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Abstract

We introduce ADCluster, a deep document clus-
tering approach based on language models that
is trained to adapt to the clustering task. This
adaptability is achieved through an iterative
process where K-Means clustering is applied
to the dataset, followed by iteratively training
a deep classifier with generated pseudo-labels
– an approach referred to as inner adaptation.
The model is also able to adapt to changes in
the data as new documents are added to the doc-
ument collection. The latter type of adaptation,
outer adaptation, is obtained by resuming the
inner adaptation when a new chunk of docu-
ments has arrived. We explore two outer adap-
tation strategies, namely accumulative adapta-
tion (training is resumed on the accumulated
set of all documents) and non-accumulative
adaptation (training is resumed using only the
new chunk of data). We show that ADClus-
ter outperforms established document cluster-
ing techniques on medium and long-text doc-
uments by a large margin. Additionally, our
approach outperforms well-established base-
line methods under both the accumulative and
non-accumulative outer adaptation scenarios.

1 Introduction

Document clustering is the task of arranging large
volumes of unlabeled documents into clusters ac-
cording to some notion of similarity. A particularly
common goal is to discover the most common top-
ics in a given collection of text documents and to
assign each document to its corresponding cluster.
Given the ever-growing number of documents avail-
able online and the fact that manually structuring
them is impossible, there are countless applications
of document clustering techniques.

General purpose clustering algorithms not specif-
ically designed to work on text documents can be
used for document clustering by creating vector
representations of documents using deep neural net-
works and then clustering those vectors. One way
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Figure 1: Overview of traditional approaches in compar-
ison to ours in unsupervised text clustering tasks, where
chunk data can be accumulated for the adaptive process.

of doing so is to use autoencoders (Ballard, 1987;
Schmidhuber, 2015) applied to term frequency –
inverse document frequency document representa-
tions (tf-idf, (Rajaraman and Ullman, 2011)). How-
ever, such representations neglect contextual in-
formation. Alternatively, one can use contextual
representations obtained from pre-trained language
models (LMs). Such approaches run a clustering
algorithm such as K-Means over the output of the
LM (Guan et al., 2022; Subakti et al., 2022; Groo-
tendorst, 2022; Zhang et al., 2022; Eklund and
Forsman, 2022). In another line of work, some
studies proposed the simultaneous learning of doc-
ument representations and clustering through a self-
learning approach. This involves computing an
auxiliary target distribution using the output of the
model and minimizing the loss between these distri-
butions (Huang et al., 2020; Xie et al., 2016; Hadi-
far et al., 2019). A problem with this approach is
the risk of self-confirmation bias, potentially lead-
ing to trivial solutions. Moreover, the majority of
these proposals rely on autoencoders, with limited
exploration of LMs. In this paper, we introduce
ADCluster, which uses K-Means as a teacher to



train an LM-based classifier in an iterative manner
to adapt it to the clustering task. Figure 1 shows
the comparison between our approach and previous
approaches (which use LMs) in the unsupervised
clustering task. We hypothesize that the adaptation
process is essential for any real-world application
where there is no labeled training data.

In applications that rely on document cluster-
ing, the collection of documents is seldom static.
For example, consider an online service using web
crawlers to find new content of interest for them,
or an online advertising service trying to discover
appropriate web pages for ad placement (Hatefi
et al., 2021). Given that new content is created
every day, their document collections will steadily
increase. With time, clustering will become unre-
liable because of subtle topic shifts or previously
unknown terms such as Fridays for Future or King
Charles III. Our method facilitates resuming the
iterative adaptation of the model to the clustering
task from its previous state when a new chunk of
documents is to be incorporated.

Thus, we distinguish between inner and outer
adaptation. Inner adaptation adjusts the LM to
the clustering task at hand by an iterative training
process during which the data is considered im-
mutable. Outer adaptation adjusts the model over
time to growing sets of documents by resuming the
inner adaptation when a significant amount of new
data becomes available, either by considering the
entire dataset (accumulative outer adaptation) or
using only the new data (non-accumulative outer
adaptation). An obvious third possibility is to re-
build the model from scratch or use a scheduled
combination of the three possibilities, depending
on the practical conditions under which the model
is used.

In this paper, we mainly focus on introducing the
model and studying its performance under the accu-
mulative and non-accumulative adaptation regimes.
Future work will study the dynamic behavior aris-
ing when the model adapts to growing document
collections as topics evolve.

Apart from introducing the clustering technique
itself, and the algorithm used for training, we exper-
iment with three different datasets, each of which
we divide into five chunks in order to simulate
growing collections of documents. The empirical
results show the following:

1. Under each variant of the outer adaptation
(training from scratch, accumulative, and non-

accumulative adaptation), ADCluster outperforms
the baselines.

2. In the absence of significant topic shifts, the
three outer adaptation regimes usually result in
comparable performance. Hence, one can choose
between them as fits the application.

In addition to these main results, we conduct
experiments to show that the method is insensi-
tive to the type of language model used (our main
experiments use BERT).

2 Related Work

Clustering is a much studied unsupervised problem
in machine learning and data mining which is cen-
tral to many data-driven applications. Many strate-
gies for clustering arbitary sets of data points in
an n-dimensional space have been studied. These
include density-based, hierarchical, centroid- and
partition-based clustering; see Xu and Tian (2015)
for an overview. K-Means (MacQueen et al., 1967)
and HDBSCAN (Campello et al., 2013) are two of
the most popular traditional clustering algorithms.

The progress in deep learning that has been made
during the last decade has made it natural to ap-
ply deep learning to clustering tasks (Zhou et al.,
2022). An example of this is seen in DEC (Xie
et al., 2016), which utilizes a stacked autoencoder
to acquire document representations from tf-idf
vectors. Subsequently, it improves these representa-
tions while learning clustering in a self-supervising
manner. Hosseini and Varzaneh (2022) present a
hybrid deep clustering method combining a stacked
autoencoder and k-Means to organize Persian texts
into clusters.

In recent years, large language models trained
for language understanding and generation have
achieved impressive results across a wide range
of tasks. These LMs produce excellent general-
purpose contextual representations that reflect topi-
cal information and can thus be used for clustering.
Guan et al. (2022) generate document representa-
tions by pooling the outputs of ELMo (Peters et al.,
2018) pre-trained LM and apply K-Means to these
representations after normalizing them. Gupta et al.
(2022) employ language models for unsupervised
model interpretation and syntax induction through
deep clustering of text representations. Huang
et al. (2020) fine-tune the LM simultaneously with
masked language modeling and clustering losses.

To our knowledge, no existing research explores
deep clustering with LMs for dynamic scenarios



involving a growing set of documents. Our method
provides a simple yet effective approach to improve
cluster assignments by training the LM in an adap-
tive manner to provide clustering-friendly represen-
tations that, over time, can be adapted to a growing
set of documents.

3 Methodology

We first describe how the inner adaptation of the
proposed model ADCluster works. Its pseudocode
is given in Algorithm 1. It uses a conventional
K-Means algorithm and a Deep Neural Network
(DNN) classifier. The classifier is adapted itera-
tively in order to improve the clusterability of the
embedding vectors. This is the inner adaptation.
The classifier consists of a LM-based text encoder
(a pre-trained LM with a mean pooling layer over

Algorithm 1: ADCluster (inner adaptation)
Input :D: the set of unlabeled documents

fθ: LM-based encoder of DNN classifier
W : MLP head of DNN classifier
MaxIter : the max training iterations
EpochSize: iterations per training epoch
b: the mini-batch size
η, γ: the training learning rates
DR: the dimension reduction method
τ : a threshold for the minimum

percentage of changing assignments within two
consecutive epochs (convergence threshold)
Output :(θ∗,W ∗): The optimal weights

C: final cluster assignments for D

1 MaxEpoch ← MaxIter/EpochSize;
2 for epoch = 1 to MaxEpoch do
3 E ← encode D with fθ;
4 E′ ← DR(E) . Apply DR with condition
5 P ← run K-means on E′ using cosine similarity;
6 X ← choose b ∗ EpochSize documents from

pseudo-labeled set P with a uniform sampler;
7 W ← initialize W with Xavier initialization;
8 for iter = 1 to EpochSize do
9 Biter ← choose a mini-batch from X;

10 Yiter ←W (fθ(Biter ));
11 ŶK-means ← P (Biter);
12 l← cross-entropy-loss (Yiter , ŶK-means);
13 θ ← θ − η ∗ l(θ) . Update θ
14 W ←W − γ ∗ l(W ) . Update W
15 end
16 Ccurr ←Wpredict(fθ(D)) . predict cluster

assignments for D with DNN classifier
17 t ← compute (Ccurr , Cprev ) . Compute the

percentage of changing cluster assignments
compared to previous epoch;

18 if t < τ then
19 stop the iterative process
20 end
21 Cprev ← Ccurr

22 end
23 return θ∗,W ∗,C;

its last layer) denoted by fθ (where θ is the set of
parameters) followed by a Multi-Layer Perceptron
(MLP) head denoted by W that maps document
representations to cluster assignments. Suppose we
have an unlabeled dataset D = {dn}Nn=1 of N doc-
uments. At the beginning of each training epoch,
we map each document dn to its contextual repre-
sentation fθ(dn). So, E = {fθ(dn)}Nn=1 is the set
of document contextual representations. Often, it is
beneficial to reduce the dimensionality of these rep-
resentations using a dimension reduction method
such as PCA (Pearson, 1901) or UMAP (McInnes
et al., 2020), resulting in a set E′ of vectors of
fewer dimensions. Next, we use K-Means (based
on cosine similarity rather than squared Euclidean
distance) to cluster E′ into K distinct clusters. We
use these cluster assignments {pn}Nn=1 as pseudo-
labels to train the classifier. For this, the MLP W
and the encoder fθ are jointly trained to minimize
the cross entropy loss

∑b
n=1− log

exp (yn,pn)∑K
k=1 exp (yn,k)

b
(1)

where yn is the output of the classifier for docu-
ment dn and b is the mini-batch size. This cost
function is minimized using AdamW (Loshchilov
and Hutter, 2019) and backpropagation to compute
the gradients. With the goal of preventing the clas-
sifier from overfitting to the current pseudo-labels,
we employ only a subset of the data in every train-
ing epoch and restrict the number of iterations (i.e.,
EpochSize in Algorithm 1).

It is worth mentioning that there is no corre-
spondence between two consecutive cluster assign-
ments. Hence, the final classification layer learned
for an assignment becomes irrelevant for the fol-
lowing one and thus needs to be re-initialized from
scratch at each epoch. We found that re-initializing
the entire MLP head of the classifier rather than the
final classifier layer is also beneficial for reducing
the risk of overfitting. Since the MLP is a shallow
network (having only one hidden layer), it can be
trained sufficiently in one epoch.

In addition, we predict cluster assignments for
all documents at the end of each epoch using the
classifier and stop our procedure when the change
in assignments is less than a threshold τ , i.e., the
algorithm terminates when the number of docu-
ments for which the cluster assignment changes
falls below τ .



Table 1: Datasets and statistics. Silhouette Coefficient
refers to the Silhouette score of Rousseeuw (1987)
which measures how similar a document is to its own
cluster compared to other clusters, the best and worst val-
ues being 1 and -1, respectively. We compute the mean
Silhouette Coefficient of all samples of the datasets us-
ing their true labels. As our LM for creating document
representations, we use a BERT language model.

Dataset Yahoo!5 Ag News Fake News

#-Documents 38 812 40 000 480
Avg # sents 25.12 1.45 6.05
Avg # word

(in doc)
578.26 36.09 141.20

Avg Silhouette
Coefficient

0.01234 0.03736 0.04356

Overall, ADCluster alternates between cluster-
ing document representations to produce pseudo-
labels and updating the parameters of the classifier
by predicting these pseudo-labels using Eq. (1).
This iterative adaptation of the encoder teaches
the LM to generate more clustering-friendly rep-
resentations. This distinguishes ADCluster from
conventional methods, resulting in an improved K-
Means clustering in subsequent epochs. The final
clusters are obtained using the adapted classifier to
predict cluster assignments.

If K-Means assigns almost all documents to a
few large clusters, θ will only discriminate between
them. A trivial parameterization occurs when all
clusters except one are singletons, and therefore
the classifier predicts the same output for all in-
puts (Caron et al., 2018). To overcome this prob-
lem, we train the classifier on uniformly sampled
documents from the pseudo-labeled classes. The
result is the same as weighting the contribution of
a document to the loss function by the inverse of
the size of the cluster to which it belongs.

Let us now briefly explain the outer adaptation of
ADCluster. Imagine a data stream where new data
arrives sequentially in chunks Ct, where t denotes
the time step. In the accumulative scenario, we
resume the inner adaptation of ADCluster at time
t using C0 ∪ · · · ∪ Ct as training data when a new
chunk Ct arrives. In contrast, the non-accumulative
approach resumes inner adaptation solely with the
latest chunk Ct.

4 Experiments

4.1 Datasets

We employ the following three datasets whose
statistics are summarized in Table 1:

Yahoo!5 is a subset of Yahoo! Answers (Zhang
et al., 2015). The dataset comprises 10 classes,
each document consisting of a question, a title, and
the best answer to the question. We obtain the text
to be clustered by concatenating these parts. To
obtain a long-text dataset we only choose samples
of over 500 tokens. The resulting dataset includes
38 812 documents.

Ag News (Zhang et al., 2015) consists of 4
classes: World, Sports, Business, and Sci/Tech
news. The number of training and testing sam-
ples for each class is 30 000 and 1 900, respectively.
We choose 40 000 documuments at random from
the training set. To have a very short-text dataset,
we only consider the news text and ignore the titles.

Fake News (Pérez-Rosas et al., 2018) com-
prises 480 medium-length news articles belonging
to six different domains. While half of the articles
are real and the other half are fake news, we do not
make use of this distinction but use only the six
topics of the dataset as labels.

Following the approach of prior studies (Huang
et al., 2020; Xie et al., 2016; Hadifar et al., 2019),
we form unlabelled documents by removing all
labels for the training set, using the labels only to
evaluate unsupervised performance.

4.2 Baselines

We use the following baselines for comparisons:
Traditional clustering algorithms We com-

pare our model with K-Means and HDBSCAN.
For HDBSCAN, we use the soft (or fuzzy)
implementation1 of the algorithm that predicts
probability vectors for all dataset samples; no
samples are considered noise. These vectors show
the membership probability for each cluster, so
we assign the sample to the cluster for which the
highest probability has been determined. Instead of
using pure BERT vectors, we apply normalization
on them prior to performing dimension reduction
and clustering. Before running HDBSCAN on the
datasets, we perform dimension reduction using
UMAP2. For each dataset, we test several values

1https://hdbscan.readthedocs.io/en/latest/
soft_clustering.html

2https://umap-learn.readthedocs.io/en/latest/

https://hdbscan.readthedocs.io/en/latest/soft_clustering.html
https://hdbscan.readthedocs.io/en/latest/soft_clustering.html
https://umap-learn.readthedocs.io/en/latest/


for parameters of HDBSCAN and UMAP and
report the highest accuracy we get. On Yahoo!
Answers, we perform PCA dimension reduction
(n_components = 0.8; preserving at least 80% of
variance) before K-Means.

DEC-tfidf we compare our model with that
of Xie et al. (2016), using the available Py-
Torch implementation from https://github.
com/vlukiyanov/pt-dec. We slightly adjust the
parameters reported in the paper to our datasets and
present the highest value obtained.

DEC-BERT To have a more fair comparison
between ADCluster and DEC (Xie et al., 2016),
we replace the stacked autoencoder part of DEC
with a BERT language model followed by a mean
pooling layer to encode documents and train it with
the same objective function as in DEC.

UFT We compare our model with the model pre-
sented in Huang et al. (2020). We refer to this base-
line as UFT. We obtained the source code from the
authors of the paper and applied it to our datasets.

ADCluster-noIter is a non-iterative version of
ADCluster. We run K-Means only once using con-
textual representations of documents from BERT
and train the neural classifier with the generated
pseudo-labels for some iterations.

Centroid-ADCluster Since in ADCluster
there is no correspondence between two consec-
utive cluster assignments, the final classification
layer learned for an assignment becomes irrelevant
for the following one and thus needs to be re-
initialized from scratch at each epoch. We do this
to prevent the model from overfitting to the noisy
pseudo-labels. For verification, we implemented
another version of ADCluster in which we, instead
of learning a classification layer predicting the
cluster assignments, perform explicit comparisons
between features and centroids.

4.3 Evaluation Metric

We adopt a standard unsupervised evaluation met-
ric that is widely used in deep clustering studies to
compare our proposed method to other algorithms.
For all the algorithms, the number of clusters is set
to the number of ground-truth categories of each
dataset, and we evaluate the clustering performance
using the unsupervised clustering accuracy (ACC):

ACC = max
m

∑N
n=1 1{ln = m(cn)}

N

where N is the total number of documents, ln is the
ground-truth label of document dn, cn is the clus-
ter assignment that is predicted by the clustering
algorithm for dn, and m maps cluster assignments
to labels, ranging over all possible one-to-one map-
pings. This metric seeks the best possible align-
ment between the ground-truth label and the cluster
assignments generated by an unsupervised cluster-
ing algorithm. The Hungarian algorithm, presented
in the work of Xu et al. (2003), offers a means
to efficiently calculate the most effective mapping
function within the context of a linear assignment
problem.

4.4 Experimental Setup

We implemented ADCluster using the PyTorch
framework, utilizing bert-base-uncased LM of Hug-
ging Face3. Documents are truncated to their first
256 tokens. To generate document embeddings,
we employ average pooling over the output of the
language model. For label prediction, we employ
a two-layer MLP with a single hidden layer. The
hidden layer size is set to 128 for Yahoo!5 and
Fake News and 768 for Ag News. The hyperbolic
tangent function is used as the activation function
for the MLP.

We set the mini-batch size to 4 and the learning
rate of the LM and MLP head to 10−6 and 10−4

correspondingly. We also use a cosine scheduler
for the learning rate of the LM. We train ADClus-
ter for at most 10 000 iterations and reassign the
clustering labels by applying K-Means on docu-
ment representations every 200 iteration (which we
call an epoch). The threshold for stopping train-
ing when cluster assignments do not significantly
change anymore is set to 1% of the documents. The
model is trained using the AdamW optimizer with
α and β equal to 0.999. We use the first 200 iter-
ations as warm-up steps for the LM. To initialize
the centroids of K-Means we use the K-Means++
seeding strategy proposed by Arthur and Vassilvit-
skii (2007) and to initialize weights of MLP head
in each epoch we use Xavier initialization (Glorot
and Bengio, 2010). We train ADCluster-noIter and
Centroid-ADCluster under the same settings. The
only difference for Centroid-ADCluster is that the
size of the hidden layer of the MLP head is 768
for all datasets and the weights of the last layer
(768 ·K, where K is the number of classes in the
dataset) are initialized with the centroids of the K-

3https://huggingface.co/bert-base-uncased

https://github.com/vlukiyanov/pt-dec
https://github.com/vlukiyanov/pt-dec
https://huggingface.co/bert-base-uncased


Means which are constant during training. For the
other baselines, we test several sets of values for
their hyperparameters and report the best results.

5 Results and Discussions

5.1 Overall Performance

Generally, ADCluster achieves better performances
than most of the baseline methods across multiple
datasets (see Table 2). Compared to traditional
clustering algorithms, ADCluster outperforms K-
Means from 1.84% (Ag News) up to 23.3% (Ya-
hoo!5), indicating that the iterative learning pro-
cess (inner adaptation) of our model is effective.
We can also note that HDBSCAN achieves better
performance than K-Means in most cases but out-
performs ADCluster only in the case of Ag News.
In Table 1, we see that Ag News consists of very
short texts, its average number of sentences per
document being 1.45 and the average number of
words being 36.09. It does not seem to provide
enough context for BERT to make distinctive repre-
sentations, thus limiting the efficacy of our model
on this particular dataset. However, in Section 5.5
we will see that by replacing BERT with more ad-
vanced LMs the performance of our model on this
dataset improves. For Yahoo!5 and Fake News,
HDBSCAN gains better performance than most of
the other methods except ADCluster. In fact, for
these datasets, ADCluster displays better perfor-
mance than all baselines. This holds even in the
case of Fake News, which consists of a very limited
number of documents (i.e., 480 documents).

The comparison with DEC-based models yields
the following observations. Firstly, ADCluster out-
performs DEC-tfidf, which we attribute to its use
of BERT contextual representations (whereas tf-
idf representations only consider text as a bags of
words and neglect their semantic relations). Sec-
ondly, even though DEC-BERT has similar ac-
cess to the contextual information of the language
model, its performance is still lower than that of
our model. The same applies to the UFT baseline.
The reason could be that these models are trained
in a self-learning fashion and may thus suffer from
self-confirmation. Our model avoids this by using
K-Means as an external teacher for our neural clas-
sifier. It also uses a uniform sampling technique for
batch creation, mitigating biases stemming from
imbalanced clusters.

5.2 Dynamic Performance Analysis of
ADCluster Across Varied Dataset Sizes

In this experiment, we examine the performance
of ADCluster in comparison to baselines as the
dataset size gradually increases. The outcomes of
this experiment are presented in Table 3, illustrat-
ing the results as the document size expands from
10% to 100%. In general, ADCluster consistently
maintains stable performance throughout these ex-
periments and surpasses baseline models for all
datasets, with the exception of the 10% case for
Fake News.

5.3 Illustration of Learned Representations
by ADCluster

In order to investigate how ADCluster develops
clustering-friendly representations through inter-
nal adaptation, we visualize the evolution of clus-
ters during the training process using the Yahoo!5
dataset. Figure 2 shows how ADCluster clusters
the documents during different epochs with ground-
truth classes represented by different colors. The
figure clearly demonstrates that at the very begin-
ning, the structure is random. Along with the adap-
tation process, documents are arranged into more
distinct groups, which is signified by both color
separation and spatial characteristics. This trend
is further confirmed by the continuous enhance-
ment in clustering performance observed in each
successive epoch.

5.4 The Model Behavior on Data Streams

Notation. Hereafter, if not otherwise specified, we
use Ac to abbreviate Accumulation. We randomly
split each unlabelled data collection into 5 chunks
and denote them by C1 (1–20%), C2 (21–40%), C3

(41–60%), C4 (61–80%), C5 (81–100%).
We now analyze the outer adaptation behavior of

ADCluster. In this experiment, we assume the num-
ber of the clusters to be constant over time, only
receiving new samples. We compare our model
with three baselines:

Word2vec+KM We generate document repre-
sentations as the average of the Word2vec embed-
dings of all words in the document and use K-
Means to cluster these representations.

BERT+KM We create document representa-
tions by taking the average of the output of the last
BERT layer for non-pad tokens and use K-Means
to cluster these representations.

ADCluster-scratch This baseline is the same



Table 2: Overall performances of ADCluster in comparison to baselines. ♥ indicates
short-text datasets.

Method Yahoo!5 Ag News♥ Fake News

Classic
Clustering

Kmeans (BERT) 44.64 81.6 73.96
HDBSCAN (BERT) 58.8 83.68 72.71

DEC (Xie et al., 2016)∗ tf-idf 50.23 68.93 45.41
BERT 46.43 78.32 75.83

UFT (Huang et al., 2020)∗ 46.94 65.46 66.67

ADCluster (ours) Centroid-ADCluster 60.64 80.93 76.67
ADCluster-Final 67.94 83.44 77.50

∗ The result is produced by us following the original paper

Table 3: Performance analysis of ADCluster across
varied dataset sizes compared to baselines. Note that,
because of the unsupervised setting, there is no expecta-
tion of monotonic increases in performance.

Dataset Method 10% 50% 80% 100%

Ag News
K-Means 82.4 81.39 81.41 81.6
DEC-BERT 79.3 78.22 78.4 78.32
ADCluster 84.08 82.56 84.3 83.44

Yahoo!5
K-Means 53.23 53.5 59.95 52.17
DEC-BERT 45.74 46.44 46.56 46.43
ADCluster 66.3 66.03 67.38 67.94

Fake News
K-Means 64.58 77.08 77.34 73.96
DEC-BERT 68.75 79.58 77.60 75.83
ADCluster 64.58 83.75 79.95 77.50

as ADCluster except that instead of perform-
ing outer adaptation, we train the model from
scratch (accumulatively on the whole dataset or
non-accumulatively on the last chunk only, respec-
tively). Thus, we remove the outer adaptation and
the model only benefits from the inner adaptation.
Tables 4–6 show the results of our experiments.

As our main take-aways from these experi-
ments, we note that ADCluster outperforms the
Word2vec+KM and BERT+KM baselines in all
cases in both the Ac and non-Ac settings. The su-
perior accuracy of ADCluster on chunk C1 can

Table 4: Comparing the outer adaptation performance
of ADCluster with baselines on Yahoo!5.

Method Ac C1 C2 C3 C4 C5

Word2vec+KM Yes 52.09 41.86 47.08 44.94 49.02
BERT+KM Yes 46.28 53.84 53.67 55.24 53.70
ADCluster-scratch Yes 67.33 66.44 64.06 64.51 62.06
ADCluster Yes 67.33 67.99 68.07 67.8 67.48

Word2vec+KM No 52.09 42.51 45.72 49.79 50.22
BERT+KM No 46.28 57.02 52.00 54.86 55.04
ADCluster-scratch No 67.33 67.11 65.19 61.79 65.50
ADCluster No 67.33 68.07 68.24 67.61 67.98

(a) Epoch 0 (51.65%)) (b) Epoch 5 (57.37%))

(c) Epoch 30 (67.53%)) (d) Epoch 50 (67.94%))

Figure 2: Illustration of clustered contextual represen-
tations according to ADCluster for Yahoo! Answer
during inner adaptation. Colors indicate ground-truth
classes. We have used UMAP to map 768-dimensional
representations to a 2D feature space for illustration.

Table 5: Comparing the outer adaptation performance
of ADCluster with baselines on Ag News.

Method Ac C1 C2 C3 C4 C5

Word2vec+KM Yes 80.65 79.98 80.55 80.87 80.83
BERT+KM Yes 81.66 81.42 81.50 81.51 81.52
ADCluster-scratch Yes 84.07 84.56 84.09 83.07 81.76
ADCluster Yes 84.07 84.81 82.56 83.05 84.03

Word2vec+KM No 80.65 79.59 81.49 80.80 80.85
BERT+KM No 81.66 81.43 81.20 81.82 81.05
ADCluster-scratch No 84.07 83.74 81.95 83.87 82.51
ADCluster No 84.07 84.01 84.25 83.6 83.44



Table 6: Comparing the outer adaptation performance
of ADCluster with baselines on Fake News.

Method Ac C1 C2 C3 C4 C5

Word2vec+KM Yes 67.71 79.69 78.47 71.35 74.58
BERT+KM Yes 57.29 77.60 77.08 77.34 77.29
ADCluster-scratch Yes 69.79 82.81 84.37 79.69 79.58
ADCluster Yes 69.79 83.33 83.68 81.25 80.62

Word2vec+KM No 67.71 80.21 62.50 54.17 57.29
BERT+KM No 57.29 77.08 58.33 53.12 51.04
ADCluster-scratch No 69.79 82.29 67.71 57.29 59.37
ADCluster No 69.79 86.46 79.17 61.46 73.96

be attributed to the inner adaptation which the
baseline models lack. However, interestingly the
outer adaptation results in superior performances
in most cases on chunks C2–C5 even compared to
ADCluster-scratch, which is remarkable and shows
the effectiveness of outer adaptation.

5.5 Ablation study

In this ablation study, we design two settings to
study the effectiveness of each ADCluster com-
ponent. First, we replace the default BERT lan-
guage model with recent models such as RoBERTa,
SBERT, and BART. Second, we test various set-
tings: (1) removing outer adaptation, (2) using a
random sampler instead of a uniform sampler, and
(3) Using UMAP for dimension reduction (instead
of PCA for the Yahoo!5, and instead of not using
dimension reduction for Ag News and Fake News).
Figure 3 clearly shows that recent advanced lan-
guage models yield better performance on all of the
datasets. Table 7 summarizes the performance of
ADCluster in the second setting. Across all experi-
ments, the final model of ADCluster shows better
performance than these variants.
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Figure 3: Ablation study w.r.t. different language mod-
els being used for the inner adaptation of ADCluster.

Table 7: Ablation study to evaluate the impact of differ-
ent components of ADCluster to the final performance.

Ablation setting Yahoo!5 Ag News Fake News

Non iterative 53.89 82.88 73.96
UMAP 64.74 58.33 66.25
Random sampler 65.78 79.2 76.04

6 Conclusion and Future Work

We have introduced ADCluster, a neural document
clustering model that iterates between a contextual
language model and K-Means. K-Means is ap-
plied to contextualized document representations
created by a BERT language model in order to ob-
tain pseudo-labels. The weights of the language
model are then iteratively adapted to improve the
prediction of cluster assignments using discrimi-
native loss. Not only does this inner adaptation
result in superior clustering performance, it also en-
ables us to resume training when the dataset grows
(outer adaptation), as is often the case in real-world
applications. Our empirical results show that for
medium to long-text documents, ADCluster consis-
tently outperforms conventional clustering models
by a considerable margin with respect to the unsu-
pervised accuracy measure.

Future work will have to study the inner and
outer adaptation in more detail. For instance, one
interesting direction could be a “soft adaptation”,
which continuously measures how much weight
the outer adaptation shall place on earlier and later
chunks. So far, we only presented two extreme
cases, i.e., accumulation or non-accumulation.

Moreover, text data is often accompanied by
additional modalities such as images, audio, and
video. Such multimodal data has the potential to
help the model understand the semantics of docu-
ments and assign them to the right cluster (Chen
et al., 2021; Jiang et al., 2019). Multimodality can
also open the door to new real-world downstream
applications. Therefore, we are interested in ex-
tending our model to multimodal data clustering in
the future.
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