Efficient Sentiment Analysis: A Resource-Aware Evaluation of Feature
Extraction Techniques, Ensembling, and Deep Learning Models

Mahammed Kamruzzaman
University of South Florida
Tampa, FL, USA 33620
kamruzzaman1@usf.edu

Abstract

Huge amounts of sentiment-rich data are pro-
duced on social networks, the rate of which
is growing year by year. As such, a global
view of sentiment on social media platforms
is only possible at scale through automation.
The huge data sizes also mean that sentiment
analysis systems must balance both accuracy
and computing resource requirements. Typical
NLP research maximizes accuracy, while other
metrics are overlooked and thus older models
are forgotten. Prior models are easily forgot-
ten despite their possible suitability in settings
where large computing resources are unavail-
able or relatively more costly. In this paper,
we perform a broad comparative evaluation of
document-level sentiment analysis models with
a focus on resource costs that are important for
the feasibility of model deployment and gen-
eral climate consciousness. Our experiments
consider different feature extraction techniques,
the effect of ensembling, task-specific deep
learning modeling, and domain-independent
large language models (LLMs). We find that
while a fine-tuned LLM achieves the best ac-
curacy, some alternate configurations provide
huge (up to 24, 283 x) resource savings for a
marginal (<1%) loss in accuracy. Furthermore,
we find that for smaller datasets, the differences
in accuracy shrink while the difference in re-
source consumption grows further. !

1 Introduction

The wider NLP community in recent years has
seen a trend in growing models and data sizes to
improve performance. This trend is most clearly
demonstrated by the progression of large language
models over the past few years, from ELMo (Pe-
ters et al., 2018), followed by BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), GPT-3 (Brown
et al., 2020), and LaMDA (Thoppilan et al., 2022),

'The source code for our evaluations is avail-

able at https://github.com/kamruzzamani5/
Sentiment-Analysis-Feature-Extraction-.

9

Gene Louis Kim
University of South Florida
Tampa, FL, USA 33620
genekim@usf.edu

90
87 /
84
3
21
> 18
o 15
«© 12
= 9
a6
8 3
o
<< ¢ —
- 3 RN ¢ 8 & > & & & ¢
~ + & & o <&
Ot & & & E T
o 9 <® & &
-12 &£ ,b'-:‘
<] -15 & &
-18 <® &
21 &
24
-27
—CO, —Accuracy

Figure 1: Change in accuracy and estimated grams of
COs emitted from various feature extraction models
and the standalone fine-tuned RoBERTa model on the
IMDB dataset (Maas et al., 2011). Plotted values are
averages across all considered classifiers. The changes
in values (ACO,, / accuracy) were computed relative
to FastText, which had the lowest CO5 of all feature
extractors we considered. For full results see Table 1.

just to name several notable examples, though this
is by no means the only area of NLP where this is
happening. This trend leaves resource efficiency
and sustainability as an afterthought, a luxury that
social media platforms may not have due to the
sheer amount of data produced on social networks.
Resource-intensive models not only cost more but
also have a greater carbon impact—a consideration
that is increasingly important to make in a climate-
conscious society.

Ensemble methods are another common, though
more old-fashioned, technique for attaining per-
formance improvements. Ensemble learning com-
bines the results of several models and frequently
achieves state-of-the-art (SOTA) results in bench-
marks across NLP domains. These models are
often only outperformed by large language models
that have been pretrained on vast amounts of data.
Notable examples in NLP include the Graphene
algorithm for AMR Parsing (Hoang et al., 2021),

Proceedings of the 11th International Workshop on Natural Language Processing for Social Media, pages 9-20
November 1, 2023. ©2023 Association for Computational Linguistics

https://github.com/kamruzzaman15/Sentiment-Analysis-Feature-Extraction-
https://github.com/kamruzzaman15/Sentiment-Analysis-Feature-Extraction-

the SQuAD 2.0 question answering task (Rajpurkar
et al., 2018) where ensemble models consistently
beat single-models of comparable complexity. In
these performance-topping scenarios, the ensem-
ble learning methods lead to increased computing
costs and associated greenhouse gas emissions due
to the multiple models that make up the ensemble.

In this paper, we investigate the relationships be-
tween system performance, computing costs, and
environmental costs while considering both large
pretrained models and ensembling methods to find
an accurate view of the trade-offs that we make
when we select one model over another. Perfor-
mance analysis in the literature often limits its view
to only measuring the quality of the output (e.g.,
accuracy), ignoring both real-world resource con-
straints such as time and memory requirements
and the relative environmental impact of using one
model over another.

We use the task of document-level sentiment
analysis as a case study. This ensures that the ex-
periments stay within the scope of a single paper
and that we avoid an explosion of experimental
settings. Social networks produce huge amounts of
sentiment-rich data in various forms, such as com-
ments, reviews, and customer service chat, which
are difficult to parse manually. Sentiment analy-
sis is a critical tool for providing a global view of
sentiment on a social media platform.

In our investigation, we use three different re-
view datasets and consider nine feature extraction
methods, two ensembling methods, and three stan-
dalone models. The wide range of datasets and
methods ensures we can identify broad trends and
make replicable conclusions.

This paper’s contributions are the following.

* We investigate the relationship between per-
formance, resource use, and environmental
impact in sentiment analysis by measuring ac-
curacy, end-to-end runtime, memory usage,
energy expenditure, and generated CO9 esti-
mates for a broad range of models that previ-
ous literature has shown to be appropriate for
this task.

* We find that although modern neural systems
can outperform other methods in accuracy,
this comes at a considerable cost in other re-
sources (time, memory, and energy). The
performance advantage of large neural mod-
els over other methods shrinks on smaller
datasets, making alternatives more appealing.

10

¢ For most of the scenarios that we tested, we
find that FastText with a Support Vector Ma-
chine (SVM) classifier or a frozen RoOBERTa
model (no finetuning) alongside FastText and
an SVM classifier achieves strong perfor-
mance while greatly reducing runtime and
energy expenditure.

Figure 1 demonstrates all three points for feature
extractors on the IMDB review dataset. It shows
how accuracy and carbon emissions change across
feature extractors, including the extreme carbon
emissions cost of the fine-tuned RoOBERTa model
and the balanced accuracy and emissions of the
RoBERTa+FastText feature extractor.

2 Related Work

Strubell et al. (2019) revealed that recent NLP ad-
vancements have come with significant financial,
energy, and environmental costs. Hershcovich et al.
(2022) suggest that addressing this issue requires an
emphasis in promoting climate transparency in re-
search. In this vein, Pranesh and Shekhar’s (2020)
analysis clearly reveals resource efficiency differ-
ences in several text classification models. Their
analysis, however, did not include now-prevalent
LLMs and only considered memory efficiency.
Bannour et al. (2021) brought CO2 measurement
into such model comparison and recommended ML
CO2 (Lacoste et al., 2019) as a convenient carbon
tracking tool. ML COs has since developed into
codecarbon (Lottick et al., 2019), which we use for
our experiments.

Previous studies in sentiment analysis have inves-
tigated a wide range of methodologies, including
traditional machine learning models, deep machine
learning models, and various feature extraction
strategies. Dataset-based feature extraction tech-
niques such as bag-of-words (BOW), TF-IDF, and
n-grams had historically been popular in sentiment
analysis. Similarly, FastText, GloVe, and word2vec
were popular pretrained word embeddings in senti-
ment analysis and other NLP classifications alike.
Zhou et al. (2022) proposed a model that uses the
double word embedding (DWE) method for sen-
timent classification, where GloVe and word2vec
are used in combination for input. Alharbi et al.
(2021) and Goularas and Kamis (2019) focused
on pretrained word embedding models with neural
networks. Alharbi et al. (2021) compared GloVe,
word2vec, and FastText word embedding models
with various RNN architectures. Goularas and

Kamis (2019) considered GloVe and word2vec em-
beddings with multiple CNN and RNN architec-
tures. They proposed a method of combining mul-
tiple CNNs with a biLSTM using GloVe embed-
dings as input, which they showed to outperform
the other configurations in terms of accuracy.

3 Methodology

We separate our models into two broad categories.
One category contains models based on an arbi-
trary combination of a feature extractor and a clas-
sifier. The other category contains standalone mod-
els where at least one of these two components
is inherent to the model design. The input for all
models is preprocessed in the same manner and
all models are trained to produce a binary senti-
ment polarity classification. Figure 2 illustrates the
high-level data flow from the review dataset to the
output for the two types of models. For data prepro-
cessing details see Appendix A. See Appendix B
for a discussion of feature extractors, classifiers,
and standalone models that were abandoned from
our final evaluation. The remainder of this section
provides brief introductions to each of the feature
extractors, classifiers, and standalone models that
we consider in our experiments.

3.1 Feature Extraction Methods

Bag of Words (BOW). BOW is a classic, simple
approach to converting text data into a vector that
can be input into an ML model. Each document is
represented by a V' dimensional vector, where V' is
the vocabulary size. Each dimension value corre-
sponds to the number of times the word appears in
the text.

Term Frequency-Inverse Document Frequency
(TF-IDF). TF-IDF combines the term frequency
and inverse document frequency to produce a value
representing the relevance of a word to a docu-
ment (Salton and Buckley, 1988). The term fre-
quency is the number of times the word appears
in the text. The inverse document frequency is the
inverse of the number of documents that the word
appears in. This ensures that words that are com-
mon across texts, such as function words, are not
over-valued. TF-IDF unfortunately may become
computationally expensive for large vocabularies.

Continuous Bag of Words (CBOW). The
CBOW model encodes the meaning of words using
the several surrounding context words as feedback

11

(Mikolov et al., 2013). From this, it predicts con-
textually correct sentences. As CBOW models are
able to make use of more data during the input
than the Skip-gram model (Mikolov et al., 2013),
they can capture the word vectors efficiently and
hence perform better than Skip-gram. We trained
our CBOW model using the word2vec module in
the Gensim library (Rehiifek and Sojka, 2010).

FastText. FastText (Bojanowski et al., 2016;
Joulin et al., 2017) is a highly engineered li-
brary by Facebook for representation learning and
classification exploiting subword information and
quantization-based memory optimizations. We use
a supervised learning algorithm to train FastText
on our specific training data, which allows us to
learn word embeddings from each dataset. Further
details of this system are beyond the scope of this

paper.

Double Word Embedding (DWE). DWEs were
introduced by Zhou et al. (2022) as a method to
obtain combine the benefits of two different word
embedding schemes using a convolution layer with
piece-wise max pooling. We use DWEs combin-
ing FastText and GloVe whereas Zhou et al. (2022)
used GloVe and word2vec based on preliminary
experiments on all combinations of the three word
embedding models. Word-level GloVe vectors
are mean-pooled to obtain document-level vectors.
FastText vectors are obtained according to the same
approach as described in the FastText section.

CNN. Our convolutional neural network (CNN)
feature extractor has the following architecture,
which is described below. Each convolution layer
is followed by ReLLU activation, max pooling, and
dropout. For training, after the final convolution
layer (+ aforementioned post-convolution steps)
the data is fed through two dense layers and a sig-
moid. When used as a feature extractor, the feature
embeddings are pulled from the last convolution
layer, before the max pooling stage, but after ReLU
activation. These are fed into the classifiers. For the
IMDB dataset, we use two convolution layers. For
the smaller restaurant and product review datasets,
we only use a single convolution layer.

LSTM. Long short-term memory net-
works (LSTMs) are designed to learn long-term
dependencies in the input, such as those seen in
text data. Our LSTM design is similar to our CNN
feature extractor. Each LSTM layer is followed

Feature Extraction Classifier

BOW FastText LSTM — SVM
TF-IDF DWE RoBERTa Woting
cBOW CNN RoBERTa+FastText Boosting]

Review

Dataset » Preprocessing

I -

Standalone Models

CNN-LSTM
DistilBERT
RoOBERTa

Figure 2: High-level data flow from the review dataset to the output for models composed of feature extractors with

classifiers and standalone models.

by a dropout layer. During training, prediction
is done after two additional dense layers and
a sigmoid activation. When used as a feature
extractor, features are pulled from the last LSTM
layer before dropout and fed into classifiers. We
use two LSTM layers for the IMDB dataset and
one layer for the two smaller datasets.

RoBERTa. We use the 12th hidden layer for the
[CLS] token of the RoBERTa-base model as the
feature vector. When used as a feature extractor,
RoBERTa is fully frozen and never trained.

RoBERTa + FastText. FastText and RoBERTa
feature vectors—as described in FastText and
RoBERTa section above—are concatenated to cre-
ate a joint representation of the input text data.

3.2 Classification Models

SVM. Support vector machines (SVMs) select
the hyperplane that divides the data points into la-
beled classes while maintaining a margin between
the hyperplane and the nearest data point(s) (Hearst
et al., 1998). For binary classification, this hyper-
plane is positioned to accomplish the maximum
separation between the two classes, resulting in the
largest possible margin. SVMs are popular clas-
sifiers, especially in machine learning application
domains, due to their robustness to small dataset
sizes.

Voting Ensemble. Voting ensembles take the pre-
dictions (“votes”) from member classifiers and
select the winning vote. We use a soft-voting
method described by Witten et al. (2011), where
each member classifier produces a probability dis-
tribution over the possible classes, and the class
with the highest average probability wins. We use
SVM, Random Forest (RF), and Multinomial Naive

Bayes (MNB) as the member classifiers in our ex-
periments.

Boosting Ensemble. Boosting is a sequential en-
semble process for changing the weight of obser-
vations based on the previous classifications iter-
atively. When an observation is wrongly labeled,
the weight of the observation rises. This elimi-
nates dataset bias error and generates robust sta-
tistical models. During preparation, the Boosting
algorithm assigns weights to each of the resulting
models. For boosting, we use XGBoost (eXtreme
Gradient Boosting) (Chen and Guestrin, 2016).

3.3 Standalone Models

In initial experiments, we found that changing the
classification head led to a consistent decrease in
performance for certain neural models. This sug-
gests that the feature extraction stages of these mod-
els are interwoven with the classification method
over which they are trained. In these cases, we
keep both the feature extraction and classification
components together without swapping out classi-
fication heads.

CNN-LSTM. Following Goularas and Kamis
(2019), we use a combination of CNN and LSTM
to extract the local and global characteristics in the
input text. Each CNN layer is followed by ReLU
activation, max pooling, and dropout. The first
CNN layer takes randomly initialized vocabulary
vectors as input. The LSTM layers then run on top
of this. Each LSTM layer is followed by dropout.
Finally, two dense layers and a sigmoid activation
are used for prediction. For the IMDB dataset,
we use two CNN and LSTM layers each. For the
restaurant and product review datasets, we only use
a single layer each.

IMDB Review Dataset
Feature Extraction Method | Classifier | Accuracy | Time (min) | Memory (MB) | Energy (Wh) | COa2(g.)
SVM 87.86 18.75 178.72 3.66 1.701
BOW Voting 88.06 82.01 181.61 16.02 7.442
Boosting 85.40 0.16 152.82 0.03 0.015
SVM 90.11 22.87 179.36 4.46 2.075
TF-IDF Voting 89.82 103.93 182.28 20.30 9.432
Boosting 85.56 0.22 154.21 0.04 0.020
SVM 61.43 3.60 106.41 0.70 0.327
CBOW Voting 61.26 10.29 106.36 2.011 0.934
Boosting 60.10 2.12 79.07 0.41 0.192
SVM 88.64 0.34 65.58 0.06 0.031
FastText Voting 81.25 2.38 66.06 0.46 0.216
Boosting 88.40 0.08 60.69 0.01 0.007
SVM 88.72 5.24 745.46 1.02 0.476
DWE Voting 86.47 11.22 732.16 2.19 1.018
Boosting 88.73 3.25 710.59 0.63 0.295
SVM 89.59 89.82 6519.82 17.54 8.151
CNN Voting 89.65 337.81 6519.87 65.98 30.655
Boosting 88.63 11.16 5150.24 2.81 1.013
SVM 88.62 123.10 361.67 24.04 11.172
LSTM Voting 88.37 126.95 362.14 24.80 11.521
Boosting 87.87 122.45 355.43 23.92 11.112
SVM 83.88 54.59 774.55 10.66 4.953
RoBERTa Voting 85.78 68.07 732.08 13.29 6.176
Boosting 84.60 43.42 632.45 8.48 3.941
SVM 89.51 57.47 789.90 11.22 5.214
RoBERTa + FastText Voting 89.27 69.01 747.43 13.45 6.250
Boosting 88.94 44.80 691.29 8.75 4.065
[Standalone RoBERTua Baseline [91.02 | 997.88 | 606.14 | 201.05 | 90.554 |

Table 1: Results of IMDB review dataset on various combinations of feature extraction methods and classifiers.

RoBERTa-base. When used as a standalone
model, we jointly fine-tune all layers of the
RoBERTa base model and train the classifier on
each dataset. We obtain a RoOBERTa base model
classifier using the Huggingface (Wolf et al., 2020)
AutoModel feature for sequence classification.

DistilBERT-base-uncased. We use DistilBERT
base uncased model as a standalone model in our
experiment. This model is fine-tuned with an
added classification layer in the same manner as
the ROBERTa base model.

4 Experimental Setup

All experiments were conducted on a single work-
station in Florida, USA. For more details of the
workstation configuration see Appendix C.

Datasets. We evaluate our models on three
different binary sentiment classification datasets.
We evaluate our model configurations on the
IMDB movie review dataset (Maas et al., 2011),
the “Restaurant Reviews in Dhaka, Bangladesh”
dataset (Adhikary, 2019), and the “Grammar and
Online Product Review” dataset (Datafiniti, 2018).
Following Zhang et al. (2015) and Agarwal et al.

13

(2011), we construct a binary classification task
from restaurant and product review datasets by la-
beling 1-star samples as negative polarity and 5-star
samples as positive polarity examples. For more
details of datasets see Appendix D. In all of our
experiments, 80% of the data is used for training
and 20% for testing.

Model Parameters. The context window size
of the CBOW model is set to 15 and the min-
count is set to 1 so that it considers all words. For
SVM, MNB, and RF, we use the default param-
eters provided by the scikit-learn library (Pe-
dregosa et al., 2011). For the XGBoost classifier,
we use the default parameters of the xgboost li-
brary (Chen and Guestrin, 2016). We adjust the
non-pretrained neural models based on different
sizes of the datasets. For more details about these
parameters see Appendix E.

Training Parameters. For the CNN-LSTM mod-
els, we choose the number of epochs between 2 and
5 depending on the dataset size. For the restaurant
and product review dataset, the batch size is 32
and for IMDB, the batch size is 16. Adaptive Mo-
ment Estimation is used as an optimizer with binary

100

80
70
60
50
40
30
20
10

0

P

$ ol @
) & o
& & &8 F & t@ &
« 23 &
Ey
&
W Average Accuracy
14
12
10
8
&
4
2
o
& & & o & & @
O P A N T
4“5 q9 “.59
&
&

Average CO; Emission (g.)

165
150
135
120
105

%0
75
60
45
30
15 I
0 - — -
& & & & & @
s) S 8] A8 & - P &
€ & & £ 9 LAY
L &
h
&
= Average Execution Time (min)
7000
6300
5600
4900
4200
3500
2800
2100
1400
700
0 = = — N = 0 N
& S Y I
£ < & e
< & & 9 $ & 8

m Average Memory Usage (MB)

Figure 3: Feature extraction results for the IMDB dataset, averaged across classifiers.

cross-entropy loss. The CNN and LSTM feature
extractors are only trained for 1 epoch each. The
fine-tuned RoOBERTa-base model is trained with a
learning rate of le-1, accumulation steps of 2, and
batch size of 8. We train it for 3 epochs using the
AdamW optimizer. DistilBERT is trained with a
batch size of 16. Otherwise, the parameters are the
same as RoBERTa.

Evaluation Metric. To evaluate our models we
measure accuracy, end-to-end execution time or
total time, and memory measurement that includes
the memory usage of both the model itself (model
size) and the memory consumed during the forward
pass or inference, electricity consumption, and CO2
emissions. We use codecarbon (Lottick et al., 2019)
to estimate the carbon emissions.

5 Results & Analysis

The full results on the IMDB, restaurant, and prod-
uct review datasets for various feature extraction-
classifier combinations are provided in Table 1,
Table 2, and Table 3, respectively, alongside the
standalone ROBERTa model. In every table, CO4
emissions are measured in grams, energy consump-
tion in Watt-hours (Wh), time in minutes, and mem-
ory in megabytes (MB). Figure 3 plots the average
accuracy, COaq, time, and memory usage for each
feature extraction technique on the IMDB dataset.
The same plot for the restaurant review dataset (Fig-
ure 4) is provided in Appendix F. Looking at only

the accuracy numbers, we find that the fine-tuned
RoBERTa model outperforms every other config-
uration in every dataset. However, upon closer
inspection, we find that the story is not so simple.

Feature Extractors and Classifiers. In Table 1,
we see that the standalone RoBERTa model
achieves the best accuracy of 91.02%, followed
by TF-IDF, FastText, and RoBERTa + FastText
feature extractors with the SVM classifier, which
achieve 90.11%, 88.64%, and 89.51%, respectively.
If we take a look at the carbon emissions, these
models do considerably better than the standalone
RoBERTa model. TF-IDF with SVM results in 43
times less carbon emissions with only a 0.91% ac-
curacy reduction. Similarly, RoOBERTa + FastText
with SVM produces 17 times less carbon emissions,
while DWE with boosting produces 306 times less
carbon emission, resulting in 1.51% and 2.29% ac-
curacy reductions, respectively. When taking these
other resources into consideration, FastText may be
a better option than the fine-tuned RoOBERTa model.
The CNN feature extractor achieved competitive ac-
curacy but has considerable memory requirements.
It is also worth mentioning that end-to-end runtime
and CO» for CNN as a feature extractor with SVM
and Voting is more than the RoOBERTa as a feature
extractor because the feature layer of CNN is com-
putationally intensive for its number of filters and
kernels.

Table 2 shows similar results for the restaurant

14

Restaurant Review Dataset

Feature Extraction Method | Classifier | Accuracy | Time (min) | Memory (MB) | Energy (Wh) | CO2 (g.)
SVM 94.51 0.041 6.74 0.008 0.0037
BOW Voting 95.76 0.233 7.24 0.046 0.0211
Boosting 94.80 0.008 6.10 0.002 0.0007
SVM 95.62 0.045 6.90 0.009 0.0040
TF-IDF Voting 95.81 0.248 7.39 0.048 0.0225
Boosting 94.56 0.008 6.29 0.002 0.0007
SVM 77.88 0.078 12.69 0.015 0.0071
CBOW Voting 78.75 0.347 12.92 0.068 0.0315
Boosting 80.33 0.052 10.04 0.012 0.0054
SVM 96.01 0.007 6.41 0.001 0.0006
FastText Voting 92.11 0.101 6.77 0.020 0.0092
Boosting 95.91 0.011 6.18 0.002 0.0010
SVM 96.10 2.055 553.84 0.402 0.1866
DWE Voting 93.79 2.259 552.60 0.442 0.2051
Boosting 95.86 2.008 550.33 0.393 0.1824
SVM 96.05 4.029 3044.51 0.787 0.3655
CNN Voting 95.62 16.168 3044.75 3.157 1.4666
Boosting 95.28 2.751 2641.68 0.537 0.2496
SVM 94.85 5.652 62.40 1.104 0.5129
LSTM Voting 95.14 6.161 62.63 1.204 0.5591
Boosting 95.24 5.608 62.06 1.096 0.5089
SVM 80.24 5.133 149.62 1.003 0.4657
RoBERTa Voting 92.12 5.826 142.68 1.138 0.5286
Boosting 93.84 4.902 130.15 0.957 0.4447
SVM 96.53 5.921 151.01 1.156 0.5372
RoBERTa + FastText Voting 96.25 6.129 150.92 1.197 0.5561
Boosting 96.15 5.739 142.47 1.121 0.5207
Standalone RoBERTa Baseline [96.69 | 160.612 | 77.94] 31.362 [14.5701 |
Table 2: Results of restaurant review dataset on different feature extraction methods.
Product Review Dataset
Feature Extraction Method | Classifier | Accuracy | Time (min) | Memory (MB) | Energy (Wh) | CO2 (g.)
SVM 91.29 0.078 9.75 0.015 0.0071
BOW Voting 91.29 0.392 10.27 0.077 0.0356
Boosting 91.05 0.012 8.59 0.002 0.0011
SVM 92.83 0.081 9.90 0.016 0.0074
TF-IDF Voting 92.08 0.403 10.41 0.079 0.0365
Boosting 91.57 0.012 8.79 0.003 0.0011
SVM 75.88 0.120 14.83 0.023 0.0109
CBOW Voting 78.79 0.432 14.89 0.085 0.0392
Boosting 80.33 0.094 10.78 0.018 0.0085
SVM 93.44 0.010 7.33 0.002 0.0010
FastText Voting 90.73 0.136 7.63 0.027 0.0123
Boosting 93.39 0.014 6.82 0.003 0.0013
SVM 92.93 2.092 557.20 0.409 0.1899
DWE Voting 90.91 2.346 554.76 0.459 0.2130
Boosting 93.82 2.070 551.72 0.405 0.1880
SVM 92.69 5717 3297.52 1.117 0.5186
CNN Voting 92.88 22.072 3326.16 4.324 1.9965
Boosting 92.04 3.648 2714.40 0.714 0.3306
SVM 92.41 6.006 65.20 1.173 0.5452
LSTM Voting 92.97 6.144 65.45 1.200 0.5576
Boosting 92.88 5.933 64.67 1.159 0.5384
SVM 84.64 5.352 166.12 1.045 0.4856
RoBERTa Voting 87.68 6.611 151.27 1.291 0.5998
Boosting 90.26 5.114 133.97 0.999 0.4640
SVM 94.14 6.269 156.73 1.224 0.5688
RoBERTa + FastText Voting 93.49 6.837 156.28 1.335 0.6203
Boosting 93.53 6.163 146.63 1.221 0.5682
Standalone RoBERTa Baseline [94.66 [213.961 [95.89 [41.779 [19.4092]

Table 3: Results of product review dataset on different feature extraction methods.

15

Standalone Models
Dataset Models Accuracy | Time (min) | Memory (MB) | Energy (Wh) | CO2 (g.)
CNN-LSTM 88.41 39.44 328.97 7.705 3.579
IMDB DistilBERT 89.92 498.29 614.11 97.310 45.207
RoBERTa 91.02 997.88 606.14 201.054 90.554
CNN-LSTM 96.03 2.27 58.33 0.444 0.206
Restaurant | DistilBERT 96.57 76.01 71.18 14.845 6.896
RoBERTa 96.69 160.61 77.94 31.362 14.570
CNN-LSTM 92.13 2.78 60.66 0.543 0.252
Product DistilBERT 93.89 105.59 91.53 20.621 9.580
RoBERTa 94.66 213.96 95.89 41.779 19.409

Table 4: Results of standalone models on the three datasets.

review dataset. ROBERTa achieves the highest ac-
curacy, while FastText, DWE, and RoBERTa +
FastText feature extractors with the SVM classi-
fier achieve nearly the same performance with ma-
jor carbon emission reductions. DWE with SVM
produces 78 times less carbon with only a 0.59%
reduction in accuracy when compared to fine-tuned
RoBERTa. Similarly, ROBERTa + FastText with
SVM and FastText with SVM produce 27 times
and 24,283 times less carbon emissions, while only
losing 0.16% and 0.68% in accuracy, respectively.

The results from the product review dataset (Ta-
ble 3) further solidify our observations so far. DWE
with boosting, RoBERTa + FastText with SVM,
and FastText with SVM result in 103 times, 34
times, and 19,409 times less carbon emissions with
only 0.84%, 0.52%, and 1.22% accuracy reduc-
tion, respectively, when compared to fine-tuned
RoBERTa.

Standalone Models. The results of our stan-
dalone models are presented in Table 4. For IMDB
review, RoOBERTa requires almost 17 hours to com-
plete the task, consuming 201.05 Wh of electricity
which produces 90.554g of CO3. DistilBERT takes
almost 9 hours and emits 45.207 g COy which
is comparatively much lower than the RoBERTa
model.

CNN vs. CNN-LSTM. We also find that using
CNN as a feature extractor produces slightly bet-
ter results than the CNN-LSTM model, though
at the cost of higher memory use.” For example,
in the IMDB review dataset, CNN with the vot-
ing ensemble attains 89.65% accuracy whereas the
CNN-LSTM standalone model achieves 88.41%
accuracy.

2We also tried CNN and LSTM as standalone models but
the results were worse than the CNN-LSTM model.

16

6 Conclusion & Future Work

We contextualized the accuracy of sentiment anal-
ysis systems within their computing resource re-
quirements: runtime, maXimum memory use, en-
ergy expenditure, and estimated COy emissions.
As expected, a finetuned LLM achieves the high-
est accuracy in all three datasets. However, this
comes at the cost of tens to thousands of times
the cost in terms of other resources (time, memory,
energy, and CO3) when compared to other configu-
rations which result in accuracy reductions of less
than 1%. We find that the FastText feature extractor
with an SVM classifier, in particular, achieves good
accuracy scores while having minimal resource re-
quirements.

As such, for the vast majority of use cases,
we recommend this configuration (concatenat-
ing the frozen ROBERTa embeddings to FastText
(RoBERTa+FastText) w/ SVM) where one must
balance resource costs with output quality. It pro-
vides strong accuracy scores without incurring
the extreme time and energy costs of fine-tuning
RoBERTa. Although our experiments only con-
sidered the task of sentiment analysis, we expect
that the major patterns would carry over to other
classification tasks to the degree that they have sim-
ilar dataset features (e.g., text length, dataset size,
difficulty, etc.). We encourage others to test this
hypothesis and provide insights into which tech-
niques best balance output quality with resource
usage in other NLP domains.

Due to our own resource constraints, our experi-
ments do not include the most cutting-edge LLM
models (e.g., GPT-3.5, LLaMa, etc.). The use and
deployment of these models are qualitatively dif-
ferent (e.g., prompting, RLHF, etc.) from those we
considered and thus are outside of the scope of this
paper. We leave this extension of our experiments
for future work.

Acknowledgements

This project was fully supported by the University
of South Florida.

References
Aniruddha Adhikary. 2019. Restau-
rant reviews in dhaka, bangladesh.

https://www.kaggle.com/tuxboy/
restaurant-reviews-in-dhaka-bangladesh.
Accessed: January 12, 2023.

Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow,
and Rebecca Passonneau. 2011. Sentiment analysis
of twitter data. In Proceedings of the Workshop on
Languages in Social Media, LSM *11, page 30-38,
USA. Association for Computational Linguistics.

Najla M Alharbi, Norah S Alghamdi, Eman H Alkham-
mash, and Jehad F Al Amri. 2021. Evaluation of sen-
timent analysis via word embedding and rnn variants
for amazon online reviews. Mathematical Problems
in Engineering, 2021:1-10.

Nesrine Bannour, Sahar Ghannay, Aurélie Névéol, and
Anne-Laure Ligozat. 2021. Evaluating the carbon
footprint of NLP methods: a survey and analysis of
existing tools. In Proceedings of the Second Work-
shop on Simple and Efficient Natural Language Pro-
cessing, pages 11-21, Virtual. Association for Com-
putational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
page 785794, New York, NY, USA. Association for
Computing Machinery.

Datafiniti. 2018. Grammar and online prod-
uct reviews. https://data.world/datafiniti/
grammar-and-online-product-reviews. Ac-
cessed: January 10, 2023.

17

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Dionysis Goularas and Sani Kamis. 2019. Evaluation of
deep learning techniques in sentiment analysis from
twitter data. In 2019 International Conference on
Deep Learning and Machine Learning in Emerging
Applications (Deep-ML), pages 12—-17.

M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and
B. Scholkopf. 1998. Support vector machines. IEEE
Intelligent Systems and their Applications, 13(4):18-
28.

Daniel Hershcovich, Nicolas Webersinke, Mathias
Kraus, Julia Bingler, and Markus Leippold. 2022.
Towards climate awareness in NLP research. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2480-
2494, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Thanh Lam Hoang, Gabriele Picco, Yufang Hou, Young-
Suk Lee, Lam Nguyen, Dzung Phan, Vanessa Lopez,
and Ramon Fernandez Astudillo. 2021. Ensembling
graph predictions for amr parsing. In Advances in
Neural Information Processing Systems, volume 34,
pages 8495-8505. Curran Associates, Inc.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427431, Valencia, Spain. Association
for Computational Linguistics.

Alexandre Lacoste, Alexandra Luccioni, Victor
Schmidt, and Thomas Dandres. 2019. Quantifying
the carbon emissions of machine learning. Workshop
on Tackling Climate Change with Machine Learning
at NeurIPS 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Kadan Lottick, Silvia Susai, Sorelle A. Friedler, and
Jonathan P. Wilson. 2019. Energy usage reports:
Environmental awareness as part of algorithmic ac-
countability. Workshop on Tackling Climate Change
with Machine Learning at NeurIPS 2019.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.

https://www.kaggle.com/tuxboy/restaurant-reviews-in-dhaka-bangladesh
https://www.kaggle.com/tuxboy/restaurant-reviews-in-dhaka-bangladesh
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://data.world/datafiniti/grammar-and-online-product-reviews
https://data.world/datafiniti/grammar-and-online-product-reviews
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/Deep-ML.2019.00011
https://doi.org/10.1109/Deep-ML.2019.00011
https://doi.org/10.1109/Deep-ML.2019.00011
https://doi.org/10.1109/5254.708428
https://doi.org/10.18653/v1/2022.emnlp-main.159
https://proceedings.neurips.cc/paper_files/paper/2021/file/479b4864e55e12e0fb411eadb115c095-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/479b4864e55e12e0fb411eadb115c095-Paper.pdf
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://www.aclweb.org/anthology/P11-1015

In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142—150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Tomads Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In st International Conference
on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings.

Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume I (Long Papers), pages 2227-2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Raj Pranesh and Ambesh Shekhar. 2020. Analysis
of resource-efficient predictive models for natural
language processing. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language
Processing, pages 136—140, Online. Association for
Computational Linguistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784-789,
Melbourne, Australia. Association for Computational
Linguistics.

Radim Rehiifek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45-50, Val-
letta, Malta. ELRA.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation Processing & Management, 24(5):513—
523.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645-3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

18

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-
Ching Chang, Igor Krivokon, Will Rusch, Marc
Pickett, Pranesh Srinivasan, Laichee Man, Kathleen
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc
Le. 2022. Lamda: Language models for dialog appli-
cations.

Tan H. Witten, Eibe Frank, and Mark A. Hall. 2011.
Data Mining: Practical Machine Learning Tools and
Techniques, 3rd edition. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. CoRR, abs/1509.01626.

Minggiang Zhou, Dan Liu, Yanhui Zheng, Qingsheng
Zhu, and Ping Guo. 2022. A text sentiment classifi-
cation model using double word embedding methods.
Multimedia Tools and Applications, pages 1-20.

A Data Preprocessing

For data preprocessing, we normalize all the
texts by converting them into lowercase, remov-
ing URLs, HTML tags, email addresses, non-
alphabetic characters, all the special characters, and
stop words, tokenizing the text data, and lemma-
tizing the text. We also transform contractions to
their expanded full form to maintain uniformity.

B Abandoned Methods

Early in our experiments, we also considered
1) GloVe, ii) Skip-gram, and iii) lower layers (non-

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2020.sustainlp-1.18
https://doi.org/10.18653/v1/2020.sustainlp-1.18
https://doi.org/10.18653/v1/2020.sustainlp-1.18
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626

12th) of RoBERTa-base as feature extractors, bag-
ging as a classifier, and ALBERT as a standalone
model. However, quite quickly we found that these
methods consistently gave poor accuracy results or
results that were not qualitatively different from a
feature extractor already considered in our experi-
ments.

C Workstation configuration

GPU: RTX 3090 (24GB VRAM); RAM: 32 GB (2x
16GB Corsair CMW32GX4M273600C18); CPU:
AMD Ryzen 9 5900X 12-Core Processor.

D Dataset Details

The IMDB movie review is a balanced dataset of
25k samples for each positive and negative label.
The restaurant review dataset is collected from 338
restaurants in Dhaka, Bangladesh and the prod-
uct review dataset is procured from 1,000 different
products. These original datasets use 5-star rat-
ing systems and we use 1-star samples as negative
polarity and all 5-star samples as positive polar-
ity examples. This leads to 8,621 positive reviews
and 2,241 negative reviews in the restaurant review
dataset. As the product review dataset is highly
imbalanced and we seek to investigate the effect
of dataset size in our experiments, we further sub-
sample the positive reviews in the product review
dataset down to 6,981 positive reviews, while keep-
ing all 3,701 negative reviews.

E Model Parameters Details

Regarding the non-pretrained neural models, we
use a dropout rate of 0.2, maximum sequence
lengths of 512, and LSTM layers with 128 units.
For the restaurant and product review datasets, the
vocabulary size of embedding layers is 10,000 and
the CNN layers have a kernel size of 3, with 128
filters. For the IMDB review dataset, the kernel
size and number of filters in the first convolution
layer are 5 and 300, respectively, while those for
the second convolution layer are 3 and 100. The
size of the vocabulary is 30,000.

Additionally, we also try different parameters
of SVM, XGBoost, MNB, and RF but the default
one got the more prominent result compared to
others. For example, when we use RF in our
voting ensemble method, we also try the number
of estimators=200, random state=1200, and crite-
rion="entropy’.

19

The RoBERTa base model comes pretrained
with 12 transformer layers, 12 attention heads, and
a hidden layer size of 768. DistilBERT base un-
cased model has 6 layers with 12 attention heads.
Other tested hyperparameters for LLMs are repre-
sented in Table 5

F Average Result Diagram for Restaurant
Review Dataset

[y

5885833888

0.8
0.7
06
05
04
03
02
01

o

Hyperparameter Tested Values Optimal Value
Optimizer Adam, Nadam, SGD Adam
Epochs 2,3,4 3
Learning Rate le-1, Se-1, 2e-1 le-1
Batch Size 4,8,16 8

Table 5: Tested Hyperparameters for LLMs other than Specified Particularly

& &

& > = 5 3 >
€F £ ﬁ f ,f'éd} & & o & & Qp‘g,é ”45&
Qgéé @Qé\
m Average Accuracy m Average Execution Time (min)
3500
3000
2500
2000
1500
1000
> |
O — — — — — - -
S & s & e & & &g & S
& & 69"‘@3 & & o Qp@“ééf § & @5“&6 & & fﬁl“ng
& &
& &

Average CO; Emission (g.)

O R MNWBENO N OO

= Average Memory Usage (MB)

Figure 4: Average Results Diagram of Restaurant Review Dataset

20

