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Abstract

We describe a set of new methods to par-
tially automate linguistic phylogenetic infer-
ence given (1) cognate sets with their respec-
tive protoforms and sound laws, (2) a mapping
from phones to their articulatory features and
(3) a typological database of sound changes.
We train a neural network on these sound
change data to weight articulatory distances be-
tween phones and predict intermediate sound
change steps between historical protoforms
and their modern descendants, replacing a lin-
guistic expert in part of a parsimony-based phy-
logenetic inference algorithm. In our best ex-
periments on Tukanoan languages, this method
produces trees with a Generalized Quartet Dis-
tance of 0.12 from a tree that used expert anno-
tations, a significant improvement over other
semi-automated baselines. We discuss poten-
tial benefits and drawbacks to our neural ap-
proach and parsimony-based tree prediction.
We also experiment with a minimal generaliza-
tion learner for automatic sound law induction,
finding it less effective than sound laws from
expert annotation. Our code is publicly avail-
able.!

1 Introduction

Languages and biological species evolve in inter-
estingly analogous ways. Both display variation
in space and time that may be inherited or inno-
vated. As in biology, each node in a linguistic phy-
logenetic (family) tree corresponds to one or more
innovations (“mutations”). Typically, linguists in-
fer these phylogenies by finding patterns of inno-
vations in pronunciation, or sound changes.
SounD Laws, or rules that define sound changes
and the contexts in which they occur, apply to all
instances of a sound in a given context. (For exam-
ple, all instances of Proto-West Germanic [*t] be-
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came [?S] (written as z) at the beginning of words in
High German, while English was unaffected. This
resulted in the English-German cognate pairs zehn
: ten, Zoll : toll, and Zahn : tooth.) Because these
laws have few exceptions, they can work as a ba-
sis for modeling historical language change. Lin-
guists typically infer phylogenies by constructing
the tree that maps from the ancestor language at the
root to the daughter languages via the most prob-
able system of these sound laws (Hoenigswald,
1960). Existing partially automated approaches
to this method require multiple sets of expert an-
notations. We attempt to alleviate this via pro-
posed methods that incorporate even more automa-
tion. Below we discuss the necessity of both sound
laws and sound changes in predicting phyloge-
nies, which we automatically infer in our proposed
methods.

Linguists induce sound laws by aligning cog-
NATES (words with a common ancestor) by
phoneme. From this alignment they extract sounp
CORRESPONDENCES, or sets of sounds in the same
context that likely evolved from the same sound
in the proto-language. (For example, at the begin-
ning of words, there is a correspondence between
High German [fg], Dutch [t], English [t], Swedish
[t], and Icelandic [t]). They then reconstruct proto-
phonemes for each set of aligned cognates (in our
Germanic example, this happens to be [*t]). The
posited sound laws from this process enable deter-
ministic derivation of the daughter forms from the
reconstructed PROTOFORMS, or words in the proto-
language. Inducing sound laws is central to sound
change-based phylogenetics. We experiment with
both algorithms that predict these sound laws auto-
matically and those that need them to be provided
by a linguist. Beyond sound laws alone, however,
phylogenetic inference algorithms must consider
how sounds evolve and branch off through INTER-
MEDIATE SOUND CHANGES over time.
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Sound change emerges from phonetic varia-
tion, as speakers modify their pronunciation along
acoustic or articulatory dimensions (Garrett et al.,
2015; Garrett and Johnson, 2013; Lindblom et al.,
1995). Because some variations in pronuncia-
tion occur more frequently than others, not all
sound changes are equally probable. In particu-
lar, the probability of a sound change (e.g. [p] be-
coming [f]) is often different from that of its re-
verse (e.g. [f] becoming [p]), a property known
as the pIREcTIONALITY of sound change (Camp-
bell, 2013; Chacon and List, 2016). Because
phonetic variation is gradual (with few arTiCULA-
TORY FEATURES—or fundamental characteristics
of pronunciation—changing at a time) (Sievers,
1901; Brugmann and Osthoft, 1878; Paul, 2010),
sound change often results in phonetically simi-
lar sounds across cognates and their correspond-
ing protoform. Larger apparent jumps in pronun-
ciation from PROTO-PHONEME (ancestral sound) to
REFLEX (descendant sound) are often the result of
smaller changes over time, or intermediate sound
changes (Garrett et al., 2015; Begus, 2016). For ex-
ample, k >t/ ([k] becomes [tf]) may encompass the
chain of sound changes k > ki> ¢ > tf. Intermediate
paths from a proto-sound to different daughter re-
flexes can overlap, which enables identifying inno-
vations that are shared among daughters (SHARED
INNOVATIONS).

1.1 Contribution

We automate portions of Chacon and List (2016)’s
phylogenetic inference method via our novel Au-
tomatic Intermediate Sound Change Prediction
(AISCP) method, and attempt further automation
via a novel method for Automatic Sound Law In-
duction (ASLI) in some experiments.

Chacon and List (2016) rely on expert judge-
ments for Tukanoan sound changes, which we
replace at different stages of their algorithm. Our
main contribution is replacing expert-provided
intermediate sound changes with AISCP—
essentially “invent[ing]” proto-sounds not seen in
reflexes, which many unsupervised protoform re-
construction models cannot do (List, 2022). These
AISCP predictions rely on (1) a PHONOLOGICAL
PRIOR based on articulatory distances (Mortensen
et al.,, 2016) and (2) TYPOLOGICAL GROUNDING
learned by a neural network from a database of
multilingual sound changes. The phonological
prior captures the tendency for sounds to change
into sounds that are pronounced similarly, while
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the typological grounding encodes the direction
and frequency of sound changes. Our results
show that phylogenetic inference with AISCP
approaches expert performance in a computational
paradigm requiring expert knowledge only for
cognate sets, sound laws, and protoforms.

In additional experiments, we further automate
the process via ASLI: predicting not just interme-
diate sound changes, but sound laws from proto-
forms and reflexes. We induce these laws via meth-
ods from Albright and Hayes (2003) and Wilson
and Li (2021), newly applied for ASLI.

We conduct experiments on data from Tukanoan
languages, spoken in Columbia, Brazil, Peru, and
Ecuador. The data contain Proto-Tukanoan recon-
structions from a leading Tukanoan linguist, Cha-
con (2013, 2014). We take their reconstruction and
sound changes as our gold standard, as did Chacon
and List (2016). In summary, we contribute:

1. A training paradigm by which a neural net-
work can produce phonetically natural in-
termediate sound changes as a typological
grounding for AISCP

2. Experimental evidence that AISCP can ap-
proach expert phylogenetic inference, with
automatic correct groupings of West Tukano
and East-Eastern Tukano

3. Ablations indicating that intermediate sound
changes and directional weighted sound tran-
sition costs are useful to predict phylogeny

4. An ASLI method for phylogenetic inference

5. Analysis suggesting parsimony-based phylo-
genetic inference may be unreliable

2 Related work

Unlike our work, prior phylolinguistic work
mostly inferred a tree from a boolean cognacy ma-
trix that shows which synonymous words come
from the same ancestral word (Greenhill et al.,
2020). However, cognacy is complicated by lan-
guage contact that leads to the borrowing of words,
as opposed to their inheritance (Ryskina et al.,
2020; Francis et al., 2021). Campbell (2013) crit-
icized such use of cognacy information in phy-
logenetic inference, and called on computational
methods to use shared innovations as linguists do.
Zheng (2018) heeded this call and manually de-
rived shared innovations for Proto-Min and its
modern daughters, finally running a maximum par-
simony algorithm from Felsenstein (2013) on these
shared innovations. However, their shared innova-



tion matrix is binary and does not encode the direc-
tion and frequency of sound changes as our meth-
ods do.

Hruschka et al. (2015) jointly inferred phy-
logeny and reconstructed protoforms with Markov
Chain Monte Carlo (MCMC) using phonological
data from Turkic languages, where the tree like-
lihood was conditioned on reconstructed proto-
forms. However, their sound laws are all context-
free. Clarté and Ryder (2022) perform joint phylo-
genetic, protoform reconstruction, and cognate in-
ference for 14 Polynesian languages using MCMC,
but the expressive power of their model is limited
to only CVCV sequences for alignment without in-
sertions or deletions or sound law contexts. Unlike
these approaches, our methods (both with and with-
out ASLI) include in-context sound laws and can
process all sound sequences.

We are also not the first researchers to explore
neural modeling of phonetic features. Hartmann
(2019, 2021) showed that neural networks can pre-
dict features of Proto-Indo-European phones given
the features of a trigram context, which reflect syn-
cHRONIC (applying at a particular stage in a lan-
guage’s history) phonetic phenomena. Our neural
network, on the other hand, predicts the probabil-
ity of feature changes in a sound change, given pi-
AcHRrRONIC data (data that represents change over
time).

In recent years, there has also been existing
work on ASLI. Luo (2021) used reinforcement
learning with hierarchical Monte Carlo tree search
to induce sound laws for Germanic, Romance, and
Slavic. To our knowledge, they are the first to
propose an ASLI method. List (2019) also at-
tempted automatic induction of sound correspon-
dences, though these correspondences lacked the
contexts associated with actual sound laws. The
minimum generalization learner we employ for
ASLI (Albright and Hayes, 2003), in contrast, was
originally designed to induce synchronic morpho-
logical rules and is deterministic.

3 Methodology

We incorporate AISCP and ASLI into Chacon and
List (2016)’s DiWeST method for phylogenetic in-
ference, which involves directed, weighted phone
transitions. The authors describe it as a directed
version of Sankoff parsimony (Sankoff, 1975).
Their maximum parsimony algorithm searches for
trees by trying different sound transitions (interme-
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diate sound changes) along the branches of trees
that minimize the total transition cost. By making
the cost of sound changes asymmetrical in a sound
change transition matrix, their method captures the
directionality of sound change, yielding a rooted
tree. To search the large space of possible trees,
they used a genetic search algorithm that balances
exploration (iterating through a subset of possible
trees) and exploitation (incrementally mutating the
current best trees). Chacon and List (2016)’s algo-
rithm follows this framework:
1. Align protoforms with reflexes (performed by
an expert)
. Learn sound laws between protoforms and re-
flexes (performed by an expert)
. Create a sound change transition matrix
(largely performed by an expert)

(a) Identify intermediate sound changes
(Section 3.2)

(b) Assign a weight to intermediate sound
change transitions (Section 3.2.1)

. Perform maximum parsimony-based phylo-
genetic inference using the transition matrix
from the step above
5. Obtain a consensus tree

Our algorithm follows this same framework.

Our contribution is to automate the expert’s anno-

tations in step 3, and in steps 1-2 in some experi-

ments. Section 3.1 outlines the way both Chacon
and List (2016)’s algorithm and our modifications
of it incorporate intermediate sound changes via

a sound transition matrix. Section 3.2 elaborates

on replacing the expert in step 3 with AISCP. Sec-

tion 3.3 outlines replacing the expert in steps 1-2

with ASLI.

3.1 Creating the sound change transition
matrix

Chacon and List (2016)’s transition matrix spec-
ifies the cost of intermediate sound changes that
the parsimony algorithm tries. It is constructed by
creating a directed graph (with phones as nodes)
of the possible intermediate sound changes given
by a linguist for each sound correspondence.? (In
this context, we use the term CORRESPONDENCE t0
mean a proto-phoneme and its reflexes.) The ex-
pert may identify more than one possible path of
intermediate phones between the proto-phoneme
and reflex (e.g. k>ki>c>tfandk>x>h>[

2See Figure 5 in Chacon and List (2016) for a diagram of
the process.



> ﬁ) The transition cost from one phone (source)
to another (target) on an intermediate path is sim-
ply the length (in edges) of the shortest path from
source to target in the directed graph for the cor-
respondence. This value is encoded in the transi-
tion matrix at the row corresponding to the source
index and the column corresponding to the target
index. Pairs of source and target phones with no
connecting path in the graph are penalized with a
high transition cost. Paths are all directed from
the proto-phoneme towards the reflex, encoding
sound change directionality. Our AISCP algo-
rithm’s transition matrix is also directional, but the
intermediate sound changes and edge weights are
derived from the probability of articulatory fea-
tures changing, as predicted by a neural network.

3.2 Automatic intermediate sound change
prediction (AISCP)

To automate intermediate sound change prediction,
we create a fully connected graph using a map-
ping x that encodes each phone p as a ternary vec-
tor of N articulatory features (such as [voice] or
[syllabic]), where each feature in position f is en-
coded as —1 (not present), O (not applicable), or 1
(present); x(s) 5 € {—1,0,1}. This encoding lets
us consider information shared by phones. Encod-
ings for [d] and [t] differ in only one articulatory
feature: x([dDpyoice; = 1, While x([tDyoice) = —1-
We can quantify such phonetic similarity between
sounds using Mortensen et al. (2016)’s feature edit
distance (FED). FED is Levenshtein edit distance,
where the cost of an edit is the proportion of ar-
ticulatory features changed. It reflects phonetic
similarity between sounds: FED([t], [k]) has four
times the value of FED([t], [d]), since the former
pair requires four feature edits. For our phono-
logical prior, we create a graph where the nodes
are IPA phones, and all node pairs are joined by
an undirected edge with weight equal to the FED.
In this graph, intermediate phones are interpreted
as the phones on the least-weighted paths between
the proto-sound and the reflex. There can be mul-
tiple least-weighted paths between nodes, just as
there can be multiple transition paths in a corre-
spondence.

3.2.1 Neurally weighted FED for AISCP

The way we modify FED is central to our ap-
proach. FED has undesirable traits for modeling
sound change — it is not directional (e.g. there is
no way to encode whether p > f or f > p is more

likely), and it gives an equal cost to every feature
change, regardless of the source phone. This ne-
glects information about sound change tendencies:
for example, [d] is more likely to change its [voice]
feature and become [t] than to change its [sonorant]
feature and become a sonorant (like [1] or [r]).

We propose directional weighted feature edit
distance (DWFED) to model these realities, by
training a neural network to predict the cost of
each feature change, given the source phone. The
network learns each feature’s directional change
costs: i.e. the cost of the [voice] feature increasing
(voicing) may differ from the cost of [voice] de-
creasing (devoicing). We interpret a feature edit’s
cost as one minus the probability of its occurring.
Thus we train the neural network to model the prob-
ability of each directional feature edit, conditioned
on the source phone, e.g. P(voicing | source =

[pD.

The network predicts this for all articulatory fea-
tures. It uses the encoding function x described in
Section 3.2 to encode each source phone s as a vec-
tor of feature values in positions f. For an arbitrary
target phone #, the network predicts both probabili-
ties P(x(t) y > x(s); | s) and P(x(t) ; < x(s)/ | 5),
for each s and f. (We write these in shorthand as
P(f 1) and P(f |), respectively.) It does this by
learning the mapping M : {0,1}*N — {0,1}?V,
where M (v) = o(NN(v)), a series of linear layers
with ReLU activations followed by a sigmoid acti-
vation at the end. The input is a one-hot encoding
of the source phone’s N articulatory features (each
having value —1, 0, or 1), resulting in a binary
vector of length 3N. The output contains the two
directional sound change probabilities mentioned,
for each of the N features f, resulting in a length-
2N vector with values between 0 and 1.

Hence for a single-layer neural network, the
model weights are a single 2N X3 N matrix, where
each entry encodes a feature’s importance in de-
termining another feature’s probability of increas-
ing or decreasing. For example, if N = 24, the
weight matrix’s [0,47] entry encodes the impor-
tance of the source phone’s first feature equaling
—1 in predicting whether its 24th feature will de-
crease. This also ensures some continuity: source
phones with many common features will elicit sim-
ilar output probabilities. However, because a fea-
ture value’s probability of increasing or decreas-
ing may depend on a combination of the source
phone’s features, we experiment with deeper neu-
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Figure 1: Calculation of the edge weights for the phone transition graph via DWFED

ral networks to capture more intricate relationships
(Section 4.2).

These networks can be trained on a database
of real sound changes (the typological ground-
ing mentioned in §1.1), by converting each sound
change with source phone s and target ¢ into a
length-3 N binary vector encoded from s and one
length-2 N binary vector representing the ground-
truth sound change direction (i.e. whether each
feature increased and whether it decreased from
s — t). We use the length-3N vector as the net-
work’s input and the length-2 N vector to compute
loss with its output. In this way, the neural net-
work learns which features tend to change in which
directions for each source phone in natural lan-
guages. Refer to Figure 1 for a diagram of our
method in the case N = 24. Since the length-2N
vector representing a direction of sound change is
binary, using the dot product to multiply it with the
output of the neural network at inference time ex-
tracts the relevant probabilities needed to calculate
the DWFED of transitioning from a source phone
to a target.

3.3 Automatic sound law induction (ASLI)

In addition to automating step 3 of the algorithm
in Section 3 via AISCP, we experiment with ASLI
via a minimal generalization learner from Wilson
and Li (2021), instead of using sound laws from an
expert in steps 1 and 2. This can be done by align-
ing the phones in protoforms and daughters (still
provided by an expert) via Needleman-Wunsch
alignment (Needleman and Wunsch, 1970), a Lev-
enshtein edit distance alignment algorithm used in
computational biology. We adapt the algorithm so
that the substitution cost between two phones is the
FED rather than a constant. This ensures that sim-
ilar phones like [t] and [d] will align rather than
more distant phones like [t] and [k]. See Figure 2
for an example of our alignment process.

Our ASLI method uses Albright and Hayes
(2002, 2003)’s minimal generalization algorithm,
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as adapted by Wilson and Li (2021). These meth-
ods were developed for synchronic sound rules.
However, since such rules reflect sound changes
(Ohala, 2003), we repurpose the method for di-
achronic sound laws. Albright and Hayes generate
the base rules by taking the longest common prefix
and longest common suffix from each word pair as
the context and treating the remaining strings as a
rule, then iteratively generalizing the set of rules
based on shared contexts. Because sound changes
usually involve individual phones, we generate
a base rule for every phone-level change in the
aligned protoform and daughter instead. The rule
induction process in Figure 2 shows sound law ex-
traction, prior to iterative generalization.

4 Experiments

4.1 Dataset

In all our experiments we used Tukanoan expert an-
notations from two sources. For AISCP (without
ASLI), we use expert-provided sound laws from
33 sound correspondences for 21 Tukanoan lan-
guages from Chacon and List (2016). Unfortu-
nately, the phonological and lexical data needed
for alignment and ASLI is not available for all
21 varieties. Thus for our ASLI experiment (Sec-
tion 3.3) we used Chacon (2014)’s dataset of 15
Tukanoan languages.®> This version contains pho-
netic transcriptions of daughters, cognacy, expert
alignment (for manual evaluation and debugging),
and reconstructed protoforms for 149 cognate sets,
totalling 1,542 entries.

4.2 Implementation

As outlined in Section 3.2, our AISCP method
consists of (1) encoding phones as vectors of fea-
tures and (2) training a neural network to calculate
DWFED between the feature vectors, to weight
the transition edges in a phone graph. We used

*https://github.com/lexibank/
chacontukanoan/
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Figure 2: Alignment and induction of sound changes. A protoform and a daughter form are aligned, allowing the
induction of base sound laws that can then be iteratively generalized using the minimal generalization learner.

PanPhon (Mortensen et al., 2016) as our map-
ping x from phones to N = 24 articulatory fea-
tures. To compute DWFED, we trained neural
networks on 7,042 sound changes in multiple lan-
guage families* from Index Diachronica® (Anony-
mous, 2016). Training on actual sound corre-
spondences collected by linguists ensures that the
model learns the directionality of sound change.
Because PanPhon has N = 24 articulatory fea-
tures, all our neural networks accept length-72 vec-
tors as input and output length-48 sound change
probability vectors. We used Binary Cross Entropy
Loss since the reference length-48 sound change
vectors are binary. We trained multilayer percep-
trons of differing depths: 1 layer, 4 layers, 8 lay-
ers, and 16 layers (the latter two with skip connec-
tions).

Using neural DWFED we produce a phone
graph containing a subset of the phones supported
by PanPhon.® We include the null phone @ to
model insertions and deletions in sound changes.
These we penalize with a cost multiplier (15 for in-
sertions and 10 for deletions), since substitutions
are more common along intermediate paths. We
find the graph’s shortest paths using NetworkX
(Hagberg et al., 2023) to produce intermediate
paths for the sound transition matrix of each cor-
respondence in the data.

For our experiments with ASLI (as outlined in
Section 3.3), we (1) align protoforms with daugh-
ters via Needleman-Wunsch alignment, (2) extract
sound laws as in Figure 2, and (3) perform itera-
tive generalization. We modified FED slightly for
our alignment: we penalized substitutions between
vowels ([+syl, -cons]) and non-syllabic consonants
([-syl, +cons]) to prevent unnatural substitutions.

“We manually removed Altaic sound correspondences
from the database, since the proposed family is controversial.

SWe chose Index Diachronica instead of the more authori-
tative Konsonantal Wandel (Kiimmel, 2007) because the latter
lacks a public LaTeX source and only includes consonants.

8To ensure matrix curation was computationally tractable,
we excluded all phones with diacritics other than those mark-
ing length, aspiration, and glottalization.

We also filtered out sound laws with raw accuracy
< 0.6 before iterative generalization, since our ap-
proach to single-phone law extraction generated
superfluous laws otherwise.

When running the parsimony-based algorithm,
we searched through 10,000 trees, though Chacon
and List (2016) found that most best trees can be
found within the first 5,000. When the algorithm
resulted in multiple trees with the same score, we
obtained a consensus tree with the consense pro-
gram from PHYLIP (Felsenstein, 2013).

We also included two ablation experiments:
standard FED and direct paths. Our standard
FED ablation consists of applying AISCP with
standard FED, rather than neural DWFED. Al-
though FED is not directional and treats all ar-
ticulatory features as the same, it does not pre-
clude the directionality of sound change in our al-
gorithm, since the sound change matrix encodes
direction by only considering paths that lead from
the proto-phoneme to the reflex (as mentioned in
Section 3.1). Our direct paths ablation does not
use AISCP or expert-provided intermediate sound
changes. It uses sound laws from the Tukanoan
expert directly without any intermediate sound
changes. We performed this experiment to probe
whether intermediate paths are necessary for the
inference algorithm. In this ablation, we also used
standard FED as the weight of transition directly
from proto-phonemes to reflexes.

4.3 Baselines

We compare our adaptations of Chacon and List
(2016)’s algorithm (Section 3) using AISCP and
ASLI to two baseline inference methods: cog-
nacy and shared innovations. Both of these base-
lines use undirected binary matrices for parsimony-
based phylogenetic inference. The first uses a cog-
nacy matrix, indicating simply which daughter lan-
guages have entries for which cognate sets Chacon
(2014). This is commonly used in phylogenetic in-
ference (Greenhill et al., 2020), but it only consid-
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ers lexical innovations and not phonological inno-
vations. The second baseline uses a shared innova-
tion matrix that indicates which languages partici-
pate in each sound law, i.e. innovate on the proto-
phoneme in the conditioning environment of the
law For both baselines we used PHYLIP’s Penny
program (Felsenstein, 2013) for parsimony-based
phylogenetic inference, as it accepts binary matri-
ces more readily than Chacon and List (2016)’s
method.

4.4 Evaluation

We take the consensus tree from Chacon and List
(2016) as the gold tree, which is a consensus be-
tween their DiWeST phylogenetic inference and
the tree from (Chacon, 2014). To measure the
distance between the gold and predicted trees, we
use Generalized Quartet Distance (GQD), which
groups leaf nodes (daughter languages) into stars
and butterflies (Pompei et al., 2011). A star is a
group of four leaves such that the most recent com-
mon ancestor of any pair among them is also the
most recent common ancestor of all four. A but-
terfly is any quartet of leaves that is not a star’.
GQD is the difference between the number of but-
terflies in the gold tree and the number of shared
butterflies in both hypothesis and gold, normalized
by the number in the gold. Because it does not
penalize stars, GQD is well-suited to non-binary
trees such as phylogenies (where stars persist, bar-
ring enough evidence to binarize them) (Sand et al.,
2013; Pompei et al., 2011; Rama et al., 2018). For
each experiment we report the minimum and mean
GQD across ten runs of 10,000 trees each (which
we found comparable to searching 100,000 trees).

5 Results and Discussion

Table 1 shows all experimental results. The cog-
nacy baseline diverged greatly from the gold tree,
while the shared innovations baseline captured
about two-thirds of the gold tree butterflies, af-
firming the usefulness of phonological informa-
tion. Our best tree overall reproduced 88% of gold
butterflies, using AISCP with DWFED instead of
an expert. (We discuss this tree in Section 5.1; see
Figure 5.) Our standard FED ablation achieved
worse mean GQD than any experiments using ex-
pert sound laws, suggesting DWFED is more effec-

"See https://cran.r-project.org/web/
packages/Quartet/vignettes/Quartet-Distance.
pdf for a visualization of the 3 possible arrangements of
butterflies.
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tive in creating the sound transition matrix. The
direct paths ablation performed worse than shal-
low networks using expert sound laws but outper-
formed deeper networks and ASLI approaches, in-
dicating that intermediate sounds can be useful,
but the quality of the sounds matters. (See Sec-
tion 5.2.)

Our findings suggest that parsimony does not
correlate with GQD, with Spearman’s p = —0.04
across our experiments (Figure 6). The parsimony
of our best tree overall was not even better than
the median across the 10 runs of its experiment. It
seems relying only on parsimony to predict phylo-
genies is not guaranteed—or perhaps even likely—
to produce optimal trees.

The high variance across experiments is likely
due to Chacon and List (2016)’s genetic search al-
gorithm starting with random trees and at times get-
ting stuck in sub-optimal areas of the search space.

5.1 Recovering major Tukanoan groupings

We analyze the best tree’s recovery of subgroups
proposed by Chacon (2014), which largely re-
cur in the consensus tree from Chacon and List
(2016). Our algorithm correctly groups “West-
ern Tukano” and “East-Eastern Tukano” varieties
into their respective subgroups but not ‘“West-
Eastern” Tukano. Within the correctly grouped
subgroups, the relative chronology of the branch
is incorrect. (See Appendix B for details.) Over-
all, the larger subgroups within Tukanoan are cor-
rectly displayed, showing that our method can
capture broad phylogenetic relationships as a lin-
guist would. Additionally, our parsimony method
from Chacon and List (2016) produces binary trees
with all language pairs split in an overly specific
way, even though linguists often lack sufficient ev-
idence to establish such binary splits.

5.2 Analyzing AISCP’s intermediate paths

Intermediate paths from the phone graph using our
best performing, 1-layer network are phonetically
and typologically natural. We predict *k > *c >
*te > { for proto-sound *k and reflex tf, with [c]
and [te] not observed in the daughters but plausi-
ble as intermediate phones. Another predicted path
is *p > *f > h, where [f] is unobserved; p > f ap-
pears 16 times in our subset of Index Diachronica,
and f> h is acoustically motivated since [f] and [h]
are both characterized by low-amplitude aperiodic
nose. This shows the viability of using articulatory
features to model phonetically motivated interme-


https://cran.r-project.org/web/packages/Quartet/vignettes/Quartet-Distance.pdf
https://cran.r-project.org/web/packages/Quartet/vignettes/Quartet-Distance.pdf
https://cran.r-project.org/web/packages/Quartet/vignettes/Quartet-Distance.pdf

Section Experiment GQD (Min) | GQD (Mean +0) |

1 §4.3 Baseline: cognacy 0.533 0.533

2 Baseline: shared innovations 0.355 0.355

3§42 C+L, w/ AISCP (standard FED ablation) 0.325 0.440 +£0.0623

4 C+L, w/ AISCP (direct paths ablation) 0.281 0.397 £0.0719

5 §3.2 C+L w/ AISCP, 1 layer NN 0.120 0.295 £0.118

6 C+L w/ AISCP, 4 layer NN 0.191 0.309 £0.0960

7 C+L w/ AISCP, 8 layer NN 0.402 0.439 £0.0211

8 C+L w/ AISCP, 16 layer NN 0.248 0.435 £0.0801

9 §33 C+L w/ AISCP + ASLI 1 layer NN 0.384 0.437 £0.0314
10 C+L w/ AISCP + ASLI, 4 layer NN 0.451 0.600 £0.0561
11 C+L w/ AISCP + ASLI, 8 layer NN 0.423 0.513 +£0.0799
12 C+L w/ AISCP + ASLI, 16 layer NN 0.426 0.529 £0.0427

Table 1: Result of experiments across 10 runs. C+L refers to Chacon and List (2016)’s parsimony method outlined

in (Section 3).

diate sound changes in future research. As a com-
parison, Chacon and List predicted *k > *ki > Ef
(or *k > k" > fj) and *p > *ph > *¢ > h. (Note
that they skipped a palatalization step or two in
the former.) DWFED does not reproduce these ex-
pert paths perfectly, since it prefers paths match-
ing feature change tendencies learned from Index
Diachronica.

We find that many intermediate paths predicted
in our standard FED ablation are also phonetically
plausible, e.g. k > kx > te > tAfandj >3 > dA3
> 1. However, unweighted FED produces unrea-
sonably many intermediate paths and many sound
changes per path, resulting in phonetically unnat-
ural paths, such as t' > d* > z2' > r > 1’ > r. For
this same sound correspondence, our ablation in-
cludes all phonetic variants with the same FED,
with no typological intuition. DWFED instead re-
stricts the number of intermediate paths by favor-
ing more typologically usual ones. While this re-
sults in plausible paths, DWFED yields only one
unique intermediate path (Table 2) for each proto-
phoneme and reflex pair. This is not entirely de-
sirable, as proto-phonemes and reflexes may have
multiple plausible paths. (The average number of
paths in expert transition matrices is > 1; see Ta-
ble 2.) The ideal setting is to include some of the
most plausible paths, since this allows paths with
higher DWFED that are in fact attested to be con-
sidered.

All neural approaches and the expert produce
intermediate paths with an average of ~ 2 edges
(compared to 3.47 for our standard FED ablation.)
The different networks also have similar expert

sound change recall to each other. Thus their abil-
ity to replicate the length or phones of the expert
intermediate paths cannot explain the ~ 0.1 differ-
ence in GQD between the shallower and the deeper
networks. (Indeed, the standard FED ablation has
higher recall but performs worse.) This suggests
that simply replicating the expert’s intermediate
paths is not sufficient without correctly reflecting
the relative weights of the sound changes.

A naive alternative to weighting edit distances
neurally is down-weighting the absolute FED be-
tween phones for attested sound changes. Our neu-
ral approach, however, is preferable. The naive ap-
proach is analogous to connecting cities (phones)
with roads (edges), where distance represents FED,
and then increasing certain speed limits. This fails
because phones are not distributed uniformly; /n-
dex Diachronica has more attested occurrences of
vowels than of consonants. So, the allegorical
speed limits between “vowel cities” become so
high that the paths between them act as “freeways.”
In analogous manner, the shortest paths between
consonants tend to travel unnaturally through sev-
eral vowels (e.g. k>g>w>u>o0>a>e¢>e>
i>j>3> (ﬁ > 7[]), in the same way that drivers
may take a freeway to a neighboring city, even if
the freeway entrance is not on the way. Our neural
approach mitigates this by weighting the features
of FED via probabilities between 0 and 1.

5.3 Hyper-specific sound laws from ASLI

Replacing the expert’s sound laws with ASLI only
reproduced ~60% of expert butterflies and often
lost to both baselines, indicating the quality of
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the sound laws generated by the minimal gener-
alization learner is too low to have significant ge-
netic signal. Within this set of experiments, the
high GQD prevents us from drawing conclusions
about the differences in the neural network archi-
tectures. As mentioned in §4.2, we filter out gen-
erated sound laws with low accuracy. However,
these tend to be laws with more general contexts,
which would be desirable if not for their lack of
applicability to the data. This leaves us with many
hyper-specific sound laws that only apply to sin-
gle examples in the dataset. These specific con-
texts may limit the potential shared innovations ex-
plored by the genetic search algorithm. While the
problem of insufficiently general sound laws may
be due to our small dataset size, the lack of consid-
eration for rule order could also play a role, as min-
imal generalization is designed for learning mor-
phological rules that apply in a specific order.

6 Conclusion and Future Work

We propose a novel method to automatically pre-
dict intermediate sound changes for phylogenetic
inference, via neural weighting of feature-based
edit distance between phones. When we apply our
method with a single-layer network, we accurately
predict 88% of binary-branching language quartets
(butterflies) in a gold Tukanoan phylogeny. Fur-
thermore, our typologically informed neural ap-
proach based on articulatory features produces in-
termediate sound changes that capture expert in-
tuitions on phonetic naturalness. Our analysis
shows that not only does phonetic plausibility mat-
ter, but so does the accuracy of sound transition
costs for successful phylogenetic inference. We
also present a method to predict sound laws au-
tomatically via minimal generalization, which cre-
ates less generalizable sound laws than the expert.
Future work in this vein may involve explo-
ration of other ASLI approaches (List, 2019; Luo,
2021), pruning the phone graph using PHOIBLE
to focus on cross-linguistically frequent phonemes
(Moran et al., 2014), generalization of our ap-
proach to other language families such as Poly-
nesian, and incorporation of MCMC methods to
jointly reconstruct protoforms and phylogenies.

Limitations

Distinctive feature theory does not take some as-
pects of acoustic similarity into account. For in-
stance, the common sound change p > ? is mo-

tivated by acoustic factors, such as [p] having a
weak burst. In addition, Schweikhard and List
(2020) caution that Index Diachronica (Anony-
mous, 2016) does not always cite reliable sources.
As such, we may wish to decrease the effect of
OUr TYPOLOGICAL GROUNDING and instead include
more language family-specific information a lin-
guist would have just by analyzing its phoneme
inventory. Historical linguists actually value rare
sound changes that regularly occur since they are
less likely to be parallel innovations and thus pro-
vide phylogenetic signal. Additionally, none of
the methods we mention handle borrowing or par-
allel innovations (homoplasy in Chacon and List
(2016)), which means the methods here would not
generalize well for Chinese and Romance. Fur-
thermore, our baseline involves a different maxi-
mum parsimony method (Wagner parsimony) than
Chacon and List (2016)’s modified Sankoff par-
simony, which muddies the comparison between
the two. That our shared innovations baseline out-
performs the cognacy baseline cannot actually tell
us that shared innovations outperforms cognacy in-
formation in general, because our gold tree was
generated in part using shared innovations. An-
other limitation is that the genetic search algorithm
does not scale well with more languages. Finally,
the rules we learn in our minimal generalization
learner also do not consider the relative chronol-
ogy of the sound laws, as a historical phonologist
would.
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A Experimental Details

A.1 Neural network hyperparameters

e num_epochs = 25

* batch _size=15

* optimizer = Adam

* learning_rate = 0.001
* train_test split=10.9
» seed =411

B Best tree analysis

Our algorithm correctly groups Western Tukano
(Kue, Kor, Mai, Sek, and Sio) varieties in
the same branch, with Kue/Kor and Sio/Sek
paired (and Mai by itself), correctly (though it
does not predict the correct chronology of the
branching). “East-Eastern Tukano” varieties (Tuk,
Wan, Pir, Tuy, Yur, Pis, Kar, Tat, and
Bar) are also grouped in the same branch, with
Tuk correctly splitting off the earliest and Pir/Wan
and Yur/Tuy paired correctly. However, Pis,
Kar, Bar, and Tat are predicted in an incorrect
order. As for “West-Eastern” Tukano (Bas, Mak,
Yup, Des, and Sir), our tree’s grouping is wrong:
Des/Sir and Yup are correct relative to each other
but are in the wrong branch, Mak/Bas, Tan, and
Kub are grouped correctly, but our predicted tree
splits Kub and Tan, while the gold tree does not.
Refer to Chacon and List (2016) for the original
names of each variety.

C Example sound laws
Examples of sound laws from our ASLI method:
* sufficiently general: e »€/ (njm)

* too specific: p —»m/ (#) (p’’p) (0) __ (a) (#)
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Figure 3: Gold Tukanoan phylogeny from Chacon and List (2016), which is a consensus of Chacon (2014) and
their DiWeST tree
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Figure 4: Gold Tukanoan phylogeny from Chacon and List (2016) but with only the 15 varieties in Chacon (2014)
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Figure 5: The predicted tree with the lowest GQD when compared to the gold tree (Figure 3), generated from the
main experiments with a 1 layer neural network and using expert sound laws
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Figure 6: GQD vs parsimony of all 40 runs of C+L with expert sound laws and various NNs.
The Spearman’s coefficient between GQD and parsimony is -0.0373 (p = 0.819).
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Experiment Shortest Shortest Avg. Avg. Recall

paths paths Num. Num.
(corr. 6) (corr. 13)  Paths Edges/Path

3 C+L, w/ AISCP (FED ablation) k>kx>te p>h 1.78 3.47 0.522
>tf

5 C+L, w/ AISCP, 1 layer NN k>c>te> p>f>h 1.0 2.10 0.342
tf

6 C+L, w/ AISCP, 4 layer NN k>c>tf p>h 1.0 1.94 0.366

7 C+L, w/ AISCP, 8 layer NN k>c>t> p>f>h 1.0 2.16 0.354
tf

8 C+L, w/ AISCP, 16 layer NN k>c>tf p>f>h 1.0 2.01 0.329

gold, expert sound laws k> ki>7[]’, k p > *p"» > 1.31 1.86 -

>kh>tf *¢>h

Table 2: Comparison of the intermediate sound changes predicted in our main experiments using our DWFED
method, with the unweighted ablation and the expert’s posited sound changes included for comparison. Corr. 6
and 13 each refer to the index of the sound correspondence in Chacon and List (2016)’s dataset of annotated sound
correspondences. Avg. # Paths refers to the average number of unique intermediate paths between proto-sound and
reflex pairs in the dataset. Avg. # Edges/Path denotes the average number of edges in a shortest path. For Chacon
and List’s expert sound laws, we consider all paths in the calculation, since their paths are unweighted. Recall
is the number of phones in the expert’s proposed intermediate sound changes that appear in our predicted sound
correspondences.
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