52.8 46.6 38.0 51.5 55.8 62.3
Machine Learning STEM 27.7 23.2 28.6 31.3 29.5 39.3 32.1 34.8 34.8
Management Other 39.8 35.0 44.7 66.0 56.3 38.8 51.5 58.3 61.5
Marketing Other 33.8 46.6 64.1 71.8 62.8 50.0 63.2 69.2 72.6
Medical Genetics Other 36.0 43.0 43.0 52.0 52.0 45.0 48.0 52.0 54.0
Miscellaneous Other 36.7 42.4 56.4 65.4 60.3 46.0 60.9 62.3 66.5
Moral Disputes Humanities 29.5 40.2 41.9 50.9 35.0 33.8 42.5 48.8 52.5
Moral Scenarios Humanities 22.7 24.3 24.6 30.1 24.0 23.9 24.7 24.0 23.5
Nutrition Other 36.6 37.6 46.7 51.6 45.8 38.9 41.8 50.0 52.2
Philosophy Humanities 36.0 39.9 45.3 54.0 48.9 35.4 46.6 51.8 57.2
Prehistory Humanities 39.2 36.1 44.1 51.5 51.9 34.6 50.0 52.8 55.8
Professional Accounting Other 24.8 25.9 37.6 35.8 29.8 28.7 32.3 34.4 34.0
Professional Law Humanities 28.1 30.2 34.9 38.0 33.4 27.5 33.9 35.9 36.6
Professional Medicine Other 30.5 44.5 46.7 50.4 39.0 32.4 37.1 33.8 36.4
Professional Psychology Social Science 28.3 35.1 41.0 47.7 37.6 32.5 39.5 41.8 46.7
Public Relations Social Science 35.5 40.9 43.6 60.9 42.7 39.1 48.2 43.6 48.2
Security Studies Social Science 29.8 31.8 42.9 53.9 31.4 25.7 31.4 38.8 41.5
Sociology Social Science 35.8 46.8 52.7 61.2 45.3 35.3 54.2 63.2 68.2
US Foreign Policy Social Science 49.0 46.0 58.0 80.0 60.0 38.0 58.0 68.0 74.0
Virology Other 34.3 30.1 29.5 43.4 38.0 37.3 34.9 38.6 41.5
World Religions Humanities 45.6 50.9 63.7 67.8 60.2 45.6 64.3 70.2 70.8

STEM 27.8 34.0 35.0 45.0 33.2 29.7 35.1 36.1 50.3
Humanities 33.1 30.5 43.5 35.8 44.5 33.1 47.3 50.0 50.0
Social Science 30.9 38.3 45.9 53.8 43.4 33.1 46.2 49.8 42.4
Other 33.0 38.1 42.6 53.3 44.6 39.2 44.1 46.0 46.1

Average 31.0 35.1 41.1 46.9 40.7 33.5 42.4 44.6 47.6

Table 4: Detailed results of Tab. 1 on MMLU.
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