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Abstract

This paper presents the submission
by the MeLeL team to the SIGMOR-
PHON-UniMorph Shared Task on Typo-
logically Diverse and Acquisition-Inspired
Morphological Inflection Generation Part 3:
Models of Acquisition of Inflectional Noun
Morphology in Polish, Estonian, and Finnish.
This task requires us to produce the word
form given a lemma and a grammatical case,
while trying to produce the same error-rate
as in children. We approach this task with
a reduced-size character-based transformer
model, multilingual training and an upsampling
method to introduce bias.

1 Background

The SIGMORPHON Shared Task proposed a cross-
linguistics modelling of child language acquisition
to mediate between the theories of the acquisition
of inflectional morphology. Here, unlike previous
shared tasks of morphology inflection, the goal is
to build a model that shows childlike item-by-item
error rates, instead of generating the well-formed
inflection.

1.1 Morphological Acquisition

The way that a child or an adult acquires a lan-
guage is different. Therefore, the way they make
mistakes is different. In the past decades there
were many studies about the way children acquire
a language, but most of the research focus only one
language. Granlund et al. (2019) performed a large-
scale cross-linguistics study of three languages—
Finnish, Estonian and Polish. The research’s goal
was to find the aspects that indicate what makes
children inflect words correctly.

The research found two such aspects: the first
is surface-form frequency, where the greater the
input frequency of the targeted inflectional form
(i.e., the exact surface form that the child is at-
tempting to produce in a given context; e.g., Polish
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ksiazki, ‘book-genitive’) is, the greater the speed
and accuracy of production or recognition. The sec-
ond is phonological neighborhood density (PND),
where the greater the number of “neighbours” or
“friends”—nouns that are similar in both the base
(nominative) form and the relevant target form (e.g.,
ksiazka — ksiazki; doniczka — doniczki; gruszka
— gruszki)—the greater the speed and accuracy of
production or recognition.

They also describe how these aspects work to-
gether: the effect of phonological neighbourhood
density is greater for items with low surface-form
frequency. Since low-frequency items are less
likely to be successfully retrieved from memory,
they must be generated by phonological analogy.

1.2 Modeling Acquisition of Inflectional Noun
Morphology

The task of morphological inflection (Cotterell
et al., 2017; Kodner et al., 2022) is defined as find-
ing an inflected form for a given lemma and list of
morphosyntactic attributes. Most state-of-the-art
systems for the tasks to date center on character-
level transduction and representation, and naturally
attempt to predict the correct inflection with maxi-
mum performance. The current task, by contrast,
requires imperfect generation by design, and thus
solicits different approaches than state-of-the-art.
The data format in this task also differs from pre-
vious iteration in that it is more faithful to language
children are exposed to. Instances are limited to
single-feature inflection of lemmas into various
grammatical cases (e.g., accusative, nominative,
or genitive), and the lemma and the correct inflec-
tion are given in both orthographic and phonetic
form (using IPA). In addition, the surface-form fre-
quency of the lemma is provided, and the test set
also contains children’s error-rate of the inflection.
The dataset is split such that lemmas in the training
set do not appear in the test set (Goldman et al.,
2022). The task expects as system output a list of
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Figure 1: Wu et al. feature invariance (taken from the original paper)

top-10 inflections in IPA, alongside their probabili-
ties. As an example, the following is a training data
instance for the Polish lemma zdrowie “health”:
zdrowie GEN zdrowia zdrovje zdrovja 6,

where the columns represent (in order): the lemma
in standard orthography, grammatical case, the
inflection in standard orthography, the lemma in
IPA, the inflection in IPA and the surface-form fre-
quency.

1.3 Evaluation

In addition to exact-match accuracy and edit dis-
tance, correlation-based evaluation was also used
for this task. In our development stage, we ex-
tracted the top 10 predictions for each instance with
their respective probabilities, using beam search.
We then calculated the correlation (both Spear-
man’s and Pearson’s) of the correct inflection’s
error rate and the model’s outputs’ probabilities.
Due to the data format, this evaluation could only
be done on the test set. When the correct form is
not in top 10 predictions, we assign it zero proba-
bility.

2 Model

The base model that we used is the current state-
of-the-art character-based transformer model (Wu
et al., 2021). We then modified it to fit the task.
The code from the model is forked from the pub-
lic repository! with changes relevant to this task,
meaning that the learning rate scheduler, early stop-
ping and various training strategies are the same.
Our model accepts the lemma in its I[PA form.
The purpose of the original base model was to
inflect a lemma form to the correct inflection mor-
phological properties given as input. Our settings
differ in that the model should inflect according
to the children’s behavior, and not to the correct

"https://github.com/shijie-wu/
neural-transducer

inflection. We can do that by modifying the model
to work with both of the features introduced above,
namely PND and surface-form frequency. We
select our model based on the best epoch according
to the overall best evaluation (see §1.3) on the test
sets.

2.1 Base Model

The transformer (Vaswani et al., 2017) is a
sequence-to-sequence model, used for tasks such as
machine translation. The transformer-based model
we use as a basis for our task (Wu et al., 2021)
is tailored for character-level transduction in or-
der to be applied to tasks such as morphological
inflection and grapheme-to-phoneme prediction,
illustrated in Figure 1 (taken from the original pa-
per). Crucially, the input provided to the model is
the concatenation of the characters of the lemma
with the morphosyntactic attributes, assigning em-
beddings to each character and attribute. Their
variant, dubbed feature-invariant transformer,
differs from the original transformer in two aspects:
a smaller model and a feature-invariant architec-
ture.

Feature invariance In morphological inflection
tasks, the lemma is a sequence of characters
mapped to the inflection which is a different se-
quence of characters, to be predicted according
to the list of morphological attributes. The trans-
former model deals with sequences as they are
ordered. However, the portion of the input con-
sisting of a list of morphological attributes is un-
ordered; moreover, the distance between attributes
and the characters within the input is irrelevant.
These properties may lead to inconsistencies in data
representation and generalization when training a
sequence model so sensitive to input order. The
feature-invariant transformer therefore receives the
positional encoding of features as zeroes, and only
begins incrementing position count for the lemma’s
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System Accuracy Edit Distance Pearson’s Spearman’s
Baseline (Wu et al.) 1.0000 0 —0.029 —0.061
Base + Smaller Model .8812 0.229 0.078 —0.047
Base + Upsample .9890 0.015 —0.015 —0.087
Base + Multilingual 9978 0.002 —0.106 —0.259
Base + Smaller Model + Upsample .8099 0.359 0.286 0.237
Base + Smaller Model + Multilingual .6864 0.548 0.379 0.334
Base + Multilingual + Upsample .9890 0.013 —0.023 —0.318
Base + Small + Upsample + Multiling 5526 0.814 0.467 0.438

Table 1: Model variants’ results on the test set. Results for models not specified as multilingual are reported are the
macro-average for the three languages. Multilinugal models’ correlations are calculated on the concatenated test
sets of all three languages. The correlations are the metrics of interest. The system in bold was submitted to the

shared task.

characters. Additionally, a special token is used to
indicate whether a symbol is a word character or a
morphosyntactic attribute.

2.2 Surface Form Frequency

According to Granlund et al. (2019), one of the
attributes that correlate with accuracy in children is
the frequency of the form in the heard corpus they
are exposed to. Therefore, we chose to incorporate
this information in our model, by a combination of
methods, namely upsampling and surface form
frequency embeddings.

Upsampling We manipulate the training dataset
synthetically by upsampling each form in direct
proportion to the form-frequency as annotated in
the dataset. The way we upsample is that when
reading the raw dataset, we add the same sample ac-
cording to the value in the surface-form-frequency
column, meaning that if a sample (a lemma, mor-
phological feature and an inflection) has the value
n in the surface-form-frequency column, then it
will appear n times in the training set.

Surface-form frequency embedding Since in
the test set we cannot upsample, we need to also
utilize the form-frequency value by itself. We do
that by feeding the value of the surface-form fre-
quency into a linear layer, with the layer’s output
size the same as the other inputs’ embedding dimen-
sion, and then concatenating it to the embedding’s
layer’s output. The linear layer has no activation
function, in order to act like the embedding layer
in the transformer. After concatenation, we apply
dropout to the new embedding tensor.

2.3 Multilingual

In order to generalize the modeling of language
acquisition, we trained the model multilingually.
We did that by adding a tag to the morphosyntac-
tic attributes, together with the grammatical case,
which indicates the language. The language tag
therefore acts like the rest of the morphosyntactic
attributes and provided as input to the embedding
layer.

2.4 An Even Smaller Model

As mentioned above, the transformer introduced
in Wu et al. (2021) is a smaller transformer than
the original. Early experiments led us to suspect
that further reducing the model size could better
approximate children’s performance. We use 4
encoder-decoder layers, 2 self-attention heads, a
feed-forward layer with hidden size dpp = 128,
embedding size dmedel = 256, dropout rate 0.5,
and a batch size of 100.

3 Results and Discussion

We present the results for our models in Table 1.
They show that our methods provide substantial
improvement over the baseline, which generates
perfect inflections, but correlates poorly with the
children’s error rates. The best improvement in
correlation given by a single method was from de-
creasing model size; the best overall performance
was obtained by using all three methods, indicating
that their improvement profiles are complemen-
tary. We note that multilingual training was mostly
beneficial to model performance, suggesting that
the language acquisition process is generalizable
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across languages.

As noted in the background section, there are
two aspects relevant to this task of modeling ac-
quisition which are different than normal, well-
formed inflection, namely surface-form frequency
and phonological neighborhood density (PND).
The model we designed captures the former by
the upsampling method and frequency embed-
dings, whereas PND could theoretically be imbued
through the transformer’s encoder, which embeds
the lemma into a hidden state vector given its IPA
representation. As such, it is capable of modeling
similarity on the phonetic level, so if two words
are pronounced similarly, their hidden states can
be similar and thus provide means for PND realiza-
tion.

4 Conclusion

This paper presents the approach taken by the
MeLeL team to solving the SIGMORPHON
2023 Shared Task on Typologically Diverse
and Acquisition-Inspired Morphological Inflection
Generation. To this end, we designed a model for
morphological inflection, based on current state
of the art. We adapted the model to the task ob-
jectives, modifying hyper-parameters to add “for-
getfulness”, incorporated surface-form frequency
information by adding upsampling and embedding
the frequency counts, and trained multilingually
to generalize cross-lingual features. Our final sys-
tem, which correlates with child-produced inflec-
tion substantially better than the base system, is
informed by two aspects previously shown to be rel-
evant to children’s inflectional competence, namely
surface-form frequency and neighborhood phonetic
distance.
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Language Intop-10 Acc. Pear. Pear-0 Cosine Cosine-0

Polish 134/150 .73 —0.020 0.231 0.99 0.94
Estonian 121/144 .55 0.547 0.578 0.99 0.94
Finnish 134/162 44 0462 0.462 0.98 0.92

Table 2: Submitted model results for each language. “In
top-10” means the number of predictions from the test
set that were found in the model’s top-10 list. “Pear”
and “Cosine” are the Pearson’s correlation and Cosine
Similarity for the predicted probabilities, where the “-0”
denotes that when the correct form is not in top-10, the
probability assigned is 0.

A Results Per Language

In Table 2 we present the results for each language
on the submitted model, as reported in the official
task website as of May 18, 2023.

170



