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Abstract 

In this article, which was prepared for the 

sameval2023 competition (task number 2), 

information about the implementation 

techniques of the transformer model and 

the use of the pre-trained BERT model in 

order to identify the named entity (NER) in 

the English language, has been collected 

and also the implementation method is 

explained. 

Finally, it led to an F1 score of about 57% 

for Fine-grained and 72% for Coarse-

grained in the dev data.In the final test data, 

F1 score reached 50%. 

1 Introduction 

The purpose of this competition is to extract 

the named entity (Named-Entity Recognition) 

within a text. 

NER is basically a token classification task 

where each token is classified into one or more 

predefined categories. For example, persons, 

locations, corporations, etc. should be extracted 

and classified from within the text. [1] 

In this competition, the basis of classification is 

divided into two categories: general classification 

and partial classification. For example, each 

Location category has 4 sub-categories 

(subclassifications) including: Facility, OtherLOC, 

HumanSettlement, Station, and all classifications 

are available and accessible on the competition 

dataset page [2]. 

The total classifications are as follows: 

2 Related Work 

This article is related to the previous year's 

SemEval-2022 Task 11 article [4], which is to 

identify the named entity in the general category 

[PER, LOC, CORP, GRP, PROD, CW] . 

About 55 teams have participated in this task and 

the best team achieved the score of F1=0.91 in the 

English language that we want. According to what 

is mentioned in the article, "most of the teams 

have used external databases such as Wikipedia, 

Gazetteer. Also, they have been more interested in 

the pre-trained XLM-RoBERTa model ." 
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all_tags={ 

    

'PER':['OtherPER','SportsManager','Cleric','Politicia

n','Athlete','Artist','Scientist'], 

    

'LOC':['Facility','OtherLOC','HumanSettlement','Stat

ion'], 

    

'GRP':['MusicalGRP','PublicCorp','PrivateCorp','Oth

erCorp','AerospaceManufacturer','SportsGRP','CarM

anufacturer','TechCORP','ORG'], 

    

'PROD':['OtherPROD','Drink','Food','Vehicle','Clothi

ng'], 

    

'CW':['VisualWork','MusicalWork','WrittenWork','A

rtWork','Software','OtherCW'], 

    

'MED':['Medication/Vaccine','MedicalProcedure','A

natomicalStructure','Symptom','Disease'] 

} 

Table 1 - mapping of the tags 
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3 Data 

The data set used for training and developing the 

model is the same data that is provided in the 

Dataset section [1] of the competition, which are 

labeled with the CoNLL format and the entities 

are labeled with the IOB method . 

IOB:  Inside–outside–beginning (tagging) is a 

common tagging for tagging tokens in 

computational linguistics  .The B- prefix before a 

tag specify that the tag is the first of a chunk, and 

an I- prefix before a tag specify that the tag is 

inside a chunk. The B- tag specify that a tag is 

followed by a tag of the same type without O 

tokens between them. An O tag shows that a token 

belongs to no entity  chunk . 

After checking, due to the imbalance of the 

classes used in the training data, in order for the 

machine to understand more about the data and 

classifications, techniques such as Oversampling 

(increasing data with less density) should be used 

on the data in the pre-processing stage of the data. 

The balance of the categories could be 

maintained . 

Also, in order to improve machine learning, we 

first calculated the ratio of the number of famous 

words to the length of the sentence, and according 

to the obtained ratio, we added the sentence to the 

dataset several time   . Here, experimentally, if 

obtained ratio was more than 90%, 6 times were 

repeated, if the ratio was more than 80%, 3 times 

were repeated, and for a ratio greater than 65%, 

one repetition was sufficient . 

4 Methodology 

4.1 Transformers 

Transformers are in many cases replacing 

convolutional and recurrent neural networks 

(CNN and RNN), which were the most popular 

types of deep learning models until five years ago. 

Like most neural networks, transformer models 

are essentially large encoder/decoder blocks that 

process the data . 

The structure of an encoder layer in a transformer 

layer is such that each encoder consists of two 

separate sub-layers, the first layer is the attention 

layer and the second layer is a feedforward neural 

network . 

The structure of a decoder class, like the encoder, 

consists of two layers: self-attention and FNN, 

with the difference that in the decoder there is an 

intermediate layer called encoder-decoder 

attention, which helps the machine not focus on 

the word being learned. Pay attention to related 

words . 

The output of the decoder is a vector, so the last 

layer of the transformer needs to be a softmax 

layer, because this layer divides the values into the 

probability distribution that the output of each 

element of the vector is in the range of 0 to 1, and 

the sum of all these elements must be one . 

Transformers use positional encoders to label data 

elements entering and leaving the network. 

Attention units follow these labels and compute 

some sort of algebraic map of how each element 

relates to the other elements. Attention queries are 

usually executed in parallel by computing a 

matrix of equations in what is called multi-headed 

attention . 

In this project, a simple transformer model was 

first used for training based on general 

classification, which by increasing the number of 

layers of the transformer model and also better 

setting things such as the length of tokens, the 

number of attention heads, and the number of FFN 

layers, led to an F1 score of about 65%. became. 

Of course, this model did not give us good results 

for partial classification where the number of 

categories was about 36 categories. A better 

solution is to use a pre-trained esophageal transfer 

model such as BERT, RoBERTa, ALBERT, … 

4.2 BERT 

Bidirectional Encoder Representations from 

Transformers (Bidirectional Encoder 

Representations from Transformers) or BERT, 

which uses transformers, is an attention 

mechanism that learns the textual relationships 

between words (or subwords) in the text [3] . 

The BERT model is actually a group of 

transformer model encoders that have been 

studied. In the BERT base model, there are 12 like 

transformer blocks and 12 attention layers, and in 

this base model there are 768 hidden nodes in 

FFN. Fine-tuning method is used here to use this 

model. In this method, the input of the model is a 
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list of tokens with a length of 512 tokens. These 

tokens are passed through the 12 mentioned layers 

and at the end a vector It is returned as output with 

a length of 768 . 

4.3 Used in this project 

In this project, the training was done using the 

TFAutoModelForTokenClassification model, and 

the keras library and the Adam method with a 

learning rate of 0.0001, as well as the loss function 

from the SparseCategoricalCrossentropy method 

available in the keras library's loss methods, were 

used to adjust the optimizer, which is in the next 

part of the output results. is brought 

During the training learning process, the 

batch_size value was set to 40, that is, the machine 

divides the data set into 40 groups and updates the 

weights after learning each of these groups. 

Considering that the total length of the categories 

was 17760, the number of categories was equal 

to 444. 

 

Also, here the number of rounds of the learning 

process was chosen as 3. 

The duration of each training process was about 

1500 seconds, the specifications of a system on a 

virtual machine (VMware Workstation Pro) are: 

• OS:  Fedora Linux 36 (Workstation Edition)  

• Memory: 12 GB 

• Processor :11th Gen Intel® Core™ i7-1165G74 

• Graphics:  SVGA3D; build: RELEASE; LLVM; 

5 Results 

5.1 Dev data results 

The results obtained for the fine-grained section 

are with precision=0.64, recall=0.54, F1=0.57, 

and also   these results for the coarse-grained 

section are with precision=0.76, recall=0.68, 

F1=0.72 . 

 

 

 

 

 

 

 

Class Precision Recall F1 

Facility 0.625 0.7692 0.6897 

OtherLOC 0.8333 0.3125 0.4545 

HumanSettlement 0.8696 0.7339 0.796 

Station 0.75 0.9 0.8182 

VisualWork 0.7255 0.6066 0.6607 

MusicalWork 0.6923 0.5902 0.6372 

WrittenWork 0.8049 0.6111 0.6947 

ArtWork 0.2667 0.3077 0.2857 

Software 0.6154 0.6154 0.6154 

OtherCW 0 0 0 

MusicalGRP 0.6944 0.6757 0.6849 

PublicCorp 0.5238 0.3929 0.449 

PrivateCorp 0.8333 0.4545 0.5882 

OtherCorp 0 0 0 

AerospaceManufacturer 0.8889 0.8 0.8421 

SportsGRP 0.85 0.8293 0.8395 

CarManufacturer 0.625 0.7692 0.6897 

TechCORP 0 0 0 

ORG 0.6849 0.641 0.6623 

Scientist 0.3333 0.2667 0.2963 

Artist 0.7857 0.7783 0.782 

Athlete 0.6739 0.7848 0.7251 

Politician 0.6341 0.4906 0.5532 

Cleric 0.4167 0.3333 0.3704 

SportsManager 0.7778 0.4375 0.56 

OtherPER 0.5057 0.4835 0.4944 

Clothing 0.5 0.5 0.5 

Vehicle 0.5789 0.55 0.5641 

Food 0.5 0.4211 0.4571 

Drink 0.7273 0.7273 0.7273 

OtherPROD 0.5882 0.4082 0.4819 

Medication/Vaccine 0.4444 0.6667 0.5333 

MedicalProcedure 0.6667 0.4615 0.5455 

AnatomicalStructure 0.375 0.3529 0.3636 

Symptom 1 0.1 0.1818 

Disease 0.4 0.2222 0.2857 

Macro Average Performance 0.6421 0.5453 0.5706 

Table 2 - dev data fine-grained Performance 

Class Precision Recall F1 

LOC 0.8387 0.7919 0.8146 

Medicine 0.619 0.5132 0.5612 

PER 0.9266 0.8919 0.9089 

PROD 0.6556 0.5413 0.593 

CW 0.7676 0.6605 0.71 

GRP 0.791 0.7294 0.7589 

Macro Average Performance 0.7664 0.688 0.7244 

Table 3 - dev data coarse-grained Performance 

5.2 Test data results 

The results obtained for the fine-grained section 

are with precision=0.53, recall=0.44, F1=0.47, 

and also these results for the coarse-grained 

section are with precision=0.73, recall=0.62, 

F1=0.67 . 

The results obtained according to the match log 

show that both on the Dev data and on the Test 

data, the best performance of the machine is PER 

and LOC classification, and the highest score is 

on the Medicine and PROD categories . 
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Class Precision Recall F1 

Facility 0.6138 0.5884 0.6008 

OtherLOC 0.6049 0.2626 0.3662 

HumanSettlement 0.8142 0.8361 0.825 

Station 0.7384 0.6347 0.6826 

VisualWork 0.6829 0.5121 0.5853 

MusicalWork 0.7325 0.6444 0.6856 

WrittenWork 0.5941 0.4928 0.5387 

ArtWork 0.3786 0.2307 0.2867 

Software 0.6728 0.5227 0.5883 

MusicalGRP 0.5853 0.5773 0.5813 

PublicCorp 0.5075 0.5149 0.5112 

PrivateCorp 0.0264 0.0296 0.0279 

AerospaceManufacturer 0.2597 0.3547 0.2999 

SportsGRP 0.7593 0.7965 0.7775 

CarManufacturer 0.436 0.307 0.3603 

ORG 0.6009 0.5642 0.5819 

Scientist 0.4428 0.3636 0.3993 

Artist 0.7245 0.7637 0.7436 

Athlete 0.7544 0.769 0.7617 

Politician 0.6256 0.4957 0.5531 

Cleric 0.5129 0.3857 0.4403 

SportsManager 0.6479 0.6315 0.6396 

OtherPER 0.4195 0.3885 0.4034 

Clothing 0.5266 0.3788 0.4406 

Vehicle 0.3937 0.2034 0.2682 

Food 0.5852 0.2152 0.3146 

Drink 0.2263 0.0467 0.0775 

OtherPROD 0.4341 0.312 0.3631 

Medication/Vaccine 0.6194 0.4311 0.5084 

MedicalProcedure 0.5366 0.253 0.3439 

AnatomicalStructure 0.5861 0.5406 0.5624 

Symptom 0.0156 0.0102 0.0124 

Disease 0.5797 0.4652 0.5162 

Macro Average Performance 0.5345 0.4401 0.4742 

Table 4 - Test data Fine-grained Performance 

 
Class Precision Recall F1 

CW 0.7527 0.6056 0.6712 

LOC 0.8096 0.7735 0.7911 

GRP 0.6904 0.6763 0.6833 

PER 0.8992 0.8762 0.8875 

Medicine 0.6628 0.4903 0.5637 

PROD 0.5897 0.3337 0.4262 

Macro Average Performance 0.7341 0.626 0.6705 

Table 5 - Test data coarse-grained Performance 

 

6 Conclusion 

Conclusion Using pre-trained models such as 

BERT can give us much better output (prediction) 

about an NLP problem, you just need to fine-tune 

the model and do a good pre-processing on the 

data to be closer to the final goal. Let's become 

and the work will go better. Of course, in the 

future, we plan to implement these tests on the 

BERT-large model, which requires more 

computing time . 
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